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Abstract—Edge computing operates between the cloud and
end-users, and strives to provide computing services at a high
rate. Since the computing and storage resources are limeted,
directing more resources to some computing jobs will block
(and pass to the cloud) the execution of others. We evaluate
the system performance with two metrics: job computing time
and job blocking probability. Edge nodes often operate in highly
unpredictable environments, and replicating job execution when
resources allow improves the job mean execution time. We show
that the job computing time increases with the number of groups,
but the job blocking probability does not. That is, there is a
tradeoff between job computing time and blocking probability.
This paper adopts the average system time as a single system’s
performance indicator to evaluate the tradeoff. We conclude that
the optimal number of groups that maximizes the system service
rate changes with arrival rate and cloud time.

Index Terms—Edge computing, blocking system, distributed
computing, resource allocation.

I. INTRODUCTION

With the rapid increase in IoT applications, such as smart
cities and homes, autonomous vehicles, and artificial intelli-
gence, billions of IoT devices are coming to our everyday lives
[1], [2]. The demand for low latency storage and computing
services is increasing to accommodate novel IoT platforms
(e.g., deep learning) [3]-[5]. Some applications, for example,
connected and autonomous vehicles, smart healthcare, and
ocean monitoring, require fast service or no service at all.
Cloud services are inefficient in responding to such applica-
tions.

Edge computing is an inter-layer between the cloud and
the end-user. It provides storage and computing infrastructure
at the node located one or two network hops from the end-
user [6]. Therefore, in the edge system, the bottleneck of
the computing service is no longer the communication delay.
As shown in Fig. 1, the edge computing system receives
and processes jobs from the end-users. However, the edge
computing system operates on a much smaller storage and
computing resources scale than the cloud. Service requests
get sent to the cloud when all edge workers are busy, and
communication time becomes a significant part of the delay.

This paper addresses two problems. The first problem is how
to increase the computing speed of each job. As a computing
system, computing speed, in terms of computing time or
service rate, is a classical and essential performance metric
[71, [8]. The second problem is processing more jobs in the
edge system instead of sending them to the cloud. Due to the
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limited storage and computing resources, the edge system may
be unable to process all jobs by itself. The jobs sent to the
cloud will experience higher latency. Therefore, it is necessary
to serve more jobs in the edge system to take advantage of
the geographic benefit [9].
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Fig. 1. Edge computing system deployed between the users and the cloud
processes the jobs sent by the users.

To address the first problem (decreasing the expected com-
puting time), we need to eliminate the adverse effects of job
execution straggling. We model the edge computing system
as a distributed computing system where a controller node
manages a computing cluster of workers [10]. In such systems
(and distributed computing in general), random fluctuations in
task computing times lead to some tasks, known as stragglers,
taking much longer to execute [11]. Therefore, mitigating
stragglers increases the computing speed. Many studies have
shown that introducing redundancy, in the form of replication
or coding, is an effective method of mitigating stragglers, see,
e.g., [12], [13] and references therein.

Using resources redundantly is a known strategy to decrease
the mean computing time, which is our first goal. However,
with the higher resource usage, the system will send more jobs
to the cloud for execution, which goes against our second goal
to execute more jobs locally. An edge computing system that
sends jobs to the cloud once the resources become unavailable
acts locally as a blocking system. We need to use resources
strategically in the edge computing system to address both
problems. Task scheduling is one of the methods that has been
well studied [14], [15]. Strategies for performance metrics are
proposed, such as offload latency, power consumption, and
energy efficiency. Unlike these studies, we consider the task
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scheduling method in the following way. When a job arrives,
the edge system replicates it to several workers. Here, we refer
to the workers processing the same job as the replication group
and its size as the replication factor. Since the total number
of workers in the system is limited, we have to decrease the
number of groups when we increase the replication factor.
The edge computing system with a higher replication factor
may have a higher blocking probability. That is, it can process
fewer jobs simultaneously. Therefore, processing more jobs in
the edge may decrease the computing speed for each job.

Based on the above discussion, we aim to analyze how the
job computing time and the job blocking probability changes
with the number of groups, and find the optimal number of
groups that minimizes the average system time. The paper
is organized as follows. In Sec. II, we describe the edge
computing system architecture, job arrival, and computing
time. In Sec. III, we theoretically and numerically analyze the
job computing time and the job blocking probability changes
with the number of groups. In Sec. IV, we analyze the optimal
number of groups (or replication factor) that minimizes the
average system time changes with the parameters of the job
arrival rate. The conclusions are given in Sec. V.

II. SYSTEM MODEL
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Fig. 2. Edge Computing System Model

System Architecture: We consider the edge computing system
model shown in Fig. 2 as a combination of the distributed
computing system and the blocking system. The edge comput-
ing system has limited storage and computing resources [2].
It consists of a single front-end controller node and multiple
computing servers, which we refer to as workers. The single
controller node manages the entire computing cluster of nodes
and divides the workers into several groups. When a job
arrives, the controller node will assign the job and its copies
to a group of workers. The workers process the jobs and send
the completed jobs to the controller node. There is a queue at
the controller node. Due to the limited storage and computing
resources, the queue’s space is also limited. When all workers
are busy, the new arrival job will be blocked and sent to the
cloud (see Fig. 2 job J5). Of course, the blocked job has to
experience a significant communication time between the edge
and the cloud. Furthermore, this communication time may be
much longer than the job computing time. Therefore, our goals

for the edge computing system are to increase the computing
speed and decrease the number of blocked jobs.
Redundancy and Task Scheduling: In an edge computing

system, the job computing time Tjg, is a crucial performance
metric. However, task straggling is a fundamental problem
in edge computing, which significantly affects the system
performance. To solve this problem, replication is an effective
technique to introduce redundancy to mitigate stragglers. In
Fig. 2, the controller node sends the J; and its copy to workers
1 and 2 separately. Compared to Jo without redundancy, even
though one worker processes the job for a long time, the
controller node can still receive the result from the other
worker. Thus, the system can mitigate one straggler.

As a blocking system, the blocking probability P, is an

effective performance metric to evaluate the probability that
a job will be processed locally. To improve the performance,
we need to solve the task scheduling problem. In this paper,
we mainly focus on finding the optimal way for the controller
node to allocate computing resources. In an edge computing
system with N workers, when a job arrives, the controller
node can assign m workers to this job. When the controller
node assigns one worker, the edge system can simultaneously
process N jobs; When the controller node assigns N workers,
the system can process only one job. Fig. 2 shows an example
that the controller node assigns J; and Jo two workers
separately. Due to limited resources, the controller node must
block some new arrival jobs and send them to the cloud. Thus,
the communication delay must be taken into account.
Job Arrival and Computing Time: M/M/1 or M/M/n queues
have been used in task allocation models in edge systems [16],
[17]. Here, we assume the job arrivals follow a Poisson process
with a rate A\, which allows us to model the blocking system
as an M/G/c/k queue. Analyzing the blocking probability of
an M/M/c/k (or M/G/c/k) queue that models the blocking
operation of the system in Fig. 2 is a highly complex problem.
To better understand it, we consider the Erlang B model, the
M/M/c/c queue, where the queue length equals the number of
groups and the computing time follows Exp(u).

Meanwhile, since the worker may process a task that is
part of a job, the computing time should change with the task
size. Therefore, we will adopt a server-dependent time scaling
model in [10]. The assumption here is that the straggling effect
depends on the server. Assume that the worker processes the
entire job following Exp(u). Thus, if the size of a task is 1/4
of the job, the worker will process this task following Exp(iu).
Problem formulation: We consider the edge computing system
with N workers. The controller node will assign a group with
m workers to each job, and the system has a total of ¢ groups.
Here, we have ¢ = N/m (¢, N and m are integers). Since we
use replication to introduce redundancy, the replication factor
is equal to m.

In this paper, we mainly evaluate two performance metrics,
the expected job computing time E[Tj,,] and the job blocking
probability P,. Then we will analyze the optimal number of
groups ¢ (or replication factor m) that minimizes E[T},] and
P,. Then, we use the average system time to evaluate the
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tradeoff between these two metrics. The average system time
is defined as

E[Tys] = (1 = Py) E[Tio] + P E[Tu]

Where T, is time that a job spends in the cloud.
Parameters and Notations:

D

N — number of workers in the system
m —  replication factor, number of workers in a group
¢ — number of groups, c = N/m
Tiob — job computing time
Tu — time that a job spends in the cloud (cloud time)
P, — job blocking probability
Tys — system time
A —  job arrival rate
w —  rate parameter of Exp distribution

III. PERFORMANCE METRICS ANALYSIS

The job computing time measures how much time the job
spends in the system occupying resources. Since the system
uses m-fold replication and the worker computing time follows
Exp(p), the expected job computing time is given by

1
E[Tjop) = —. 2
mp
Observe that E[Tj,] reaches its minimum at m = N. More-
over, Tjo, follows the exponential distribution with the rate
parameter mu. See, e.g., [18].

A. Job Blocking Probability

For an Erlang B blocking system with ¢ groups and the job
arrives as a Poisson process with the rate A, the job blocking
probability is

(p)°/c!

Z;:(J(P)j/j!
where p = AE[Tjop). The above expression shows that for a
given ¢, P, increases with p. From (2), we know that E[Tjq)
is a function of m, in which m = . Then we will take

p = %;4 Thus, P, is a function of ¢ and we can rewrite (3)
in the following,

Py(c,p) = 3)

(Kce)¢/c!
Z;:O(Kc)j/j!

where K = m is a constant. We find the m that minimizes
the job blocking probability P, in Theorem 1.

Py(c) = “4)

A

Theorem 1. For the blocking system with Poisson(\) arrivals
and Exp(u) computing time, the job blocking probability
Py increases with the number of groups c and reaches the
minimum at ¢ = N (i.e., m = 1).

Proof. Assume c; > cg, from (4), the blocking probability is
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Since ¢ € [1, N] , P, reaches its minimum at ¢ = N.
B. Numerical Analysis

We evaluate (2) and (4) for E[Tje] vs. ¢ and P, vs. c.
We consider a system with N = 24 workers, the job arrives
following the Poisson distribution with the rate A = 1, and
the computing time for each worker follows the exponential
with ¢ = 0.1. The results are plotted in Fig. 3. We observe that
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Fig. 3. Expected job computing time E[T}q,] and job blocking probability
P, as a function of c.

E[T;o] increases linearly with ¢, which means that introducing
more redundancy provides a higher computing speed; P,
decreases with increasing ¢, which means introducing more
redundancy leads to more jobs sent to the cloud. We also
observe that P, is close to 0 and decreases slowly when c is
large; when ¢ < 6, P, decreases sharply. These observations
are consistent with the theoretical analysis of the optimal
number of groups. Considering both job computing time and

job blocking probability, we find that each metric requires a
very different optimal c.

IV. AVERAGE SYSTEM TIME

We conclude from the above analysis that simultaneously
minimizing the job computing time and blocking probability
is impossible. Interestingly, some minimal replication signifi-
cantly reduces computing time with almost no blocking proba-
bility change. Therefore, we adopt the average system time, as
a single performance indicator describing the tradeoff between
the job computing time and the job blocking probability. For
a system with /N workers and ¢ groups, the expression of the
average system time is

E[Tys(0)] = (1 = Po(c)) E[Tjon] + Po(c) E[Ta]  (5)

Claim 1. If E[T},;,] > E[T,/], the job should always be sent to
the cloud.

In this paper, we assume that the edge system can provide a
better computing performance by reducing the communication
time between the users and the system. When E[Tj,,] > E[T¢],
this means that the edge system does not have enough com-
puting resources for each job. Then it is better for the users to
send the job to the cloud directly. From (2), the edge system
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will spend = tlme to process the job with minimum computing
resource, and 7 time to process the job with a maximum
computing resource. Therefore, from the Claim 1, we can
conclude that the job should always be sent to the cloud when
E[TCI] S ﬁ

When E[T,] > ﬁ’ it may be faster to process the job in the
edge system. Then we should make use of the edge system to
reduce the average system time. However, from the conclusion
of Fig. 3, it is impossible to reduce the job computing time and
the blocking probability simultaneously. The main purpose of
this section is to find the optimal ¢ (or m) that minimizes the
E[T@ys}~

Firstly, we consider the scenario that E[Teoud] € [ﬁ i]
According to Claim 1, when m < E[T T the job should be
sent to the cloud; otherwise, the job should be sent to the edge.
That is, the optimal m should be in the region [, g7, N]. In
the following theorem, we find the conditions that the average
system time E[T}] reaches the minimum at ¢ =1 (m = N).

Theorem 2. For the edge system with Poisson(\) arrivals and
Exp(u) computing time, when E[T,] € | 1\}u M] the average
system time E[T\| reaches the minimum at ¢ =1 (m = N)

under the conditions A\ > N(N — 2)u or A < %
Proof. When ¢ =1 and m = N, the average system time is
E[Tiys(1)]

=u—&umﬁ+ammm

then, for any ¢ > 2 we have

E[Tqs(1)] < E[T4ys(c)]

- 1_]\[17;() + Py(1)E[Ty] < 1_7753(0) + By E[Ty]

& E[Ta)(Py(1) — Py(c)) < i(% _ % N Pl}\(fl) B Pl;(:))
144+ B0 no

< E[Tqy] < M Py = By(0)

Let the above inequality holds when the right hand side is
larger than % we can have
a—Aﬂu—i+i
Py(c) > T - (6)
Since Py (c) > 0, the inequality (6) holds when (1—+)P,(1)—
L+ & <0. As we know Py(1) = then we have

1+K ’

1—- 1L
1, K 1 i§0@K§ N 1

m—1 N
Apparently, the left-hand side increases with decreasing m.
Therefore, K < ﬁ, that is, A < %

According to (3),

KC
Pb(C) > ; -
> oK)
The inequality (6) holds when 1 — + > (17%)I:b_(27%+%.

The right-hand side reaches the maximum at m = %V Then
we have K > N — 2, that is, A > N(N — 2)u.

=1 1_KC>1 1
o 1— Ketl = K

Therefore, E[Tyy] reaches the minimum at ¢ = 1 (m = N)
under the conditions that A > N(N — 2)p or A < %

Next, we consider the scenario that E[Ty] > I% In this
scenario, the edge system is always the first choice for each
job. The job will only be sent to the cloud when the edge
system is busy. Similar to the conclusion of Theorem 2, the
optimal c that minimizes the average system time changes with
different system parameters. However, we can still draw some
certain conclusions in the following theorem.

Theorem 3. For the edge system with Poisson(\) arrivals and
Exp(u) job computing time, when B[T,] is sufficiently large,
the average system time E[Tyy| reaches the minimum at ¢ = N
(m=1).

Proof. When ¢ = N and m = 1, the average system time is

]E[Tsys(N)] = ib(]\]) + Pb(N) E[Tcl]
E[Tsys(N)] > E[Tiys(c)]
L=PWN) | p ()BT < 12 JE(C) Py(c) E[T0]
& BILI(R() - Bi(N) 2 0 - & - B + 249

m
po Py(c) = By(N)
Apparently, the right-hand side of the above inequality is finite.
Therefore, E[Tyy] reaches the minimum at ¢ = N (m = 1)
when E[Ty] is sufficiently large.

A. Numerical Analysis

In Fig. 4, we evaluate (2) to see how the average system
time changes with c. We consider a system with N = 24
workers, and the computing time for each worker follows the
exponential with p = 0.1. In the upper subfigure, the job ar-
rives following the Poisson distribution with different values of
A € {0.1,1,10,40}, and the cloud time E[Ty] = 8 is smaller
than the maximum job computing time. In the lower subfigure,
we consider different values of E[Ty] € {15,50,100}. The job
arrives following the Poisson distribution with A\ = 2.

The upper subfigure shows that when A = 0.1 is small
enough, the average system time [T}y reaches its minimum
at ¢ = 1, which is consistent with the result in Theorem 2.
To decrease c¢ and increase the replication factor m will
significantly reduce E[Ty,]. When X\ = 1 or 10, increasing the
number of groups leads to a smaller E[T,]. When A = 40 is
sufficiently large, [E[Ty] reaches its minimum at ¢ = 1 again.
However, the optimal value of ¢ does not provide a significant
reduction of E[Tyy]|. From the results, we conclude that when
fewer jobs arrive, almost all jobs can be processed in the edge
system, so it is better to increase the computing speed. When
more jobs arrive, the system should reduce the computing
speed and provide the computing resources for more jobs.
When there are too many jobs, the resource allocation strategy
can not change the system performance significantly.
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Fig. 4. Average system time E[Tsy] vs. the number of groups c for different
values of A (upper) or E[Ty] (lower).

The lower subfigure shows that when E[Ty] = 15, E[Tyy]
reaches its minimum at ¢ = 4; when E[Ty] = 50, E[T]
reaches its minimum at ¢ = 12; when E[Ty] = 100, E[T]
reaches its minimum at ¢ = 24. We observe that the optimal
number of groups ¢ increases with E[T,]. From the results,
we have the following conclusions. Generally, we should
balance the tradeoff between the job computing time and
the blocking probability. However, when E[T,] is sufficiently
large, we should focus on reducing the blocking probability
and assigning resources for more jobs.

V. CONCLUSIONS

We addressed the questions concerning the number of
groups that optimizes the job computing time and the job
blocking probability. We find that it is impossible to simultane-
ously minimize these two performance metrics. Therefore, we
use the average system time to evaluate the tradeoff. We find
that the optimal number of groups that minimizes the average
system time changes with the parameters of the job arrival rate
and the cloud time. Further questions of interest include, e.g.,
the analysis for other computing time probability distributions
(Pareto and bimodal) and replication strategies. The optimal
number of groups may behave differently for light and heavy-
tailed distributions since their computing cost vs. time trade-
offs are qualitatively different [19].
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