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Abstract

The study of arrhythmia formation is impeded by lim-
itations in sensor technology, since not all quantities of
interest can be measured directly from the same cell or tis-
sue preparation. Data assimilation algorithms can recon-
struct unmeasured quantities by combining model predic-
tions with available data. However, it is not clear which
types of measurements are best for reconstructing data,
or how abnormal action-potential patterns, such as alter-
nans, affect the informativeness of measurements. To ad-
dress these issues, we examined the Shiferaw-Sato-Karma
(SSK) cardiac myocyte model, which can be used to sim-
ulate multiple alternans mechanisms. We conducted a nu-
merical study in which each SSK dynamical variable was
considered to be a source of simulated data, and computed
observability measures, where observability is a control-
theoretic model property that indicates whether unmea-
sured quantities can be reconstructed from a measured
variable. Although the best measurements (in the sense of
maximizing observability) varied depending on alternans
mechanism (voltage- or calcium-driven), we found that
some patterns held for both mechanisms, such as intracel-
lular calcium concentration yielding stronger observabil-
ity than membrane potential. Observability strengths also
typically predicted the relative performances of Kalman-
filter-based assimilators for different measurement types.

1. Introduction

Electrical alternans, which is a beat-to-beat alterna-
tion in cardiac action potential (AP) duration, sometimes
precedes dangerous arrhythmias such as ventricular fib-
rillation.  Alternans may arise from different mecha-
nisms, including instabilities in the dynamics of the cel-
lular membrane potential (referred to here as voltage-
driven alternans) or intracellular calcium ionic concentra-
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tions (calcium-driven alternans). In electrophysiological
experiments, it is not generally possible to record all quan-
tities that may contribute to alternans or arrhythmia forma-
tion. Data assimilation algorithms, which combine fore-
casts from dynamical models with corrective adjustments
based on available measurements, can be used to recon-
struct quantities that are not recorded during an experi-
ment. Data assimilators have been designed for a variety
of cardiac inference problems, including the reconstruction
of transmural excitation patterns based on optical mapping
data [1].

A related question is which sensor locations and types
of data will maximize the accuracy of estimates produced
by an assimilation algorithm. To help answer this ques-
tion, we analyzed the observability of a cardiac myocyte
model. Observability is a control-theoretic model property
that quantifies how well the state of a dynamical system
can be reconstructed from a set of measurements. Before
designing an assimilation algorithm, it is helpful to choose
measurements that maximize observability of the predic-
tive model that is embedded in the assimilation algorithm,
in order to improve the quality of estimated quantities.

Observability studies of cardiac action-potential mod-
els (e.g., [2]) are relatively rare, and to our knowledge,
only our group has examined observability of a myocyte
model that has detailed intracellular calcium handling [3].
Our previous work did not account for the possible im-
pact of different alternans mechanisms on observability,
so in the present work, we analyzed the Shiferaw-Sato-
Karma (SSK) model [4], which can represent multiple al-
ternans mechanisms. The main original contributions of
this paper are an evaluation of the effects of voltage- and
calcium-driven alternans mechanisms on the observability
properties of a cardiac ionic model, along with an assess-
ment of how well our observability measures predicted the
performance of a Kalman-filter-based data assimilation al-
gorithm under different alternans conditions. The present
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work is a companion paper to our earlier study [5], where
we computed a different kind of control-theoretic property
(called controllability) of the SSK model to determine best
strategies for suppressing alternans.

2. Methods

The Shiferaw-Sato-Karma (SSK) myocyte model [4] is
a system of nonlinear ordinary differential equations that
may be written as X = f(X, Iim(t)). The state vector,
which contains the model’s sixteen state variables, is X =
[V mh jne Xr X Xeo Yio d f q Cs Cing Cor C;‘ST Irel]T
The state variables are the membrane potential V' (mV), di-
mensionless gating variables m, h, jnq, Xr, Xs, Xtos Yo
d, f, and gq, Ca?t concentrations (uM) in the submem-
brane space (cs), bulk myoplasm (c;,+), and sarcoplasmic
reticulum (SR) including network and junctional SR (NSR
and JSR) volumes (cs,.), average JSR calcium concentra-
tion of compartments not being drained (c’,,), and total
SR release current I..; (1M /s). The independent variable
is time, ¢ (ms). To induce APs, we applied stimulus current
Istim (t) (mV/ms), which was a period-T rectangular pulse
train (settings are described further by Cherry [6]). Two
configurations of model parameters were adopted from an-
other source [7] to yield alternans that was either voltage-
driven or calcium-driven. Examples are shown in Figure 1.
All computations were performed in MATLAB.
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Figure 1: SSK model output from pacedown protocol de-
scribed by Cherry [6]. Left: voltage-driven alternans,
right: calcium-driven alternans. Top: V' vs. ¢, bottom: ¢;,,;
vs. t after pacing at 7" = 330 ms for 2 min (actual times
are those shown in graph plus a 2-min offset).

To assist with computations, a discrete-map form of the
SSK model, X ((j+1)T) = F(X(jT)), was produced by
numerically time-integrating the ODEs over one period, 7,
using explicit Euler and Rush-Larsen schemes with inte-
gration time step 0.01 ms, where j = 0,1, 2, ... is the pe-
riod index. Fixed points (solutions to X* = F(X™*)) were
estimated and the model was numerically linearized about

X* using methods described in our previous work [3].
The resulting linearized dynamical equation was ;41 =
Az; 4+ B,v; with output equation y; = C'z; + ;. Here,
we defined the deviational state vector as x; = X; — X™,
with state matrix A = 0F/0X|x~. The output matrix,
C, encodes the choice of measured variable, and y rep-
resents the simulated measurement. v; and €; are white,
zero-mean, independent, and normally distributed process
and sensor noise signals with variances ) and R, and
B, = I is the process noise input matrix. The linearized
equations were nondimensionalized using a procedure de-
scribed elsewhere [3], and subsequent references to z, A,
C, etc., refer to quantities in the nondimensional equations.

A system is said to be observable from y if we can
always uniquely determine initial state xzy from a suf-
ficiently long but finite time-series of measurements,
Y1, Y2, -, Yn. We computed a modal observability mea-
sure [8], |cos ikl = |Ci - vl/([[Cilllvkll), which Gf
nonzero) means the k-th eigenvalue (referred to here as
a “mode”) is observable from the i-th measured variable,
where )\, and vy, are the k-th eigenvalue and right eigen-
vector of A. We considered each state variable as a hypo-
thetical source of measurements, leading to a total of 16
different measurement types, where each type was repre-
sented by selecting C; as the i-th row of the identity ma-
trix. For example, C; = C; = [1 0 ... 0] means that
the first state variable, V, is measured every 7' ms. Larger
| cos ¢; &| values in the [0, 1] range mean that the contri-
bution of the k-th mode to the system response is more
strongly observable from the i-th variable. Different mea-
surement types were ranked according to their average ob-
servability values, | cos ¢;|, defined here as the mean of all
| cos ¢; 1| values for which |Ax| > 0.9. We only included
larger modes in the averages, since those modes contribute
more substantively to the evolution of x; from one period
to the next.

We examined the Kalman filter (KF) and related meth-
ods for reconstructing simulated data. Specifically, we
tested a linear estimator that produces state estimates & via
&1 = AZ; + L(y; — C#;), where L is the gain matrix.
For each type of measurement, we computed a preliminary
KF gain, LxF, by applying MATLAB’S kalman func-
tion to the nondimensional system and noise-covariance
matrices, assuming ) = 0.1/ and R = 0.01. To allow for
fairer comparisons across measurement types, we followed
a procedure similar to that of [3] to replace KF gain Ly g
with a modified gain L using MATLAB’s place function.
For each measurement type, L was chosen to ensure that
the closed-loop eigenvalues, which were the eigenvalues
of A — LC;, had a maximum modulus of 0.7.

For each measurement type, we compared observability
values to two estimator performance measures: feedback
effort, ||LC/||, and {||e]|), an average norm of simulated es-
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timation error e; = x; — &;. ||e;|| was calculated for the
last cycle of a 30-period simulation, with noise signals set
to zero to facilitate comparisons. Final ||¢|| values were
averaged over 10 simulations with randomly-chosen ini-
tial conditions, yielding an average norm (||e||). Smaller
values are preferred for each performance measure.

3. Results and Discussion

The different choices of measured variable are ranked in
decreasing order of observability strength in Table 1. The
values were calculated for 7' = 330 ms, which is a stim-
ulus period that yields long-range alternans for both the
voltage- and calcium-driven parameter sets, as suggested
by Figure 1 and in bifurcation plots shown elsewhere [6].
Table 1 shows that measuring the slow sodium inactivation
gate (jn,) maximized observability of the larger modes
for voltage-driven alternans, while measuring the submem-
brane calcium concentration (cs) yielded strongest observ-
ability for the calcium-driven case. Many of the variables,
including gating variables such as jy,, are not directly
measurable, but are included here for completeness. De-
spite the alternans mechanism affecting the observability
rankings, certain patterns were evident across mechanisms.
For example, when comparing two lab-accessible quanti-
ties, V' and c;,,;, Table 1 shows that ¢;,,; yielded stronger
observability than V' for either mechanism. This order-
ing of the two variables appears to be consistent with our
previous observability analysis [3] of a different myocyte
model, the Luo-Rudy dynamic (LRd) model (2009 ver-
sion) [9].

Two performance measures, feedback effort and average
final error, are plotted against observability values in Fig-
ure 2. The plots show that a larger observability value typ-
ically predicted better performance (in the sense of smaller
ILC|| and (||e||) values). This result demonstrates that ob-
servability values can often be used to predict which type
of measurement will yield the best data assimilation al-
gorithm performance, which is helpful because computing
observability measures only requires knowledge of model
matrices A and C, whereas the KF-based assimilator de-
sign requires estimates of noise covariance matrices and
additional computational steps to produce gain matrices L.
These relationships among observability and linear assimi-
lator performance measures are already well-known within
the control systems community, but were examined here
since they have only rarely been explored for cardiac elec-
trophysiological models.

In the calcium-driven alternans plot in Figure 2, the
measurement choice of d was omitted since it was the only
combination of measurement type and parameter set for
which we were unable to design a KF gain (the kalman
function returned an error). Measuring d for calcium-
driven alternans yielded the smallest value (-7.83) in Ta-

Voltage Driven Alternans  Calcium Driven Alternans

Meas. var. (i) 1g|cos¢;| Meas. var. (i) lg]|cos ¢;]
JNa -0.010571 Cs -0.116682
Cs -0.917632 Clsr -0.352230
f -1.038123 Csr -0.406352
c}sr -1.065499 Cint -0.912790
Cor -1.103919 JNa -1.414577
Cint -1.149056 q -1.803661
X, -1.749180 X, -2.048024
X, -1.785763 X -3.073488
q -1.854422 v -3.286332
Yio -2.266038 f -4.103333
\% -2.853644 h -4.691668
I -3.698748 Ire -5.132808
h -4.201480 m -5.418449
m -5.025919 Xio -6.576203
Xio -6.123031 Yio -7.437371
d -6.705204 d -7.831259

Table 1: Measured variables ranked in decreasing strength
of modal observability, 1g| cos ¢;| , where 1g is base-10 log-
arithm. Results shown for 7" = 330 ms and averaged over
all modes for which |\g| > 0.9.

ble 1, so presumably the observability was too weak to al-
low for gain computation.

One limitation of our work is that stronger observability
did not always predict smaller performance measures; for
example, in the calcium-driven alternans plot in Figure 2,
X, yielded worse observability than ¢, yet the X ,.-based
estimator outperformed the g-based estimator. This lack of
correspondence is likely due to our choice of observabil-
ity measure, which includes ad-hoc averaging over larger
modes. When a gain L is designed to reassign only one
eigenvalue \j of A, we expect quantities such as feedback
effort to decrease as | cos ¢; 1| increases, but this kind of
relationship is not assured when multiple eigenvalues are
reassigned and modal observability values are averaged,
as in our tests. Relationships between observability and
performance measures for single and multiple-eigenvalue
reassignment scenarios were explored in more detail in our
study of the LRd model [3]. Figure 2 shows that our cho-
sen observability measure is capable of predicting which
measurements will yield better estimator performance in
cases where the observability values are well-separated. In
future work, we could investigate whether other methods
for aggregating observability values lead to improved pre-
dictions of assimilator performance.
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Voltage-Driven Alternans, T' = 330 ms
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Figure 2: Performance measures 1g|| LC|| and Ig{||e||) vs. observability measure 1g| cos ¢;

, for each measurement type for

which we were able to compute L. Top: Voltage-driven alternans, bottom: calcium-driven alternans. Certain axis labels

were suppressed to improve readability.

4. Conclusions

We found that alternans mechanisms (voltage vs.
calcium-driven) affected observability-based rankings of
best measurement strategies for the Shiferaw-Sato-Karma
myocyte model. When comparing certain lab-accessible
measurements (c;,; and V') we found that ¢;,,; was a more
informative measurement type, in the sense of yielding
stronger observability, for both types of alternans. Stronger
observability typically corresponded with better data as-
similator performance, which is a helpful result because it
shows that observability analysis can help researchers to
determine which data types will be more informative, be-
fore steps are taken to design a data assimilation algorithm.
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