
Computing Redundancy in Blocking Systems:
Fast Service or No Service
Pei Peng

Nanjing University of Posts and Telecommunications
Nanjing, China

Email: pei.peng@njupt.edu.cn

Emina Soljanin
Rutgers, The State University of New Jersey

Piscataway, USA
Email: emina.soljanin@rutgers.edu

Abstract—Redundancy in distributed computing systems re-

duces job completion time. It is widely employed in practice

and studied in theory for queuing systems, often in a low-traffic

regime where queues remain empty. Motivated by emerging edge

systems, this paper initiates a study of using redundancy in

blocking systems. Edge nodes often operate in highly unpre-

dictable environments, and replicating job execution improves

the job mean execution time. However, directing more resources

to some computing jobs will block the execution of others.

We evaluate the system performance using two metrics: job

computing time and job blocking probability. We show that the

job computing time decreases with increasing replication factor,

but the job blocking probability does not. Therefore, there is

a tradeoff. Interestingly, some minimal replication significantly

reduces computing time with almost no blocking probability

change. This paper proposes the system service rate as a new

combined metric to evaluate the tradeoff and a single system’s

performance indicator. We conclude that the optimal number

replication factor that maximizes the system service rate changes

with the distribution parameters and the arrival rate.

Index Terms—Edge computing, redundancy management,

blocking system, service rate.

I. INTRODUCTION

Distributed computing systems implement redundancy to
mitigate the adverse effect of straggling job execution [1].
There is a large body of work on computing with redundancy.
It includes system performance evaluation, distributed code
design, secure computing, and analysis of various tradeoffs,
e.g., [2]–[4] and references therein. There is also recent
literature on using redundancy in edge computing systems [5]–
[7]. With rare exceptions [8], this literature assumes queuing
systems, most often in a low-traffic regime where queues
remain empty. Motivated predominantly by emerging edge
systems, this paper initiates a study of using replication in
blocking systems.

Edge computing is an inter-layer between the cloud and
the end-user. It provides storage and computing infrastructure
at nodes located one or two network hops from the end-
user [9], [10], thus avoiding communication delay. However,
edge systems operate on much smaller storage and computing
resources than the cloud [11]. Therefore an edge system has to
send computing requests to the cloud when all edge workers
are busy, and communication time becomes a significant part
of the delay. This paper addresses two edge computing goals:
1) to increase the computing speed of each job taken for

execution and 2) to reduce the probability of having to send
a job to the cloud for execution.

Using resources redundantly can decrease the mean com-
puting time, our first goal. However, with the higher resource
usage, and thus lower availability, the system will send more
jobs to the cloud for execution, which goes against our second
goal to execute more jobs locally. An edge computing system
that sends jobs to the cloud once the resources become
unavailable acts locally as a blocking system.

When a job arrives, the edge system replicates it to several
workers. We aim to find the optimal replication factor that
minimizes the job computing time and the job blocking proba-
bility. Simultaneously minimizing the job computing time and
job blocking probability is generally impossible. Since both
performance metrics are crucial to edge computing, we need to
find the tradeoff between these two metrics. Recent literature
has considered the service rate a critical performance metric,
especially in distributed storage systems. For example, [12]
evaluates the service rate of a distributed storage system to
find an optimal storage allocation strategy, and [13] uses the
service rate region as an essential consideration in the design
of erasure-coded distributed systems. This paper proposes the
system service rate as a new metric that combines the two
classical metrics: computing time and blocking probability.

The paper’s organization is as follows. In Sec. II, we
describe the system model, introduce the system service rate
metric, and formulate the problems. In Sec. III, we consider
the exponential service time and find the optimal number
of groups that minimizes the job blocking probability or
maximizes the system service rate. In Sec. IV, we consider
the shifted exponential service time and analyze the optimal
number of groups under different shift parameters and the job
arrival rate. The conclusions are given in Sec. V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

System Architecture and Operation: We consider a system, as
shown in Fig. 1, with a single front-end controller node and
multiple computing servers, which we refer to as workers.
The controller node manages the entire computing cluster of
nodes. Such architecture is commonly implemented in modern
frameworks, such as Apache Mesos, and edge computing
systems with limited storage and computing resources [14].

281

2023 IEEE the 15th International Conference on Wireless Communications and Signal Processing

979-8-3503-2466-2/23/$31.00 ©2023 IEEE

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 W

ire
le

ss
 C

om
m

un
ic

at
io

ns
 a

nd
 S

ig
na

l P
ro

ce
ss

in
g

(W
C

SP
) |

 9
79

-8
-3

50
3-

24
66

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
W

C
SP

58
61

2.
20

23
.1

04
04

51
9

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 01,2025 at 15:02:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. System Model: Combination of the blocking system and the
distributed computing system.

The controller node creates m copies for each arriving job
and assigns each copy to a worker in a group. In Fig. 1, the
controller node sends the J1 and its copy to workers 1 and
2 (m = 2), and sends the J2 and its copy to workers 3 and
4 (m = 2). This execution replication mitigates straggling
and reduces the job’s expected completion time. The larger
the replication factor m, the higher the reduction of the job’s
average completion time.

On the other hand, when all workers are busy, the new
request for job execution gets blocked. An edge computing
system may send such jobs to the cloud (see Fig. 1, job J5).
There is a significant communication delay between the edge
and the cloud, which may be much longer than the expected
job computing time. Therefore, we want the system to serve
more jobs and send fewer to the cloud.
Traditional Performance Metrics: There are two performance
metrics of interest in the described system: 1) the job com-
puting time Tjob and 2) the job blocking probability Pb. The
system’s goal is to minimize both of these numbers. The
design parameters for a given system size (fixed number of
workers) are the replication factor m and the number of groups
c. Increasing m and decreasing c reduce Tjob (improves the
first performance metric). However, the effect of m and c on
Pb is not immediately apparent. Increasing m will temporarily
occupy more servers per job, but it will also make the jobs
stay in the system for a shorter time.
Service Rate as a Performance Metric: In general, there may
not be an optimal replication factor m or the number of
groups c that simultaneously minimizes both E[Tjob] and Pb.
We combine the above two metrics to get a new metric we
refer to as the system service rate and define it as follows:

� =
1� Pb

E[Tjob]
. (1)

We separately analyze the optimal number of groups c that
maximizes � changes with the computing time distribution
parameters.
Job Arrival and Computing Time: We assume that the job
arrivals follow a Poisson process with a rate �, which allows us
to model the blocking system as an M/G/c/K queue. Analyzing
the blocking probability of an M/G/c/K queue that models the
blocking operation of the system in Fig. 1 is a highly complex

problem. To better understand it, we consider the Erlang B
model, the M/M/c/c queue, where the queue length equals the
number of groups.

For each worker, we first assume that the computing
time follows the exponential distribution Exp(µ), which is
a straightforward model and widely used in distributed com-
puting. We will use this distribution to explain our system
model. Later, we consider that the computing time follows a
more general distribution, the shifted exponential distribution
S-Exp(�, µ), which is also widely used in distributed com-
puting [2], [4], [15]. Here, � is an initial handshake time, after
which the worker will complete the job in some Exp(µ) time.
Problem formulation: We consider a system in Fig. 1 with
a single controller node and N workers. There are c size m
groups of workers, giving N = c ·m. (We assume that c, N
and m are integers.) The controller assigns a replica of each
arriving job to one of the m servers in an available group of
workers. The job is blocked or forwarded to the cloud if no
such group is available.

Our goal is to evaluate two performance metrics, the
expected job computing time E[Tjob] and the job blocking
probability Pb for systems with Poisson job arrivals and shifted
exponential service time, as described above. We compute the
replication factor m that minimizes E[Tjob] and the replication
factor m that minimizes Pb. We show how we can achieve
the desired tradeoff between these two traditional metrics
by selecting an appropriate m. We also aim to compute the
proposed service rate metric that combines the two traditional
performance metrics, see (1). We find the optimal number of
groups c that maximizes the service rate.
Parameters and Notation:

N – number of workers in the system
m – replication factor, number of workers in a group
c – number of groups, c = N/m

Tjob – job computing time in the system
Pb – job blocking probability
� – system service rate
� – job arrival rate
� – shift parameter of S-Exp distribution
µ – rate parameter of S-Exp or Exp distribution

III. EXPONENTIAL SERVICE TIME

The job computing time is defined to measure how much
time the job spends in the system occupying resources. Here,
we consider the worker computing time follows Exp(µ). Since
the blocking system uses m-fold replication, the expected job
computing time is given by

E[Tjob] =
1

mµ
. (2)

Observe that E[Tjob] reaches its minimum at m = 1. More-
over, Tjob follows the exponential distribution with the rate
parameter mµ.

A. Job Blocking Probability

Here, we consider the Erlang B model, the M/M/c/c queue,
where the queue length equals the number of groups. For a

282
Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 01,2025 at 15:02:52 UTC from IEEE Xplore. Restrictions apply.

blocking system with c groups and the job arrives as a Poisson
process with the rate �, the job blocking probability is

Pb =
(⇢)c/c!Pc
j=0(⇢)

j/j!
(3)

where ⇢ = �E[Tjob]. The above expression shows that for a
given c, Pb increases with ⇢. From (2), we know that E[Tjob]
is a function of m, in which m = N

c . Then we will take
K = �

Nµ . Thus, Pb is a function of c and we can rewrite (3)
in the following,

Pb(c) =
(Kc)c/c!Pc
j=0(Kc)j/j!

(4)

We find the optimal c that minimizes the job blocking proba-
bility Pb in Theorem 1.

Theorem 1. For the blocking system with Poisson(�) arrivals
and Exp(mµ) computing time, the job blocking probability
Pb increases with the number of groups c and reaches the
minimum at c = N (i.e., m = 1).

Proof. Assume c1 > c0, from (4), the blocking probability is

Pb(c1) =
(Kc1)c1/c1!Pc1
j=0(Kc1)j/j!

=
1

Pc1
j=0

c1!/j!
(Kc1)c1�j

=
1

Pc1
j=0

Qj
i=1

c1�j+i
Kc1

<
1

Pc1
j=0

Qj
i=1

c0�j+i
Kc0

<
1

Pc0
j=0

c0!/(c0�j)!
(Kc0)j

=
(Kc0)c0/c0!Pc0
j=0(Kc0)j/j!

= Pb(c0)

Since c 2 [1, N], Pb incraeses with the number of groups c
and reaches its minimum at c = N .

1) Numerical Analysis: We evaluate (2) and (4) for E[Tjob]
vs. c and Pb vs. c. We consider a system with N = 24
workers, the job arrives following the Poisson distribution
with the rate � = 1, and the computing time for each worker
follows the exponential with µ = 0.1. The results are plotted

Fig. 2. Expected job computing time E[Tjob] and job blocking probability
Pb as a function of c.

in Fig. 2. The figure shows that E[Tjob] increases linearly with
c, which means that introducing more redundancy provides

higher computing speed. Meanwhile, the figure also shows that
Pb decreases with increasing c, which means that introducing
more redundancy leads to more jobs being dropped. We also
observe that Pb is close to 0 and decreases slowly when c is
large; when c  6, Pb decreases sharply. These observations
are consistent with the theoretical analysis of the optimal
number of groups. Considering both job computing time and
job blocking probability, we find that each metric requires a
very different optimal c.

B. System Service Rate

From the above analysis, we conclude that it is impossible
to minimize the job computing time and blocking probability
simultaneously. Interestingly, some minimal replication signif-
icantly reduces the computing time with almost no blocking
probability change. Therefore, we adopt the system service
rate, introduced in Sec. II, as a single performance indicator
describing the tradeoff between the job computing time and the
job blocking probability. Since the job completion distribution
with m-fold replication is Exp(mµ) and m = N

c , the system
service rate is

�(c) =
(1� Pb)

E[Tjob]
=

Nµ
Pc�1

j=0(Kc)j/j!

c
Pc

j=0(Kc)j/j!
(5)

The following theorem gives the optimal number of groups c.

Theorem 2. For the blocking system with Poisson(�) arrivals
and Exp(mµ) computing time, the system service rate �
reaches the maximum at c = 1 (i.e., m = N).

Proof. From (5), we know that �(1) = Nµ
1+K . Assume that

c1 � 2,

�(c1)

�(1)
=

(1 +K)
Pc1�1

j=0 (Kc1)j/j!

c1
Pc1

j=0(Kc1)j/j!
=

1 + (Kc1)c1/c1!

c1
Pc1

j=0(Kc1)j/j!

+

Pc1�1
j=1 [(Kc1)j/j! +K(Kc1)j�1/(j � 1)!]

c1
Pc1

j=0(Kc1)j/j!

First, we consider the left-hand side of the above formula.
Since c1 � 2 we have 1 + (Kc1)c1/c1! < c1 + c1(Kc1)c1/c1!.
Second, we consider the right-hand side of �(c1)

�(1) . Since j 
c1 � 1, we have

(Kc1)j

j!
+

K(Kc1)j�1

(j � 1)!
<

2(Kc1)j

j!
 c1(Kc1)j

j!
.

Then we have,

�(c1)

�(1)
<

c1 + c1(Kc1)c1/c1! +
Pc1�1

j=1 c1(Kc1)j

c1
Pc1

j=0(Kc1)j/j!

=
c1

Pc1
j=0(Kc1)j/j!

c1
Pc1

j=0(Kc1)j/j!
= 1

Therefore, we have the result that the system service rate �
reaches the maximum at c = 1.

283
Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 01,2025 at 15:02:52 UTC from IEEE Xplore. Restrictions apply.

1) Numerical Analysis: We evaluate (5) for different values
of � 2 {0.01, 1, 10}. Since it is easy to know that � decreases
with the increasing � according to (3) and (5). We plot the
normalized � vs. c in Fig. 3 to see the changes in the system
service rate. We consider a system with N = 24 workers,
the job arrives following the Poisson distribution with rate
� = 1, and the computing time for each worker follows the
exponential with µ = 0.1. The figure shows that the system

Fig. 3. Normalized system service rate ���min
�max��min

for exponential comput-
ing time as a function of the number of groups c.

service rate � always decreases with the increasing c and
reaches the maximum at c = 1. This observation is consistent
with the conclusion of Theorem 2. When comparing the curves
� = 0.01 and � = 1, we know that � decreases relatively
smoother when the arrival rate is larger. When the arrival rate
is sufficiently large (e.g., � = 10), � decreases sharply.

IV. SHIFTED EXPONENTIAL SERVICE TIME

In this section, we consider the shifted exponential as a
more general service time distribution. Since the system uses
m-fold replication and the worker computing time follows
S-Exp(�, µ) , the expected job computing time is given by

E[Tjob] = �+
1

mµ
. (6)

Observe that E[Tjob] reaches its minimum at m = 1. Moreover,
Tjob follows the shifted exponential distribution with the shift
� and the rate parameter mµ. See, e.g., [16].

A. Job Blocking Probability
We also consider the Erlang B model. For a blocking system

with c groups and the job arrives as a Poisson process with the
rate �, we adopt the expression of the job blocking probability
in Eq. (3). Since ⇢ = �(�+ 1

mµ) and m = N
c . Then we can

rewrite (3) in the following,

Pb(c) =
(K(�Nµ+ c))c/c!Pc
j=0(K(�Nµ+ c))j/j!

(7)

where K = �
Nµ is a constant. According to Theorem 1,

we have the following lemma that finds the optimal c that
minimizes the job blocking probability Pb.

Lemma 1. For the blocking system with Poisson(�) arrivals
and S-Exp(�,mµ) computing time, the job blocking proba-
bility Pb increases with the number of groups c and reaches
the minimum at c = N (i.e., m = 1).

Proof. Similar to the proof of Theorem 1, assume c1 > c0,
from (7), the blocking probability is

Pb(c1) =
1

Pc1
j=0(

Qj
i=1

c1�j+i
c1+�Nµ)

1
Kj

<
1

Pc1
j=0(

Qj
i=1

c0�j+i
c0+�Nµ)

1
Kj

<
1

Pc0
j=0

c0!/(c0�j)!
(K(�Nµ+c0))j

=
(K(�Nµ+ c0))c0/c0!Pc0
j=0(K(�Nµ+ c0))j/j!

= Pb(c0)

Since c 2 [1, N], Pb incraeses with the number of groups c
and reaches its minimum at c = N .

Numerical Analysis: We evaluate (6) and (7) for E[Tjob] vs. c
and Pb vs. c. We consider a system with N = 24 workers, the
job arrives following the Poisson distribution with the rate � =
1, and the computing time for each worker follows the shifted
exponential with � = 5 and µ = 0.1. The results are plotted in

Fig. 4. Expected job computing time E[Tjob] and job blocking probability
Pb as a function of the number of groups c.

Fig. 4. We observe that E[Tjob] increases linearly with c and Pb

decreases with increasing c. We also observe that Pb is close to
0 only when c is large enough, and it does not decrease sharply
compared to the results in Fig.2. The figure clearly shows
that it is impossible to minimize the job computing time and
the job blocking probability simultaneously. Considering both
job computing time and job blocking probability, we find that
each metric requires a very different optimal c. Interestingly,
the job blocking probability may not always decrease with the
number of groups for some heavy-tail distributions, e.g., Pareto
distribution. We will explore this problem in future work.

B. System Service Rate
For the shifted exponential service time, we also need

to use the system service rate to find the tradeoff between
the job computing time and the job blocking probability.
For a blocking system with N workers and c groups, when

284
Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 01,2025 at 15:02:52 UTC from IEEE Xplore. Restrictions apply.

the job completion distribution with m-fold replication is
S-Exp(�,mµ), the expression of the system service rate is

�(c) =
Nµ

Pc�1
j=0(K(�Nµ+ c))j/j!

(N�µ+ c)
Pc

j=0(K(�Nµ+ c))j/j!
. (8)

We know that the optimal c that maximizes the system
service rate � changes with different parameters. However,
considering the complexity of (8), optimizing � under a
general shifted exponential service time is difficult. In the
following, we separately analyze two important system pa-
rameters: the shift parameter and the job arrival rate. From
the analysis, we want to know how the optimal c changes
with different values of the system parameters.

1) Shift Parameter: We analyze two special (�, µ) param-
eter regions: 1) � ⌧ 1

µ , which makes Tjob exponentially
distributed, and 2) � � 1

µ , which makes Tjob equal to constant
�. Apparently, the first case shows that the random part
Exp(µ) is much larger than the constant part �, and the
second case is on the contrary.

In the first case, the job completion distribution with m-
fold replication is Exp(mµ). According to Theorem 2, the
system service rate � reaches the maximum at c = 1. That
is, when the random part is much larger than the constant
part, it is better to decrease the number of groups to achieve a
larger system service time. Next, we analyze the second case
where the computing time is approximately constant. Then
S-Exp(�,mµ) is approximated by the constant �. The system
service rate is �(c) = 1�Pb(c)

� . According to Theorem 1,
1� Pb(c) increases with c. Therefore, � increases with c and
reaches the maximum at c = N .

The above analysis implies that the optimal c that maximizes
the system service rate lies between 1 and N for a general
value of the shift parameter �. When the random part of
the shifted exponential service time is larger, the optimal c
is smaller; when the constant part becomes large, the optimal
c also becomes larger.

2) Job Arrival Rate: The arrival rate is also an important
parameter that affects the system service rate. According to
the system structure, we may infer that the system service
rate changes as follows. When � is small, few jobs arrive.
Even with a large replication factor, the blocking system can
serve almost all jobs. Thus, introducing more redundancy may
improve the system performance. When � is large, the system
has to handle many jobs concurrently. It is, thus, reasonable
to decrease the replication factor to process more jobs in the
system. In Theorem 3, we verify the first scenario in which �
is sufficiently small.

Theorem 3. For the blocking system with Poisson(�) arrivals
and S-Exp(�,mµ) computing time, the system service rate �
always reaches the maximum at c = 1 when the arrival rate
�  Nµ

(�Nµ+1)2 .

Proof. When the replication factor m = N , the number
of groups c = N

m = 1. From Eq.(8), we have �(1) =

Nµ
(�Nµ+1)(1+K(�Nµ+1)) , where K = �

Nµ . When c = c0 � 2,
we have �(c0) = Nµ

(�Nµ+c0) (1� Pb)  Nµ
(�Nµ+c0) .

To satisfy �(c0)  �(1), we need

Nµ

(�Nµ+ c0)
 Nµ

(�Nµ+ 1)(1 +K(�Nµ+ 1))

That is,

K  c0 � 1

(�Nµ+ 1)2
, �  Nµ(c0 � 1)

(�Nµ+ 1)2

Since c0 � 2, the right-hand side reaches the minimum at
c0 = 2. Therefore, �(c0)  �(1) holds for any �  Nµ

(�Nµ+1)2 .

Next, we consider the scenario where � is sufficiently large.
Using a method similar to the proof of Theorem 3, we find
the optimal c in the following lemma.

Lemma 2. When the arrival rate � > 2Nµ
(�Nµ)2�2 (where

�Nµ >
p
2), the system service rate � always reaches the

maximum at c � 2 .

Proof. From Eq.(8), we have �(1) = Nµ
(�Nµ+1)(1+K(�Nµ+1))

and �(2) = Nµ(1+↵)
(�Nµ+2)(1+↵+↵2/2) , where K = �

Nµ and ↵ =
K(�Nµ+ 2).

For �(2), we have

�(2) >
2Nµ(1 + ↵)

(�Nµ+ 2)(2 + 3↵+ ↵2)
=

2Nµ

(�Nµ+ 2)(↵+ 2)
.

To satisfy �(2) > �(1), we need

2Nµ

(�Nµ+ 2)(↵+ 2)
� Nµ

(�Nµ+ 1)(1 +K(�Nµ+ 1))

Then we have,

2K(�Nµ+ 1)(�Nµ+ 1)� (�Nµ+ 2)↵ > 2

,2K(�Nµ+ 1)(�Nµ+ 1)�K(�Nµ+ 2)(�Nµ+ 2) > 2

,K((µ)2 � 2) > 2.

When �Nµ >
p
2, we have � > 2Nµ

(�Nµ)2�2 . Then it is clear
that �(2) > �(1) holds.

Generally speaking, decreasing the number of groups and
increasing the replication factor provides better performance
when the arrival rate is low. When the arrival rate is high, it is
better to increase the number of groups. However, when the
arrival rate is sufficiently high, the number of groups and the
replication factor do not affect the system service rate.

3) Numerical Analysis: We evaluate � to see how the
system service rate changes with c. We consider a system
with N = 24 workers, the job arrives following the Poisson
distribution with the rate � = 1, and the computing time for
each worker follows the shifted exponential distribution. Since
the replication factor m = N

c (Since both m and c are integers,
we have c 2 {1, 2, 3, 4, 6, 8, 12, 24}). We assume µ = 1.

In Fig. 5, we evaluate (8) for three different values of
� 2 {0.1, 1, 10}. We normalize � to observe the changes.
When � ⌧ µ, � reaches the maximum at c = 1, which means

285
Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 01,2025 at 15:02:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Normalized system service rate ���min
�max��min

for shifted exponential
computing time as a function of the number of groups c.

introducing more redundancy provides a higher system service
rate. When � � µ, � reaches the maximum at c = 24, which
means that reducing proper redundancy provides a higher
system service rate. Otherwise, the optimal c lies between 1
and 24 (the optimal c = 4 in Fig. 5).

Fig. 6. Normalized system service rate ���min
�max��min

as a function of the
number of groups c.

In Fig. 6, we evaluate (8) for three different values of � 2
{0.01, 1, 10}. We normalize � to observe the changes. When �
is sufficiently small, � reaches the maximum at c = 1. When
� is sufficiently large, � reaches the maximum at c = 24.
Otherwise, the optimal c lies between 1 and 24 (the optimal
c = 4 in Fig. 6). Therefore, we conclude that the optimal c
increases with �.

V. CONCLUSIONS

This paper initiates a study of the value of using repli-
cation in blocking systems. We assume a typical computing
architecture and computing time probability distribution and
look into how the job replication factor affects the expected
job completion time and blocking probability. We show that
the job computing time decreases with increasing replication
factor but so does the job blocking probability. Therefore, there

is a trade-off between these two classical metrics. Interestingly,
some minimal replication significantly reduces computing time
with almost no blocking probability change. This paper also
proposes and analyses the system service rate as a new
combined metric and a single system’s performance indicator.

ACKNOWLEDGMENT

This work was supported in part by the University
Science Research Project of Jiangsu Province (Grant No.
23KJB120009), the Natural Science Research Start-up Foun-
dation of Recruiting Talents of Nanjing University of Posts and
Telecommunications (Grant No. NY222008) and the NSF-BSF
Award FET-2120262.

REFERENCES

[1] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[2] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure
coded computing using secret sharing via staircase codes,” IEEE Trans.
on Communications, 2020.

[3] P. Peng, E. Soljanin, and P. Whiting, “Diversity/parallelism trade-off
in distributed systems with redundancy,” IEEE Trans. on Information
Theory, vol. 68, no. 2, pp. 1279–1295, 2021.

[4] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” Advances in
Neural Information Processing Systems, vol. 29, pp. 2100–2108, 2016.

[5] J. Zhang and O. Simeone, “On model coding for distributed inference
and transmission in mobile edge computing systems,” IEEE Communi-
cations Letters, vol. 23, no. 6, pp. 1065–1068, 2019.

[6] J. Wang, C. Cao, J. Wang, K. Lu, A. Jukan, and W. Zhao, “Optimal
task allocation and coding design for secure edge computing with
heterogeneous edge devices,” IEEE Trans. on Cloud Computing, 2021.

[7] Y. Han, D. Niyato, C. Leung, C. Miao, and D. I. Kim, “Dynamics in
coded edge computing for iot: A fractional evolutionary game approach,”
IEEE Internet of Things Journal, 2022.

[8] U. J. Ferner, M. Médard, and E. Soljanin, “Toward sustainable net-
working: Storage area networks with network coding,” in 50th Annual
Allerton Conference on Communication, Control, and Computing, Aller-
ton 2012, Allerton Park & Retreat Center, Monticello, IL, USA, October
1-5, 2012, 2012, pp. 517–524.

[9] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in 2015 Third IEEE workshop on hot topics in web systems
and technologies (HotWeb). IEEE, 2015, pp. 73–78.

[10] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in 2016 IEEE
Internat. Symp. on Inform. Theory (ISIT). IEEE, 2016, pp. 1451–1455.

[11] S. Noghabi, L. Cox, S. Agarwal, and G. Ananthanarayanan, “The
emerging landscape of edge-computing,” ACM SIGMOBILE GetMobile,
March 2020. [Online]. Available: https://www.microsoft.com/en-us/
research/publication/the-emerging-landscape-of-edge-computing/

[12] P. Peng, M. Noori, and E. Soljanin, “Distributed storage allocations for
optimal service rates,” IEEE Trans. on Communications, vol. 69, no. 10,
pp. 6647–6660, 2021.

[13] M. Aktaş, G. Joshi, S. Kadhe, F. Kazemi, and E. Soljanin, “Service rate
region: A new aspect of coded distributed system design,” IEEE Trans.
on Information Theory, vol. 67, no. 12, pp. 7940–7963, 2021.

[14] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, “A comprehensive survey on fog computing: State-of-the-
art and research challenges,” IEEE communications surveys & tutorials,
vol. 20, no. 1, pp. 416–464, 2017.

[15] G. Joshi, E. Soljanin, and G. W. Wornell, “Efficient redundancy tech-
niques for latency reduction in cloud systems,” TOMPECS, vol. 2, no. 2,
pp. 12:1–12:30, 2017.

[16] P. Peng, E. Soljanin, and P. Whiting, “Diversity vs. parallelism in dis-
tributed computing with redundancy,” in IEEE International Symposium
on Information Theory, ISIT 2020, Los Angeles, CA, USA, June 21-26,
2020, pp. 257–262.

286
Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 01,2025 at 15:02:52 UTC from IEEE Xplore. Restrictions apply.

