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Abstract

While one can characterize mental health using questionnaires, such tools do not provide direct insight into the underlying
biology. By linking approaches that visualize brain activity to questionnaires in the context of individualized prediction, we
can gain new insights into the biology and behavioral aspects of brain health. Resting-state fMRI (rs-fMRI) can be used
to identify biomarkers of these conditions and study patterns of abnormal connectivity. In this work, we estimate mental
health quality for individual participants using static functional network connectivity (sSFNC) data from rs-fMRI. The deep
learning model uses the sFNC data as input to predict four categories of mental health quality and visualize the neural
patterns indicative of each group. We used guided gradient class activation maps (guided Grad-CAM) to identify the most
discriminative sFNC patterns. The effectiveness of this model was validated using the UK Biobank dataset, in which we
showed that our approach outperformed four alternative models by 4-18% accuracy. The proposed model’s performance
evaluation yielded a classification accuracy of 76%, 78%, 88%, and 98% for the excellent, good, fair, and poor mental health
categories, with poor mental health accuracy being the highest. The findings show distinct SFNC patterns across each group.
The patterns associated with excellent mental health consist of the cerebellar-subcortical regions, whereas the most prominent
areas in the poor mental health category are in the sensorimotor and visual domains. Thus the combination of rs-fMRI and
deep learning opens a promising path for developing a comprehensive framework to evaluate and measure mental health.
Moreover, this approach had the potential to guide the development of personalized interventions and enable the monitoring
of treatment response. Overall this highlights the crucial role of advanced imaging modalities and deep learning algorithms
in advancing our understanding and management of mental health.
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Introduction have opened the possibility of applying this classification

approach to the fast and objective diagnosis of mental condi-

Resting-state functional MRI (rs-fMRI) has become one of
the most widely used modalities for analyzing functional
links to mental health in the human brain. By analyzing
differences in brain connectivity patterns using rs-fMRI,
researchers can gain insight into the neural substrates of men-
tal health and potentially identify biomarkers for healthy
brain function (Goulas & Margulies, 2021). Studies have
demonstrated that the efficacy of rs-fMRI network-based
classification can be significantly improved using deep
learning techniques (Li et al., 2021). These advancements
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tions such as major depressive disorder (Uyulan et al., 2021),
schizophrenia (Liu et al., 2022), anxiety disorder (Al-Ezzi et
al., 2021), bipolar disorder (Cheng et al., 2022) and post-
traumatic stress disorder (Saba et al., 2022). Recent studies
use rs-fMRI and deep learning to predict cognitive decline in
healthy aging individuals (Chen et al., 2021), showing poten-
tial for individualized interventions aimed at promoting and
maintaining mental health.

The majority of current clinical criteria for determining
the severity of mental health symptoms rely on the subjec-
tive assessment of the patient’s symptoms and self-reported
medical history. More recently, predictive modeling based
on machine learning (ML) has been used to interpret neu-
roimaging data to determine symptom severity or cognitive
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impairment. The neuroimaging field has shown a rising
interest in ML technologies due to challenges in integrat-
ing an enormous amount of information in neuroimaging
scans. Supervised ML algorithms are mathematical mod-
els created to identify patterns in known data and use that
information to predict patterns in new data. This approach
can be applied to clinical populations, including individuals
with mental health conditions. For example, functional con-
nectivity (FC) between brain regions measured by rs-fMRI
in depressed individuals demonstrate distributed variations
across the entire brain (Craddock et al., 2009). Another study
(Zeng et al., 2012) utilizing FCs and linear support vector
machines (SVM) achieved an accuracy of 94% while classi-
fying between patients with depression and healthy controls.
Similarly, a statistical machine learning method such as
partial least squares (PLS) regression was used to predict dif-
ferent clinical measures, such as the Positive and Negative
Affect Schedule (PANAS), Beck Depression, Inventory-II
(BDI-II), Snaith-Hamilton Pleasure Scale (SHAPS), and age
from functional connectivity data (Yoshida et al., 2017).
These predicted clinical scores were further used to clas-
sify the depressed patients from healthy controls with 80%
accuracy.

Nevertheless, recent advances in deep learning approaches
show that, particularly for complex high-dimensional
datasets such as fMRI data, the deep models show a signifi-
cant improvement in performance over standard ML models
(Suetal., 2020). Deep learning algorithms may be trained to
recognize abnormalities in fMRI data that are linked with cer-
tain mental health problems, and these features can then be
used to identify the existence or intensity of a mental health
condition. It can also be used to produce tailored treatment
options for people with mental health concerns in addition to
identifying and predicting them. Furthermore, deep learn-
ing models have been successfully utilized on raw fMRI
data to perform classification tasks such as detecting distinct
brain states or conditions (Riaz et al., 2018). Convolutional
neural networks (CNN) are amongst the most widely used
deep learning models for connectome-based classification
and this is particularly significant given how well CNN per-
forms in image classification as well as object recognition
(Kawahara et al., 2017). Yet, the accessibility of a signifi-
cant number of training samples is a crucial need for deep
learning approaches. Hence, very basic CNN models should
be constructed for fMRI-based applications, in accordance
with the quantity of data that is accessible.

This paper focuses on classifying participants into dif-
ferent mental health categories based on sFNC data from
rs-fMRI. The self-reported behavioral measures of mental
health from the UK Biobank were aggregated to obtain a
mental health score for each subject. These mental health
scores were subjected to Gaussian mixture model (GMM)
clustering to obtain the optimum number of categories

for classification. Finally, the labels for classification were
obtained after placing the participants into four different
classes such as excellent, good, fair, and poor mental health.
Following this, the sFNC features were input into a one-
dimensional convolutional neural network (1D-CNN) to
extract useful connectivity parameters for categorizing men-
tal health. The key contributions of this study are as follows:
(1) the novel method used a combination of neuroimaging
data and a set of self-reported assessment data on questions
related to mental health to provide a flexible prediction of
mental health quality; (2) the automatic computation of sub-
categories of mental health quality in any population; (3)
interpreting the deep learning model by identifying salient
regions in the sSFNC associated with each mental health qual-
ity category; (4) improved generalization and robustness by
training and optimizing the deep learning model on a large
dataset; and (5) the model also demonstrated superior per-
formance when compared to other state-of-the-art machine
learning algorithms.

Methods
Participants

The data for this analysis were acquired from the UK Biobank
database (Miller et al., 2016). The sample comprised 34606
participants, whose ages ranged from 53 to 87 (69.751+7.43)
years as shown in Table 1. Participants included 19120
females (53.1%) and 16880 males (46.8%).

fMRI data acquisition and preprocessing

A 32-channel head coil 3-Tesla (3T) Siemens Skyra scan-
ner was used to scan all the participants. Next, resting-state

Table 1 Demographic information from the UKBioank database

Characteristics Number
Participants, n 34,606

Age (years), mean (SD) 69.75 (7.43)
Male, n (%) 16,880 (46.8)

Female, n (%) 19,120 (53.1)

Fed up feeling
Yes 12,134 (33.7)
No 22,472 (62.4)

Frequency of unenthusiasm and
disinterest in the last 2 weeks

Not at all 28,643 (79.5)
Several days 4896 (13.6)
More than half the days 617 (1.7)
Nearly everyday 450 (1.2)
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fMRI images were obtained using a gradient-echo echo pla-
nar imaging (GE-EPI) technique. The acquisition parameters
consist of no iPAT, fat saturation, flip angle (FA) = 52°, spa-
tial resolution = 2.4 x 2.4 x 2.4mm, field-of-view (FOV)
= (88 x 88 x 64 matrix), repeat time (TR) = 0.735s, echo
time (TE) = 39 ms and 490 volumes. Also, eight slices were
acquired concurrently and hence the multiband acceleration
factor was set to eight. During the 6-minute and 10s resting-
state scanning phases, participants were asked to passively
look at a crosshair and stay relaxed.

We conducted several preprocessing procedures on the
UK Biobank database. To reduce the effects of subject-
specific motion, we used MCFLIRT (Jenkinson et al., 2002),
an intra-modal motion correction tool. To evaluate brain
scans among participants, we employed grand-mean inten-
sity normalization to scale the full 4D dataset by a single
multiplicative factor. Further, to eliminate residual temporal
drifts, we filtered the data with a high-pass temporal filter
and rectified geometric aberrations using FSL’s Topup tool
(Andersson et al., 2003). After EPI unwarping, we employed
a gradient distortion correction (GDC) unwarping stage.
Next, structural artifacts were eliminated using Independent
Component Analysis (ICA) along with FMRIB’s ICA-based
X-noiseifier (Salimi-Khorshidi et al., 2014). Furthermore, the
data were standardized to an MNI EPI template with FLIRT,
succeeded by SPM12. Finally, the data were smoothed with
a Gaussian filter with a full width at half maximum (FWHM)
of 6mm.

Following preprocessing, we applied a completely auto-
mated spatially constrained independent component analysis
(ICA) using the NeuroMark (Du et al., 2020) technique on the
resting state-fMRI data. This utilizes an adaptive-ICA tech-
nique, such as group information guided ICA (GIG-ICA) (Du
& Fan, 2013) or spatially constrained ICA (Lin et al., 2010),
for automating the estimation and labeling of connectivity
features specific to individual subjects. First, independent
components (ICs) were calculated using two large-sample
healthy control datasets (HCs). Second, replicable intrinsic
connection networks (ICNs) were obtained by comparing
and evaluating the spatial maps of ICs from various datasets.
The highly replicated ICNs were then used as network
templates in an adaptive ICA technique to automatically esti-
mate subject-specific functional networks and related time
courses (TCs). Through the application of NeuroMark, var-
ious network features are accessible, encompassing spatial
functional networks, inter-network functional connectivity,
graph measures of functional organization, and frequency
information concerning network fluctuations, viewed from
both static and dynamic standpoints. For instance, in the
case of functional network connectivity (FNC), the sFNC
can be derived by computing Pearson correlations between
time courses (TCs) of intrinsic connectivity networks (ICNs),
resulting in an SFNC matrix that reflects the interactions
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between any two networks. According to their functional
and anatomical characteristics (Allen et al., 2014), the top 53
ICNs were classified into seven functional domains: subcor-
tical (SC: 5 ICNs), auditory (AUD: 2 ICNs), sensorimotor
(SM: 9 ICNs), visual (VIS: 9 ICNs), cognitive control (CC:
17 ICNSs), default mode (DM: 7 ICNs), and cerebellar (CB:
4 ICNs). We used the sFNC as input to our model and as the
basis for all subsequent analyses in this study. The ICNs that
were used as network templates are represented by an IC,
accompanied by its corresponding functional domain, pri-
mary brain region, and peak coordinate (Du et al., 2020). We
used the sFNC as input to our model and as the basis for all
subsequent analyses in this study.

Mental health category identification

Self-reported questionnaires, while valuable for capturing
subjective experiences, are susceptible to various biases that
can compromise datareliability and validity. Social desirabil-
ity bias (Bispo Junior, 2022) prompts respondents to portray
themselves favorably with societal norms by underreporting
socially undesirable behaviors. Simultaneously, it leads to
overstating positive behaviors, potentially skewing the true
prevalence of certain attitudes or actions. Response set bias
(McGee Ngetal., 2016) introduces consistent responses irre-
spective of the context, like consistently opting for extreme
or neutral choices, impacting the accuracy and reliability
of the answers provided. Language and cultural differences
can lead to misunderstandings or misinterpretations, partic-
ularly in diverse populations, affecting response consistency
and comparability across groups. Additionally, the restricted
ability to capture contextual details and the challenge of
measuring gradual changes over time also limit the effective-
ness of these questionnaires, especially in assessing complex
constructs like personality traits. These biases underscore
the importance of rigorous questionnaire design, pretesting
across diverse demographics, and considering cultural details
to enhance the reliability and validity of data derived from
self-reported questionnaires.

However, despite their potential for introducing subjective
biases and inaccuracies, self-reported questionnaires play a
vital role in capturing individuals’ subjective experiences
and perceptions. Objective clinical assessments alone often
fail to capture these subjective aspects. While their corre-
lation with neuroimaging findings can pose challenges, the
UKB’s substantial sample size and diverse array of phe-
notypic, imaging, and biological measurements provide a
unique opportunity to address these concerns. By utilizing
the extensive sample size of the UK Biobank, researchers can
account for and mitigate potential biases arising from individ-
ual variations. The inclusion of a large and diverse population
allows for a more comprehensive analysis that can help iden-
tify and control confounding factors, thereby enhancing the
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robustness and reliability of the findings. In the case of men-
tal health, the recent depressive symptoms-based questions
from the UK Biobank are recommended for imaging-based
research and represent a more robust metric for evaluat-
ing depressive symptoms. Additionally, despite the small
effect sizes for individual imaging-derived phenotypes, the
multivariate associations between brain imaging-derived
phenotypes and mental health suggest a meaningful relation-
ship between brain biomarkers and mental health outcomes
in the UK Biobank database. Also, including self-reported
measures facilitates longitudinal studies, enabling the track-
ing of changes in mental health over time within the same
individual.

The self-reported questionnaires from 34606 participants
were collected from the UKBiobank database for creating
the labels. While the UK Biobank contains mental health
data from different sources, we focus on using the assess-
ment center questions completed using the touch screen on
the day of the scan. Table 2 shows the 20 questions and
the corresponding responses for each question. Here we nor-
malized the responses to the questions so that the range
is from O to 1. For instance, in the case of mood swings,
0> corresponds to no mood swings, and ’1° corresponds
to having mood swings. Whereas in the case of frequency
of depressed mood in the last 2 weeks, 0’ denotes not at
all, ’0.33’ denotes several days, ’0.67" denotes more than
half the days, and ’ 1’ denotes nearly every day of depressed
mood.

The first 12 questions included in the table enable the
calculation of the Eysenck Neuroticism (N-12) score. Indi-
viduals with high neuroticism scores are more prone to
negative moods and to experience sensations such as anx-
iety, worry, fear, wrath, frustration, and loneliness. As a
result, people with high neuroticism scores are regarded to
be at risk of developing mood disorders, anxiety disorders,
and substance use disorders (Barlow et al., 2021). On the
other hand, questions 16-19 reflect recent depressive symp-
toms (RDS-4), a continuous measure of depression symptom
severity acquired at the time of scanning. The RDS-4 uses
four self-report questions to measure low mood, indiffer-
ence, restlessness, and weariness. Each question inquires
about current symptom occurrences, especially within the
past 2 weeks. The four response alternatives are: not at all,
several days, more than half the days, and practically every
day. In comparison to N-12, RDS-4 assesses the current state
of depressed symptoms, whereas N-12 assesses personality
traits. Later Smith and colleagues created a categorical (case-
control) measure of the lifetime incidence of depression using
questions from the evaluation data (Smith et al., 2013). This
was represented using questions 14 and 15 and they served
as an indication of the subject’s probable depressive status.
Nevertheless, these questions did not distinguish between
isolated and recurring depressive episodes. For instance, if
the participants indicated they had seen a doctor or a psychia-
trist for nerves, worry, stress, or depression, their depression
status was set to 1.

Table 2 The questions and

responses related to mental No. Mental health questionnaire Responses
e L ond s
2. Miserableness 0,1
3. Irritability 0,1
4. Sensitivity/hurt feeling 0,1
5. Fedup feeling 0,1
6. Nervous feeling 0,1
7. Worrier anxious feeling 0,1
8. Tense/highly strung 0,1
9. Worry too long after embarrassment 0,1
10. Suffer from nerves 0,1
11. Loneliness/isolation 0,1
12. Guilty feeling 0,1
13. Risk taking 0,1
14. Seen a doctor/gp for nerves, anxiety, tension or depression 0,1
15. Seen a psychiatrist for nerves, anxiety, tension or depression 0,1
16. Frequency of depressed mood in last 2 weeks 0,0.33,0.67, 1
17. Frequency of unenthusiasm disinterest in last 2 weeks 0,0.33,0.67, 1
18. Frequency of tenseness restlessness in last 2 weeks 0,0.33,0.67, 1
19. Frequency of tiredness lethargy in last 2 weeks 0,0.33,0.67, 1
20. Illness, injury, bereavement, stress in last 2 years 0,0.17,0.33,0.5,0.67, 1
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In this study, we selected 20 questions for each sub-
ject based on previous studies conducted in UK Biobank
associated with mental health (Dutt et al., 2022). A men-
tal health score was calculated for each subject by summing
their normalized responses to the questions. Here the maxi-
mum possible score for any subject is 20 and the minimum
score is 0. A histogram of the mental scores over the 34606
participants is shown in Fig. 1. According to the histogram,
the primary conclusion is that participants with low mental
health scores have excellent mental health while those who
score closer to 20 have poorer mental health. In this prob-
lem, the number of categories of mental health quality is not
predefined. Hence we use the Gaussian Mixture Model clus-
tering (Fraley & Raftery, 2002) method to automatically find
the different groups present in the data.

GMMs are unsupervised probabilistic models that follow
the assumption that all data points are generated from a fixed
set of Gaussian distributions. This approach distributes data
points into distinct groups using the soft clustering technique.
Multiple Gaussian distributions are fitted to the data and the
distribution parameters such as mean, variance, and weight
are calculated for each cluster. The probability of each data
point belonging to a cluster is determined after learning these
parameters. The univariate mental health score data are from
anormal distribution with mean y and variance 2. Expecta-
tion maximization (Dempster et al., 1977) is used to estimate
the mixture model’s parameters when the number of clusters
is known. This is an iterative strategy with the property that
the maximum likelihood of the data strictly rises with each
additional iteration. There are two phases in the expectation-
maximization process. Initially, the mean and variances are
assigned randomly. Next, the posterior probability that each
data point belongs to a cluster is determined in the expecta-
tion phase using the current mean and variances. The cluster
means and variances are recalculated in the maximization
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Fig. 1 Histogram of the mental health scores for 36,000 participants
from the UKBiobank database
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stage using the probability obtained in the expectation step.
The steps are repeated to get a maximum likelihood estimate
until the algorithm’s convergence.

We used the Bayesian Information Criterion (BIC)
(Schwarz, 1978) to determine the ideal number of clus-
ters. The BIC compares the maximum likelihood function
with the number of model parameters, k, and data points,
n. Adding a penalty for the number of model parameters
allows it to choose the model with the fewest parameters that
best describe the data. Thus the model with the lowest BIC
score is selected from a finite set of models. The BIC score
is calculated based on the number of parameters k, the sam-
ple size n, and the log-likelihood function. Analysis of the
mental health scores resulted in four clusters. The labeling
of the clusters was as follows: excellent (score range = 0 to
3), good (score range = 4 to 7), fair (score range = § to 11),
and poor(score range = 12 to 20). We calculated the range of
the mental health quality groups using the mean and standard
deviation of their associated clusters. The maximum value of
the range is given by adding the mean with twice the stan-
dard deviation, whereas the minimum value of the range is
obtained by subtracting twice of standard deviation from the
mean.

Predictive modeling using functional network
connectivity data

The prediction network for the SFNC data is designed using
a one-dimensional convolutional neural network (1D-CNN)
(Krizhevsky et al., 2017; LeCun et al., 2015). Our main goal
was to predict mental health quality categories using the
sFNC data from the UK Biobank database. The features con-
sistof 53 x53 sFNC matrices that represent inter-connectivity
strengths between various ICNs. The corresponding labels
are the mental health scores we computed from the self-report
data.

The proposed CNN is a 16-layer network with four convo-
lutional layers with a kernel size of three and with 16, 32, 64,
and 128 filters respectively. The rectified linear unit (ReLU)
(Nair & Hinton, 2010) non-linearity is used in the convolu-
tional layers. The three fully connected layers towards the
end of the model have 64, 16, and 4 nodes and on the output
layer, the softmax activation function (Bridle, 1990) is used
to determine the likelihood that each sample belongs to a
class. The model uses four max-pooling layers with kernel
size two to decrease the dimensionality of the feature maps
and limit overfitting. Also, a drop-out regularization (Srivas-
tavaetal.,2014) with a probability of 0.2 and 4 layers of batch
normalization was added for regularization. The Adam opti-
mizer (Kingma & Ba, 2014) was used to train the proposed
CNN for 150 iterations, with a learning rate of 0.001 and a
batch size of eight. The data set underwent five-fold cross-
validation in which four folds were used for training and the
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Fig.2 The proposed deep learning architecture for mental health category prediction

remaining fold was used for testing. The excellent, good,
fair, and poor categories consisted of 16256, 11845, 5058,
and 1447 participants respectively. Since the data for the
four classes was imbalanced, the Synthetic Minority Over-
sampling Method (SMOTE) (Chawla et al., 2002) was used
to construct a balanced dataset. This is a method of over-
sampling the minority class by producing synthetic samples
rather than oversampling using replicated actual data val-
ues. In accordance with the amount of over-sampling needed,
neighbors from the k nearest neighbors of a minority class
are picked at random. Figure 2 (C) illustrates the architecture
of the proposed model.

Fig.3 Comparison of 100
performance metrics for the
mental health categories using
the proposed method
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Results
Performance evaluation using various metrics

We used performance measures such as sensitivity, speci-
ficity, precision, and accuracy to analyze the multiclass
classification. As illustrated in Fig. 3, the poor category
had the highest values (all > 95%) for all performance
measures. Also, for all participant groups, specificity was
higher than sensitivity. This indicates that there are fewer
false positives than false negatives present in the test set
after classification. Moreover, the excellent and the good
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categories have lower precision values than the fair and poor
categories. Hence when the proposed model was inaccurate,
incorrect classifications were more likely to occur between
these two categories. Additionally, for all categories, accu-
racy exceeded 75%.

The Receiver Operating Characteristic (ROC) curves of
the proposed model were examined to measure its effec-
tiveness in performance. The capacity of the model to dis-
criminate between participants belonging to various groups
according to different thresholds is shown by the area
under ROC curves (AUC). Higher AUC values indicate that
the model is more accurately classifying the participants.
Figure 4 displays the multiclass ROC curve for the 1D-CNN
for the four classes of mental health. The closer the curves are
to the top-left corner, the better the performance of the model.
We used the one vs. all methods to depict the four ROC curves
for the different categories in this multiclass model. The pro-
posed model yielded AUCs of 0.81, 0.81, 0.93, and 1 for
the excellent, good, fair, and poor mental health categories
respectively.

Table 3 shows the accuracy for each class and the total
average accuracy for the different classifiers to evaluate the
classification performance. We compared the performance of
the proposed network with four other baseline models (sup-

port vector machines (SVM), multi-layer perceptron (MLP),
random forests (RF), and naive Bayes classifier (NB)). The
hyperparameter tuning for these classifiers was completed
using the grid search method. We can see that the proposed
CNN clearly outperformed all the conventional machine
learning classifiers in distinguishing among the mental health
categories. It achieved the best accuracy of 76%, 78%, 88%,
and 98% for excellent, good, fair, and poor, respectively, and
it had an overall average accuracy of 85%. Also, the pro-
posed model improved the average accuracy by 5%, 9%,
4%, and 18% over SVM, MLP, RF, and NB, respectively.
This indicated the effectiveness of learning complex, deep
characteristics from fMRI data. Moreover, the ReLLU activa-
tion function was utilized in the proposed model to achieve a
prediction accuracy of 85%. Although experiments were con-
ducted with other activation functions such as LeakyReLU
and PReLU, they did not yield any noteworthy enhance-
ment compared to ReLLU. Specifically, LeakyReLLU achieved
an accuracy of 83%, and PReLLU achieved 80%. Hence the
choice of ReLLU was driven by its effectiveness in addressing
the vanishing gradient problem and capturing non-linear rela-
tionships efficiently. While Leaky ReLU and PReLU offer
ways to combat ReLU’s limitations, they introduce added
complexity with extra parameters, potentially not signifi-
cantly improving performance in this specific context.
Table 4 offers a comprehensive examination of the aver-
age specificity, sensitivity, precision, and accuracy for all
four classes, both with and without the implementation of
SMOTE. The analysis emphasizes the notable enhance-
ments addressing the data imbalance issue. From the table
provided, it is evident that the application of the SMOTE
has significantly improved the performance metrics com-
pared to the case without SMOTE. Here sensitivity has
increased from 25% to 70% with the use of SMOTE. This
improvement suggests that SMOTE has effectively gener-
ated synthetic samples for the minority class, making it more
detectable by the model. Moreover, precision has also seen
an increase from 26% to 70% when SMOTE was employed.
This increase implies that the model’s ability to correctly
classify positive instances has been notably enhanced, which
is particularly crucial when dealing with imbalanced datasets.
The specificity has also increased from 75% to 90% with the
application of SMOTE. This rise suggests that the model’s

Table 3 Accuracy comparison
between the proposed model and
the state-of-the-art techniques

Model Accuracy(%) Average accuracy (%)
Excellent Good Fair Poor

Support Vector Machines 71 72 83 93 80

Multilayer Perceptron 70 70 74 91 76

Random Forest 72 74 83 94 81

Naive Bayes 68 69 68 64 67

Proposed model 76 78 88 98 85
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Table 4 Impact of SMOTE on . o .
resolving data imbalance in Model Specificity (%) Sensitivity (%) Precision (%) Accuracy (%)
performance evaluation Without SMOTE 75 5 26 70

With SMOTE 90 70 70 85

capability to correctly identify the negative instances has also
improved, which indicates that the model is less prone to
misclassifying the majority of class instances. Finally, over-
all accuracy has seen a notable increase from 70% to 85%
with the use of SMOTE. This improvement demonstrates
that SMOTE has effectively balanced the dataset, leading to
better predictive performance and a more reliable model.
Finally, an ablation study was also conducted in Table 5 to
determine the optimal number of layers for the proposed deep
learning model. The results indicate that reducing the number
of layers correspondingly decreased accuracy. In a smaller
input size, such as 53 x 53, employing 16 layers enhances
the network’s depth, facilitating the acquisition of more intri-
cate and abstract features. Here, the way filter sizes increase
in the convolutional layers is crucial, helping the neural net-
work capture complex and hierarchical features present in
the input data. The initial layers with smaller filter sizes (16)
typically focus on detecting simpler features like edges, basic
textures, and gradients within the input images. As the net-
work progresses through deeper layers with larger filter sizes
(32, 64, and 128), it can identify and combine these simple
features into more detailed patterns. Thus, the additional lay-
ers in this 16-layer CNN help in feature extraction, prevent
overfitting, and aid the network in learning more detailed
representations even in a relatively smaller input size. Here,
Table 5 illustrates a trend in which increasing the number of
layers enhances accuracy. However, this improvement dimin-
ishes as the model gets deeper. For instance, going from 13
to 16 layers only increases accuracy by 2%, while increasing
from 6 to 10 layers results in a 4% gain. While a smaller
number of layers might perform decently, adding layers is
aimed at fine-tuning the model to achieve higher accuracy.
However, the incremental rise in accuracy beyond a certain
layer count becomes marginal, signaling diminishing returns.
Nevertheless, these slight enhancements hold significance,

Table 5 Relationship between the number of layers and classification
accuracy

Number of layers Classification accuracy (%)

16 layers 85
13 layers 83
10 layers 81
7 layers 78
6 layers 77

particularly in tasks like image classification, where even
minor accuracy improvements can significantly impact over-
all performance.

Analysis of the mental health questionnaires

Responses to 20 mental health questions were analyzed to
identify which questions best discriminated the participants
in each mental health quality category. We calculated the
percentage of scores within each category by summing the
scores of the questions for the participants assigned to each
category, dividing it by the total number of participants,
and multiplying it by 100. Here the higher percentage value
denotes that the corresponding question contributed more to
the specified category. Figure 5 presents a bar graph rep-
resenting these percentage values for each mental health
category. For the excellent category, all questions had very
low percentage values (less than 30%). Here we observe
that extremely low values can be found for symptoms such
as nervous feelings, tense feelings, suffering from nerves,
loneliness/isolation, frequency of depressed mood, unenthu-
siasm, and restlessness in the last 2 weeks and for seeing a
psychiatrist for nerves, anxiety, and depression. The lack of
these symptoms can be considered an indication of excellent
mental health quality. When a person is not experiencing
these negative emotions, it may signify that they are able
to effectively regulate their emotions, which can further
improve their general well-being. In contrast, for the poor
category, 14 questions had more than 50% value. Hence
poor mental health directly corresponds to symptoms such
as mood swings, miserableness, irritability, sensitivity/hurt
feelings, fed-up feelings, nervous feelings, worry/anxious
feelings, tense feelings, worrying too long, suffering from
nerves, loneliness/isolation, guilty feelings, frequency of
tiredness and lethargy, and seeing a doctor for nerves, anxi-
ety, and depression. The fair category shows similar patterns
but with low percentage levels.

Mean sFNC and connectogram analysis

Computing the mean sFNC for each mental health group
allows for the measurement of differences in neural connec-
tivity configurations among these groups. This assessment
aids in the comprehension of the precise deviations in con-
nectivity that align with distinct mental health categories.
Nevertheless, it is crucial to acknowledge that specific mental

@ Springer



638

Brain Imaging and Behavior (2024) 18:630-645

Excellent category

801

60

40 A

201

Percentage of sum of scores

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Fair category

801

60

40 A

201

Percentage of sum of scores

O O OO PO OEELL P OGO E© O
O PR O DL W o0 O o o .,
k\?/\\\\(‘&\(“?}\(\é\&\)@(&@\o\}a\(\ 2 5

Fig.5 Contribution of each question towards the mental health category

health conditions have been linked to modifications in brain
connectivity and functional networks. Figure 6 illustrates
that individuals exhibiting excellent mental health show-
cased heightened connectivity in the visual-sensorimotor
(VIS-SM), cognitive control-sensorimotor (CC-SM) regions,
cerebellar-subcortical (CB-SC) areas, and default mode
(DM) regions. Enhanced connectivity in these areas can
contribute to superior cognitive function and overall men-
tal well-being. In comparison to other categories of mental
health, a relatively minor reduction in connectivity was
observed in specific brain regions, which doesn’t signifi-
cantly affect the overall functional network. For the good
category, notable connectivity was observed in the pairs
of sensorimotor-subcortical (SM-SC) and visual-subcortical
(VIS-SC) domains. Conversely, the fair group demon-
strated more intricate connectivity patterns within the sub-
cortical (SC) domains and visual-sensorimotor (VIS-SM)
domain pairs. Participants with poor mental health dis-
played increased connectivity in specific brain regions, such
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as subcortical-cerebellar (SB-CB) and sensorimotor-visual
(SM-VS) regions. Conversely, other regions, including the
cerebellar-sensorimotor (CB-SM) and visual (VIS) areas,
display diminished connectivity. The subcortical-cerebellar
(SB-CB) region is integral to functions such as coordination,
motor control, and cognitive processing, while the sensori-
motor region is responsible for integrating sensory data and
coordinating motor responses. Similarly, the visual region
is vital for processing visual information and is crucial for
visual perception. Modifications in the connections within
and between these areas can profoundly impact cognitive
and emotional processes, potentially influencing an indi-
vidual’s mental well-being. Notably, certain studies in the
field (Kaiser et al., 2015; Snyder, 2013) have indicated that
changes in connectivity between neural systems involved in
cognitive control and those supporting salience or emotion
processing may contribute to difficulties in regulating mood.

Connectograms provide a visual representation of the
connectivity patterns between different brain regions, often
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Fig.6 Mean sFNC of the different test participants for the various categories

revealing critical insights into various cognitive and mental
health conditions. Here the connectogram analysis is con-
ducted using the ICs derived from the spatially constrained
ICA of the rs-fMRI data. The given connectogram analy-
sis, depicted in Fig. 7(a) and (b), serves as a crucial tool
for illustrating the distinctions between two distinct men-
tal health quality categories: excellent and poor. In this plot,
the blue color denotes a negative correlation, while yellow
denotes substantial links with a positive association. The
degree of relevance is indicated by the opacity of the lines.
The connectogram for the excellent category exhibited sig-
nificantly positive values in connection pairs such as the
cerebellar-subcortical (CB-SC), default mode-cognitive con-
trol (DM-CC), and cognitive control-sensorimotor(CC-SM)

domains. The positive connections suggest that these con-
nections play a significant role in maintaining optimal mental
well-being. For instance, the cerebellar-subcortical connec-
tions might be involved in motor coordination and emotional
regulation, while the default mode-cognitive control con-
nections may be crucial for effective decision-making and
self-regulation. Similarly, the cognitive control-sensorimotor
connections may be involved in integrating cognitive pro-
cesses with motor functions. In comparison with the excellent
group, the poor category showed a positive association in the
default mode (DM) and sensorimotor (SM) domain interac-
tions. These interactions contribute to poorer mental health
outcomes, possibly leading to difficulties in emotional reg-
ulation, and integration of sensory and motor functions.
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(b) Poor category

Fig. 7 (a) Connectogram of the mean sFNCs of participants belong-
ing to the excellent category. (b) Connectogram of the mean sFNCs of
participants belonging to the poor category. In both cases, warmer col-

Moreover, as we visualize the progression of the connectiv-
ity pattern from excellent to poor mental health category in
Fig. 7(c), certain ICs in the sensorimotor (SM), visual (VIS),
and cognitive control (CC) domains show a monotonic
increase in interactions. This observation suggests a poten-
tial shift in the connectivity dynamics, indicating changes in
functional domains of the brain, associated with the deterio-
ration of mental health.

Saliency maps of the sFNC

Interpretable models are critical for improving predictability
and increasing clinical acceptability. We employed guided
gradient class activation maps (guided Grad-CAM) (Sel-
varaju et al., 2017) to objectively define the prominent areas
of the sFNC contributing to mental health category predic-
tion in order to generate interpretable results for the network
predictions. Then, we computed the gradients for every
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(c) Monotonic increase and decrease in connectivity.

ors represent increased connectivity and cooler colors denote decreased
connectivity. (c) The red and blue colors denote a monotonic increase
and a monotonic decrease in connectivity in the SENCs

prediction score with respect to the extracted feature maps
from the final convolution layer. The weights for feature
significance were then calculated using the global average
pooling of these gradients. ReLLU is applied after a weighted
mixture of forward activation maps. ReLLU has the advan-
tage of highlighting features that have a positive influence
on the target class. It has been shown that localization maps
without ReLU may contain more information than the target
class, such as negative pixels that likely correspond to other
categories (Zhou et al., 2016). While the target class-specific
localization map resulting from this might be significant, it
could end in the loss of key context and global information.

Figure 8 illustrates the saliency maps for the four men-
tal health categories. The localization maps were averaged
across all participants to create the saliency maps. The
regions that the model considers salient (darker red zones)
for the prediction of mental health are highlighted by over-
laying the saliency map from guided Grad-CAM. These
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Fig.8 Saliency maps of different test participants for the various categories

regions are likely to play a significant role in determin-
ing the mental health status of an individual. The anal-
ysis indicates that the excellent category demonstrates a
higher presence of salient regions, characterized by more
yellow and dark red areas. These regions, which pri-
marily include sensorimotor-auditory (SM-AUD), visual-
sensorimotor (VIS-SM), sensorimotor-subcortical (SM-SC),
and parts of the cognitive control domains, are crucial for
distinguishing the excellent mental health category. The pres-
ence of significant activity in these specific regions suggests
that their functionality is closely associated with excellent
mental health. In the case of the good category, the salient
regions are predominantly concentrated in the subcortical
(SC) regions, some parts of the sensorimotor (SM) regions,

and multiple regions of the cognitive control (CC) domains.
These areas play a crucial role in distinguishing individuals
with good mental health from other categories. The presence
of salient regions in the subcortical and cognitive control
domains further suggests their importance in maintaining
good mental health.

The saliency analysis of the fair category demonstrates
a balanced distribution of salient regions, represented by a
mix of dark red and dark blue areas. The important regions
for the fair category include the cerebellar (CB), default
mode-cerebellar (DM-CB), subcortical (SC), sensorimotor-
subcortical (SM-SC), and cognitive control-subcortical (CC-
SC) regions. The balanced presence of salient regions in these
specific areas suggests their moderate influence on the classi-
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fication of individuals into the fair mental health category. For
the poor category, the saliency map demonstrates a combina-
tion of yellow and red regions, indicating an average to high
level of saliency. The important regions for the poor category
include the default mode, default mode-cerebellar (DM-
CB), cognitive control (CC), and some regions of cognitive
control-visual (CC-VIS) and sensorimotor-visual (SM-VIS).

The specific regions highlighted in the saliency maps
indicate their importance in distinguishing between differ-
ent levels of mental health, ranging from excellent to poor.
Understanding these crucial brain regions can provide valu-
able insights into the neural mechanisms associated with
different mental health states, facilitating a deeper under-
standing of the underlying factors influencing mental health
classifications based on functional network connectivity
data.

Discussion

The aim of this study was to develop a framework for
SsENC analysis to provide insights into the relationship
between self-reported mental health assessment data and
sFNCs that comprise the different brain regions. Using a
deep learning technique, we discovered four distinct cate-
gories of mental health, characterized these groups based
on various self-report patterns, and found potentially dis-
criminative functional connectivity areas. The mental health
questionnaire analysis also revealed which questions best dis-
tinguished individuals in each of the mental health quality
categories. Importantly, all these findings were achieved on
a large dataset which further hints at the robustness and gen-
eralization of the deep learning method.

Recent studies have suggested that depression, anxiety,
stress, and other mental health conditions may be associ-
ated with disparities of interconnections among brain regions
rather than increased or decreased activity of individual areas
(Zhang et al., 2016; Wang et al., 2019). Hence, researchers
studying mental health have shifted the focus of imaging
studies to connections among brain areas. The data-driven
connectome-based predictive models take brain connectivity
data as input and generate predictions of behavioral measures
in participants (Shen et al., 2017). Here the predictive model
assumes a linear relationship between the connectivity data
and the behavioral variable. However these models may not
be optimal for capturing complex, nonlinear relationships
between connectivity and behavior. Deep learning models,
on the other hand, can learn complicated non-linear correla-
tions between variables by using nonlinear activation layers.
Hence in our study, we used the one-dimensional convolu-
tional neural networks to enhance the prediction accuracy
by capturing the patterns present between the sSFNCs and
the self-reported assessment data. Moreover, deep learning
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models had shown promise in sSFNC-based predictive mod-
eling in previous research, but their lack of interpretability
has remained a concern (Cwiek et al., 2022). To address this
issue, we used saliency maps to highlight the most significant
regions of the sSFNC matrix that contribute to the model’s pre-
diction. This served as a powerful tool for the interpretability
of the deep learning model.

Using the connectogram analysis, we also visualized and
identified relevant brain connections contributing to the pre-
diction model. Various studies examining stress-induced
neural responses and recovery patterns through post-stress
rs-fMRI scans show that the overall intra- and inter-network
FC of certain core networks have been frequently reported
to be altered after acute stress. These regions consist of the
default mode network (DMN) (Clemens et al., 2017) which
is involved in internally-directed cognition and includes the
posterior cingulate cortex (PCC). Also, the salience net-
work (SN) (W. Zhang et al., 2019; X. Zhang et al., 2019)
includes the anterior insula and the dorsal anterior cingulate
cortex, which detects behaviorally relevant stimuli and real-
locates the brain’s neural resources. Relative to the findings
in these previous studies, we also found that in the case of
the poor mental health category with an increased likelihood
of symptoms of stress, anxiety, and depression, there was
also an increase in connectivity in the default mode and sen-
sorimotor regions as shown in the connectogram. Overall,
we demonstrated that the proposed architecture significantly
improves the accuracy with which one can classify individ-
ual participants into distinct mental health quality categories.
The saliency analysis also provides several sSFNC pairs that
exhibit a strong connection in predicting a subject’s mental
health. In the case of the excellent category, the significant
SFENC regions are sensorimotor-auditory (SM-AUD), visual-
sensorimotor (VIS-SM), sensorimotor-subcortical (SM-SC),
and cognitive control-default mode (CC-DM). The sFNC is
sparsely distributed and consistent with the mean sFNC plot
shown in Fig. 6 (a). The good category on the other hand
has dominant regions in the sensorimotor (SM), cognitive
control (CC), and subcortical (SC) domains. While the fair
category has a mixture of both positive and negative signif-
icant regions with the CB domain being one of the clearly
contributing regions of this category. Finally, in the case of
the poor category, the default mode-visual (DM-VIS), cog-
nitive control (CC), and default mode (DM) represent the
regions that have the most positive influence in this category.
As aresult, deep learning is a promising strategy for assisting
healthcare providers in the development of neuroimaging-
based biomarkers for earlier detection in clinical settings. The
research conducted may also be employed to help in mon-
itoring mental health quality and response to interventions.
Additionally, the findings can serve as a guide for diagnostic
testing and therapies that aim to enhance the participants’
quality of life.
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Conclusion

In this paper, we developed a deep learning framework based
on 1D-CNN for categorizing mental health scores. On a
large dataset, this model proved more effective than conven-
tional machine learning techniques in classifying individual
people accurately. In fact, this model has several advan-
tages as it uses both sFNC and self-reported assessment data
for predictive analysis. First, SFNC provides objective mea-
surements of brain activity and connectivity, whereas using
just the self-reported data to obtain mental health quality
can be biased or influenced by social desirability (Abdal-
lah et al., 2020). Secondly, sSENC data provides information
about functional networks across the whole brain, whereas
self-reported data may only capture information about spe-
cific symptoms. Combining this information through deep
learning provides a more comprehensive view of brain func-
tion and connectivity. This can help to identify patterns
of connectivity that are associated with specific symptoms
associated with mental health quality. Finally, the proposed
model can clearly distinguish between the different men-
tal health quality groups with high accuracy. Once this has
been trained on a dataset, it can be used to make predic-
tions on new data without adding any additional self-reported
measures. A limitation of this research is that it focuses on
middle-aged and older persons, and the study includes only
twenty self-reported assessments performed on the day of
scanning.

Nevertheless, our promising findings offer the possibility
that neuroimaging data can be leveraged to facilitate a more
accurate categorization of people according to their mental
health. The categories that self-reported data yielded had dis-
tinctive patterns of connectivity. Future work will focus on
the development of a deep learning-based fusion model to
forecast brain health by using time courses, sSFNCs, and spa-
tial maps. Also, we will evaluate whether a predictive model
from neuroimaging data can outperform a predictive model
based on assessment data. Additionally, we will extend our
model to younger adults and include more self-reported mea-
sures that are taken at a time point that is independent of the
scan date.
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