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Abstract

To inform public health interventions, researchers have developedimodels to forecast opioid-

in the models and datasets
jeld. Furthermore, common error-
"(RMSE), cannot directly assess a
for interventions. We recommend a

related overdose mortality. These efforts often have limited
employed, presenting challenges to assessing progress in, thi
based performance metrics, such as root mean squ
key modeling purpose: the identification of prigsity are
new intervention-aware performance metri @ tage of Best Possible Reach (%BPR). We
compare metrics for many published mgdels.acress two distinct geographic settings, Cook

2

County, Illinois and Massachusetts, e budget to intervene in 100 census tracts out of
1000s in each setting. The top-pe odels based on RMSE recommend areas that do not
always reach the most possible pverdese’events. In Massachusetts, the top models preferred

by %BPR could have reac

tional fatal overdoses per year in 2020-2021 compared to

models favored by RMSE. BR{Cook County, the different metrics select similar top-performing
models, yet other m ith’similar RMSE can have significant variation in %BPR. We further
find that simple Is n perform as well as recently published ones. We release open code
and da %ﬂﬂd upon.

ta fow@
Int Qﬁ)on

e'gpioid overdose epidemic in the United States has resulted in over 450,000 deaths during the
past eight years, with more than 80,000 fatal opioid-related overdoses during 2022, the highest
yet in a single year.! Managing the opioid overdose epidemic requires a constellation of efforts
ranging from substance use treatment programs offering medications for opioid use disorder,>”
harm reduction programs, naloxone distribution, and comprehensive mental health and social
support services.*® Beyond the provision of harm reduction and healthcare services, it is critical
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for policymaking to address the ever-evolving substance use environment and plan for targeted
interventions.

There has been considerable variation in the availability of different types of opioids and the
consequent increase in opioid use disorder and opioid-related fatal overdoses in the past two
decades. The current fatal opioid overdose epidemic has been characterized by four waves.”® Ifi
the early 2000s, prescription opioids drove overdose deaths. Then, heroin-related deaths sufged
post-2010, followed by a fentanyl spike in 2013.° This culminated with the fourth wave8f
combined stimulant and fentanyl-related overdose deaths.® These shifts in supply aceGfpartied
changes in social and ecological conditions, impacting substance use behaviors differently“across
geographic regions.'*!! Hence, it is critical to examine local spatiotemporal vatiation jin fatal
opioid overdoses and predict future outcomes to inform preemptive public(healtlresponses.

A growing body of research'? has explored spatiotemporal variations4a the ppioid overdose
landscape. Yet forecasting approaches are in a nascent stage and thete aréfew prediction studies
at the population level'?. Other research focuses on patient-specific risk prediction #~16,
assuming access to detailed, person-level demographic and médical’history data. Analyses
focused on population-level predictions that solely depeld on'teadily available aggregated data
could be easily adopted by public health authorities4mith linited resources.

While several prior studies have identified higtorical overdose “hotspots”'7!?, fewer studies
have forecasted future spatiotemporal ovefdosctspikes. Research that focuses on hotspots often
assumes that identified clusters are wherc\he highest needs will exist in the future. In our
analyses, we show that this assumptiomdoes'not always hold. Existing research also spans a
range of spatial and temporal re§olutions’In geographic space, studies range from coarser
county-level analysis'’, to fiter'analyses based on ZIP Codes, census tracts, or census block
groups®®. Temporally, studiesrange in focus across yearly aggregated!” data, quarterly?!, or
weekly data®?.

The overarching ‘goalef,our study is to help public health departments make short-term forecasts
of future ovgrdosg eyents to enable planning of targeted interventions that are cognizant of
limited pessougces, Our study focuses on forecasting for the identification of areas needing
interyeRntion, leaving evaluating the impact of intervention to future work. We forecast deaths, as
these ‘arc'amobjective measure available across jurisdictions. Non-fatal overdose data is often
diffjculfto obtain and may go unrecorded.

L6 understand the role of different forecasting models and evaluation metrics across
communities and geographies, our evaluations cover two distinct catchment areas. First, we
study Cook County, Illinois, covering over 5 million residents of Chicago and surroundings,
where we forecast across 1328 populated census tracts from years 2015-2022. Second, we study
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the state of Massachusetts, with 1620 census tracts representing over 6 million residents from
2001-2021. These settings were selected based on data availability.

To establish best practices for modeling and evaluation, we carefully compare different modeling
approaches and performance metrics in each area. We implement a comprehensive set of existi
models — including heuristic baselines, statistical models,'>?°2* and neural networks??. We asséss
the opioid-related fatal overdose forecasts they produce for both Cook County and Mass ts
at the census-tract-level at annual timeframes. We compute widely used error-based pe
metrics and introduce a new intervention-aware performance metric. Our software i @ i
for other researchers to reuse and build upon: https://github com/tufts-ml/opioidrOVerdy
models.

Methods

Data Sources and Preparation

To assess models, we assembled two datasets suitable foy fo ing opioid-related fatal
overdoses annually at the census tract level. This study reyiewed by the Tufts University
Health Sciences Institutional Review Board and d € non-human subjects research.

Our relatively coarse annual temporal scale sen for three reasons: to match the frequency
at which decision-makers might set newrigritiess because final fatal overdose data has an

for identifying interventio arser jurisdictions, a coarser spatial scale may be
appropriate. Each census tragf contains a mean count of 4000 people (ranging from 1200-
80007*). For many ( i
deploying an int

rventions, costs scale with population, and thus the cost of

Data sourc ounty, Illinois

We obgdine de-identified data from the Cook County Government Medical Examiner Case
ive?’ foy opioid-involved overdose deaths from August 2014 (the first date records are

to May 2023. These data contained every fatal incident under the medical examiner’s
iction that was determined to have any opioid as a primary cause. We used the provided
indident latitude and longitude to map each fatality to one of 1328 census tracts. Because the data
s in the public domain, we make our processed Cook County data available.
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Data source 2: Massachusetts

We obtained death certificate data from the Massachusetts Registry of Vital Records and
Statistics for opioid-involved overdose deaths between 2001 and 2019. These deaths were
defined as unintentional, intentional, and undetermined drug poisonings containing an opioid
code (ICD-10 codes T.40.0-T40.4, or T40.6) as a “multiple cause of death”. Each fatal overdos
is linked to a calendar date and a residential street address. Decedent address is used as the
information for overdose location is incomplete in Massachusetts>. )\

Dataset Preparation
For each dataset, we computed the observed number of fatal overdose events y4 at ti for
sze

individuals residing in spatial location s. We employed open tools to map locati t address
or latitude/longitude) to its corresponding census tract, using the tract bogn for the states of
Massachusetts and Illinois defined by the U.S. Census Bureau in 202(.%’ to\m&p locations (street
address or latitude/longitude) to its corresponding census tract, using thészact boundaries for the
states of Massachusetts and Illinois defined by the U.S. Censu in 2020.

In each dataset, a uniform set of covariates is available
year t and census tract s, we provide the history of {;
that tract, as well as the geographic location (numeric

inpyt for prediction models. At each
se counts from previous times in
itude and longitude of the tract’s

tract’s percentile ranking across
Social Vulnerability Index (SVH?® .
updated every five years;
chosen for their simplj
covariates in previous

Metric Q

To evaluate model forecasts against observed mortality, suitable performance metrics were
i r study considered both commonly used error-based metrics and a new intervention-

lues are available for every census tract in the U.S. and
d the closest value to each year. These SVI features were

or-based metrics

Model performance is often assessed via summary statistics of the errors between predicted (y)
and observed mortality (y;) across all S spatial regions in the test period. Within this category,
two common metrics are Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),
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both defined in Equation 1 below. RMSE calculates the square root of the average squared
errors, while MAE computes the average of absolute errors.

1 — 1 —
RMSE = J§Z§:1()’s —¥5)?, MAE = §Z§=1|YS — sl
Both RMSE and MAE have been used as the primary metrics to assess opioid overdose
forecasting®*?330,

Intervention-aware metric )\

In our intended use case, stakeholders at a public health agency could use a for odel to
select a subset of census tracts in which to deploy an intervention to mitigate, overdose deaths.
We assume these actors have a limited budget, allowing intervention in of K of the S

regions in their jurisdiction. For a given model, we can obtain its recommended-et of K regions,
which we refer to as the intervention set I, in two steps. First, predict mortality counts for all S
regions in the test period. Second, identify the K regions with t est predictions (breaking
ties at random), and store these as the recommended set 1.

To evaluate such recommendations, we need new metri hé-error-based metrics defined
earlier (RMSE or MAE) aggregate error for all Sr qually. They do not directly measure if
a forecast’s highest-risk areas specifically alignawith thépactual areas of highest mortality. We
thus wish to design a metric better aligned with how stakeholders determine intervention
priorities. We suggest a model is favorable if théyétal count of fatal overdose events in its

recommended set I of K tracts is as lafge sible. This would indicate the model is good at

identifying where adverse events
could “reach” and hopefully mitigate th
tracts.

ur, and thus increase the possibility that stakeholders
se events via interventions targeted at the recommended

Our proposed metric; sible reach” (BPR), assesses a model’s recommendations via a
ratio of two nu , eadh-one computed as a sum of a subset of the actual count vector y =
[yy, .., ¥] of fata the test period. First, the numerator counts how many actual fatalities
occurred in del’s recommended set I of size K. Second, the denominator counts the actual

fatalitig§ 1n thesK/regions that would be chosen with perfect hindsight of y. Mathematically, we
defuie BPR

PR — Zkg Yk _ actual # events in K regions picked by model
ZkeTopKIn ds(y) Yk actual # events in actual K highest count regions

where TopKlInds(y) denotes a function that returns the distinct indices of the K largest elements
of vector y. Appendix S1 illustrates computations of BPR on simple datasets as well as a
comparison to top-K adaptations of error-based metrics.
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For public health applications, BPR is interpretable as the proportion of reachable fatal overdose
events that interventions guided by the current model would reach. BPR’s numerical value has a
minimum of 0.0 and a maximum of 1.0. We typically convert the fractional BPR to a percentage
ranging from 0-100%, denoted as %BPR. A higher %BPR value signifies a more effective model

at deciding where to intervene. A value of 100% indicates perfect decision-making given a

limited budget: there is no other set of K regions any model could have recommended that w (1&
reach more events.

Although independently developed by our team (see our preliminary workshop pa }

distinction lies in the denominator: our BPR sums only the top K indices ¢ alternative
includes all S regions. We prefer our definition due to %BPR’s consisten of 0-100%. In
contrast, the alternative’s maximum value fluctuates based on obsefyvethdatg in the test period,
making it difficult to compare results across different time peri

Models

same provided splits (train/validation/test,
Massachusetts). Details about model {} yperparameter tuning are provided in Appendix
S2.

Simple Baseline Models Q

im ent baseline models to highlight their comparative strengths.
king data-driven allocation of scarce intervention resources
eling could easily use these approaches.

Public health practiti
without sophistt

Our firs @ dubbed all zeroes, predicts uniformly across all S tracts that zero fatal
overdoses will occur in the test period. This model, by definition, ranks all tracts as equally high-
risk, R which requires a set of K recommended regions we report an average over many
S f K distinct regions selected uniformly at random.

e other baseline we consider is a historical average, which predicts the next timestep’s
mortality as an average of all mortality counts observed over the preceding W timesteps. Here,
the appropriate “look back” period length W is the only hyperparameter.
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Complex Models

Next, we consider several more flexible models with parameters that can be fit to the data. The
first is a Generalized Linear Model (GLM) with a Poisson likelihood. This model assumes that
fatal overdose count y for spatial tract s at time t is modeled by a Poisson distribution where the
log of the mean parameter is a linear function of the covariate vector x for that tract and time:

0|0,0 ~ 00000000 =099

We also include a Gradient Boosted Trees*? model, an ensemble of regression trees.
studies of opioid forecasting % have used similar tree ensembles.

We further include three spatially-sophisticated statistical models used in 1 ioid overdose
forecasting applications. First, we include a Gaussian Process model* ity to flexibly
capture spatial and temporal correlations. We use similar covariance4unctions‘(“kernels”) to
prior overdose forecasting work (details in appendix S2). Next, Bayesia atio-Tempooral
(BST) models? use a Markov Random Field to model spatial a al trends. Thirdly,
NBSpLag denotes a negative binomial regression model wit tialy lagged features®: where
each tract is informed by its spatial neighbors. In a variable séfection experiment®, these
spatially lagged covariates were found to be the mo i

described above.

Finally, we include CASTNet??, a neur,
forecasting. Unlike previous meth et employs multi-head attentional networks that

allow predictions at a given location to bg"informed by other locations that are chosen in a data-
driven fashion, not just sele proximity.

c
Experimental Prot, %

We applied each e els described above separately to the Cook County, IL and the MA
datasets. We use cal counts of opioid-related fatal overdoses (together with other

%- bove) to predict future fatal overdose counts in each census tract, and then
hese predictions can be used to recommend where to intervene.

covariates d
assesse

ataset, we assemble covariate vector, fatality count pairs (] o, [ o) for each year
training set (t = 2010-2018 for Massachusetts, 2015-2019 for Cook County). The historical
coyariates inside each [ ; vector summarize the recent history of W previous years (W=10 for
assachusetts, W=5 for Cook County). Hyperparameters are chosen to maximize performance
as assessed by BPR on a validation set of data from the year prior to evaluation (2019 for
Massachusetts, 2020 for Cook County). Finally, models are evaluated on predictions for the final
two years (2020-2021 in Massachusetts, 2021-2022 in Cook County).
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From each model, we obtained predictions for each of the S tracts in each test year. We
computed each evaluation metric in a way that quantifies our uncertainty, to help us understand
which differences are meaningful. Inspired by resampling methods for uncertainty
quantification®*, for each test year we obtained 50 different without replacement samples of 1370
of the 1620 census tracts in MA (1078 of the 1328 in Cook County, IL). Sampling a distinct
subset of tracts allows coherent assessment of how a method ranks distinct locations in neéd, of
overdose prevention interventions. We selected the number of tracts to preserve 85% of dli fatal
overdose events in an average sample (larger values led to samples that were too aliKe 9ne
another). For each sample, we compute RMSE and BPR, and then report the mean-as wgell as the
min-max interval of the 50 samples.

In this set of experiments, we used a fine spatial scale (census tracts),a coarsedgemporal scale
(yearly), and used a value of K=100 census tracts. An interventionudget of K=100 corresponds
to the ability to intervene for approximately 400,000 people andsisssimilar to K values used in
other studies®. We believe that this setting is well-suited to plan ifterventions such as naloxone
distribution and opioid treatment programs®>, where planning,withan annual timescale may be
appropriate®®. The use of fine spatial resolution could be\Suitable for planning routes for mobile
health services such as methadone or naltrexone mobiléselinics and services for HIV and HCV
counseling and testing®’. However, other choicessef spapiotemporal resolution and intervention
budget K may be better suited to other possiblg interventions.

Results

Results from the experimepts conducted on Massachusetts and Cook County data are
summarized in Table 1 and"gable 2, respectively. For further results including MAE scores, see
Tables S1 and S2.

The best model(swafy=depending on the evaluation metric. We wish to assess how different
metrics might lead to different priorities of where to intervene. To do this, we complete two steps
in eachcatchiaent area. First, we identify the model(s) that would be preferred based on RMSE.
Then, we report how many fatal overdoses were recorded in that model’s recommended set of K
tracts,'and compare that to the corresponding number for a model chosen to optimize %BPR.

InWMassachusetts, the Gaussian Process (GP), Bayesian Spatiotemporal model with SVI (BST +
8SVI), and Gradient Boosted Trees + SVI all deliver top performance as assessed by RMSE.
However, the BST has higher %BPR than the GP (62.0% compared to 58.2%). Interventions
guided by the BST model preemptively identify 18 additional fatal overdoses per year compared
to recommendations from the GP model.
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In Cook County, there is no such gap in %BPR when comparing the best performing models by
RMSE. However, we do observe that among some model pairs, the model with superior RMSE
can have inferior %BPR. Gradient Boosted Trees with SVI covariates has superior RMSE to the
GLM model, yet has worse %BPR (77.1% versus 79 4% for GLM). Interventions guided by the

annually than interventions guided by the Gradient Boosted Trees model with SVI covariates

We emphasize that in several cases on both datasets, models selected using RMSE appe'&i

perform as well as those selected by %BPR at the ultimate task of reaching the mo @ al
overdose events in the recommended set. While %BPR is not universally better, nking

GLM model (preferred via the %BPR metric) could reach 15 more fatal overdose events &

models, we think this empirical evaluation demonstrates the value of reporti tervgntion-
aware metrics such as %BPR alongside traditional metrics in order to se els that align
best with downstream decision-making goals. 6

We also observe that while complex models like BST do well i tchment areas, so does
the simple historical average baseline. In Massachusetts, higtoricalaverage delivers a BPR
whose uncertainty interval overlaps the scores of best perfo odels. In Cook County,
historical average ’s uncertainty intervals overlap the best%§cores for both BPR and RMSE. The
complex BST model here would reach less than 1 teflal overdose annually than historical
average.

Iy
<>

&
&
O
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Table 1. Comparison of fatal opioid-related overdose prediction models trained on Massachusetts
decedent data from 2010-2019, then evaluated on data from 2020 and 2021.

Metric

Model True Total %BPR (K=100) RMSE

Overdoses

in Top 100 Tracts

Identified by

Model

P

All Zeros 124.1 25.1,(24.8-25.8) 1.92,(1.832.01
Historical Average 2954 | 59.8,(56.8-62.9) 1. W%’)
(4 year)
Poisson GLM +SVI 3013 | 610,(57.4-65,1) ?:(1.30—1.47)
Gradient Boosted 293.6 | 595,(55.9%3.1)" | 1.24,(1.18-1.30)*
Trees +SVI

LA
GP 287
CASTNet +SVI ‘ 268.0 54.4,(52.0-56.6) 1.47,(1.36-1.58)

pal
BST + SVI 3054 62.0, (60.0-63 .7)* 1.23,(1.21-1 .25)*

NBSpLag + SV % 3054 | 620, (60.3-64.0)" 1.31,(1.27-1.35)

* For each

820(552-612) | 1.28,(1.23-134)

st model mean is indicated with an asterisk, along with any other model whose
uncertainty i
Here BPR (hi
K =100 of 1620 possible tracts in Massachusetts. RMSE (lower is better) is a common error-
trics. The column titled “True Total Overdoses in Top 100 Tracts Identified by Model” contains

overlaps this mean (intervals are computed via resampling methods).
NET 1s better) is our new intervention-aware metric, computed assuming an intervention

number of observed fatal overdoses in the top 100 tracts identified by the corresponding model.
reviations: BPR: Best Possible Reach. RMSE: Root Mean Squared Error. SVI: Social Vulnerability
dex covariates. GLM: Generalized Linear Model. GP: Gaussian Process. NBSpLag: Negative binomial
regression with spatially-lagged features. BST: Bayesian spatiotemporal model
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Table 2. Comparison of fatal opioid-related overdose prediction models trained on Cook County, Illinois
decedent data, from 2015 to 2020, then evaluated on data from 2021 and 2022.

Metric

)

Model True Total %BPR (K=100) RMSE

Overdoses

in Top 100

Tracts

Identified by

Model
All Zeros 1370 | 21.7,(21.1-22.4) 246,12 3@
Historical Average (4 505.3 | 80.1,(76.2- 84.3)" 14 ( 50)"
year)
Poisson GLM + SVI 500.7 | 79.4, (76.0- 82.8)" .%{1 J7-1.94)
Gradient Boosted 3557 177.1,(72.2- 81. ‘yl S55,(1.42-1.68)
Trees +SVI
GP 1.63, (1.50-1.74)
CASTNet +SVI 1.53,(1.39-1.67)
BST + SVI 1.47,(1.43-1.51)
NBSpLag + SVI 1.42,(1.37-1.48)

* For each metric, the best
uncertainty interval over,

Here %BPR (higher i
budget for K=100
based metrics. T

the true nu
Abbreviati
covariages. G

S

ur new intervention-aware metric, computed assuming an intervention
sible tracts in Cook County. RMSE (lower is better) is a common error-
titled “ True Total Overdoses in Top 100 Tracts Identified by Model” contains

ved fatal overdoses in the top 100 tracts identified by the corresponding model.

PEr OO

: Best Possible Reach. RMSE: Root Mean Squared Error. SV: Social Vulnerability
eneralized Linear Model. GP: Gaussian Process. NBSpLag: Negative binomial

with spatially-lagged features. BST: Bayesian spatiotemporal model
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Discussion

Our study’s first contribution to the science of spatiotemporal forecasting of opioid-related
overdose deaths is highlighting the need for extensive comparisons to a robust suite of simple
baselines. This lesson matches reports*®=° from across the sciences, especially in health**#! and
the social sciences*?, that suggest advanced modeling techniques may not outperform simpler
baselines on some prediction tasks. In each catchment area, across both intervention-awargéand
error-based metrics, we found that a historical average baseline performed competitivel¥alf thig
simple model yields such high performance, it raises questions about adopting more,8mplck
counterparts that require specialized expertise. The simpler model should be considered tfiless
there are compelling reasons to use complex models. Many prior overdose foregasting
studies?®* completely omit such baselines, or include only the poor perforfiing ohes’such as the
last-year® model or a too-long historical average®* A key to success forthjs hasgline is our data-
driven selection of the number of years in the look-back period, folloWing bgst practices for
hyperparameter tuning .**** For all future studies of opioid overdose fere¢#Sting, we recommend
including historical averages with tuned look-back periods.

Our second contribution, developed in parallel to conteriiporaty work,*! is a new metric —
percentage of best possible reach (%BPR) — which éyaluatespredictions based on their utility for
informing decisions about where to intervene. We dentenstrate that using BPR as an evaluation
metric can lead to different model rankings afid different recommendations of where to intervene
than error-based metrics like RMSE. The/et bégefit of ranking models by BPR versus RMSE
was neutral in Cook County. HoweverrinWlasgachusetts, among the top-ranked methods by
RMSE, using BPR improved by 18(th&total’annual fatal overdose events that could be
preemptively identified. We believe that’intervention-aware metrics like BPR more closely
reflect how public health agenci€s wish to use forecasting models to inform their intervention
strategies®. We leave to futwre work the important question of predicting the impact of specific
interventions.

While this study dgésmet consider equity, BPR can be adapted to study equitable outcomes. As
shown in otfer sfudi€s with similar metrics®®, BPR can reflect issues of health equity by
requiring théinclysion of locations with desired geographic and demographic properties. BPR
also hag applications in domains outside of public health such as disease confirmation or
allocating*Sensors to observe wildlife.

Lastly, we emphasize that our study is designed to be reproducible and open to extensions by
other researchers. We released the software for all models and metrics under a permissive open-
source license. We also released our cleaned version of the public-domain Cook County dataset
alongside preprocessing code. Historically, overdose forecasting studies have not often shared
code or data (reasonably due to privacy issues around decedent data). Enabling researchers to
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pursue a common prediction task via the availability of a public dataset has been a key driver of
progress in predictive modeling*.

Limitations
This study has several limitations. First, our findings come from only two places (Massachuse
and Cook County) and may not be generalizable to other public health jurisdictions. Cook
County is predominantly urban, while Massachusetts is a large state with substantial urban, rafal
and suburban areas. The spatiotemporal trends in opioid-related mortality could thus b&
dramatically different in these two geographies, necessitating different model ran

intervention strategies. This study is also impacted by COVID-19 pandemic. T¥ainin
prior to 2020 may not accurately reflect the opioid epidemic in 2020 and bgyondyFEi
acknowledge that not all Cook County deaths are reported to the Medic er. The

Medical Examiner's jurisdiction covers homicides, suicides, accidel\@ n unexpected
natural deaths for cause-of-death determination. We do not anticipate thissmpacts our results

much.
d %R,metric. For simplicity, all
results here assumed an intervention budget of K=1 racts. Different K values may lead

to different method rankings. Our suggested BPR metric 18 intended for identifying where to
intervene to relieve high overall burden. Ho t does not directly prioritize the rate of
change. Interventions aimed to reduce ris nities that are at very high risk but do not

already have a high burden may not b 1fied using BPR.
Finally, other choices of covari s(aggsible. Our focus on a limited set of covariates, derived

Second, there are limitations to our analysis of the prop

from the SVI of the Americ mmpnity Survey, was an intentional choice to ensure the
nationwide availability of4he variates. Some jurisdictions may possess useful data sources,
such as emergency m 1 s&gvice calls, insurance claims, and linked administrative datasets*®.
Including such covaria d enhance model performance.

Conclusio, %

We co rdose forecasting options to better predict future fatal opioid-related overdose

spikgs and inform future harm-reducing interventions. Our study suggests the value of

“aware metrics like %2BPR alongside traditional error-based metrics. Our study also
hat simple baselines like historical averages should be included in future analyses, as
ophisticated and expensive-to-train models may not substantially outperform these
baselines. As the opioid crisis continues to evolve, we hope our findings and our open-source
resources enable improved model comparisons and data-informed interventions that ultimately
reduce the harm caused by overdose events.
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