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ABSTRACT The rapid growth of Internet of Things (IoT) devices and communication standards has led
to an increasing demand for data security, particularly with limited hardware resources. In addition to
conventional software-level data encryption, physical-layer security techniques, such as device-specific
radio frequency fingerprints (RFFs), are emerging as promising solutions. This article first summarizes
prior arts on timestamped RFFs generation and reconfigurable power amplifier (PA) designs. Following
that, an innovative 2-stage PA incorporating a reconfigurable class A stage with a Doherty amplifier,
designed in 65-nm CMOS to generate 4096 timestamped RFFs without introducing in-band power
variation, is presented. Multiple 3-bit resistive digital-to-analog converters (RDACs) are applied to control
body biasing units within the two-stage PA, facilitating the generation of massive and distinguishable
RFFs. Subsequently, time-varying unequally spaced multitone (USMT) techniques are proposed to further
elevate the count of available timestamped RFFs from 4096 to 16 384. The validation results of RFFs
utilizing 64-QAM WiFi-6E advertising packets, employing time-varying USMT transmitted within the
5.39–5.41-GHz band, confirm the successful generation of 16 384 distinct RFF patterns. Moreover, the
measurement results demonstrate that more than 11 504 RFFs among the generated patterns can be
classified with an accuracy exceeding 99%.

INDEX TERMS Combinatorial randomness (CR), Internet of Things (IoT), machine learning, neural
networks, power amplifier (PA), radio frequency fingerprint (RFF), time-varying tone insertion, unequally
spaced multitone (USMT).

I. INTRODUCTION

THE IMPORTANT security challenge associated with
ubiquitous wireless connections has significantly

increased due to new entry points from wireless devices
for malicious acts [1], [2], [3]. While advanced security
measures, such as physical-layer authentication using unique
optical features [4] and directional beamforming [5], have
been investigated, they may not be suitable for resource-
constrained Internet of Things (IoT) nodes. Radio frequency
fingerprint (RFF) technologies have been exploited to secure
IoT devices [6], [7], [8], [9]. However, the variety of

classifiable RFFs resulting from inherent manufacturing
variations is very limited. In [10], spectral regrowth-based
features from a power amplifier (PA) are tuned to generate
16 RFFs, and this number is further expanded to 220
in the previous work by using feature augmentation of
a reconfigurable PA [11], [15]. However, such limited
tunability is still vulnerable to interception by adversary
receivers using prolonged observation time to mimic the
transmission signals. Furthermore, as noted in [11] and [15],
the performance of the combinatorial-randomness (CR)-
based PA is found to be sensitive to process variation and
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FIGURE 1. Time-varying RFF system utilizes various USMT frequency sets to
enhance built-in RF features for generating timestamped signatures, effectively
addressing security threats, such as malicious data injection or node cloning by
modern intelligent transceivers.

layout-related parasitic elements due to the discrete structure
of the PA. In prior research [16], to achieve the necessary
level of PA tunability while maintaining PA performance,
a significant number of digital-to-analog converters (DACs)
are utilized to control the body voltage of PA devices.
Moreover, adjustments to the power supply voltage and
gate biasing voltage are frequently made to support the
performance of the PA under complex operating conditions.
Indeed, these techniques effectively enhanced the tunability
of the PA and minimized performance variations during
reconfiguration. Nevertheless, the requirement for a large
number of redundant PA configurations to extract only a
limited number of constant-performance PA configurations
is undesirable. This work introduces a reconfigurable 2-stage
Doherty PA aimed at addressing multiple challenges: min-
imizing performance variation caused by RFF generation,
increasing the number of RFFs, and facilitating faster RFF
authentication. Through these advancements, our approach
enables the generation of over 16 000 timestamped RFFs.
As depicted in Fig. 1, a reconfigurable transmitter integrated
with timestamped RFF signatures is designed to continuously
update RFFs. This is achieved by selecting various unequally
spaced multitone (USMT) frequency sets and updating all
six DAC-controlled body voltages. Time-varying USMT are
transmitted between each data packet to facilitate rapid
authentication at the receiver side, which is equipped with
an intelligent classifier. During the handshaking process, the
order of timestamped RFF signatures can be synchronized
between transmitters and receivers to prevent the need for
online exchange. This approach effectively mitigates security
threats, such as malicious data injection or node cloning by
modern intelligent receivers.

In addition to the generation of RFFs, the extraction
of generated RFF features also plays a significant role
in physical-layer security. Machine-learning-assisted RFF
identification approaches have been investigated in the
software field using different types of neural network mod-
els, including multilayer perceptron (MLP) [8], [17], [18],
convolutional neural network (CNN) [8], [11], [17], [19],
and long short-term memory (LSTM) [17], [20]. LSTM
is a type of recurrent neural network well suited for
time sequence features [17], whereas MLP and CNN are
more versatile structures designed for RFF extraction with
diverse features. According to experimental results compar-
ing RFF identification using three types of models—MLP,
CNN, and LSTM—CNN achieves the highest identification
accuracy, while MLP incurs the most parameters due
to its fully connected structure [17]. Additionally, the
performance of LSTM heavily depends on the type of
time sequence input feature [17]. The Bayesian neural
network (BNN) [21], [22] represents another lightweight
neural network structure suitable for deployment in time-
sensitive systems with a relatively small pool of available
RFFs. This suitability arises from the nonlinearity introduced
by PA characteristics. Hence, given the extensive pool of
over 16 000 distinctive RFFs generated from the proposed
design in this study, CNN is selected to implement the
intelligent classifier at the receiver side. This classifier
comprises convolutional layers for feature extraction and
fully connected layers for decision making, as elaborated in
Section VI.

II. RFF GENERATION TECHNIQUES
A. COMBINATORIAL CLASS-E PAS [11], [15]
In Fig. 2, a Class-E PA featuring RFF capabilities is designed
using the CR concept. The main power transistor is seg-
mented into 12 selectable elements. As stated in Pelgrom’s
paper [27], the standard deviations of the threshold voltage
(Vth) and transistor gain (β) parameters of MOSFETs are
inversely proportional to the square root of the MOSFETs’
area. Furthermore, research in [11] demonstrates that the
magnitude and phase deviation of the second harmonic of the
PA is more sensitive to variations in threshold voltage (Vth)
compared to the fundamental tone. Hence, by minimizing
the impact on the performance of the fundamental tone, the
segmented PA structure can produce more distinguishable
nonlinear behaviors compared to conventional concentrated
PAs.
By selecting 9 out of the total 12 PA blocks during

each authentication period, it is possible to generate 220
distinguishable PA combinations. Specific RFF features
embedded in the transmitted signal are updated regularly,
facilitating the generation of timestamped RFFs to enhance
the system’s security. In this study, the preambles of each
data packet are utilized for training the CNN, ensuring
that the authentication process remains independent of the
transmitted data.
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FIGURE 2. Advancement in the generation of RFFs using CR has increased the
number of RFFs from 16 in previous designs to 220 in the current state of the art.

FIGURE 3. RFF generation utilizes process variations and device-specific harmonic
components of different types of switching PAs.

B. RFF GENERATION UTILIZING SWITCHING POWER
AMPLIFIERS AND INTRINSIC PROCESS VARIATIONS [22]
To meet the energy efficiency requirements of modern
wireless devices, Class-E and Class-F PAs are commonly
deployed. In [22], Class-E and Class-F amplifiers are utilized
for investigating RFF feature generation. In [12] and [13],
it is noted that the drain impedance of the conventional
Class-F PA can be manipulated up to the third harmonic
by employing output matching networks featuring harmonic
resonators. This capability facilitates the tunability of the PA
output waveform’s behavior. Research in [22] demonstrates
that the second harmonic resonator in the output matching
networks significantly affects the behavior of the third har-
monic. Consequently, variations in the parasitic components
within the matching networks lead to the generation of
device-specific RFF features. In contrast to Class-F PAs,
the harmonic content at the drain side of Class-E PAs is
primarily induced by the soft-switching effect [14]. The soft-
switching effect at the drain of the Class-E PA, which is
highly dependent on process variation, results in distinct
RFF features. As illustrated in Fig. 3, each PA transmits
device-specific RF features, which are then extracted by
the target receiver using the fast Fourier transform (FFT).
Subsequently, the extracted RF features are forwarded to
a BNN for identification and classification. In [22], six
transmitters are tested and successfully classified with an
accuracy of 89.5%.

FIGURE 4. Highly tunable PA is employed to restore its performance in harsh
conditions. Tunable power supply voltage and gate biasing voltage are utilized by
integrating DACs to extend the programmability of the PA. A total of 2400 PA
configurations are generated to cover operating temperature ranges from −197 ◦C to
80 ◦C.

C. DAC-CONTROLLED COMBINATORIAL PAS [16]
In [11] and [15], the integration of CR techniques with
MOSFETs’ intrinsic process variation enabled the creation
of over 200 RFFs on a single chip. However, relying solely
on process variation generated by the discrete PA structure
and fabrication for enhancing the tunability of the PA is
inherently limited. For instance, as the number of discrete
PA blocks increases while maintaining a certain output
power level, the size of each PA block decreases. Increasing
device mismatch between each PA block can lead to overall
PA performance degradation. Additionally, the discrete PA
structure introduces extra parasitics due to complex and
bulky interconnects required to support large currents, which
can limit its application at higher frequency bands.
Hence, in [16], while preserving the same number of

discrete PA blocks, the topology of each block is altered to
integrate a significant number of DACs for controlling the
body voltage of transistors. As depicted in Fig. 4, the body
voltages of the input transistors are individually regulated by
3-bit DACs. Furthermore, by adjusting the supply voltage
Vdd and the gate voltage of the input transistors, PA
configurations that offer stable output power and high
signal quality in specific operating environments are chosen.
By employing the deep reinforcement learning techniques
outlined in [16], nearly 2400 optimized PA configurations
are selected to restore PA performance across operating
temperatures ranging from −197 ◦C to 80 ◦C.

D. PUF-CONTROLLED PA SPECTRAL REGROWTH [10]
In [10], a differential PA structure consisting of Main
and Auxiliary paths, as depicted in Fig. 5, is utilized. By
adjusting the gate voltage of the Auxiliary PA, the out-of-
band leakage power can be tuned to generate device-specific
features. Since the Main path PA dominates the total power
of the PA, tuning the Auxiliary path PA primarily influences
the out-of-band leakage power. Consequently, the in-band
power variation is effectively controlled and remains below
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FIGURE 5. PUF-controlled PA is implemented to generate device-specific
out-of-band leakage power features [10]. Sixteen distinctive PUF settings are applied
to each PA chip, resulting in a total of 144 PUF settings measured from nine chips,
achieving an identification accuracy of 95%.

1.5 dBm. A digital physical unclonable function (PUF) and
an 8-bit DAC are employed to produce randomized Auxiliary
PA biasing voltage combinations. However, the nonlinear
relationship between out-of-band power leakage (OOBPL)
and the Auxiliary path PA biasing voltage results in a
nonuniform probability distribution of the OOBPL, which is
undesirable for classification and security purposes. Hence,
a hardware lookup table is implemented before the DAC to
predistort the output of the PUF and restore the uniform
probability distribution of the OOBPL. Each PA device is
programmed with 16 PUF settings, enabling 16 types of PA
configurations per chip. A total of nine PAs are utilized to
create 144 PA configurations, resulting in an identification
accuracy of 95% for these configurations.

III. DESIGN CONSIDERATIONS FOR MAXIMIZING THE
NUMBER OF RFFS WHILE MAINTAINING SATISFACTORY
PERFORMANCE
In the previous work [16], the tunability of the PA is
significantly enhanced, and the PA performance is restored
during extreme operating conditions. High PA tunability
assists with RFF generation. However, this highly tunable PA
structure depicted in Fig. 4 is challenging to sustain reliable
PA performance and generate RFF features simultaneously.
The DAC-controlled body voltage is directly connected to the
body of the main power transistors. Varying the body voltage
inevitably causes the PA’s dc operating points to fluctuate
during RFF reconfiguration. Additionally, the techniques
used to boost tunability, such as modifying the power supply
voltage and gate biasing voltage, also lead to variations in
PA performance.
Although, as discussed in [11] and [15], the CR technique,

without altering operation conditions, helps reduce the
variation in PA output power, segmenting the PA into discrete
blocks still introduces noticeable device mismatches. Based
on measurement results in [11] during Bluetooth signal
transmission, the average fluctuation in PA output power
across RFF configurations is +/−2 dBm, which degrades
the PA’s performance.

The application of multigate transistors and PUF-
controlled techniques in [10] effectively reduces the in-band
power variation during PUF operation and generates iden-
tifiable out-of-band power features. However, an in-band
power fluctuation of 1.2 dBm is still noticeable, and the
number of identifiable PA patterns is limited by the PUF’s
tunability. Additionally, to extract the out-of-band features,
high-sensitivity power detection and downconversion circuits
are added to the receiver side, significantly increasing the
hardware design complexity. The detection accuracy of the
out-of-band power features can be significantly affected by
the changing noise floors in the communication channel.
While paper [21] minimizes hardware resource consump-

tion by employing only one lightweight machine-learning
classifier, the presence of RF features at high-order har-
monic frequencies unavoidably increases the complexity of
receiver-side circuit design. For instance, the high-order
harmonic components fall outside the desired frequency
band. Additional downconversion circuits with a wideband
analog-to-digital converter (ADC) are required to extract
these high-frequency components.
Therefore, the following design objectives are established.

First, to meet the requirements of complex modern com-
munication standards, the entire PA system must generate
prominent in-band RFFs without modifying standardized
data packages. Second, minimizing the performance variation
of the PA system caused by configuring RFFs is crucial,
so generating RFFs by modifying the PA’s operating points
is not preferred. Lastly, to simplify data collection and
machine-learning classifier training, the process of extracting
features of RFFs must be streamlined, eliminating the need
for collecting massive data to carry out high-dimensional
RFF classification.

IV. PROPOSED 2-STAGE DOHERTY POWER AMPLIFIERS
FOR RFF GENERATION
A 2-stage reconfigurable PA shown in Fig. 6(c) is proposed.
The class A amplifiers at Auxiliary and Main paths compose
the first stage, and the “Doherty amplifier” is applied in the
second stage. Rather than directly generating RFF features
by programming the body voltage, supply voltage, or gate
biasing of a single-stage PA shown in Fig. 6(a) or a Doherty
PA’s main amplifier shown in Fig. 6(b), this design utilizes
a reconfigurable amplifier added before main amplifier
to synthesize a variety of RFF features. By stabilizing
the dc operating point of the amplifier in the first stage
and eliminating the need to skew the high-power Doherty
amplifier for generating RFF features, the RFF configuration
can be integrated without influencing the Doherty PA’s
steady-state operating point and output power level. Given
the widespread application of Doherty topology in mobile
devices for supporting high PAR communication standards,
selecting the Doherty amplifier as the second stage illustrates
the universality of the proposed circuit principles and signal
processing techniques. However, it should be noted that
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(a) (b) (c)

FIGURE 6. (a) Conventional single-stage PA with tunable RF features. (b) Integration of tunable RF features into a differential Doherty amplifier. (c) Proposed 2-stage
differential Doherty amplifier integrating a tunable class A amplifier for RFF generation.

FIGURE 7. 2-stage PA is composed of the “auxiliary and main paths” as the first stage and the “Doherty amplifier” as the second stage. The amplifier at the main path is
reconfigurable, and its body biasing is controlled by six units of 3-bit DACs.

the second stage could also employ other commonly used
amplifier structures, such as PAs reviewed in Section II.

A. AUGMENTATION OF RFF FEATURES
Unique RFF features are typically generated from nonlin-
ear behaviors of a reconfigurable PA. In previous works
[11], [15], [16], complex deep reinforcement learning tech-
niques and operating point adjustments are employed to
generate and extract RFF features. The proposed 2-stage PA
effectively reduces the difficulty of maintaining stable output
power and signal quality while generating usable RFFs. As
shown in Fig. 7, the proposed 2-stage amplifier’s first stage
is designed as an LC-based differential class A amplifier. The
differential Class A amplifier’s constant tail current source
mitigates operating point variations from RFF selection,
stabilizing the first stage’s output and reducing its influence
on the next stage. On the other hand, the choice of a Class
A amplifier for the first stage results in reduced power of
unique RF features compared to the Class B main amplifier.
Therefore, augmentation of the RFF features is necessitated
after passing through the second stage. In other words, the
high power gain second stage amplifies both the conditioned
input signal and the RFF features generated by the first stage
of the PA. Therefore, the power of RFF features is boosted by
the power gain of the second stage, which is around 17 dB in

this design. The overall signal-to-“RFF feature power” ratio
is not degraded but is further improved by the power gain
of the first stage, which is 6 dB. Equations (1)–(3) show the
mathematical explanation of the above theory

Pout1st = Gain1st · Pin + PRFF (1)

Pout2nd = Gain1st · Gain2nd · Pin + Gain2nd · PRFF (2)
PoutSIG
PoutRFF

= Gain1st · Gain2nd · Pin
Gain2nd · PRFF . (3)

B. CIRCUIT IMPLEMENTATION
The first stage utilizes an LC-based class A differential
amplifier. Because the auxiliary amplifier in the second stage
is class C biased, no RF features can be amplified when
the input power level is low. Therefore, only the class A
amplifier at the main path is designed to be highly tunable.
To provide a large number of RFFs, input transistors in the

PA main path are divided into six groups during the layout
design. Each group’s body voltage is precisely programmed
using six 3-bit RDACs, enabling the generation of eight
programmable levels. However, to prevent the forward
biasing from substrate to drain/source, four programmable
levels covering a range from 0 to 0.45 V for each group are
used. This configuration results in a total of 4096 selectable
voltage combinations, providing fine control over the RFF
generation process.
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FIGURE 8. By modifying the series inductor type quarter wave phase shift network
to series capacitor type network and combining the inductor load L2 at each side of
the signal path with the quarter wave phase shift network, the number of used
inductors is reduced from 3 to 2 and used capacitors is reduced from 2 to 1 for each
side of the differential PA.

In contrast to relying on process variations enhanced
by intentionally created mismatches for RFFs generation,
as done in previous works [11], [15], [16], the separated
transistor groups in this design are arranged as closely and
symmetrically as possible. This arrangement aims to reduce
transistor mismatch and maintain the overall consistency
of the PA performance. Additionally, to further minimize
the operating point variation during RFF selection, neither
supply voltage nor gate biasing tuning techniques are
employed. Instead, a tail current source M14 is added to
provide a constant steady-state current. The M14 and M15
transistors are biased by the diode-connected device M13,
which maintains a constant current value Ibias. Setting the
Ibias value, transistor size ratio (w13/w14), and L-C load value
determines the maximum input level for the second stage,
which is equal to Ibias · [(w · L1 · Q1)//(gm · rds2)], where
w is the operating frequency, Q1 is the quality factor of
inductor L1, gm is the transconductance of input transistor,
and rds is the drain–source on resistance. In this design, L1
is chosen to be 134 pH with a quality factor of 13.7, to
resonate with the gate capacitance of the Doherty PA and
form a purely resistive load at 5.4 GHz. To minimize the tail
current source mismatch between main and auxiliary paths,
transistors M13, M14, and M15 are interdigitatedly laid out.
Consequently, the differential topology can effectively ensure
the generation of extensive RFFs synthesized by the first
stage while minimizing the risk of performance degradation
on the transmitted signal.
The choice of the differential topology for the first stage

requires the second stage also to be differential. Even though
a differential design consumes more chip area, higher output
power and advantageous 6-dB output back-off (OBO) point
efficiency of the Doherty amplifier allow for the efficient
augmentation of the 4096 RFFs generated at the first stage
without compromising the overall performance of the PA
system.

For conventional Doherty amplifiers shown in Fig. 6(b),
a class AB/B main amplifier is applied with a class C
amplifier. The class AB/B main amplifier is turned on
before the class C auxiliary amplifier. As the input power

FIGURE 9. Chip micrograph of the proposed reconfigurable 2-stage PA.

increases, the main amplifier reaches its maximum output
voltage and power efficiency. Then, the class C auxiliary
amplifier is turned on to reduce the output impedance at the
main amplifier. Even though the peak voltage at the main
amplifier is constant as input power increases, the output
power is linearly increased until the auxiliary amplifier is also
saturated, which enhances the power efficiency at the back-
off region. The load impedance at main and auxiliary PA can
be derived using (4) and (5), where Z0 is the characteristic
impedance of the quarter-wave inverter, RL is the load of
Doherty amplifier, Im and Ia are the current at the output of
the amplifier

Zmain = Z0 − Z0

RL
· Im
Ia

(4)

Zaux = Im
Ia

· Z0. (5)

To achieve the desired efficiency at the 6-dB OBO point,
the lower power gain of the Class C auxiliary PA compared
to the main amplifier necessitates either a significantly
larger auxiliary amplifier or higher input power to the
auxiliary path. This adjustment reduces the load impedance
of the main amplifier in the back-off region. In this design,
the symmetrically operated Doherty amplifier is chosen
to reduce circuit size, as both the main and auxiliary
path transistors share the same dimensions. To recover
the efficiency characteristics of the symmetrically operated
Doherty PA at 6-dB OBO point, the unequal power division
technique is implemented off-chip using a pair of microstrip
Wilkinson power dividers to distribute power unevenly to
the auxiliary and main amplifiers. In this configuration, the
input power ratio of the main and auxiliary paths is set to 1:2
to relax the microstrip fabrication difficulty. The auxiliary
path PA with higher input power mimics the ac behavior of a
larger auxiliary path PA with lower input power. Therefore,
the efficiency at the 6-dB back-off region resembles that
of conventional Doherty PA designs. However, because the
class A amplifier in the auxiliary path is driven by higher
input power, it will saturate faster than the amplifier in the
main path. As a result, this technique sacrifices the peak
input level of the main amplifier, although it enhances the
efficiency performance in the back-off region.
Additionally, to save space occupied by bulky lumped

elements, the C-L-C quarter-wave phase shift network
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FIGURE 10. Test setup for both Wi-Fi 6E packet classification and USMT-assisted RFF classification is presented. A high-level block diagram describing the signal path and
blocks’ connection of the proposed 2-stage PA is added to assist understanding.

between the main and auxiliary amplifiers is integrated with
the inductor–capacitor (L-C) loads at each drain side of
the signal path. Conventionally, L-C loads are designed
separately at the main and auxiliary amplifier and a series
inductor-type quarter wave phase shift network is added to
share the dc path between two amplifiers. As explained in
Fig. 8, the quarter-wave phase shift network is designed to
be a series capacitor type, and the inductor L2 in each of the
L-C loads is combined with the inductor L1 in the quarter-
wave phase shift network. The value of the capacitor C1 and
inductor L1 in the equivalent L-C-L network can be derived
using (6) and (7), where w is the operating frequency, Z0
is the characteristic impedance of the quarter wave inverter,
and Cpara is the capacitance at each side of the Doherty
amplifier

C1 = 1

w · Z0
(6)

L1 =
1

w2·Cpara · Z0
w

1
w2·Cpara + Z0

w

= Z0

w+ Z0 · w2 · Cpara . (7)

The equivalent L-C-L network reduces the number of
consumed inductors from 3 to 2 and capacitors from 2 to 1 at
each side of the differential Doherty amplifier. Additionally,
using two inductors to provide dc power individually reduces
drain-side power degeneration and ensures compliance with
the electromigration rule. Harmonics at each side of the
Doherty amplifier are reduced by the equivalent band pass
L-C-L tank. The output LC matching networks and off-
chip filters further reduce the harmonics leaked to the
load.

FIGURE 11. Measured power spectrum of the transmitted 64-QAM WiFi-6E signal
and the corresponding spectrum mask. The peak transmitting power is 13 dBm.

C. TEST SETUP AND VERIFICATION OF THE
GENERATION OF 4096 STABLE INHERENT RFF
PATTERNS
Before applying the time-varying USMT techniques to boost
the number of RFF patterns, verification of the inherently
generated 4096 RFF patterns and their quality is conducted.
To ensure comparability with previous research results
in [11] and [15], the same RFF extraction method and CNN
algorithm are used. The proposed 2-stage reconfigurable PA
is fabricated using 65-nm CMOS technology and measured
using the setup shown in Fig. 9 to verify the successful
generation and extraction of 4096 inherent RFF patterns.
Fig. 10 shows the micrograph of the fabricated PA chip.
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FIGURE 12. Measured EVM of a single data package and the EVM of all OFDM
subcarriers.

The 20-MHz 5/6 coding 64-QAM Wi-Fi 6E packets are
generated in the digital domain before being sent into an
RF DAC. In this configuration, the IF frequency of the
transmitted Wi-Fi packets is chosen to be 1 GHz. A signal
generator with an equal power divider is added to provide the
4.4-GHz LO frequency for both up and down conversion. To
reduce the intermodulation products leaked from mixers, a
BPF is added to the transmitting path, while an LPF is added
to the receiving path. An SMD RF balun is added to the
transmitting path to accomplish single-ended to differential
signal conversion. A pair of microstrip unequal Wilkinson
power dividers are designed to achieve the 1:2 ratio power
division for the main and auxiliary path PAs. A pair of
quarter-wavelength microstrip lines is connected in series
with the first stage for a 90◦ phase shift. On the receiving
side, the differential signal is converted to a single-ended
signal using the same SMD RF balun. A 5–20-dB power
attenuator is applied to prevent voltage saturation of the RF
ADC and to fully utilize the ADC’s resolution. An additional
BPF is added to reduce harmonics leaked from the PA.
Fig. 11 shows the measured spectrum of the amplified

64-QAM WiFi-6E signal alongside the corresponding spec-
trum mask. The amplified signal’s spectrum fully complies
with the required spectrum mask. In Fig. 12, the error vector
magnitude (EVM) of the OFDM subcarriers in the amplified
signal is depicted, with values concentrated between −28
and −34 dB. Fig. 13 displays the 5.4-GHz single-tone test
results measured at the output node of the RF balun using the
same setup. The Doherty PA demonstrates an output power
of 9 dBm with a drain efficiency of 12% at the 6-dB OBO
point and an output power of 15 dBm with a drain efficiency
of 18% at the 1-dB compression point. The peak power is
around 17 dBm with a peak efficiency of 20%. Both the
EVM and spectrum figures indicate that the proposed PA
exhibits high linearity at the target peak output power.
To extract the RFFs, all transmitted signals containing the

corresponding 4096 types of RFF features are recorded. The

FIGURE 13. Measured PA output power versus input power at 5.4 GHz across three
chips (bottom) shows less than 1-dBm power variation at the peak output power
(OP1dB = 15 dBm). The top figure illustrates the measured drain efficiency of the
Doherty amplifier at 5.4 GHz across the same three chips. For comparison, the
efficiency behavior of the conventional Doherty amplifier is indicated by a single dot
gray line, while the efficiency behavior of the conventional Class A/AB amplifier is
marked by a double dot gray line.

standardized legacy preambles and high-efficiency long train-
ing field in each WiFi data package are then sent to a CNN
with an input size of (256, 2, 480). This input size represents
the batch size, 2-channel IQ signals, and N samples in the
time domain, facilitating RFF extraction. Details regarding
the application of CNN and data processing are elaborated in
Section VI. As shown in Fig. 14, utilizing initially collected
signals with a signal-to-noise ratio (SNR) of 42 dB, all 4096
patterns of RFFs are accurately identified with an accuracy
exceeding 99%. To further challenge the classifier, additional
random Gaussian noise is intentionally introduced at various
noise power levels. Despite a degradation of SNR to 10 dB,
a classification accuracy of over 90% is maintained for more
than 4000 RFFs. With an increase in SNR degradation to
15 dB, over 2048 RFFs still exhibit a classification accuracy
exceeding 90%. Hence, the RFF features produced by the
main path of the 2-stage PA are readily distinguishable using
a straightforward classifier. These high-quality RFF features
demonstrate robustness and can withstand a broad spectrum
of SNR degradation.

V. INCORPORATING TIME-VARYING UNEQUALLY
SPACED MULTITONE TECHNIQUES FOR BOOSTING
RFFS BY FOURFOLD
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FIGURE 14. Classification accuracy versus the number of selected RFFs. The
original signal SNR is 42 dB. SNR degradation levels from 5 to 20 dB are achieved by
adding random Gaussian noise to the original signal to challenge the classifier. The
classification of RFFs is tested across three different chips to verify the generality of
the generated RFF features.

A. PROPOSED TIME-VARYING UNEQUALLY SPACED
MULTITONE TECHNIQUE
In the previous RFF extraction process, each received WiFi-
6E data package has to be partially demodulated before
the legacy preambles and the high-efficiency long training
field in the standard WiFi-6E package can be recovered
for RFF authentication. However, the demodulation process
can indeed introduce significant delays, particularly when
handling numerous received packages. For example, if an
attacker sends 100 packages, and each package necessitates
partial demodulation for RFF feature verification, the overall
process can be time consuming. Additionally, since no
power supply or gate-biasing tuning is utilized, a noninvasive
method is needed to effectively maximize the feature space
of the reconfigurable PA for boosting RFFs.
To address the aforementioned challenges, the proposed

solution utilizes the time-varying USMT method, as illus-
trated in Fig. 15. By employing three unequally spaced
frequency tones generated within the targeted transmitting
channel [29], a total of 27 nonoverlapping third-order
(IM3) and fifth-order (IM5) intermodulation products can
be generated at specific frequency locations. To prevent
intermodulation products from overlapping the initial
frequency tones, initial tones’ generation must follow the
rules defined by (8). In this equation, f1 = l · fη is the lowest
frequency tone, fη is the FFT frequency grid, k is the rank
of the tone, and pk = [0, 1, 3, 9, . . . , 3k−2] is the unequally
added frequency shift. The value of m controls the equally
added frequency shift, while the value of l determines the
initial tone’s frequency. Both m and l must be properly
chosen to ensure that all initial tones and IM3 and IM5
products are constrained within the same frequency band as
the Wi-Fi signal for hardware reuse

fk = f1 + (k − 1) · m · fη + pk · fη. (8)

FIGURE 15. Proposed time-varying USMT technique. Tones are transmitted
between each data package to prevent the addition of extra preamble blocks. A
4096-size FFT is used to extract all dominant intermodulation products. By eliminating
the time-consuming partial demodulation of received data during RFF authentication,
faster data processing time is achieved.

FIGURE 16. Frequency sets 1 and 3 of the USMT are generated in the right half
band of the 20-MHz channel. By tuning the intermediate tone, distinctive
intermodulation products are generated at different frequencies.

The nonlinear behavior of the designed PA can be
characterized by the in-band carrier to third- and fifth-order
intermodulation ratio (C/IM), as depicted in (9). Furthermore,
the relationship between EVM and carrier to third and
fifth intermodulation ratio is shown in (10) [30], [31].
Consequently, the dominant nonlinear PA behaviors are
captured by extracting the power of intermodulation products
using the FFT

C/IM(dB) = 10 log

(
PTones
PIMs

)
(9)

20 log(EVM%) = 40 − C/IM(dB). (10)

The unequally spaced tones are transmitted between each
WiFi-6E package. As illustrated in Fig. 15, without the
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FIGURE 17. USMT frequency set2 and set4 are generated in the left half band of the
20-MHz channel. By mirroring USMT sets 1 and 3 according to the center frequency,
distinctive intermodulation products are generated at different frequencies.

need for additional correlation blocks, the existing preamble
blocks at the beginning and end of each WiFi-6E package
can be utilized to locate the recorded unequally spaced tones.
Subsequently, a single 4096-size FFT is employed to extract
the IM tones at known frequency locations. Since no legacy
preambles or high-efficiency data preambles within the WiFi-
6E package are utilized, only a correlation process and a
4096-size FFT are necessary to extract all the information
for RFF classification. Consequently, the time delay for
RFF data recovery is significantly reduced. Without the
need for data demodulation prior to RFF classification, the
time required to complete one RFF information extraction is
reduced from 0.260856 to 0.090922 s, which is over three
times faster.
Since the USMT method does not alter the operational

conditions of the PA, the PA performance remains uncompro-
mised, while the number of RFFs is significantly increased.
As depicted in Figs. 16 and 17, four sets of unequally
spaced tones are designed within the 20-MHz channel. By
adjusting the lowest and highest frequency tones, the upper
and lower frequencies of the intermodulation products are
determined. Furthermore, by tuning the intermediate tone
while maintaining the peak power of the in-band signal
during RFF selection, noticeable differences are observed
between the intermodulation products. This indicates that the
nonlinear behavior of the PA is frequency-dependent, par-
ticularly for higher-order intermodulation tones. Leveraging
this discovery, 4 sets of unequally spaced tones are designed
to increase the number of RFF patterns from 4096 to 16 384.

B. MINIMIZING PA PERFORMANCE VARIATION
One of the most important objectives of this proposed
2-stage amplifier is to reduce the PA power variation
while generating a large variety of RFFs. Since no dc
operating point variation is directly introduced for RFF
feature generation, the proposed PA’s power performance

FIGURE 18. Measured power deviation of the transmitted signal from the average
signal power is evaluated across all inherent 4096 RFF patterns and all 4 USMT sets.
The PA’s power performance remains consistent across all 16 384 RFF patterns, with a
standard deviation of 0.22 dB.

is not affected. As shown in Fig. 18, the measured PA in-
band power variation versus RFF configurations is depicted,
with the transmitted signal’s power at each of the 4096
RFF patterns plotted. Additionally, to account for the power
variation caused by Time-varying USMT frequency, all four
frequency sets of USMT are tested with each of the 4096
inherent RFFs. The measured standard deviation of 0.22-dB
in-band power variation indicates that the power variation is
well controlled for all 16 384 RFF patterns.
Multiple chips’ performance data are also measured and

compared using the same testing setup to ensure the die-
to-die performance variation is well controlled. This allows
for the categorization of RFFs from multiple chips using a
single machine-learning classifier. Fig. 13 shows the output
power versus the input power measured at 5.4 GHz across
three chips, revealing less than 1-dBm power variation at
the peak output power (OP1dB = 15 dBm).

VI. RF FINGERPRINT CLASSIFICATION
A. CONVOLUTIONAL NEURAL NETWORK
At the receiver equipped with an intelligent classifier, the
arrived USMT signal is converted to the frequency domain
by FFT before classification. This approach is preferred
over directly executing classification on the time-domain
signal to achieve good accuracy while keeping the low
complexity of the classifier. In the frequency domain,
the 27 intermodulation products construct the identifiable
RFFs, as depicted in Fig. 19 and represented by m̃27 =
m0 ∼ 2,m3∼11,m12∼26, where m0∼2 denotes the three prede-
termined tones, m3∼11 and m12∼26 refer to the magnitudes of
9 IM3 and 15 IM5 components, respectively. The classifier
analyzes the 27 intermodulation products to identify the RFF,
resulting in a predicted RFF index. Trusted communication is
established only when the predicted RFF matches the target
timestamped RFF.
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FIGURE 19. Classification diagram with the processing of FFT. A CNN is utilized as
the classifier to identify RFFs from the frequency-domain features.

A classifier is a function that projects the input features to
the labels represented by one-hot coding [25]. A CNN with
a softmax output layer (11) is implemented as the NRFF-
class classifier, depicted in Fig. 19. The input features with
a dimension of (1, 27) are mapped to predicted labels lpred.

Each of the elements in lpred holds a likelihood value
qc ∈ [0, 1], c = {0, 1, . . . ,NRFF − 1} after softmax process-
ing, representing the likelihood of the received signal being
identified as each of the potential RFFs. The received
signal is specifically identified as carrying the RF fingerprint
RFFpred that holds the maximum likelihood in lpred. One-hot
encoded lgt denotes the ground-truth label of class cgt with
only element l

cgt
gt = pcgt = 1, cgt = {0, 1, . . . ,NRFF − 1} and

others remaining zeros

qc = el
c
pred∑NRFF−1

c=0 el
c
pred

, c = {0, 1, . . . ,NRFF − 1}. (11)

The cross-entropy loss function is the most commonly
used criterion for classification tasks [25]. Cross-entropy
measures the difference between the predicted distribution
from the ground-truth label lgt after each inference. Due
to the one-hot encoded labels, the loss value is determined
by the predicted likelihood of the ground-truth class cgt as
(12) shows. The loss value decreases as the predicted qcgt
increases. Therefore, by minimizing the loss function with
the gradient-descent-based optimizer, the expected outputs
fit the true results gradually until the average classification
accuracy over all available RFFs ceases to improve for a
certain number of iterations, which is set to 100 in this work

loss = − 1

NRFF

NRFF−1∑
c=0

pclog(qc)

= −log(qc), c = cgt. (12)

The CNN-based classifier comprises three convolutional
layers and three fully connected layers, as illustrated in

FIGURE 20. Enhance RFF distinctiveness evaluation by introducing additional
Gaussian white noise to normalized signals before classification, enabling
assessment under varied SNR conditions.

Fig. 19. Each of these layers is followed by a batch
normalization (BN) layer and a ReLU activation layer, except
for the last fully connected layer that outputs the predicted
RFF index. Specifically, the first three convolutional layers
share the same kernel size k = 5 and number of output
channels ch = 64. The output of all convolutional layers
maintains the feature dimension of 27 so that the size of
the output at the last convolutional layer is (64, 27). The
fully connected layers share the same output dimension
of 4096 while the last layer generates a vector lpred of
NRFF dimensions, where NRFF refers to the number of all
potential RFFs. In this work, NRFF = 4096. Therefore, the
classification model contains 40 673 600 32-bit parameters
in convolutional and fully connected layers in total, which
requires 163 MB of memory to store. Due to the model size
and the large amount of RF signals, a powerful product,
NVIDIA H100-80 GB with multi-instance GPU (MIG), is
utilized in this work. MIG can partition H100 into seven
instances. All classification experiments are executed on an
MIG device consisting of 4/7 GPU instances and 40/80 GB
memory.

B. DATASET OVERVIEW
As described in the proposed time-varying USMT strategy,
four sets of USMT frequency are employed in this work to
increase the number of classifiable RFFs by fourfold, from
4096 to 16 384. The USMT signal is sampled at 62.5 MHz
with 40 960 samples for each of the RFFs to construct the
measurement dataset. Consequently, the measurement dataset
has a shape of (NFreq.set × N1set,Tsample) = (16384, 40960),
where NFreq.set refers to the four frequency sets, N1set denotes
4096 available RFFs given one frequency set, and Tsample
represents 40 960 samples in the time-series signal.
To validate the generalizability of the proposed RFFs’

distinctiveness across different manufacturing implementa-
tions, two datasets are collected from two independent chips
with corresponding RFF indexes across two datasets, each
having a size of 16 384 as described above. Therefore, the
total measurement dataset consists of 16 384 × 2 = 32 768
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FIGURE 21. Plot illustrating the relationship between the number of available RFFs
and the number of RFFs classified with 99% accuracy. The original raw signal has an
SNR of 41 dB, with additional 8 and 20 dB random Gaussian noises added to
challenge the classifier and evaluate the quality of RFF features.

time-domain signals with the RFF index RFFidx ∈
{0, 1, . . . , 16383}.
Starting from arbitrary positions within the 40 960 sam-

ples, an artificial dataloader generates the intermodulation
products m̃27 with 4096 continuous samples. By perform-
ing the 4096-FFT every �sample, there are �(40 960 −
4096)/�sample� = �36 864/�sample� possible m̃27 con-
tributing to the input dataset for the classifier. Here, �sample
is empirically set to 100 and 300 in this work. A split ratio
of (0.6, 0.4) is used to divide the training and validation
data, with the first 60% of the 40 960 samples allocated for
training and the remaining 40% for validation.
The original measurement dataset unavoidably contains

noise due to environmental factors, resulting in a peak SNR
of 41 dB. To assess the distinctiveness of the proposed
RFFs under different SNR levels, additional Gaussian white
noise is artificially introduced to the measurement dataset
before applying the classification FFT, as depicted in Fig. 20.
This added noise induces an SNR degradation of Pd dB,
where s and snorm represent the time-series signals and
their corresponding normalized signals, respectively. S(f )
denotes the spectrum in the frequency domain after applying
the FFT on snorm. The SNR degradation is computed by
comparing the overall original noise power to the artificial
noise power. The artificial noise causing a certain level of
degradation is added to the normalized signal snorm, resulting
in a new spectrum S′(f ). Following data preprocessing,
the intermodulation products m̃27 generated from S′(f ) are
utilized as inputs for the classifier.

C. RESULTS OF SNR DEGRADATION
The proposed time-varying USMT technique boosts the
number of potential RFF patterns from 4096 to 16 384, as
shown in Fig. 21. However, because the increase in RFFs
is attributed to the frequency dependency of intermodulation
products, a small portion of the potential RFFs might not
be usable. To evaluate the quality of RFFs generated using

the time-varying USMT technique, only RFFs with 99%
classification accuracy are chosen for deployment in this
work. The original SNR of the raw data is 41 dB, and two
additional levels of SNR are manually created by adding
random Gaussian noise to the original raw data in Fig. 20,
where the SNR degradation is Pd = {8, 20} dB. Compared
to previous works outlined in the comparison table (Table 1),
the two-stage PA incorporating the time-varying USMT
technique successfully generates more than 50 times the
number of high-quality RFFs, totaling 11 504 RFFs.

D. FACTORS INFLUENCING RFF CLASSIFICATION
The C/IM ratio, SNR, and received signal power are
three dominant factors influencing the accuracy of RFF
classification. The C/IM ratio is highly correlated with the
EVM value. According to the IEEE 802.11ax standard,
the maximum EVM value for reliable 64-QAM Wi-Fi 6E
package demodulation is −25 dB. A lower C/IM ratio means
that the power of received intermodulation products is close
to the power of the generated tones. For a certain level of
transmitted power, a lower C/IM ratio will give us higher
classification accuracy but increase the EVM, potentially
causing the data package demodulation to fail. Compared
to USMT-assisted RFF classification, the RFF classification
using Wi-Fi data packets is more sensitive to C/IM ratio
variation because the packets have to be demodulated before
RFFs can be extracted.
Higher SNR increases the detectability of IM products.

As shown in Fig. 14, we tested the classification accuracy
from 42 to 22 dB, covering the typical working environ-
ment for 5/6 coding 64-QAM Wi-Fi 6E communication.
For classification using Wi-Fi data packets, the accuracy
of classification decreases as SNR decreases. To recover
classification accuracy, the number of usable RFFs has
to be decreased. For USMT-assisted classification, the
classification accuracy is less susceptible to decreasing SNR
but still shows a proportional relationship to SNR variations.
Received signal power is correlated with SNR. Higher

received signal power increases SNR and classification
accuracy. Because both excitation tones and intermodulation
tones are used for classification, IM tones are also considered
as signals for USMT RFF classification. Therefore, all the
above three factors are intercorrelated, and the accuracy of
RFF classification results from balancing these factors.

VII. CONCLUSION
In this article, various design strategies based on prior
research on RF fingerprint generation and reconfigurable
PA control are discussed. A novel RF fingerprinting system
featuring a highly tunable 2-stage PA designed in 65-nm
CMOS is presented. This system is capable of generating
4096 built-in high-quality RFFs while ensuring consistent
PA performance across all RFF configurations. Additionally,
the time-varying USMT technique is introduced to further
extend the number of high-quality RFFs (classified with
99% accuracy) from 4096 to at least 11 504. All RFFs are
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TABLE 1. Performance summary and comparison.

successfully detected and classified, even with a wide range
of additional SNR degradation. The in-band output power
variation is well controlled, with a standard deviation of
only 0.22 dB. The measurement results demonstrate that the
proposed architecture, which separates the RFF generator
from conventional PA while utilizing USMT-based feature
augmentation methods, enables a large variety of RFFs while
achieving minimized in-band power variations and high-
speed RFF classification.
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