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Abstract

While one can characterize mental health using questionnaires, such tools do not provide direct insight into the underlying

biology. By linking approaches that visualize brain activity to questionnaires in the context of individualized prediction, we

can gain new insights into the biology and behavioral aspects of brain health. Resting-state fMRI (rs-fMRI) can be used

to identify biomarkers of these conditions and study patterns of abnormal connectivity. In this work, we estimate mental

health quality for individual participants using static functional network connectivity (sFNC) data from rs-fMRI. The deep

learning model uses the sFNC data as input to predict four categories of mental health quality and visualize the neural

patterns indicative of each group. We used guided gradient class activation maps (guided Grad-CAM) to identify the most

discriminative sFNC patterns. The effectiveness of this model was validated using the UK Biobank dataset, in which we

showed that our approach outperformed four alternative models by 4-18% accuracy. The proposed model’s performance

evaluation yielded a classification accuracy of 76%, 78%, 88%, and 98% for the excellent, good, fair, and poor mental health

categories, with poor mental health accuracy being the highest. The findings show distinct sFNC patterns across each group.

The patterns associated with excellent mental health consist of the cerebellar-subcortical regions, whereas the most prominent

areas in the poor mental health category are in the sensorimotor and visual domains. Thus the combination of rs-fMRI and

deep learning opens a promising path for developing a comprehensive framework to evaluate and measure mental health.

Moreover, this approach had the potential to guide the development of personalized interventions and enable the monitoring

of treatment response. Overall this highlights the crucial role of advanced imaging modalities and deep learning algorithms

in advancing our understanding and management of mental health.
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Introduction

Resting-state functional MRI (rs-fMRI) has become one of

the most widely used modalities for analyzing functional

links to mental health in the human brain. By analyzing

differences in brain connectivity patterns using rs-fMRI,

researchers can gain insight into the neural substrates of men-

tal health and potentially identify biomarkers for healthy

brain function (Goulas & Margulies, 2021). Studies have

demonstrated that the efficacy of rs-fMRI network-based

classification can be significantly improved using deep

learning techniques (Li et al., 2021). These advancements
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have opened the possibility of applying this classification

approach to the fast and objective diagnosis of mental condi-

tions such as major depressive disorder (Uyulan et al., 2021),

schizophrenia (Liu et al., 2022), anxiety disorder (Al-Ezzi et

al., 2021), bipolar disorder (Cheng et al., 2022) and post-

traumatic stress disorder (Saba et al., 2022). Recent studies

use rs-fMRI and deep learning to predict cognitive decline in

healthy aging individuals (Chen et al., 2021), showing poten-

tial for individualized interventions aimed at promoting and

maintaining mental health.

The majority of current clinical criteria for determining

the severity of mental health symptoms rely on the subjec-

tive assessment of the patient’s symptoms and self-reported

medical history. More recently, predictive modeling based

on machine learning (ML) has been used to interpret neu-

roimaging data to determine symptom severity or cognitive
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impairment. The neuroimaging field has shown a rising

interest in ML technologies due to challenges in integrat-

ing an enormous amount of information in neuroimaging

scans. Supervised ML algorithms are mathematical mod-

els created to identify patterns in known data and use that

information to predict patterns in new data. This approach

can be applied to clinical populations, including individuals

with mental health conditions. For example, functional con-

nectivity (FC) between brain regions measured by rs-fMRI

in depressed individuals demonstrate distributed variations

across the entire brain (Craddock et al., 2009). Another study

(Zeng et al., 2012) utilizing FCs and linear support vector

machines (SVM) achieved an accuracy of 94% while classi-

fying between patients with depression and healthy controls.

Similarly, a statistical machine learning method such as

partial least squares (PLS) regression was used to predict dif-

ferent clinical measures, such as the Positive and Negative

Affect Schedule (PANAS), Beck Depression, Inventory-II

(BDI-II), Snaith-Hamilton Pleasure Scale (SHAPS), and age

from functional connectivity data (Yoshida et al., 2017).

These predicted clinical scores were further used to clas-

sify the depressed patients from healthy controls with 80%

accuracy.

Nevertheless, recent advances in deep learning approaches

show that, particularly for complex high-dimensional

datasets such as fMRI data, the deep models show a signifi-

cant improvement in performance over standard ML models

(Su et al., 2020). Deep learning algorithms may be trained to

recognize abnormalities in fMRI data that are linked with cer-

tain mental health problems, and these features can then be

used to identify the existence or intensity of a mental health

condition. It can also be used to produce tailored treatment

options for people with mental health concerns in addition to

identifying and predicting them. Furthermore, deep learn-

ing models have been successfully utilized on raw fMRI

data to perform classification tasks such as detecting distinct

brain states or conditions (Riaz et al., 2018). Convolutional

neural networks (CNN) are amongst the most widely used

deep learning models for connectome-based classification

and this is particularly significant given how well CNN per-

forms in image classification as well as object recognition

(Kawahara et al., 2017). Yet, the accessibility of a signifi-

cant number of training samples is a crucial need for deep

learning approaches. Hence, very basic CNN models should

be constructed for fMRI-based applications, in accordance

with the quantity of data that is accessible.

This paper focuses on classifying participants into dif-

ferent mental health categories based on sFNC data from

rs-fMRI. The self-reported behavioral measures of mental

health from the UK Biobank were aggregated to obtain a

mental health score for each subject. These mental health

scores were subjected to Gaussian mixture model (GMM)

clustering to obtain the optimum number of categories

for classification. Finally, the labels for classification were

obtained after placing the participants into four different

classes such as excellent, good, fair, and poor mental health.

Following this, the sFNC features were input into a one-

dimensional convolutional neural network (1D-CNN) to

extract useful connectivity parameters for categorizing men-

tal health. The key contributions of this study are as follows:

(1) the novel method used a combination of neuroimaging

data and a set of self-reported assessment data on questions

related to mental health to provide a flexible prediction of

mental health quality; (2) the automatic computation of sub-

categories of mental health quality in any population; (3)

interpreting the deep learning model by identifying salient

regions in the sFNC associated with each mental health qual-

ity category; (4) improved generalization and robustness by

training and optimizing the deep learning model on a large

dataset; and (5) the model also demonstrated superior per-

formance when compared to other state-of-the-art machine

learning algorithms.

Methods

Participants

The data for this analysis were acquired from the UK Biobank

database (Miller et al., 2016). The sample comprised 34606

participants, whose ages ranged from 53 to 87 (69.75±7.43)

years as shown in Table 1. Participants included 19120

females (53.1%) and 16880 males (46.8%).

fMRI data acquisition and preprocessing

A 32-channel head coil 3-Tesla (3T) Siemens Skyra scan-

ner was used to scan all the participants. Next, resting-state

Table 1 Demographic information from the UKBioank database

Characteristics Number

Participants, n 34,606

Age (years), mean (SD) 69.75 (7.43)

Male, n (%) 16,880 (46.8)

Female, n (%) 19,120 (53.1)

Fed up feeling

Yes 12,134 (33.7)

No 22,472 (62.4)

Frequency of unenthusiasm and

disinterest in the last 2 weeks

Not at all 28,643 (79.5)

Several days 4896 (13.6)

More than half the days 617 (1.7)

Nearly everyday 450 (1.2)
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fMRI images were obtained using a gradient-echo echo pla-

nar imaging (GE-EPI) technique. The acquisition parameters

consist of no iPAT, fat saturation, flip angle (FA) = 52◦, spa-

tial resolution = 2.4 × 2.4 × 2.4mm, field-of-view (FOV)

= (88 × 88 × 64 matrix), repeat time (TR) = 0.735s, echo

time (TE) = 39 ms and 490 volumes. Also, eight slices were

acquired concurrently and hence the multiband acceleration

factor was set to eight. During the 6-minute and 10s resting-

state scanning phases, participants were asked to passively

look at a crosshair and stay relaxed.

We conducted several preprocessing procedures on the

UK Biobank database. To reduce the effects of subject-

specific motion, we used MCFLIRT (Jenkinson et al., 2002),

an intra-modal motion correction tool. To evaluate brain

scans among participants, we employed grand-mean inten-

sity normalization to scale the full 4D dataset by a single

multiplicative factor. Further, to eliminate residual temporal

drifts, we filtered the data with a high-pass temporal filter

and rectified geometric aberrations using FSL’s Topup tool

(Andersson et al., 2003). After EPI unwarping, we employed

a gradient distortion correction (GDC) unwarping stage.

Next, structural artifacts were eliminated using Independent

Component Analysis (ICA) along with FMRIB’s ICA-based

X-noiseifier (Salimi-Khorshidi et al., 2014). Furthermore, the

data were standardized to an MNI EPI template with FLIRT,

succeeded by SPM12. Finally, the data were smoothed with

a Gaussian filter with a full width at half maximum (FWHM)

of 6mm.

Following preprocessing, we applied a completely auto-

mated spatially constrained independent component analysis

(ICA) using the NeuroMark (Du et al., 2020) technique on the

resting state-fMRI data. This utilizes an adaptive-ICA tech-

nique, such as group information guided ICA (GIG-ICA) (Du

& Fan, 2013) or spatially constrained ICA (Lin et al., 2010),

for automating the estimation and labeling of connectivity

features specific to individual subjects. First, independent

components (ICs) were calculated using two large-sample

healthy control datasets (HCs). Second, replicable intrinsic

connection networks (ICNs) were obtained by comparing

and evaluating the spatial maps of ICs from various datasets.

The highly replicated ICNs were then used as network

templates in an adaptive ICA technique to automatically esti-

mate subject-specific functional networks and related time

courses (TCs). Through the application of NeuroMark, var-

ious network features are accessible, encompassing spatial

functional networks, inter-network functional connectivity,

graph measures of functional organization, and frequency

information concerning network fluctuations, viewed from

both static and dynamic standpoints. For instance, in the

case of functional network connectivity (FNC), the sFNC

can be derived by computing Pearson correlations between

time courses (TCs) of intrinsic connectivity networks (ICNs),

resulting in an sFNC matrix that reflects the interactions

between any two networks. According to their functional

and anatomical characteristics (Allen et al., 2014), the top 53

ICNs were classified into seven functional domains: subcor-

tical (SC: 5 ICNs), auditory (AUD: 2 ICNs), sensorimotor

(SM: 9 ICNs), visual (VIS: 9 ICNs), cognitive control (CC:

17 ICNs), default mode (DM: 7 ICNs), and cerebellar (CB:

4 ICNs). We used the sFNC as input to our model and as the

basis for all subsequent analyses in this study. The ICNs that

were used as network templates are represented by an IC,

accompanied by its corresponding functional domain, pri-

mary brain region, and peak coordinate (Du et al., 2020). We

used the sFNC as input to our model and as the basis for all

subsequent analyses in this study.

Mental health category identification

Self-reported questionnaires, while valuable for capturing

subjective experiences, are susceptible to various biases that

can compromise data reliability and validity. Social desirabil-

ity bias (Bispo Júnior, 2022) prompts respondents to portray

themselves favorably with societal norms by underreporting

socially undesirable behaviors. Simultaneously, it leads to

overstating positive behaviors, potentially skewing the true

prevalence of certain attitudes or actions. Response set bias

(McGee Ng et al., 2016) introduces consistent responses irre-

spective of the context, like consistently opting for extreme

or neutral choices, impacting the accuracy and reliability

of the answers provided. Language and cultural differences

can lead to misunderstandings or misinterpretations, partic-

ularly in diverse populations, affecting response consistency

and comparability across groups. Additionally, the restricted

ability to capture contextual details and the challenge of

measuring gradual changes over time also limit the effective-

ness of these questionnaires, especially in assessing complex

constructs like personality traits. These biases underscore

the importance of rigorous questionnaire design, pretesting

across diverse demographics, and considering cultural details

to enhance the reliability and validity of data derived from

self-reported questionnaires.

However, despite their potential for introducing subjective

biases and inaccuracies, self-reported questionnaires play a

vital role in capturing individuals’ subjective experiences

and perceptions. Objective clinical assessments alone often

fail to capture these subjective aspects. While their corre-

lation with neuroimaging findings can pose challenges, the

UKB’s substantial sample size and diverse array of phe-

notypic, imaging, and biological measurements provide a

unique opportunity to address these concerns. By utilizing

the extensive sample size of the UK Biobank, researchers can

account for and mitigate potential biases arising from individ-

ual variations. The inclusion of a large and diverse population

allows for a more comprehensive analysis that can help iden-

tify and control confounding factors, thereby enhancing the
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robustness and reliability of the findings. In the case of men-

tal health, the recent depressive symptoms-based questions

from the UK Biobank are recommended for imaging-based

research and represent a more robust metric for evaluat-

ing depressive symptoms. Additionally, despite the small

effect sizes for individual imaging-derived phenotypes, the

multivariate associations between brain imaging-derived

phenotypes and mental health suggest a meaningful relation-

ship between brain biomarkers and mental health outcomes

in the UK Biobank database. Also, including self-reported

measures facilitates longitudinal studies, enabling the track-

ing of changes in mental health over time within the same

individual.

The self-reported questionnaires from 34606 participants

were collected from the UKBiobank database for creating

the labels. While the UK Biobank contains mental health

data from different sources, we focus on using the assess-

ment center questions completed using the touch screen on

the day of the scan. Table 2 shows the 20 questions and

the corresponding responses for each question. Here we nor-

malized the responses to the questions so that the range

is from 0 to 1. For instance, in the case of mood swings,

’0’ corresponds to no mood swings, and ’1’ corresponds

to having mood swings. Whereas in the case of frequency

of depressed mood in the last 2 weeks, ’0’ denotes not at

all, ’0.33’ denotes several days, ’0.67’ denotes more than

half the days, and ’1’ denotes nearly every day of depressed

mood.

The first 12 questions included in the table enable the

calculation of the Eysenck Neuroticism (N-12) score. Indi-

viduals with high neuroticism scores are more prone to

negative moods and to experience sensations such as anx-

iety, worry, fear, wrath, frustration, and loneliness. As a

result, people with high neuroticism scores are regarded to

be at risk of developing mood disorders, anxiety disorders,

and substance use disorders (Barlow et al., 2021). On the

other hand, questions 16-19 reflect recent depressive symp-

toms (RDS-4), a continuous measure of depression symptom

severity acquired at the time of scanning. The RDS-4 uses

four self-report questions to measure low mood, indiffer-

ence, restlessness, and weariness. Each question inquires

about current symptom occurrences, especially within the

past 2 weeks. The four response alternatives are: not at all,

several days, more than half the days, and practically every

day. In comparison to N-12, RDS-4 assesses the current state

of depressed symptoms, whereas N-12 assesses personality

traits. Later Smith and colleagues created a categorical (case-

control) measure of the lifetime incidence of depression using

questions from the evaluation data (Smith et al., 2013). This

was represented using questions 14 and 15 and they served

as an indication of the subject’s probable depressive status.

Nevertheless, these questions did not distinguish between

isolated and recurring depressive episodes. For instance, if

the participants indicated they had seen a doctor or a psychia-

trist for nerves, worry, stress, or depression, their depression

status was set to 1.

Table 2 The questions and

responses related to mental

health that are used in this study

from the UKBioank database

No. Mental health questionnaire Responses

1. Mood swings 0, 1

2. Miserableness 0, 1

3. Irritability 0, 1

4. Sensitivity/hurt feeling 0, 1

5. Fedup feeling 0, 1

6. Nervous feeling 0, 1

7. Worrier anxious feeling 0, 1

8. Tense/highly strung 0, 1

9. Worry too long after embarrassment 0, 1

10. Suffer from nerves 0, 1

11. Loneliness/isolation 0, 1

12. Guilty feeling 0, 1

13. Risk taking 0, 1

14. Seen a doctor/gp for nerves, anxiety, tension or depression 0, 1

15. Seen a psychiatrist for nerves, anxiety, tension or depression 0, 1

16. Frequency of depressed mood in last 2 weeks 0, 0.33, 0.67, 1

17. Frequency of unenthusiasm disinterest in last 2 weeks 0, 0.33, 0.67, 1

18. Frequency of tenseness restlessness in last 2 weeks 0, 0.33, 0.67, 1

19. Frequency of tiredness lethargy in last 2 weeks 0, 0.33, 0.67, 1

20. Illness, injury, bereavement, stress in last 2 years 0, 0.17, 0.33, 0.5, 0.67, 1
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In this study, we selected 20 questions for each sub-

ject based on previous studies conducted in UK Biobank

associated with mental health (Dutt et al., 2022). A men-

tal health score was calculated for each subject by summing

their normalized responses to the questions. Here the maxi-

mum possible score for any subject is 20 and the minimum

score is 0. A histogram of the mental scores over the 34606

participants is shown in Fig. 1. According to the histogram,

the primary conclusion is that participants with low mental

health scores have excellent mental health while those who

score closer to 20 have poorer mental health. In this prob-

lem, the number of categories of mental health quality is not

predefined. Hence we use the Gaussian Mixture Model clus-

tering (Fraley & Raftery, 2002) method to automatically find

the different groups present in the data.

GMMs are unsupervised probabilistic models that follow

the assumption that all data points are generated from a fixed

set of Gaussian distributions. This approach distributes data

points into distinct groups using the soft clustering technique.

Multiple Gaussian distributions are fitted to the data and the

distribution parameters such as mean, variance, and weight

are calculated for each cluster. The probability of each data

point belonging to a cluster is determined after learning these

parameters. The univariate mental health score data are from

a normal distribution with mean µ and variance σ
2. Expecta-

tion maximization (Dempster et al., 1977) is used to estimate

the mixture model’s parameters when the number of clusters

is known. This is an iterative strategy with the property that

the maximum likelihood of the data strictly rises with each

additional iteration. There are two phases in the expectation-

maximization process. Initially, the mean and variances are

assigned randomly. Next, the posterior probability that each

data point belongs to a cluster is determined in the expecta-

tion phase using the current mean and variances. The cluster

means and variances are recalculated in the maximization

Fig. 1 Histogram of the mental health scores for 36,000 participants

from the UKBiobank database

stage using the probability obtained in the expectation step.

The steps are repeated to get a maximum likelihood estimate

until the algorithm’s convergence.

We used the Bayesian Information Criterion (BIC)

(Schwarz, 1978) to determine the ideal number of clus-

ters. The BIC compares the maximum likelihood function

with the number of model parameters, k, and data points,

n. Adding a penalty for the number of model parameters

allows it to choose the model with the fewest parameters that

best describe the data. Thus the model with the lowest BIC

score is selected from a finite set of models. The BIC score

is calculated based on the number of parameters k, the sam-

ple size n, and the log-likelihood function. Analysis of the

mental health scores resulted in four clusters. The labeling

of the clusters was as follows: excellent (score range = 0 to

3), good (score range = 4 to 7), fair (score range = 8 to 11),

and poor(score range = 12 to 20). We calculated the range of

the mental health quality groups using the mean and standard

deviation of their associated clusters. The maximum value of

the range is given by adding the mean with twice the stan-

dard deviation, whereas the minimum value of the range is

obtained by subtracting twice of standard deviation from the

mean.

Predictive modeling using functional network
connectivity data

The prediction network for the sFNC data is designed using

a one-dimensional convolutional neural network (1D-CNN)

(Krizhevsky et al., 2017; LeCun et al., 2015). Our main goal

was to predict mental health quality categories using the

sFNC data from the UK Biobank database. The features con-

sist of 53×53 sFNC matrices that represent inter-connectivity

strengths between various ICNs. The corresponding labels

are the mental health scores we computed from the self-report

data.

The proposed CNN is a 16-layer network with four convo-

lutional layers with a kernel size of three and with 16, 32, 64,

and 128 filters respectively. The rectified linear unit (ReLU)

(Nair & Hinton, 2010) non-linearity is used in the convolu-

tional layers. The three fully connected layers towards the

end of the model have 64, 16, and 4 nodes and on the output

layer, the softmax activation function (Bridle, 1990) is used

to determine the likelihood that each sample belongs to a

class. The model uses four max-pooling layers with kernel

size two to decrease the dimensionality of the feature maps

and limit overfitting. Also, a drop-out regularization (Srivas-

tava et al., 2014) with a probability of 0.2 and 4 layers of batch

normalization was added for regularization. The Adam opti-

mizer (Kingma & Ba, 2014) was used to train the proposed

CNN for 150 iterations, with a learning rate of 0.001 and a

batch size of eight. The data set underwent five-fold cross-

validation in which four folds were used for training and the
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Fig. 2 The proposed deep learning architecture for mental health category prediction

remaining fold was used for testing. The excellent, good,

fair, and poor categories consisted of 16256, 11845, 5058,

and 1447 participants respectively. Since the data for the

four classes was imbalanced, the Synthetic Minority Over-

sampling Method (SMOTE) (Chawla et al., 2002) was used

to construct a balanced dataset. This is a method of over-

sampling the minority class by producing synthetic samples

rather than oversampling using replicated actual data val-

ues. In accordance with the amount of over-sampling needed,

neighbors from the k nearest neighbors of a minority class

are picked at random. Figure 2 (C) illustrates the architecture

of the proposed model.

Results

Performance evaluation using various metrics

We used performance measures such as sensitivity, speci-

ficity, precision, and accuracy to analyze the multiclass

classification. As illustrated in Fig. 3, the poor category

had the highest values (all > 95%) for all performance

measures. Also, for all participant groups, specificity was

higher than sensitivity. This indicates that there are fewer

false positives than false negatives present in the test set

after classification. Moreover, the excellent and the good

Fig. 3 Comparison of

performance metrics for the

mental health categories using

the proposed method
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Fig. 4 ROC curve for different mental health categories. Here class 0

denotes the excellent category, class 1 is good, class 2 is fair and class

3 is the poor category

categories have lower precision values than the fair and poor

categories. Hence when the proposed model was inaccurate,

incorrect classifications were more likely to occur between

these two categories. Additionally, for all categories, accu-

racy exceeded 75%.

The Receiver Operating Characteristic (ROC) curves of

the proposed model were examined to measure its effec-

tiveness in performance. The capacity of the model to dis-

criminate between participants belonging to various groups

according to different thresholds is shown by the area

under ROC curves (AUC). Higher AUC values indicate that

the model is more accurately classifying the participants.

Figure 4 displays the multiclass ROC curve for the 1D-CNN

for the four classes of mental health. The closer the curves are

to the top-left corner, the better the performance of the model.

We used the one vs. all methods to depict the four ROC curves

for the different categories in this multiclass model. The pro-

posed model yielded AUCs of 0.81, 0.81, 0.93, and 1 for

the excellent, good, fair, and poor mental health categories

respectively.

Table 3 shows the accuracy for each class and the total

average accuracy for the different classifiers to evaluate the

classification performance. We compared the performance of

the proposed network with four other baseline models (sup-

port vector machines (SVM), multi-layer perceptron (MLP),

random forests (RF), and naïve Bayes classifier (NB)). The

hyperparameter tuning for these classifiers was completed

using the grid search method. We can see that the proposed

CNN clearly outperformed all the conventional machine

learning classifiers in distinguishing among the mental health

categories. It achieved the best accuracy of 76%, 78%, 88%,

and 98% for excellent, good, fair, and poor, respectively, and

it had an overall average accuracy of 85%. Also, the pro-

posed model improved the average accuracy by 5%, 9%,

4%, and 18% over SVM, MLP, RF, and NB, respectively.

This indicated the effectiveness of learning complex, deep

characteristics from fMRI data. Moreover, the ReLU activa-

tion function was utilized in the proposed model to achieve a

prediction accuracy of 85%. Although experiments were con-

ducted with other activation functions such as LeakyReLU

and PReLU, they did not yield any noteworthy enhance-

ment compared to ReLU. Specifically, LeakyReLU achieved

an accuracy of 83%, and PReLU achieved 80%. Hence the

choice of ReLU was driven by its effectiveness in addressing

the vanishing gradient problem and capturing non-linear rela-

tionships efficiently. While Leaky ReLU and PReLU offer

ways to combat ReLU’s limitations, they introduce added

complexity with extra parameters, potentially not signifi-

cantly improving performance in this specific context.

Table 4 offers a comprehensive examination of the aver-

age specificity, sensitivity, precision, and accuracy for all

four classes, both with and without the implementation of

SMOTE. The analysis emphasizes the notable enhance-

ments addressing the data imbalance issue. From the table

provided, it is evident that the application of the SMOTE

has significantly improved the performance metrics com-

pared to the case without SMOTE. Here sensitivity has

increased from 25% to 70% with the use of SMOTE. This

improvement suggests that SMOTE has effectively gener-

ated synthetic samples for the minority class, making it more

detectable by the model. Moreover, precision has also seen

an increase from 26% to 70% when SMOTE was employed.

This increase implies that the model’s ability to correctly

classify positive instances has been notably enhanced, which

is particularly crucial when dealing with imbalanced datasets.

The specificity has also increased from 75% to 90% with the

application of SMOTE. This rise suggests that the model’s

Table 3 Accuracy comparison

between the proposed model and

the state-of-the-art techniques

Model Accuracy(%) Average accuracy (%)

Excellent Good Fair Poor

Support Vector Machines 71 72 83 93 80

Multilayer Perceptron 70 70 74 91 76

Random Forest 72 74 83 94 81

Naive Bayes 68 69 68 64 67

Proposed model 76 78 88 98 85
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Table 4 Impact of SMOTE on

resolving data imbalance in

performance evaluation

Model Specificity (%) Sensitivity (%) Precision (%) Accuracy (%)

Without SMOTE 75 25 26 70

With SMOTE 90 70 70 85

capability to correctly identify the negative instances has also

improved, which indicates that the model is less prone to

misclassifying the majority of class instances. Finally, over-

all accuracy has seen a notable increase from 70% to 85%

with the use of SMOTE. This improvement demonstrates

that SMOTE has effectively balanced the dataset, leading to

better predictive performance and a more reliable model.

Finally, an ablation study was also conducted in Table 5 to

determine the optimal number of layers for the proposed deep

learning model. The results indicate that reducing the number

of layers correspondingly decreased accuracy. In a smaller

input size, such as 53 × 53, employing 16 layers enhances

the network’s depth, facilitating the acquisition of more intri-

cate and abstract features. Here, the way filter sizes increase

in the convolutional layers is crucial, helping the neural net-

work capture complex and hierarchical features present in

the input data. The initial layers with smaller filter sizes (16)

typically focus on detecting simpler features like edges, basic

textures, and gradients within the input images. As the net-

work progresses through deeper layers with larger filter sizes

(32, 64, and 128), it can identify and combine these simple

features into more detailed patterns. Thus, the additional lay-

ers in this 16-layer CNN help in feature extraction, prevent

overfitting, and aid the network in learning more detailed

representations even in a relatively smaller input size. Here,

Table 5 illustrates a trend in which increasing the number of

layers enhances accuracy. However, this improvement dimin-

ishes as the model gets deeper. For instance, going from 13

to 16 layers only increases accuracy by 2%, while increasing

from 6 to 10 layers results in a 4% gain. While a smaller

number of layers might perform decently, adding layers is

aimed at fine-tuning the model to achieve higher accuracy.

However, the incremental rise in accuracy beyond a certain

layer count becomes marginal, signaling diminishing returns.

Nevertheless, these slight enhancements hold significance,

Table 5 Relationship between the number of layers and classification

accuracy

Number of layers Classification accuracy (%)

16 layers 85

13 layers 83

10 layers 81

7 layers 78

6 layers 77

particularly in tasks like image classification, where even

minor accuracy improvements can significantly impact over-

all performance.

Analysis of themental health questionnaires

Responses to 20 mental health questions were analyzed to

identify which questions best discriminated the participants

in each mental health quality category. We calculated the

percentage of scores within each category by summing the

scores of the questions for the participants assigned to each

category, dividing it by the total number of participants,

and multiplying it by 100. Here the higher percentage value

denotes that the corresponding question contributed more to

the specified category. Figure 5 presents a bar graph rep-

resenting these percentage values for each mental health

category. For the excellent category, all questions had very

low percentage values (less than 30%). Here we observe

that extremely low values can be found for symptoms such

as nervous feelings, tense feelings, suffering from nerves,

loneliness/isolation, frequency of depressed mood, unenthu-

siasm, and restlessness in the last 2 weeks and for seeing a

psychiatrist for nerves, anxiety, and depression. The lack of

these symptoms can be considered an indication of excellent

mental health quality. When a person is not experiencing

these negative emotions, it may signify that they are able

to effectively regulate their emotions, which can further

improve their general well-being. In contrast, for the poor

category, 14 questions had more than 50% value. Hence

poor mental health directly corresponds to symptoms such

as mood swings, miserableness, irritability, sensitivity/hurt

feelings, fed-up feelings, nervous feelings, worry/anxious

feelings, tense feelings, worrying too long, suffering from

nerves, loneliness/isolation, guilty feelings, frequency of

tiredness and lethargy, and seeing a doctor for nerves, anxi-

ety, and depression. The fair category shows similar patterns

but with low percentage levels.

Mean sFNC and connectogram analysis

Computing the mean sFNC for each mental health group

allows for the measurement of differences in neural connec-

tivity configurations among these groups. This assessment

aids in the comprehension of the precise deviations in con-

nectivity that align with distinct mental health categories.

Nevertheless, it is crucial to acknowledge that specific mental
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Fig. 5 Contribution of each question towards the mental health category

health conditions have been linked to modifications in brain

connectivity and functional networks. Figure 6 illustrates

that individuals exhibiting excellent mental health show-

cased heightened connectivity in the visual-sensorimotor

(VIS-SM), cognitive control-sensorimotor (CC-SM) regions,

cerebellar-subcortical (CB-SC) areas, and default mode

(DM) regions. Enhanced connectivity in these areas can

contribute to superior cognitive function and overall men-

tal well-being. In comparison to other categories of mental

health, a relatively minor reduction in connectivity was

observed in specific brain regions, which doesn’t signifi-

cantly affect the overall functional network. For the good

category, notable connectivity was observed in the pairs

of sensorimotor-subcortical (SM-SC) and visual-subcortical

(VIS-SC) domains. Conversely, the fair group demon-

strated more intricate connectivity patterns within the sub-

cortical (SC) domains and visual-sensorimotor (VIS-SM)

domain pairs. Participants with poor mental health dis-

played increased connectivity in specific brain regions, such

as subcortical-cerebellar (SB-CB) and sensorimotor-visual

(SM-VS) regions. Conversely, other regions, including the

cerebellar-sensorimotor (CB-SM) and visual (VIS) areas,

display diminished connectivity. The subcortical-cerebellar

(SB-CB) region is integral to functions such as coordination,

motor control, and cognitive processing, while the sensori-

motor region is responsible for integrating sensory data and

coordinating motor responses. Similarly, the visual region

is vital for processing visual information and is crucial for

visual perception. Modifications in the connections within

and between these areas can profoundly impact cognitive

and emotional processes, potentially influencing an indi-

vidual’s mental well-being. Notably, certain studies in the

field (Kaiser et al., 2015; Snyder, 2013) have indicated that

changes in connectivity between neural systems involved in

cognitive control and those supporting salience or emotion

processing may contribute to difficulties in regulating mood.

Connectograms provide a visual representation of the

connectivity patterns between different brain regions, often
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Fig. 6 Mean sFNC of the different test participants for the various categories

revealing critical insights into various cognitive and mental

health conditions. Here the connectogram analysis is con-

ducted using the ICs derived from the spatially constrained

ICA of the rs-fMRI data. The given connectogram analy-

sis, depicted in Fig. 7(a) and (b), serves as a crucial tool

for illustrating the distinctions between two distinct men-

tal health quality categories: excellent and poor. In this plot,

the blue color denotes a negative correlation, while yellow

denotes substantial links with a positive association. The

degree of relevance is indicated by the opacity of the lines.

The connectogram for the excellent category exhibited sig-

nificantly positive values in connection pairs such as the

cerebellar-subcortical (CB-SC), default mode-cognitive con-

trol (DM-CC), and cognitive control-sensorimotor(CC-SM)

domains. The positive connections suggest that these con-

nections play a significant role in maintaining optimal mental

well-being. For instance, the cerebellar-subcortical connec-

tions might be involved in motor coordination and emotional

regulation, while the default mode-cognitive control con-

nections may be crucial for effective decision-making and

self-regulation. Similarly, the cognitive control-sensorimotor

connections may be involved in integrating cognitive pro-

cesses with motor functions. In comparison with the excellent

group, the poor category showed a positive association in the

default mode (DM) and sensorimotor (SM) domain interac-

tions. These interactions contribute to poorer mental health

outcomes, possibly leading to difficulties in emotional reg-

ulation, and integration of sensory and motor functions.
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Fig. 7 (a) Connectogram of the mean sFNCs of participants belong-

ing to the excellent category. (b) Connectogram of the mean sFNCs of

participants belonging to the poor category. In both cases, warmer col-

ors represent increased connectivity and cooler colors denote decreased

connectivity. (c) The red and blue colors denote a monotonic increase

and a monotonic decrease in connectivity in the sFNCs

Moreover, as we visualize the progression of the connectiv-

ity pattern from excellent to poor mental health category in

Fig. 7(c), certain ICs in the sensorimotor (SM), visual (VIS),

and cognitive control (CC) domains show a monotonic

increase in interactions. This observation suggests a poten-

tial shift in the connectivity dynamics, indicating changes in

functional domains of the brain, associated with the deterio-

ration of mental health.

Saliencymaps of the sFNC

Interpretable models are critical for improving predictability

and increasing clinical acceptability. We employed guided

gradient class activation maps (guided Grad-CAM) (Sel-

varaju et al., 2017) to objectively define the prominent areas

of the sFNC contributing to mental health category predic-

tion in order to generate interpretable results for the network

predictions. Then, we computed the gradients for every

prediction score with respect to the extracted feature maps

from the final convolution layer. The weights for feature

significance were then calculated using the global average

pooling of these gradients. ReLU is applied after a weighted

mixture of forward activation maps. ReLU has the advan-

tage of highlighting features that have a positive influence

on the target class. It has been shown that localization maps

without ReLU may contain more information than the target

class, such as negative pixels that likely correspond to other

categories (Zhou et al., 2016). While the target class-specific

localization map resulting from this might be significant, it

could end in the loss of key context and global information.

Figure 8 illustrates the saliency maps for the four men-

tal health categories. The localization maps were averaged

across all participants to create the saliency maps. The

regions that the model considers salient (darker red zones)

for the prediction of mental health are highlighted by over-

laying the saliency map from guided Grad-CAM. These
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Fig. 8 Saliency maps of different test participants for the various categories

regions are likely to play a significant role in determin-

ing the mental health status of an individual. The anal-

ysis indicates that the excellent category demonstrates a

higher presence of salient regions, characterized by more

yellow and dark red areas. These regions, which pri-

marily include sensorimotor-auditory (SM-AUD), visual-

sensorimotor (VIS-SM), sensorimotor-subcortical (SM-SC),

and parts of the cognitive control domains, are crucial for

distinguishing the excellent mental health category. The pres-

ence of significant activity in these specific regions suggests

that their functionality is closely associated with excellent

mental health. In the case of the good category, the salient

regions are predominantly concentrated in the subcortical

(SC) regions, some parts of the sensorimotor (SM) regions,

and multiple regions of the cognitive control (CC) domains.

These areas play a crucial role in distinguishing individuals

with good mental health from other categories. The presence

of salient regions in the subcortical and cognitive control

domains further suggests their importance in maintaining

good mental health.

The saliency analysis of the fair category demonstrates

a balanced distribution of salient regions, represented by a

mix of dark red and dark blue areas. The important regions

for the fair category include the cerebellar (CB), default

mode-cerebellar (DM-CB), subcortical (SC), sensorimotor-

subcortical (SM-SC), and cognitive control-subcortical (CC-

SC) regions. The balanced presence of salient regions in these

specific areas suggests their moderate influence on the classi-
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fication of individuals into the fair mental health category. For

the poor category, the saliency map demonstrates a combina-

tion of yellow and red regions, indicating an average to high

level of saliency. The important regions for the poor category

include the default mode, default mode-cerebellar (DM-

CB), cognitive control (CC), and some regions of cognitive

control-visual (CC-VIS) and sensorimotor-visual (SM-VIS).

The specific regions highlighted in the saliency maps

indicate their importance in distinguishing between differ-

ent levels of mental health, ranging from excellent to poor.

Understanding these crucial brain regions can provide valu-

able insights into the neural mechanisms associated with

different mental health states, facilitating a deeper under-

standing of the underlying factors influencing mental health

classifications based on functional network connectivity

data.

Discussion

The aim of this study was to develop a framework for

sFNC analysis to provide insights into the relationship

between self-reported mental health assessment data and

sFNCs that comprise the different brain regions. Using a

deep learning technique, we discovered four distinct cate-

gories of mental health, characterized these groups based

on various self-report patterns, and found potentially dis-

criminative functional connectivity areas. The mental health

questionnaire analysis also revealed which questions best dis-

tinguished individuals in each of the mental health quality

categories. Importantly, all these findings were achieved on

a large dataset which further hints at the robustness and gen-

eralization of the deep learning method.

Recent studies have suggested that depression, anxiety,

stress, and other mental health conditions may be associ-

ated with disparities of interconnections among brain regions

rather than increased or decreased activity of individual areas

(Zhang et al., 2016; Wang et al., 2019). Hence, researchers

studying mental health have shifted the focus of imaging

studies to connections among brain areas. The data-driven

connectome-based predictive models take brain connectivity

data as input and generate predictions of behavioral measures

in participants (Shen et al., 2017). Here the predictive model

assumes a linear relationship between the connectivity data

and the behavioral variable. However these models may not

be optimal for capturing complex, nonlinear relationships

between connectivity and behavior. Deep learning models,

on the other hand, can learn complicated non-linear correla-

tions between variables by using nonlinear activation layers.

Hence in our study, we used the one-dimensional convolu-

tional neural networks to enhance the prediction accuracy

by capturing the patterns present between the sFNCs and

the self-reported assessment data. Moreover, deep learning

models had shown promise in sFNC-based predictive mod-

eling in previous research, but their lack of interpretability

has remained a concern (Cwiek et al., 2022). To address this

issue, we used saliency maps to highlight the most significant

regions of the sFNC matrix that contribute to the model’s pre-

diction. This served as a powerful tool for the interpretability

of the deep learning model.

Using the connectogram analysis, we also visualized and

identified relevant brain connections contributing to the pre-

diction model. Various studies examining stress-induced

neural responses and recovery patterns through post-stress

rs-fMRI scans show that the overall intra- and inter-network

FC of certain core networks have been frequently reported

to be altered after acute stress. These regions consist of the

default mode network (DMN) (Clemens et al., 2017) which

is involved in internally-directed cognition and includes the

posterior cingulate cortex (PCC). Also, the salience net-

work (SN) (W. Zhang et al., 2019; X. Zhang et al., 2019)

includes the anterior insula and the dorsal anterior cingulate

cortex, which detects behaviorally relevant stimuli and real-

locates the brain’s neural resources. Relative to the findings

in these previous studies, we also found that in the case of

the poor mental health category with an increased likelihood

of symptoms of stress, anxiety, and depression, there was

also an increase in connectivity in the default mode and sen-

sorimotor regions as shown in the connectogram. Overall,

we demonstrated that the proposed architecture significantly

improves the accuracy with which one can classify individ-

ual participants into distinct mental health quality categories.

The saliency analysis also provides several sFNC pairs that

exhibit a strong connection in predicting a subject’s mental

health. In the case of the excellent category, the significant

sFNC regions are sensorimotor-auditory (SM-AUD), visual-

sensorimotor (VIS-SM), sensorimotor-subcortical (SM-SC),

and cognitive control-default mode (CC-DM). The sFNC is

sparsely distributed and consistent with the mean sFNC plot

shown in Fig. 6 (a). The good category on the other hand

has dominant regions in the sensorimotor (SM), cognitive

control (CC), and subcortical (SC) domains. While the fair

category has a mixture of both positive and negative signif-

icant regions with the CB domain being one of the clearly

contributing regions of this category. Finally, in the case of

the poor category, the default mode-visual (DM-VIS), cog-

nitive control (CC), and default mode (DM) represent the

regions that have the most positive influence in this category.

As a result, deep learning is a promising strategy for assisting

healthcare providers in the development of neuroimaging-

based biomarkers for earlier detection in clinical settings. The

research conducted may also be employed to help in mon-

itoring mental health quality and response to interventions.

Additionally, the findings can serve as a guide for diagnostic

testing and therapies that aim to enhance the participants’

quality of life.
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Conclusion

In this paper, we developed a deep learning framework based

on 1D-CNN for categorizing mental health scores. On a

large dataset, this model proved more effective than conven-

tional machine learning techniques in classifying individual

people accurately. In fact, this model has several advan-

tages as it uses both sFNC and self-reported assessment data

for predictive analysis. First, sFNC provides objective mea-

surements of brain activity and connectivity, whereas using

just the self-reported data to obtain mental health quality

can be biased or influenced by social desirability (Abdal-

lah et al., 2020). Secondly, sFNC data provides information

about functional networks across the whole brain, whereas

self-reported data may only capture information about spe-

cific symptoms. Combining this information through deep

learning provides a more comprehensive view of brain func-

tion and connectivity. This can help to identify patterns

of connectivity that are associated with specific symptoms

associated with mental health quality. Finally, the proposed

model can clearly distinguish between the different men-

tal health quality groups with high accuracy. Once this has

been trained on a dataset, it can be used to make predic-

tions on new data without adding any additional self-reported

measures. A limitation of this research is that it focuses on

middle-aged and older persons, and the study includes only

twenty self-reported assessments performed on the day of

scanning.

Nevertheless, our promising findings offer the possibility

that neuroimaging data can be leveraged to facilitate a more

accurate categorization of people according to their mental

health. The categories that self-reported data yielded had dis-

tinctive patterns of connectivity. Future work will focus on

the development of a deep learning-based fusion model to

forecast brain health by using time courses, sFNCs, and spa-

tial maps. Also, we will evaluate whether a predictive model

from neuroimaging data can outperform a predictive model

based on assessment data. Additionally, we will extend our

model to younger adults and include more self-reported mea-

sures that are taken at a time point that is independent of the

scan date.
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