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Abstract—In time entanglement-based quantum key distribu-
tion (TE-QKD), Alice and Bob extract the raw key bits from
the arrival times of entangled photon pairs. Each entangled pair
can contribute to multiple key bits depending on how precisely
Alice and Bob can measure the photon arrival times. Thus, TE-
QKD can potentially increase the secret key rate compared to
typical QKD implementations, which extract up to a bit per
photon. Because of entanglement, the times of photon arrivals at
Alice’s and Bob’s detectors and, thus, their raw keys should be
identical. However, practical photon detectors suffer from time
jitter errors. These errors cause discrepancies between Alice’s
and Bob’s raw keys. Therefore, Alice must send information
to Bob through the public channel to reconcile their raw keys.
The amount of data sent for reconciliation represents a loss,
rendering secret keys shorter than the raw keys. We compute
the secret key rates possible in systems with detector jitter errors
and show that they are much higher than those achievable
in polarization entanglement-based QKD. We then construct
codes for information reconciliation to approach these rates.
We demonstrate that short and moderate-length standard error-
correcting codes represent excellent information reconciliation
choices, making TE-QKD a promising technology.

Index Terms— Quantum key distribution, secret key rates,
mutual information, time entanglement, time binning, jitter
errors, soft-decision decoding.

I. INTRODUCTION

ECRET key distribution protocols establish a shared
S sequence of bits between two (or more) distant parties,
Alice and Bob, in the presence of an eavesdropper, Eve. The
key consists of uniformly random independent bits known only
to Alice and Bob. Quantum Key Distribution (QKD) starts by
communicating quantum states over a quantum channel. The
role of the quantum step is to 1) ensure that no eavesdropping
goes undetected and 2) provide a source of perfect randomness
in the entanglement-based systems.

There has been a significant effort to provide high key rates
over long distances (see recent surveys [1], [2]). QKD schemes
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based on time-entangled photons have emerged as a promising
technique primarily because each entangled photon pair can
carry multiple key bits and thus potentially provide a higher
secure key rate over long distances [3], [4].

TE-QKD schemes use Spontaneous Parametric Down-
Conversion (SPDC) to generate entangled photon pairs
according to a Poisson Process. One of the photons goes
to Alice, and the other to Bob. Therefore, Alice and Bob
ideally detect their photons simultaneously with exponentially
distributed inter-arrival times. The most common single-
photon detectors are Superconducting Nanowire Single-Photon
Detectors (SNSPDs), which exhibit properties closest to
ideal sensors. They have low dark count rates, meaning
they rarely report photon detection without a photon arrival.
Furthermore, they have low detector downtime d and slight
detector timing jitter that manifests as Gaussian noise with
zero mean and variance o%. Unfortunately, these imperfections
are non-negligible: 1) detector jitters and dark counts cause
disagreements between Alice’s and Bob’s keys since they
detect photons at different times, and 2) the downtime
introduces memory within the raw key bits since whether a
photon is detected depends on whether another photon has
been detected within the downtime of its arrival. For further
discussion on the non-ideal properties and their implications,
we refer the reader to the recent study [5].

At a high level, there are two main QKD steps. In the
first step, Alice and Bob generate raw key bits using a
quantum channel. Their respective raw keys may disagree
at some positions, be partly known to Eve, and may not
be uniformly random because of the aforementioned non-
ideal detector properties. In the second step, Alice and Bob
process the raw key to establish a shared secret key. They
communicate through the public classical channel to reconcile
differences between their raw keys, amplify the privacy of
the key concerning Eve’s knowledge, and compress their
sequences to achieve uniform randomness. At the end of the
protocol, Alice and Bob 1) have identical uniformly random
(binary) sequences and 2) are confident the shared sequence
is known only to them. Therefore the secret key is private
and hard to guess. This paper focuses on the information
reconciliation step.

Alice and Bob generate their secret keys from the correlated
random photon arrivals. There are many ways to extract
keys from this correlated information. One popular method is
similar to Pulse Position Modulation (PPM); see, e.g., [6] and
references therein. (Some recently proposed adaptive schemes
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avoid discarding frames with multiple occupied bins [7], [8].)
In PPM, Alice and Bob synchronize their clocks and discretize
their timelines into time frames NN time bins. In PPM, Alice
and Bob agree to retain only time frames in which they both
detect a single photon arrival and discard all other frames.
This single photon is said to occupy a time bin depending on
where within the frame it arrives. Since photon inter-arrival
times follow an exponential distribution, each bin is occupied
independently of other bins. Therefore, the number of raw key
bits PPM decoding can extract from each frame equals log N.

Alice and Bob obtain correlated bit streams (raw keys)
by detecting the arrival times of their entangled photons.
However, they must communicate over a public channel
to agree on a key, i.e., reconcile their differences. Here,
we consider one-way information reconciliation schemes in
which Alice sends information about her sequence to Bob,
who uses it to remove the differences between his and Alice’s
raw keys. After the information reconciliation, Alice and Bob
share Alice’s initial raw key. However, the shared key is not
secret because of the public channel communication. Alice and
Bob perform privacy amplification to correct that, establishing
secrecy but shortening the key. Since Alice and Bob base their
secret key generation on correlated photon arrival times, they
follow what is known as the source model in Information
Theory [9, Ch. 22.3]. The secrecy capacity for this model,
when the eavesdropper has access to public communication
but does not have correlated prior information, is equal to the
mutual information between Alice’s and Bob’s observations
(see, e.g., [9, p. 567]). The secrecy capacity is an achievable
upper bound on the post-privacy amplification rate.

We focus on rate loss solely due to the communications
over the classical public channel that has to be done since
practical photon detectors exhibit time jitter. We compute
the achievable secret key rates and construct codes for
information reconciliation to approach these rates. Since no
passive eavesdropping is possible on a quantum channel,
Alice and Bob can detect the presence of Eve and
discard the compromised frames. Analyzing rate loss due to
eavesdropping on the quantum channel is beyond the scope of
this paper.

This paper is organized as follows: Sec. II introduces
notation and lists the paper’s main contributions. Sec. III
presents the TE-QKD channel model. Sec. IV computes the
rates of raw key disagreement caused by detection jitter, and
Sec. V derives the correlations between Alice’s and Bob’s
raw keys. Sec. VI computes achievable information rates
and the secrecy capacity of the TE-QKD channel. Sec. VII
proposes and tests several coding schemes for information
reconciliation. The final section draws the conclusions and lists
the main contributions of this paper.

II. NOTATION

The number N of bins per time frame could be any positive
integer greater than or equal to 2, our propositions, lemmas,
and theorems have no other constraint on N. However, our
numerical examples are given for N = 2™, m integer, m > 1.
The set Zy denotes the set of N integers {0,1,...,N — 1}.
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Fig. 1. QKD based on time entanglement with N bins per frame, log, (V)

binary digits per bin.

The notation |z |, known as the floor of « for x € R, is the
largest integer smaller than or equal to x.

Letters such as X, Y, X , and Y denote continuous random
variables, while X and Y are discrete random variables. Then,
p(§|#) denotes the conditional probability P(Y = §|X = ).
Also, p(y|2) denotes the conditional density py ¢ (y|Z).

We use Bourbaki’s notation for intervals on the real line,
where a and b are two real numbers: the closed interval
[a,b] = {zr € R a < x < b}, the half-open intervals
[a, b[= [a, b]\{b} and ]a, b] = [a, b]\{a}, and the open interval
]av b[: [a7 b] \ {av b}'

We use the standard Bachmann-Landau big O notation:

The formal definition of f(o) = O(g(0)) is: Ja > 0,
Jog > 0, Yo < gy, |f(0)] < alg(a)].

In this paper, an expression such as 1 — O(g(o)) or
1+ O(g(0)) implicitly assumes that g(c) > 0 in some open
interval ]0, o[ Furthermore, we will frequently use v = 1/02,
a signal-to-noise ratio defined as the inverse of the jitter
variance, then we could write f(y) = O(g(7)) in a similar
situation when v — oo.

Two functions f : R — Rand g : R — R are asymptotically
equivalent if lim,_ % = 1. In that case, we write
)~ g(y).

The function Q(x) = %erfc(%) = O(exp(—2?/2)) is
the Gaussian tail function. Recall the definition Q(z) =
L5 o(t)dt, where ¢(t) = \/%exp(—tz/Q) is the stan-
dard normal density. Furthermore, we recall the binary
entropy function, Hs(x) = —zlog(z) — (1 — xz)
log(l — x), and the symmetric ternary entropy function,
Hs(z) = —(1 — 2z)log(1l — 2z) — 2z log(z).

III. THE PPM CHANNEL MODEL

Let X and Y represent the time-position of the received
photons at Alice’s and Bob’s sides, respectively. An illustration
of this QKD scheme is given in Figure 1. Entangled photons
are commonly generated by Spontaneous Parametric Down-
Conversion (SPDC) sources, which can be collocated with one
of the protocol participants. For more information about SPDC
in the context of time entanglement QKD, we refer the reader
to [5] and references therein.

We adopt the following mathematical model for the
positions of two time-entangled photons:

X=U+2, Y=UH+ 2, 1)

where Z; and Z, are independent identically distributed
N(0,0?) additive Gaussian noises modeling the detection
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X —= p@glz) =Y

(a) hard output

X —=  p(ylz) —=Y

(b) soft output

Fig. 2. TE-QKD channel models for hard-decision decoding (a) and
soft-decision decoding (b).

jitter. U is a real uniform random variable in the interval
[0, N[, where the integer N = 2™ is the number of bins per
frame, and m is the number of bits per photon. Alice and Bob
communicate via a public channel and agree on a valid frame
when X and Y fall in the interval [0, N|. They reject empty
frames and frames with more than one received photon. Under
the model defined by (1), the probability of a frame to be valid
for both Alice and Bob is P(X,Y € [0, N]). Let X and Y
denote the instances of X and Y within the interval [0, N|,
and let X and Y be the bin number inside a frame, i.e.,

X =X, for X €[0,N], Y =Y, forY €[0,N], (2)
X=|X|eZy, Y=|Y]|€Zy. 3)

We distinguish two communication channels between Alice
and Bob: (a) an algebraic (hard) output channel, (b) a real
(soft) output channel, both having a discrete N-ary input X
as shown in Figure 2.

Without error-correcting codes, the information rate on these
channels is log,(N) = m bits per channel use (bpcu). The
main channel parameter 7y is a signal-to-noise ratio parameter
(SNR) defined as

E; 1
Y= o2 = 52’ 4
where the average energy per symbol E;, = 1 is a

normalized energy per transmitted photon. Another QKD
channel parameter is 7, referred to as the normalized signal-
to-noise ratio, where the standard deviation of the additive
Gaussian noise is normalized by the frame length N, hence
its definition is

_ 1 NZ
Ty e

dB) = v(dB) + 201log,,(N). (5)

We express the error probability and the information rate
as functions of N and the SNR ~ or the normalized SNR
7~. The bin width is set to 1 to simplify the analysis,
i.e., the frame width is N, except for Section VI-B. The
conversion of this mathematical model into a physical model
representing a laboratory experiment is straightforward after
introducing a time scale to convert v and N into physical
parameters. In Section VI-B, the number of bins is infinite
(it’s a continuum of bins), the frame has a unit length and
~v =7 in that special QKD channel with both soft input and
soft output.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 12, DECEMBER 2023

IV. RATE OF RAW KEY DISAGREEMENT
UNDER DETECTION JITTER

We consider the probability of error P.(v) = P(X # Y).
The probability P, characterizes the quality of channel (a) in
Figure 2 defined by its transition probabilities p(y|z). The
latter will be entirely determined in Section VI. In the current
section, we are interested in determining the expression of
P.() as a function of the signal-to-noise ratio v, for a given
number of bins N per frame.

Let m; = IE”(X = 1), 1 € Zn, be the a priori probability
of the unique frame photon to fall in bin number :. Then, the
exact expression of the probability of error is

N—-1 N—-1
P(y)=>_m > pli=jl&=i)
i=0 =0
i
1N—1
— NP £ XU =i
2 B £ K10 =), ©

where U = |U|. Since U is uniform in [0, N), we get
P(U = i) = P(U € [i,i + 1)) = % which explains the
factor in the last equality above. As a first step, in the current
section, we solve P, () from the most right equality in (6) via
the conditioning over U. To avoid cumbersome expressions,
exact expressions as established in Sections V& VI, we assume
that +y is large enough (o2 is small enough) so we can neglect
the border effects in the frame. Hence, we make no difference
here between X and X (resp. Y and Y), and we use the
approximation that both X and Y are i.i.d. Gaussian when
conditioning on U.

Proposition 1: The probability of symbol error P.(y) =
P(X # Y) as a function of the SNR ~ and the number N
of bins per frame is given by the expression

PO = 2 x (1= 5 ) <7t Oem-1).

Proof: Set V.= U — U, so V is Uniform[0,1]. Let
p(i — j|v) be the probability of falling in bin j given that
U=iand V = v, where i,j € Zy. A symbol error occurs
if X = U + Z; remains in bin i but Y = U + Z5 leaves
to bin j, j # . The probability of such an event is p(i —
i|lv) x p(i — j|v), given that both additive Gaussian noises
Z1 and Zs are independent. Also, an error occurs if both X
and Y leaves to two different bins ¢ and j, with probability
p(i — £|v) X p(i — j|v). Then, the conditional symbol error
probability becomes

N-1
P.(i,v) =2 p(i — i|v)p(i — jlv)+

=0
J#i

N—1 N-1

2> > pli — Lo)p(i — jlv)
=0 j=0
i it

The factor of 2 is due to the symmetry if the two letters X
and Y are switched. As illustrated in Figure 3, we will neglect
bins beyond the left and the right bin. The neglected bins are
at least at distance 1.0 from the bin U = 4. They correspond
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o \ Q(0.5/sigma) N=2 — <— N=16
10* N
to a probability of error Q(1/0) = O(exp(—1/(20?))) = | N
O(exp(—3)). To further simplify the notations, define py, po, |
and p3, where B \
1 10 0 20 40 60 80 100
. . v —v SNR (dB)
mzpuazwzl—Q()—Q( ), ®)
o o Fig. 4. Probability of symbol error versus signal-to-noise ratio, for logq (V)
Py = p(i s i— 1|U) -Q (g) : 9) bits per photon and no coding.
. 1—-v
py=pli —i+1jv)=Q o ) (10) The expression \F x(1-— —) x~~2 perfectly fits the Monte
We obtain that P, (i, v) equals Carlo simulation of IP(Y # X ) even forla mgnal—to—nmse ratio
as low as 20dB (error rate close to 10~ ). Figure 4 shows the
{2[p1p2 + p1ps + p2ps], plots of the probability of error P.(v) for different number of
~ fori=1,...,N—2, bins per frames, from 1 bit per photon up to 4 bits per photon.
(’)(exp(—g)) + 5 for i — 0 (11) The plots of the probability of error versus the normalized
P1ps, 1ot =71, SNR, P,.(¥), are obtained from Figure 4 after shifting right
2p1pe, fori= N —1. each curve by 20log;,(N) decibels as per (5). When the
. o error rate scales as 1/v¢, we say that the system is exhibiting
Now, integrate over v, P(Y # X|U = 1) fo an order-d diversity [10]. In standard communication systems
Then, apply (6) and use the equality fo p1p2dv = fo plpgd’l) with frequency-selective, space-selective, or time-selective
to finally reach

channels, the diversity order is a positive integer. Diversity

) 1 ) 1 takes non-integer values when the fading distribution is non-
P.(y) = N Z / P.(i,v) dv =14 <1 _ N) / pips dv standard, e.g., a Nakagami distribution. Proposition 1 shows
X 0 0

that uncoded TE-QKD has a diversity order of 1/2. The

1 1 photon positions near a bin boundary behave like a deep
+2 (1— N)/ pap3 dv +(’)(exp(—§)) (12)  fading, i.e., a small measurement jitter creates an error.

. . Then, the combination of the uniform and the Gaussian
The two integrals in (12) include three types of integrals. Let  distributions achieves an order-1/2 diversity such as in
us process them step by step.

integrals I; and I.
! v
I = / 0 (f) v
0 ag

V. CORRELATION BETWEEN RAW KEYS

_ o(1 —e1/20%) L0 <1> _ o O(exp(—l)) The conditional densities of X is directly derived from (1),
var 7 var 27 Do (@) = —— exp (—(5”_“)2) FeR. (13)
I /1 [Q(Uﬂ?dv Xlu V2mo? 202 ’
0 g Conditioned on U = u, X and Y are independent. Then, after
_ (\/g\/%l)o- + O(exp(ffy)) integrating (13),

P(X, ¥ € [0, Nlu) = P(X € [0, N[ju)?
13—/0162(”)62(10,U> dv _u

U N —u\]?
02 -7
1 _02 — (1- 1))2 o o
S exp dv Th bability that Alice’s and Bob’s f lid i
0 202 e probability that Alice’s and Bob’s frames are valid is
since v2+(1—v)? > 1 for v € [0,1]. I and I, were solved via

N

vV u N-—u\12
integration by parts usmg the fact that dQ(m) = —¢(x). I has P Y <0.ND A @(=3)-al )] po()du
no simpler form. Our upper bound of 13 brlngs a sufficient 1 N
answer to the current proposition. After substituting [y, Io, -N /
and I3 into (12), we get (7) as stated by the proposition. [J

O(exp(—7));

(14
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The density of X is also derived by integrating over u, which
is equivalent to convolving the densities of U and Z;, we get

N
px(@) = [ ol g du

Ho(2) o)) ren

Since X is a version of X truncated to the interval [0, N,
conditioning on U + Z; € [0,N[, the density of X
is determined by scaling the density of X, namely, for
z,u € [0,N],

ey = ) e ()
X|U foNp)“(|U(t|u)dt [Q (_%) —Q (%)]
(16)

and, for z € [0, N|,

pele) _ Q(-%)-Q(%=)
Jops®adt [ [Q (1) - Q (X)) at

By symmetry from (1), ple(gj\u), Dy (9), py‘U(y|u), and
py (y) have expressions identical to (13), (15), (16), and (17)
respectively, for § € R and y € [0, N[. The bins a priori
probabilities 7; = P(X = i) = P(X € [i,i + 1]) become

[t L1002 -0 s
: R - e () ar
At high SNR, for 0> < 1, we have m =~ 1/N, Vi,
because the truncation to the interval [0, N[ has less effect
in the small-noise regime. Numerical examples are given in
Table I, for N = 8 bins per frame. The entropy of X
is very stable, as listed in the last column of the table,
H(X) = —Z o ! 7rilogy(m;) =~ logy(IN) at low and high
signal-to-noise ratios.

The following lemma helps understand the behavior
of (14)-(18) at high SNR (02 < 1), which are most commonly
addressed scenarios in experimental systems (see e.g., [6]) and
can be inferred from detector specification sheets such as [11].

Lemma 1: Let fy(z) = Q (—%) —Q (%) For o > 0 and
v = 1/0?, given the properties of the Gaussian tail function
Q(x), the difference function f,(x) satisfies

a) Vx 6 R, fo(z) = fo(1 — ) €]0,1]. Also, f5(0) =
f2(1) = 1 - O(exp(~3)).

b) For x €]0,1], fo(z) =1 — O(exp(— min®*(z,1 —z))).

px(z) = 17)

(18)

c) For x < 0, we have f,(z) = O(exp(*JUQ%)), and
fo(x) = O(exp(—(z — 1)*3)) for = > 1.

d) Integrating f, and f2, we get fo folz) dx = 1-—
\/E% + Olexp(—2)) = 1 - O(%) and
Jo f2 (@) de = 1 %%H%Xp(—%)) = 1-0(5)

j;(/l;\/il/N ) dz = %—O(f)farz = 0 and

N — 1 (the two extreme bins in a frame of N bins).
f(“rl N fo(z) do = + + O(exp(—py)) fori=1...N —

2 (the inner bms) where the exponent constant is ﬁ

1 iy,

511111&2(]\,7 =
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The proof of Lemma 1 is found in the appendix. The
convergence of f,(x) is not uniform in the interval [0, 1]. The
point-wise convergence of f,(x) to 0 (outside [0, 1]) or to 1
(inside [0, 1]) is very slow in the neighborhood of the points
2 =0 and z = 1. At high SNR, the difference of the two Q)()
functions behaves as a square function and its integral slowly
approaches 1 at a rate of 1/,/7.

Applying Lemma 1 to (14)-(18), after substituting u/N
to u and o/N to o, proves the following equalities where
Z,x,u €]0, N[ and i € Zn:

P(X,Y €

prwal) = e (<250
(14 Ofexp(-min® (5. 1 = 5) 7)),
px(@) = 5 (1= Ofexp(~min’( 5,1~ 1) 7))
1
(1+0(—2),
™ = (7 £ 0@ +0(2)).

where the vanishing rate of g(¥) depends on i as stated by the
Lemma. The high SNR behavior of many expressions below
could be determined via the application of the results listed in
Lemma 1.

To complete our analysis of the QKD channel between Alice
and Bob, it is necessary to find the likelihoods py/| < (y|&) and
the transition probabilities py ¢ (7]#) for the soft-output and
the hard-output mathematical models illustrated in Figure 2.
We proceed in a similar manner as from (13) to (17), by first
integrating over U, then truncating over the interval [0, N|.

Lemma 2: Given Alice’s frame is valid, i.e. X e [0, N|, the
density of U becomes

Q (=) - @ (=)
X‘eo,N(u) — —
PUREn T [<7>Q<T )] de
—pU\YGON(> €[0,N[, (19

where ;¢ co, N[( w) is the density of U given that Bob ’sframe

is valid. Furthermore, the a priori probabilities {m
both frames are valid are given by

i =P(X =i|Y €[0,N])
o QU5 ()] [Q(54) - @ (MF)] du
5[0 (3) - (352)] du
(20)

The proof of Lemma 2 is found in the appendix. The lemma
tells that invalidating the cases where the photon falls outside
the frame converts the uniform density py(u) = - into a non-
uniform density in (19). Furthermore, the a priori probability
m; of (18) becomes 7; of (20) when adding the condition that
Bob’s frame is valid. m; and 7; already consider that Alice
has a valid frame. The next lemma leads to establishing the
channel likelihood expression.

0 L when

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 01,2025 at 13:59:27 UTC from IEEE Xplore. Restrictions apply.



BOUTROS AND SOLJANIN: TIME-ENTANGLEMENT QKD

7179

TABLE I
A PRIORI PROBABILITIES OF PHOTON BINS FOR N = 8 BINS PER FRAME

SNR | M0y - -y 7 [ H(X) (bits) |

10 dB | 0.112796, 0.129062, 0.129071, 0.129071, 0.129071, 0.129071, 0.129062, 0.112796 2.997655

25 dB | 0.122885, 0.125705, 0.125705, 0.125705, 0.125705, 0.125705, 0.125705, 0.122885 2.999931

40 dB | 0.124626, 0.125125, 0.125125, 0.125125, 0.125125, 0.125125, 0.125125, 0.124626 2.999998

Lemma 3: The conditional density of U given X =i for
w€[0,N]and i€ Zy, is
Q) - (*)
N i— 41—
Jo [Q(FH) —Q(=57)] at
Furthermore, when Bob gets a valid frame, the density of U
conditioned on Alice’s bin number is

p(ulX =1i) = Q1)

p(u|X =4,Y €[0,N[) =
Q- () -],

Jo (@5 (Y] [Q (5 —Q (%5 ol
The proof of Lemma 3 is { found in the appendix. The existence
of Y assumes that Y € [0, N[, as we mentioned for X in the
proof of Lemma 3. In the sequel, we remind the reader of
the condition Y € [0, N[ in the subscript of the likelihood
function.

Theorem 1: When both Alice and Bob get valid frames,
the soft-output QKD channel model likelihood, p(y|t) =
pY‘X’};em’N[(yﬁc), has the following expression

(y* )? ,
I e Tl 1G0T LA
hRE) -] [Q () - Q ()]
for & =i =0,...,N =1,y € [0,N[. For simplicity, the

likelihood in (23) will be denoted by p(y|X = 1).

Proof: We drop the subscripts in the density functions,
when possible, to simplify the notations. We start by a
marginalization before truncating p(g|u):

p(y|X =1, Y € [0’ ND

(24)

The left factor p(y|u) inside the integral in (24) is given by
the truncation of the density in (13) (replace = by y) and the
right factor was solved by Lemma (3).

p(y|X =4,V € [0,N]) =
/ Py =ylu) p(u|X =4,V € [0, N[)du, =
I plilu) dy
N \/27\'02 exp(— (Jz;é)2> |
. Q-0
(@ () -] [R (%) —e(FFY)]
LlR(EH - [Q(F) - ()] dt

After simplifying the term @ (=*) — @ (¥=%) we reach the
announced result. ]
The transition probabilities p;; = P(Y = j|X = i)
of the hard-output QKD channel are directly derived by
integrating the conditional density function of the soft output
Y established by the previous theorem.
Corollary 1: The probability that Bob’s photon falls in bin

j € Zn given that Alice’s photon fell in bin i € Zy is
pu _P( _]|X _Z)
o Q12 —Q(ZF)] [Q(154) — @ ()] du
foN [@(F) - Q(F) —Q (=) dt
(25)

Proof: Integrate (23) over Bob’s photon position y from
7 to 7 + 1, then switch the two integrals to get the result
announced by this corollary. ]
We complete this section by establishing the expression of
the a posteriori probability useful for soft-decision decoding,
e.g., for belief-propagation decoding of low-density parity-
check codes, for ordered-statistics decoding of linear block
codes, or Viterbi decoding of convolutional codes. Let
APP(i) = APP(X = i) = P(X = i][Y = y) be the a
posteriori probability of Alice’s photon bin number ¢, for ¢ =
0...N — 1. The next theorem gives the expression APP(i),
which is used in our proposed coding/decoding schemes in
Section VII.
Theorem 2: Given the photon position Y = y on Bob’s
side, the probability for Alice’s photon to belong to bin number
1€ LN IS

u)

Y e T [Q (5 - @ (H=1)] du
(y—1t)2 :

o e [Q(F) - ()] ar
(26)

Proof: Given that X,Y € [0, N[, we apply Bayes rule
to get

APP(i) =

p(y|X = )P(X =)

p(y) '
The result of Theorem 2 is found in three steps: (i) Use (23)
from Theorem 1 for p(y|X = 4). (i) Use (20) for the
a priori P(X = i). (iii) Finally, p(y) = py xcpo,n(¥) =
Py gefo.m (T = /fO Py |ejo,n) (t)dt after truncating the
density of Y. The density Py %eo,N) () is found in (54)
while switching the letters x (resp. X) and y (resp. Y),
in conjunction with (13) and (19),

P(X =iy =y) =

N 1 (y u) _u
Nerrels =)@ u
) = 0o 2 ( N oy
KRE -5 d
which ends the proof of Theorem 2. ]
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Fig. 6. Soft-Output channel likelihoods, N=8 bins per frame, SNR=25 dB.

For consistency, the reader could check that p(y) given
at the end of the proof of Theorem 2 is also equal to
Zjvgol #:p(y|X = i) from (20) and (23). Figures 5 and 6 plot
the likelihoods p(y|X = i) at low SNR 4 = 10 dB (low photon
detector precision) and a relatively higher SNR v = 25 dB
(higher photon detector precision), respectively. At low SNR,
p(y|X = i) has a Gaussian shape. The shape tends to become
square at high SNR. The a posteriori probabilities APP(i),

1 € Zp, have a plot similar to the channel likelihoods.

VI. SECRET KEY INFORMATION RATES
A. Mutual Information Between Raw Keys

Firstly, we consider the mutual information of the algebraic
hard-output channel defined by the transition probability
p(§|&) = P(Y = §|X = 2). In Corollary 1, the expression
of pij = p(Y = j|X = i) was established. Hence, we can
directly compute the mutual information 1(X;Y") as follows:

N—-1

HY)-HY|X)=— Z P(Y = i) log(P(Y = 1))
N—leo R N-1 R R
+ Y P(X =) Y PY =j|X =)
i=0 j=0
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Fig. 7. Mutual information I(X;¥") of the algebraic hard-output TE-QKD
channel, for N = 4 (blue), N = 8 (black), N = 16 bins per frame (red). The
two dotted yellow curves and the dotted green curve correspond respectively
to high-SNR approximations of I(X;Y") given by (34), (29), and (35) for
N = 8 bins per frame.

pij log(pij), (28)

where the a priori 7; of X and Y is found in (20). The
plot of I (X ,Y) expressed in bits versus the signal-to-noise
ratio is depicted in Figure 7, for 2, 3, and 4 coded bits per
transmitted photon. As expected, the curves go towards the
asymptote H(X) at high signal-to-noise ratio. In fact, the
entropy — Zf:ol #r; log(7;) is very stable even at low SNR
and could be well approximated by log(N). The summation
in (28) could be truncated to neighboring bins or to bins within
an integer distance less than D,

o 1
[(X:Y) mlog(N) + = Y pijlog(piy)- (29

li—jl<D

The simplification (29) is an excellent approximation down
to v > 10 dB for D = 1 only and it extends to v > 5 dB
for D = 2. The next proposition gives more insight into the
behavior of the a priori and the transition probabilities, and the
discrete channel mutual information in the low-noise regime.

Proposition 2: At high signal-to-noise ratio, when 0% < 1,
we have the following results:

a) The transition probability of the hard-output QKD
channel established in Corollary 1 satisfies:

At the two extremal bins, 1 = 0 and i = N — 1, we have

% + (9(67%)

Do = ) (30)
1— 5520+ 0(e )
where po1 = pn—1,v—2 = 1—poo =1—pn_1,n_1, and

o=1/\/.
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At the middle bins, i =1... N — 2, we have
R el G 31
’ 1-0(e 1)
where p1o = piit1 = Pii—1 = (1 — pis)/2. All other

transition probabilities p; ; for |i — j| > 2 are O(e~7) and

can be forced to 0 in any numerical calculation at high SNR.
b) The a priori probabilities established in Lemma 2 satisfy
At the two extremal bins, i =0 and 1 = N — 1, we have

1- L5254 0(e7 1)
ol
4

Mo = AN—1 = ) (32)
_ 142 -
N[1- 5825 4 0(e %)
where the numerator includes o but the denominator involves
@ = o/N. For the middle bins, with i =1... N — 2, we have
1—0(e %
o= 1 ﬂ(e *) . (33)
N {1 — ;\F/E T+ 0(6‘2)}

c) Following a) and b), the mutual information I()A(,}A’) of
the discrete-input discrete-output QKD channel given by (28)
becomes

N - 280 . 2(1- o)
mlog [N(1—267)] - ml og(1 — Bo)
2(1 — Bo) (N

()

(34)

_ o/ —2)
N(l—QﬂE)H (1—[30) N(1—205)
+0(e™ ),

where 3 = 1;\/\/;, o=1/\/7 and = c/N.

The proof of Proposition 2 is found in the appendix. At high
signal-to- noise ratio, this proposition shows how fast p; ;
converges to —=. The latter is a one-sided probability of error
and it is half the double-sided probability of error stated in
Proposition 1. As expected, 7; converges to 1/N much faster
for inner bins as found in Proposition 2-b). The high-SNR
expression of 1 (X ; f’) established in Proposition 2-c) perfectly
fits the exact mutual information of the discrete channel down
to v = 10 dB and then diverges at low SNR below 10 dB.
The binary entropy function represents the extremal bins error.
The ternary entropy function carries the inner bins error.
Expression (34) is a quick method to evaluate I(X;Y) at
moderate and high signal-to-noise ratios without performing
any integration.

One could ask how good is the approximated mutual
information if the TE-QKD discrete channel is assumed
to have a circular transition probability matrix. Under the
assumptions of Proposition 1, we take: 1- X and Y are
Gaussian, 2- all bins are equiprobable, and 3- the error
probability of the discrete-input discrete-output channel is
dominated by events where X and Y are separated by one or
two bins only. According to Theorem 7.2.1 in [12, Ch. 7.2],
the expression for a circular discrete channel is

2

Z Po; 1085 (poj),

j=—2

I(X;Y) ~ log(N) + (35)

where po1 = po,—1 ~ fo 2p1p2 dv = 2(Iy — Iz — I3), po2 =
Do,—2 R fo 2paps dv = 213, and pog = 1 — 2po1 — 2po2.
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Fig. 8. Mutual information I(X;Y) of the soft-output TE-QKD channel,
for N = 4 — 64 bins per frame, i.e., 2 — 6 bits per photon.

All three high-SNR approximations (34), (29) with D = 2,
and (35) are respectively shown in dotted lines from top to
bottom on Figure 7 for N = 8 bins per frame. (34) and (29)
follows the exact mutual information I(X;Y) at high SNR.
(35) is not tight enough at N = 8 but becomes tighter for
N > 16 bins per frame.

The second step is to compute the mutual information
for the soft-output TE-QKD channel. We have I (X;Y) =
H(X) — H(X|Y). The second expression after flipping X
and Y based on differential entropy, it is also equivalent
from a numerical stability point of view and has all its terms
established in the previous section. We prefer the mutual
information where the high-SNR asymptote is visible, hence

I(X;Y) = H(X) - HX|Y) =

H(X)+ Z [l = o (4P PG a
(36)

where the a priori 7; is from (20), the likelihood p(y|& = 1) is
from (23), and the a posteriori APP (i) is from (26). Figure 8
shows the mutual information I(X;Y) versus normalized
SNR # for different number of bins per frame. The red upper
envelope is established by Theorem 3 in the next section.
It corresponds to the maximal mutual information achievable
on the TE-QKD channel.

B. Maximal Secrecy Rate

The ra}ndom variables X, X , and Y form a Markov chain
X — X — Y. Therefore, the data processing inequality
[12, Ch. 2] yields

I(X;Y) < I(X;Y), VNZ>2 (37)

Consequently, for any value of the number N of bins per
frame, the rate of our channel py ¢ (y|2) is always bounded
from above by the rate of the continuous-input continuous-
output channel py|x (y|z) corresponding to a continuum of
zero-measure bins in Alice’s frame. Thus, by determining the
mutual information (X ;Y") we get the maximal secrecy rate
of the photon channel between Alice and Bob.
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Without loss of generality, assume that the frame size is 1,
instead of N. Now, the problem is to find I(X;Y) where X
and Y are truncated versions of the original photon positions,
X Xe[0,1),Y = Y € [0,1). The model in (1) becomes

= U + N(0,06%), Y = U + N(0,02), U is uniform in
[O, 1), and the two additive Gaussian noises are independent.
The normalized signal-to-noise ratio is naturally defined by
v =7 = 1/0? under this context of infinite number of bins
and a frame of unit length.

Theorem 3: The maximal secrecy rate is given by

I(X;Y) = h(Y) — h(Y|X)

1
=— /0 p(y) log(p(y)) dy

(38)

T / p(z) / p(ylz) log(p(ylz)) dydz  (39)

0
where p(z) and p(y) are from (27) after replacing the frame
size N by 1, p(x) = px 5 yeo,1) (%) is

fo gz = Q) —Q(F)
R (Z) - (5] ar 7
P(y) = Py (% velon () s
Jo e = [Q(5) @ (54)] du
1 — 2 ;4D
0 Q(F) —Q (5] at
and the conditional density p(y|z) is
1 e_(y;:v)2 [ ( a/J\r} ) ( J/J:} )}
S G '
dmo? Jo et (@ () -Q ()] du

(42)

Proof: 'We complete the proof by finding the expression

of the conditional density p(y|x). Indeed, we can write after
marginalizing and applying Bayes’ rule

p(ylz) = pY\x,xye[o,l)(ylw)
(z|w)p(y|u)

— /Olp(y,UII) du = /01 L p(x)

In the above integral expression we used the fact that
p(z,ylu) = p(z|u)p(y|lu) as a result of the model defined
by (1). In (43), both p(z|u) and p(y|u) are from (16), p(z) is
from (27), and finally p(u) = py|x y¢[o,1)(u) is found in (56),
all after substituting 1 to N. After simplifying the integrand
of (43), we get p(y|x) as stated by (42). |

Corollary 2: At high signal-to-noise ratio, ie.,
v = % > 1, the maximal secrecy rate satisfies

1
1+ 05508 (57) + 0 (G4)
i Vo €]0, 1]. (44)
Proof: Tl%e prooz{t is based on a Babylonian approach
with heavy calculus. Let us give a sketch on how the limit is
guessed. By applying Lemma 1 and some extra algebra, when
v > 1, we get that p(z) — 1, p(y) — 1, and p(ylx) —
1 _

T3¢ 4_;;) , in (40), (41), and (42) respectively, for

du. (43)

I(X:Y) =

(1),
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x,y €]0,1[. Then, the differential entropy h(Y) — 0,
h(Y|X) — h(N(0,202)) = %log(4mec?), so the maximal
secrecy rate satisfies I(X;Y) = hA(Y) — h(Y|X) —
1log (). The detailed rigorous proof is found in [13]. O

The Gaussian differential entropy (44) is very close to
I(X;Y) above 2 bits per photon and becomes very accurate
beyond 3 bits per photon where it coincides with the red
upper envelope in Figure 8 at a high signal-to-noise ratio.
The double variance 202 in (44), originally found in (42),
comes from the superposition of the variances of Z; and
Z5 in the system model defined by (1). After canceling
U, the model becomes Y = X + Zy — Zs. X and
7/, are correlated, making the density expression relatively
complicated when conditioning on X. In the small-noise
regime, this correlation fades away, and the variance 202 of
the total additive Gaussian noise Z; — Z dominates the
mutual information as in (44). At low and very low signal-
to-noise ratios, one should use exact density expressions from
Theorem 3 and proceed via numerical integration to get exact
values of I(X;Y) and the corresponding SNR limits if the
user accepts to apply a relatively low coding rate which is
not the trend in TE-QKD where coding rates above 1/2 are
preferred which places us in the moderate and the high SNR
region.

VII. KEY-RECONCILIATION CODES

Following the complete characterization in
Sections V-VI-B of the TE-QKD channel model described
in Section III, we next introduce error-correcting codes to
bring the error-rate performance as close as possible to
the information-theoretic limits corresponding to maximal
achievable rates.

A. Reed-Solomon (RS) Codes

We consider the famous family of Reed-Solomon codes
with an application to a frame of N = 2™ bins, i.e. m
coded bits per photon. In order to chose a high enough error-
correction capacity, an RS code over IF, is considered, where
q is large enough. Each finite field element corresponds to
log, (q)/m photons. For simplicity, assume that ¢ = 2™, for
some positive integer £. The RS code has length n = ¢ — 1
(primitive) and dimension k = n — 2t, so the targeted rate is
m X % information bits per photon. One codeword of this
Cln,k,t]; RS code requires the transmission of a total of
n xlog,(q)/m photons to Alice and n x log,(q)/m photons to
Bob, all with valid frames. After receiving the n x log,(q)/m
valid frames, Alice converts the n x log,(g) bits received
on the quantum channel into a length-n word denoted by
c+ e, where ¢ € C and e € IE‘Z;. Similarly, Bob converts
his n x log,(g) received bits into c + €', where ¢’ € F}.
In the hard-output channel model of Section III, ¢ + e is
written at the input X and ¢ + ¢ is read from the output
Y. On the public channel, Alice sends to Bob the syndrome
s=(cte)H!, s € ]Fg’k, where H is the parity-check matrix
of C. Given s and given c+¢’, the reconciliation performed by
Bob is equivalent to finding Alice’s word ¢+ e. Bob proceeds
as follows:
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Fig. 9. Performance of the RS code [63,43,t = 10|64 on the hard-output
time-entanglement QKD channel, for N = 8 bins per frame, transmitting
2.05 information bits per photon.

o Compute a syndrome s’ = (¢ + ¢')H*.

e Feed s’ — s to an algebraic (Berlekamp-Massey [14])
decoder to find e’ — e.

o Subtract the error ¢/ — e from Bob’s word to get ¢ +
e’ — (¢! —e) = c+ e the F word possessed by Alice.
Replace all subtractions by additions in usual finite fields
of characteristic 2.

The performance of RS Cln = 63,k = 43,¢t = 10]4=¢4 code
is shown in Figure 9. One codeword requires the transmission
of a total of 126 photons, where one field element carries two
photons. The results show a large gain, e.g., about 58 dB of
gain for a bit error-rate P., = 10~° after reconciliation.

The analysis of the algebraic decoder is easy thanks to its
bounded-distance decoding in the Hamming space. A decoding
error occurs each time the channel adds more than ¢ errors in
F,. A simple union bound for the RS code is obtained by
summing from ¢ 4 1 to n errors. We proceed as follows:

a) The uncoded symbol error probability over the TE-QKD
channel is P.(y) = %(1 - %)%

b) For the RS code, the input probability of error per finite-
field element is Pi,(v) =1 — (1 — P.(v))".

c¢) The bound on the probability of error in IF; after decoding
becomes

n

Pers(7) = > n(?) Pl (v)(1 = Pin(y)" " (45)
i=t+1
d) The symbol (per photon) error probability after decoding
is then Pooui(7) =1 — (1 — P.gs(y))Y/%.

e) The probability of error per bit after Reed-Solomon
decoding, given a Gray labeling of the bins, is well estimated
by PebRS(ry) = mPeOut(V)'

The probability or error P.prg obtained from (45) perfectly
fits the Monte Carlo method in the area where this method
is tractable on a computer, i.e. for error rates in the interval
[10-7,107Y. At Pars = 10710, the coding gain over
the uncoded probability of error per bit is 158 dB! Such
a huge gain is explained by the diversity order of the
TE-QKD channel. The diversity order is defined as d =

lim, _g’gg(g?) [10, Chapters 13-14]. From Proposition 1

7183

we know that the TE-QKD has a diversity order of %,
it behaves like a half-diversity Nakagami fading channel.
The error-correcting code increases the diversity order which
is equivalent to increasing the slope of P.(y). An additive
Gaussian noise channel without fading has infinite diversity,
with or without coding, making all curves look parallel.
In presence of fading, a high diversity converts the channel into
a Gaussian channel [15]. In practice, a diversity order beyond
8 could be barely distinguished from the local slope of e™”
on a Gaussian channel. In our case, from (45), we deduce that
the diversity order after algebraic RS decoding is (¢ + 1)/2.
There is no asymptotic coding on the TE-QKD channel. The
coding gain increases if measured at a lower probability of
error.

B. Binary Bose-Chaudhuri-Hocquenghem (BCH) Codes

The TE-QKD channel does not generate error bursts. Errors
are independent and the most common event is one erroneous
bit per photon before decoding. In other words, the binary-
burst error-correcting capability of Reed-Solomon codes is
not exploited. Hence, we suggest to utilize a binary BCH
code of the same binary length as the RS[63, 43]g4, which is
63 x 6 = 378 binary digits. We start from a primitive length of
511 and shorten down to 378. At ¢ = 13 the binary BCH code
has a dimension & = 261. This BCH[378,261,¢ = 13|, code
yields a diversity order (t+1)/2 = 7 better than the 5.5 order
of the RS code shown in the previous section. The number of
information bits per photon is 261/378 x 3 = 2.07 bits for
N = 8 bins per frame.

Without adding any extra figure to this sub-section, the
Monte Carlo simulation and the analytical bound show that
the binary BCH[378, 261, ¢ = 13] code beats the RS[63, 43]¢4
code by 3 dB in signal-to-noise ratio at P.yrs = Pypon =
1075, To get the coding gain at a lower probability of error,
we propose the following very tight union bound:

a) The uncoded symbol error probability over the TE-QKD
channel is P.(v) = %(1 - %)% Below 107! a maximum
of one bit error occurs in a block of m = log,(IN) coded bits
thanks to Gray labeling. There are n/m such blocks per BCH
codeword involving individual binary errors.

b) The bound on the probability of error in Fy after BCH
decoding becomes

Peypon(v) = Z m (?)P;('Y)(l — Pe(y))m ™" (46)
i=t41

At P.yrs = Papeg = 10_10, the binary BCH[?)78,2617
t = 13] code beats the RS[63, 43]4 code by 5 dB. This value
corresponds to a 163 dB of BCH coding gain with respect
to the uncoded photons at N = 8 bins per frame. Notice
that the reconciliation at Bob’s side for BCH codes (binary or
non-binary) is identical to the reconciliation described in the
previous section for Reed-Solomon codes where the syndrome
s’ — s is fed to a Berlekamp-Massey decoder.

C. Low-Density Parity-Check (LDPC) Codes

The significant impact of the graph-based LDPC codes
on the performance of polarization-based QKD systems was
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already demonstrated in [16] for the reconciliation of discrete
random variables with a binary symmetric channel (BSC)
model. Low-density parity-check codes [17], [18] are flexible
regarding length, coding rate, and decoding methods. As usual,
the LDPC code parity-check matrix is the adjacency matrix of
a bipartite Tanner graph with n variable nodes and n — k
check nodes, assuming that the graph is (d,, d.)-regular. For
finite fields ¥, with ¢ > 2, non-zero elements of the adjacency
matrix are replaced by elements from F, \ {0}. The standard
method for decoding LDPC codes is belief propagation (BP),
i.e., iterative probabilistic decoding. Codes over a large field
F, or alarge ring Z/qZ could be considered [19] to minimize
the loss during the symbol-to-bit soft values conversion. It is
also possible to use joint local-global LDPC codes with
optimized bin mapping to achieve good performance [20] or
apply multilevel coding as in [21]. However, these papers
consider a different QKD channel model. This paper shows
the impact of LDPC codes on TE-QKD with a (3, 9)-regular
binary LDPC code only. The coding rate is 2/3 guaranteeing
2 exchanged bits per photon when the frame has 8 bins.
However, we consider a short length n = 384 (64 x 6)
comparable to the RS and BCH codes given in the previous
sub-sections and a longer code with n = 9999 to illustrate a
performance close enough to the Shannon limit.

The symbol/bin APP is found via (26), where APP(i) =
APP(X = i) is the a posteriori probability of bin number
i, © € Zn. Then the APP of binary digit by, where ¢ € Z,,,
m = log,(N), is derived by the following marginalization

> APP(X =i).

1€EZN : by

APP(by) = 47)

The above marginalization depends on the type of binary
labeling. Our paper considers N bins per frame with Gray
labeling of log,(N) bits per bin. Figure 10 shows the bit-
error-rate versus -y for the binary LDPC code on the TE-QKD
soft-output channel at n = 384 bits and n = 9999 bits. They
respectively gain 12 and 16 dB compared to the BCH[378, 261]
code, at a bit error probability of 10~°. Compared to the
uncoded TE-QKD, the coding gain is 73 dB and 77 dB,
respectively. At length n = 9999, the LDPC code is on
top of the Shannon limit for a TE-QKD hard-output channel
(Viimit = 12.61 dB) and is 2 dB only from the Shannon
limit of the soft-output TE-QKD channel (v;;,,;: = 10.45 dB).
We see no reason for using longer LDPC codes to catch an
extra 1-2 dB, given that the total coding gain compared to the
no-coding case already equals 77 dB!

If a lab system implementation requires a less complex
expression for APP(X = 1) without the erfc()/Q() function
and integration, (26) can be simplified by assuming that
the Gaussian density has the effect of a Dirac impulse at
small o and using the o symbol (proportional to) since the
denominator does not depend on the index i, we get that

APP(i) is
[ v # o (5) e ()

<[e () -e (7))

_(w—w?
202
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Fig. 10.  Performance of the (3,9)-regular binary LDPC code at length

n = 384 and n = 9999 bits on the soft-output time-entanglement QKD
channel, for N = 8 bins per frame, transmitting 2.0 information bits per
photon.

Then, depending on the sign of t2he arguments ¢—y and i—|—1—y2,

we approximate Q(z) by %e_% (if > 0) and by 1— %e_%
(if z < 0). Let j = |Y'| be the bin position of Y on Bob’s side,
ie. Y € [j,7 + 1]. The simplified APP expressions become:

Ifi=j, APP(i) x

(y—i)* (y—i—1)
{1 —5e 2% — %e_ 202 ] , (48)
Ifi#j, APP(i) x
PN I € o § N ¢
sign(j —i)|ze 207 —ge 207

(49)

When (48)-(49) are utilized in the BP decoder of the
binary LDPC code over the TE-QKD soft-output channel,
the loss is limited to 0.25-0.30 dB with respect to the exact
expression (26). This is a minuscule loss when dealing with
coding gains above 50 dB.

Notice that we are not showing a performance of the LDPC
code over a hard-output channel. Indeed, optimal BP decoding
is identical whether the channel output is soft or not, i.e.,
the BP decoder is the same decoder on both a Gaussian-like
channel and a BSC-like channel. The gap between hard and
soft is about 8.5 dB for the LDPC[384, 256] and about 4 dB for
the LDPC[9999, 6666] at a bit error rate of 107°. Suppose the
system implementation possesses an optimal BP decoder, but
the exact photon position is unavailable; only the bin number
is available. In such a case, the lab implementation is forced
to use LDPC codes on a hard-output channel, and the binary
digits APP expression (47) becomes

E Ti X Pij

1€EZN : by

APP(by) (50)

where j = |Y|, #; is given by (20) or (32)-(33) at small o,
and p; ; is given by (25) or (30)-(31) in the small o regime.
Coding theorists and practitioners could also use convolutional
codes, turbo codes, polar codes, and other binary or non-binary
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TABLE II
INFORMATION THEORETICAL (SHANNON) LIMITS FOR TE-QKD
N Bits R=k/n SNR limit | o/N SNR limit | /N
bins per frame | per photon | code rate hard | hard soft | soft
8 2.0 2/3 12.61 dB | 0.029269 10.45 dB | 0.037533
16 3.0 3/4 13.29 dB | 0.013532 10.85 dB | 0.017922
32 3.0 3/5 3.88 dB | 0.019992 3.46 dB | 0.020982
32 4.0 4/5 13.61 dB | 0.0065215 11.04 dB | 0.0087670
64 4.0 2/3 4.01 dB | 0.0098474 3.58 dB | 0.010347
64 5.0 5/6 13.77 dB | 0.0032012 11.13 dB | 0.0043383
8 3.0 1 90.34 dB | 0.0000038
Uncoded P., =107° | achieved
8 2.0 2/3 28.49 dB | 0.0047034
BCH, n=378 P., =107° | achieved
8 2.0 2/3 12.47 dB | 0.029745
LDPC, n=9999 P., =107° | achieved

algebraic codes with short or moderate length to achieve large
coding gains on the TE-QKD channel.

D. A Summary of Capacity Limits at Different Frame Sizes

We complete the current section by a table summariz-
ing important information theoretical limits on the time-
entanglement QKD channel, with both hard and soft output.
Shannon limit in terms of SNR is the value of the
non-normalized signal-to-noise ratio ~ such that mutual
information is equal to the targeted information exchange rate,
I(X;Y) = % log,(N) for a hard output and I(X;Y) =
% Jog, (V) for a soft output. Table II has seven columns with
parameters covering 8 bins per frame up to 64 bins per frame.
The last two rows correspond to SNR and standard deviation
values achieved by the BCH and the LDPC codes as found in
sub-sections VII-B and VII-C.

The signal-noise ratio soft-decoding limits listed in Table II
appear to be close to two values, one SNR of around
10-11 dB and a lower SNR around 3.5 dB. The hard-decoding
limits are higher than soft-decoding limits, because I (X : )A/) <
I (X ;Y), the gap depends on the frame size and the coding
rate. Of course, the hard-soft gap vanishes at small coding rates
(below 1/2) and increases at high coding rates when mutual
information approaches the asymptote log, (V).

The two typical values of soft-decoding SNR limits are
explained or interpreted for small o via (44):

1 7
5 log (47‘(6) =logy(N) — b, (51)
where ¥ = N2+ and b is a backoff value. Here, b = 1 bit
or b = 2 bits in Table II. Then, solving (51) yields v =
(47e)/22°. We get v = 9.31 dB for b = 1 and v = 3.29 for
b = 2. The difference with the values in the 6th column of
Table II is due to I(X;Y) going away from the envelope
I(X;Y) to follow its own asymptote. We hope that SNR
limits given in Table II will be useful to physicists and coding
theorists working in this QKD field.

VIII. CONCLUSION

In TE-QKD, the photon arrival detector jitter leaves Alice
and Bob with correlated but not identical keys. To obtain

a shared secret key, Alice must send information to Bob
over a public channel, thus lowering their shared key rate.
We presented a rigorous analysis of secret key information
rates and proposed and tested several codes for information
reconciliation to approach the maximum secret key rates.
These achievable secret key rates are much higher than the
maximum possible by polarization entanglement-based QKD.
The main contributions of this paper constitute a full
characterization of the time-entanglement QKD channel from
information theory and coding theory points of view:

e We derive the error rates of the TE-QKD channel, and
prove that the TE-QKD channel behaves like a 1/2-
diversity Nakagami fading channel, see Proposition 1.

« We find the exact a priori probability of bins given that
both Alice’s and Bob’s frames are valid; see Lemma 2.

o We establish the exact conditional density of Bob’s
photon position given Alice’s for a soft-output TE-QKD
channel; see Theorem 1. The output density expression
is also determined; see (27).

e We determine the expression of the transition probabil-
ities of the discrete (hard-output) TE-QKD channel; see
Corollary 1.

e We give the exact expression of the a posteriori
probability for the soft-output TE-QKD channel, see
Theorem 2.

o We derive the exact formula for the mutual information
I(X;Y) (hard-output) and find simplified expressions
in the small-noise regime, see (28), (29), (35), and
Proposition 2-c.

o The exact formula for the mutual information I(X;Y)
(soft-output) is given, see (36). We also determine all
densities needed to compute the maximal rate [(X;Y),
and we give a nice log-formula expression in the small-
noise regime, see Theorem 3 and Corollary 2.

+ We demonstrate that huge coding gains can be obtained
by short and moderate-length error-correcting codes such
as the well-known RS, BCH, and LDPC codes under
algebraic hard-decision decoding and probabilistic soft-
decision decoding.

Practical photon detectors suffer from other impairments,
e.g., dark currents and downtime, which may cause further rate
loss. These impairments should be a subject of future work.
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For an extensive list of open problems and future directions
in TE-QKD, we refer the reader to the expository article [22].

APPENDIX

This appendix includes the proofs of Lemmas 1, 2, 3, and
Proposition 2.

A. Proof of Lemma 1

For a), let G be a standard normal random variable. The
finite interval [—x,1 — z] is never reduced to a single point.
We get f,(x) = P(G € [—z,1 — x]) €]0,1]. Then, f,(1 —
0=Q(-52)-0(2) =1-Q (1) ~1+Q(-2) =
fo (), using the property Q(—z) = 1—Q(x). Finally f,(0) =
Q0) @ () = - O(en(-3).

1-Q (%) -Q (ITTC”) Then

For b), we write f,(x) =
Q) +Q(2) < Lexp(—22/(26%) + Lesp(—(1 —
z)%/(20%)) < exp(—min®(x,1 — )vy/2) which yields the
announced result. This inequality is only useful to us for
x €]0, 1] to keep the exponential decay.

Forc), # < 0,50 1—z > —z > 0. Then f,(z) < Q (=£) <
L exp(—2?/(20?)) = O(exp(—2?v/2)). The proof is similar
for x > 1.

As mentioned for I; in the proof of Proposition 1, the anti-
derivative of Q(ax), a,z € R, is determined after integration

by parts. We get
/Q(ax)d;v =zQ(ax) —

where c is the integration constant.

For &) fo fol@) dv = [y [1-Q(2) - @ (155)] do =
1-2L =1—-4/2 f + O(exp(—3)), where I; is solved
thanks to (52).

As mentioned for Is in the proof of Proposition 1, the
anti-derivative of [Q(ax)])?, a,z € R, is also determined by
integration by parts and the application of (52). We get

———exp(—a®2?/2) +¢, (52)

2ma?

/QQ(am = 2Q*(ax) \/ Q ax) exp(—a*z?/2)
+ am\f )+ e (53)
Vmra? Q
Then, f0f2 Ydo =1 —46 + 21, +2I3 =1 — r-i—
2 x \Qfﬁ o+ O(exp(—7)), where I is solved thanks to (53)

and I3 = O(exp(—7)) as shown before. This completes the
proof of d).

The proof of e) is mainly based on (52), after taking care
of the bin position within the frame. We have

(i+1)/N
I :/ fo(z) dx
i/N
)

/(H—l /N {1 o (f) s (1 —a:)} de
i/N g g
(i+1)/N 1—-i/N
oeC) e[ (e

1
N
(5 a(i)

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 12, DECEMBER 2023

e 2 N2

o _xG+D? o v'i2:|
2

LT i, O e—gu—%?]

s V2T
- - 1 a 1
If’L:OOI'Z:N—llzl:ﬁ—m— O(W)
all terms with exponential decay are absorbed by the O( %)
y 42
For middle bins, ¢ = 1...N — 2, I, = N +O(e"2n7) +

O(e~z0- IH)Q), all terms of higher decay are absorbed by
these two big O. Hence, I4 = & + O(e™P7), where the
exponent constant is 3 = % min (Z/N 1-(G@+1)/N). O

B. Proof of Lemma 2

Let us apply Bayes’ rule, while dropping the subscripts to
simplify the notation:

P(X € [0, N[|u) x pu(u)
P(X € [0,N]) '

From (13), we get P(X € [0, N[[u) = Q (%) — Q (=4).

From (15), we get the expression lP’(X € [0,N]) =
~ fo (Q(3L) — Q (%L)] dt. Finally, plugging py(u) =
1/N leads to the result announced by the lemma in (19). The
equality py o n((¥) = Pyjvep,n((w) is the result of the
symmetry between Alice and Bob in our model.

The a priori probability 7; is derived after establishing the
density of X conditioned on a valid frame for Bob, Y € [0, N[.
By marginalisation over U, we have

p(ulX € [0,N[) =

N
p)”qf/e[o,zv[(@ :/0 p)"qU,f/e[o,N[(ff\u)PU\?e[o,N[(u) du

N
= /0 leU(:E‘u)pUWE[O,N[(u) du, (54)

where the two factors are given by (13) and (19) respectively.
The a priori probability #; = P(X € [i,7 + 1[|Y € [0, N])
becomes, for i =0,..., N — 1,

+1
gy :/ pX|Y€[0 N[( z) dx

p
X|Y60N[( z) o

‘ fo pX|Y€ON[ ) dz
le f —o Px v (@lW)pyyeponi(v) du de
f:z:o fu:O Px o (@ WPy yep,n(v) du di

_ 5o [Q5) — () g o () du ds
fifvzo [Q(Z*) —Q (M) Pyvep,n((w) du dZ .

We obtain (20) after replacing p;jy-< (o, v((u) by its expression
from (19). O

C. Proof of Lemma 3

The existenge of X and X , e.g. when writing X = 7,
requires that X € [0, N|[. This hidden assumption should not
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be forgotten. By applying Bayes’ rule,
p(ulX =) = pu|X =i, X € [0, N])
B P(X = ilu, X € [0, N]) x p(u|X € [0

ND

T
The first term in the numerator can be developed as follows
P(X =ilu, X € [0,N]) =P(X € [i,i+ 1]|u, X € [0,N])
_PX efiitlfu)  Q(F) —Q (5
P(X € [0, N[|u) Q(ZH) - (%)

The second term in the numerator is given in (19) in Lemma 2.
After substituting the expression of 7; from (18), we get

Qe
e -et)a

The reader is invited to prove via a change of variable that
it+1
—t N —t
[ 1e(@) e (5]
i g g
N . )
—t 1-1¢
() e e
0 g g

which leads to the result announced by the lemma in (21).
The proof of (22) follows similar steps as for the proof of (21).
Firstly, using Bayes’ rule and (14) we get a conditional density
of U,

p(ulX

—u —u)]2
@ (1) —e(*74)]
5
I QG - (5] dr
Secondly, we solve the conditional probability of Alice’s
photon bins,

p(ulX,Y € [0,N]) = (56)

P(X € [i,i+1[,Y € [0,
P(X,Y € [0, N[u)
_eE)-e)lR(Ez) -]
(=) -z
Finally, we use the above expressions of ]P’( = i|u, X,Y €
[0, N]) and p(u|X,Y € [0, N[), and (20) from Lemma 2 in

Nfu)

P(X =ilu, X,Y € [0,N[) =

to reach (22) in this lemma. [

D. Proof of Proposition 2

For the sake of space, we only show the detailed proof for
the denominator of pg ; (also equal to the numerator of 7).
All other results are found using similar calculus techniques.
The denominator of pg ; from Corollary 1 (¢ = 0,5 = 1) is
equal to the integral

- [Tata- [Ce@as [T@ @
- [Cewaera- [Tarsersa
[ esa)a
:/jQ(t)dt—/N]\ilQ(t)dt—k/oNQz(t)dt

(i) (i1 (iid)

[ewa-eese- [Te@maersa

1

[etsaras [Toes

(viz)

(viid)

Now we solve the elementary integrals (7)-(viii) o one by one.
Using (52), (1) = 0— 2=+ Q(F) + F=e 2 =1 -

Werdas O(e” 2) Using the fact that Q(x) is a monotone

N
decreasing function, then (ii) = O(e” N~ )25). The third
integral is directly solved via (53): (iii) = NQ*(X) —

NI, -
2N + £Q(E) —0+0y /2L - 24
we find (iii) = (422!
= 10

~
Q
+
<IN
®
Z

ol
e~ ). For (v), t2 + (t — 1) > 1 in the interval

[1, N], then we have (v) = 0(67%). The first part of (vi)
is O(e_(N_l)zg) and the second part is also O(e_(N_l)zg)
because (N — )2+ (1 —t)2 > (N —1)? in the interval [0, 1].
So (vi) = O(e_(N_l)zg). Applying similar arguments, we get
(vii) = (’)(e_(N_l)zi) and (viii) = O(e_NZ%). Combining

(1)-(viid) yields Iy =1 — 1;\}[0 + O(e” 4) as stated. [J
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