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ABSTRACT
Neurological disorders generally involve multiple kinds of
changes in the functional and structural properties of the
brain. In this study, we develop a CNN-based multimodal
deep learning pipeline by exploiting both functional and
structural neuroimaging features to generate full-brain maps
that encode significant differences between patient groups
and between modalities in terms of their distinctive con-
tribution towards diagnostic classification of Alzheimer’s
disease. Through a repeated cross-validation procedure and
robust statistical analysis, we show that our approach can be
used to encode highly discriminative and abstract informa-
tion from full-brain data, while also retaining the ability to
identify and categorize significantly contributing voxel-level
features based on their salient strength in various diagnostic
and modality-related contexts. Our results on an Alzheimer’s
disease classification task show that such approaches can be
used for creating more elaborately defined biomarkers for
brain disorders.

Index Terms— Deep Learning, Multimodal Fusion, Neu-
roimaging, Saliency, Alzheimer’s Disease

1. INTRODUCTION
Understanding how the brain’s structure and function are
related to various behavioral and neurodegenerative disor-
ders is crucial for finding solutions to target them. Various
neuroimaging studies have shown that utilizing the infor-
mation in high-dimensional measures from the brain can be
useful toward this goal. In the past decade, various learning
approaches have been developed for discriminating various
brain disorders from neuroimaging data. Additionally, there
has been a lot of interest in studying whether the information
encoded by these approaches is relevant to understand the
corresponding disorder.

While standard machine learning approaches have been
employed toward such interpretations, they are either more
suited to higher-level features that are generalized at the level
of brain regions or perform sub-optimally for meaningful
performance on high-dimensional data [1]. Moreover, with
rising evidence regarding both structural and functional prop-
erties of the brain being affected in various brain disorders,
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it is increasingly important to have frameworks that can fuse
both structural and functional neuroimaging features [2]. For
this, one of the challenges is to have frameworks that ex-
tract meaningful low-dimensional representations from the
increased multimodal scale of the feature dimensions, as well
as retain meaningful patterns in sufficient detail to interpret
the diverse and subtle changes in the brain successfully.

Deep learning approaches have been shown to success-
fully encode discriminative features leading to a more ro-
bust predictive analysis under various scenarios [1]. With
deep learning methods based on convolutional neural net-
works (CNNs), the spatial information from a neuroimaging
scan can be exploited all the way from the basic voxel level
up to higher level association. Furthermore, using various
saliency approaches [3], the learned highly discriminative
information can be projected back from highly abstract and
low-dimensional space back onto the level of voxels. Such
analyses have opened up a high potential for creating de-
tailed interpretations using neuroimaging data for various
unanswered problems in neuroscience. Given appropriate
statistical measures are developed for the same, CNN-based
deep learning methods can aid in more robust and detailed
biomarker discovery for brain disorders.

With the same motivation, we use a CNN-based deep
learning approach to study the underlying differences in the
functional as well as structural features responsible for dis-
tinguishing Alzheimer’s disease (AD). We first train a mul-
timodal CNN architecture created by modifying AlexNet [4]
for AD classification by synthesizing various functional and
structural measures from fMRI and MRI data, respectively.
This is followed by the computation of full-brain saliency
maps using a gradient back-propagation approach [3]. Sub-
sequently, through a repeated cross-validation procedure, we
analyze the voxel-level differences in the full-brain saliency
for (a) control subjects vs. subjects with Alzheimer’s disease
and (b) functional and structural modalities. Through a robust
statistical testing procedure, we visualize brain maps repre-
senting significant diagnostic and modality-wise differences
in the saliency of each spatial location in the brain. Lastly, we
compute measures to summarize the strength of these differ-
ences at the level of brain regions. Our analysis reveals that
regions well known to be biologically associated with AD can
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be successfully uncovered using DL approaches. Moreover,
our analysis reveals that regions can be attributed differently
under different diagnostic or modality-related contexts based
on their preferential saliency toward distinguishing AD.

Fig. 1: The multimodal CNN architecture used for the analysis.
Voxel-level brain maps for structural and functional features were
used as multi-channel input to the architecture with shared parame-
ters in the convolutional layers, followed by fully connected layers
for classification. This was followed by the computation of subject-
specific saliency maps and statistical analysis to compare differences
between diagnostic groups and modalities.

2. METHODS
2.1. Dataset and Pre-Processing
Functional and structural MRI data from the ADNI dataset
(adni.loni.usc.edu) were used for only the first visit scans for
506 subjects (214/292 M/F, aged 71.61±6.76) with 415 con-
trols (CN) and 91 subjects with Alzheimer’s Disease (AD).
Preprocessing was done using a standard SPM12 pipeline
as in previous studies [5]. Functional measures computed
for the analysis from fMRI data included amplitude of low-
frequency fluctuations (ALFF), regional homogeneity (ReHo)
using Kendall’s coefficient of concordance, weighted degree
centrality (DCw) [6], and the average of the fMRI time-series
(tsavg), while the structural measures included low-resolution
T1-weighted images (lT1). For feeding into the multimodal
deep learning architecture, all maps were warped to the stan-
dard MNI space, resampled to (3mm)3 isotropic voxels with
53 × 63 × 52 voxels in each map, followed by Gaussian
smoothing (FWHM = 6mm).

2.2. Multimodal Deep CNN Classifier
The preprocessed feature maps were used as input to a multi-
channel variant of the AlexNet architecture [4] shown in 1,
which is known to successfully encode predictive features
from neuroimaging data [1]. For all four fMRI and the sMRI
feature maps, three cases of possible ways to use them in the
architecture were evaluated for comparison purposes. These
include (a) unimodal, with only a single channel using only
one of the feature maps, (b) 2-way multimodal, with lT1 and
one of the fMRI feature maps being used as input . For the
multimodal cases, shared parameters were used in convolu-
tional layers for to ensure collective feature extraction in the
multi-channel architecture. The analysis was done on tuned
parameters (batch-size = 32, learning rate = 0.001), and was

repeated for 10 repetitions using a random sub-sampling pro-
cedure by dividing the data into stratified training, validation,
and test (in proportion 3:1:1) for each repetition.

2.3. Saliency Analysis and Comparison
Saliency maps were computed for each test subject using
guided back-propagation [3] on the learned architecture. It
should be noted that in the case of multimodal architectures,
the saliency maps are computed for each of the input fea-
ture maps. To compare the saliency between CN and AD
groups, the maps from subjects in each of the classes were
standardized by taking a z-score across voxels for each sub-
ject and tested for statistically significant differences using
a two-sample t-test followed by false discovery rate (FDR)
correction using the Benjamini and Hochberg procedure
(α = 0.01). The voxel-wise corrected p-values < 0.01 were
used as a measure for indicating a statistically significant
difference between the saliency of the two groups. For com-
paring which brain areas have differences in functional vs
structural saliency, a similar procedure was performed be-
tween the saliency maps of the two features used within the
same 2-way multimodal learning paradigm.

Unimodal acc (µ± σ) Multimodal acc (µ± σ)

lT1 .90± .02
tsavg .82± .02 tsavg-lT1 .88± .04
ALFF .83± .01 ALFF-lT1 .89± .02
DCw .82± .007 DCw-lT1 .88± .03
ReHo .82± .006 ReHo-lT1 .89± .03

Table 1: Comparison of performance based on accuracy scores for
the cases of unimodal and multimodal architectures for 10 repeti-
tions of analysis with a random-subsampling procedure to create
separate folds for training, validation, and held-out test data. The
functional measures used were tsavg, ALFF, DCw, and ReHo, while
the T1-weighted maps (lT1) registered to fMRI domain were used
as a structural measure. For functional measures, multimodal setting
yields better performance than the unimodal one.

3. RESULTS
3.1. Performance Comparison
Table 1 shows the test accuracy on 10 repetitions of the ex-
periment using a repeated stratified sub-sampling procedure
for both unimodal as well as multimodal combinations of the
involved features. It can be noted that while the structural
features perform better than the functional features in a uni-
modal setting, the performance in multimodal settings is not
significantly different (p > .05 for all cases). Another inter-
esting aspect of the above results is that compared to other
functional measures, tsavg performs equally well, indicating
that the average fMRI activation at each voxel also inherently
encodes sufficient discriminatory information.

3.2. Distinctive Saliency
Saliency maps were computed and statistical comparison was
done for groups (CN vs AD) and modalities (functional vs
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(a) Functional (b) Structural

Fig. 2: Full-brain maps showing FDR-corrected −sign(t) log(p) values for two-sample t-test for difference between the mean saliency of
CN vs. AD subjects at each voxel for standardized saliency maps. Results are shown for the case of multimodal CNN architecture described
in subsection 2.2 using functional (ALFF) and structural (lT1) feature maps as inputs, resulting in two maps per subject which were tested
separately for CN vs AD differences. A positive value at a voxel implies significantly stronger saliency in CN than in AD group. Maps for
other functional features are omitted due to space constraints, but top brain regions from those cases can be found in Table 2.

ALFF-lT1 DCw-lT1 ReHo-lT1 tsavg-lT1

ALFF lT1 DCw lT1 ReHo lT1 tsavg lT1

LThal (-22.1) LAmyg (26.53) OccPole (18.82) LAmyg (21.83) RAmyg (-19.6) LAmyg (23.85) LAmyg (-17.36) LAmyg (23.48)
RThal (-18.45) RAmyg (23.19) LThal (-16.79) RAmyg (20.13) iCalc (19.05) RAmyg (21.65) CBl1-4 (15.44) LHipp (19.91)
RCaud (-17.82) CBv7-10 (-21.75) CBlCr (16.56) TfusiA (19.93) LAmyg (-18.66) LHipp (20.84) RNA (-14.1) RAmyg (19.53)
RLatV (-17.62) LHipp (21.21) LOCi (16.5) CBvCr (-17.95) SupCalc (18.41) CBv7-10 (-17.71) RPuta (13.23) TfusiA (19.2)
LCaud (-16.83) TfusiA (20) RPall (-15.91) SFG (-17.72) LThal (-16.43) CBr7-10 (-17.07) TfusiA (-13.22) CingGa (-17.61)
RPuta (15.91) LBrSt (-19.96) SpmGa (15.59) OccPole (-17.72) CBlCr (16.35) PrHippGa (16.48) CBl5-6 (13.03) PrHippGa (17.27)
LLatV (-15.7) CingGa (-17.83) RAmyg (-15.23) FP (-17.04) CBr7-10 (15.8) FP (-16.47) CBv5-6 (12.03) CBv7-10 (-16.95)

CBl7-10 (15.09) PrHippGa (17.83) CBrCr (14.51) ParaC (-16.81) CBrCr (15.44) IFGpt (-16.21) MTGa (-11.64) ParaC (-15.66)
LNA (-14.79) RNA (-17.16) FP (13.87) PrHippGa (16.66) ITGa (15.43) CingGa (-16.2) PrHippGp (-11.59) LBrSt (-15.1)
LPall (14.7) CBr7-10 (-17.01) ITGa (13.74) SMC (-16.46) RThal (-15.14) LBrSt (-15.92) TP (-11.35) RPall (-14.61)

Table 2: Top 10 ROIs with the highest strength of CN vs. AD saliency differences. For all combinations of multimodal (functional and
structural) input features, CN vs. AD comparison results were computed separately for each modality within a given combination. For a
given ROI r, the saliency strength sr is defined as the mean of | − sign(t) log(p)| values for all the voxels v ∈ r, where the t, p values are
results of FDR-corrected two-sample t-test between the mean saliency for CN vs AD subjects. While sr is always positive, the sign of the sr
values in parentheses for each ROI indicates the sign t-statistic for the majority of the voxels in the ROI that survived FDR-correction. Thus,
a positive sign indicates a higher saliency in the CN group than in AD for most of the significant voxels in that ROI. Full names of ROIs can
be found at this link

structural) as described in 2.3. To better visualize the statisti-
cal differences, −sign(t) log(p) values from the two-sample
t-test after FDR correction were plotted as a brain map using
the FSL toolbox [7]. For ranking various brain regions of in-
terest (ROIs) based on these voxel-level comparison maps, the
mean strength sr =

∑
v∈r |−sign(t) log(p)| across all voxels

in a given ROI (v ∈ r) was used as a metric. While the met-
ric sr cannot be negative by definition, a positive or negative
sign was ascribed in the visualizations based on the sign(t)
value for the majority of the voxels in the ROI that survived
FDR-correction (Figure 2, Table 2). ROIs were defined by
combining non-overlapping regions in Harvard-Oxford corti-
cal, sub-cortical, and cerebellar atlases available in FSL [7].

Figure 2 shows the maps for group differences (denoted
by −sign(t) log(p) values) in the mean saliency between CN
and AD groups in a 2-way multimodal classifier. The top 10

ROIs based on the value of sr are shown in Table 2. Secondly,
to visualize how the functional and structural modalities differ
in terms of the most salient brain areas under the same 2-way
multimodal training of the model, Figure 3 summarizes the
results from FDR-corrected two-sample t-test between mean
saliency of lT1 and ALFF features.

3.3. Relevant Brain Areas
It can be noted that the set of regions with the most significant
CN vs AD differences have a mix of unique as well as com-
mon ROIs between functional and structural saliency cases.
Similarly, multiple brain areas show significant differences in
saliencies when using functional vs structural features.

Brain regions, including the Amygdala, Hippocampus,
para-Hippocampal Gyrus, Fusiform gyrus, Occipital Pole,
and Cerebellar areas, show the strongest differences in the
saliency of CN vs. AD groups. Additionally, in terms of the
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CN vs. AD differences in the saliency of the functional mea-
sures, it can be noted that Thalamus, Caudate, and Putamen
feature in almost all cases of fMRI-based measures (Table 2).
These results are in line with the previous findings about
regions that are known to be disrupted in Alzheimer’s dis-
ease [8]. Moreover, the comparison between ALFF and lT1
saliencies (Figure 3) reveals that ALFF has mainly subcor-
tical areas with the strongest saliency difference, while both
temporal and subcortical regions feature in the case of lT1.

Fig. 3: Full-brain maps for FDR-corrected −sign(t) log(p) values
for two-sample t-test between mean voxel-level saliency of func-
tional (ALFF) and structural (lT1) features in a multimodal archi-
tecture trained as in 2.2. The top 10 ROIs with the highest mean
strength as defined in 3.2 were OccPole (148.29), LAmyg (-131.96),
LHipp (-124.11), CBlCr (104.55), TfusiP (-103.69), PoCG (100.93),
CBl7-10 (99.42), FP (99.21), SpmGa (96.92), SFG (94.0). For both
the brain maps and ROIs listed, a positive value implies a signifi-
cantly higher strength of functional saliency than structural for the
given voxel/ROI. Full names of ROIs can be found at this link

4. CONCLUSION
In this work, we propose a way to identify the brain regions
that show inter-group as well as inter-modality differences in
the saliency toward predicting a given brain disorder. By an-
alyzing the saliency results with appropriate statistical tests,
we show that deep learning methods can be employed to have
more informed as well as diverse interpretations of salient
high-dimensional neuroimaging features. By combining mul-
tiple features from functional as well as structural domains
into a single framework, both associations and differences can
be uncovered between the functional and structural aspects of
the brain under both health and disease.

In conclusion, our results indicate that the discriminative
associations encoded by deep learning models for diagnos-
tic classification are in line with the neurobiological findings
about the brain areas known to be affected both structurally
as well functionally in Alzheimer’s disease. While the scope
of this paper had to be limited to specific methods for classi-
fication, saliency, and comparison, future work could involve
a more detailed study to elaborate the perspective along mul-
tiple dimensions of analysis.
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