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ABSTRACT

We present a novel deep learning framework to automati-
cally compute independently salient networks in the brain
that characterize the underlying changes in the brain in asso-
ciation with clinically observed assessments. Unsupervised
approaches for high-dimensional neuroimaging data focus
on computing low-dimensional brain components for sub-
sequent analysis, while supervised learning approaches aim
for predictive performance and yielding a single list of asso-
ciative feature importance, thus making it hard to interpret
at the level of brain subsystems. Our approach integrates
the goals of decomposition into lower dimensional subspaces
and, identifying salient brain subsystems into a single au-
tomated framework. We first train a convolutional neural
network on structural brain features to predict clinical as-
sessments, followed by a multi-step decomposition in the
saliency space to compute salient brain networks that intrin-
sically characterize the brain changes associated with the
assessment. Through a repeated training procedure on an
Alzheimer’s disease (AD) dataset, we show that our method
effectively computes AD-related salient brain subsystems
directly from high-dimensional neuroimaging data, while
maintaining predictive performance. Such approaches are
crucial for data-driven biomarker development for brain dis-
orders.

Index Terms— Deep Learning, Subspace Learning, Neu-
roimaging, Saliency Analysis, Alzheimer’s Disease, Ageing,
Independent Component Analysis

1. INTRODUCTION

Brain disorders often involve changes that affect structure as
well as function of multiple subsystems of the brain. The
structural differences that manifest in patients with increas-
ing severity of neurodegenerative disorders like Alzheimer’s
disease involve an interplay of complex changes in the brain
and often require nuanced frameworks to analyze. With the
hope of developing relevant biomarkers for various brain
disorders, neuroimaging techniques like magnetic resonance
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imaging (MRI) have been very promising for looking into
such changes in a considerably detailed manner [1]. While
MRI produces a detailed map of the full brain with a millime-
ter resolution, analyzing the resultant high-dimensional data
from cohorts to extract meaningful signatures for disorder-
related changes has been challenging. Numerous statistical
and machine learning (ML) approaches have focused on the
goal of utilizing neuroimaging data to understand these as-
sociated brain changes across subjects as well as lifespan
[2,3].

A prominent way for such approaches to study brain
changes in disorders is to identify the set of brain regions that
are either associated with or are predictive of a particular dis-
order class and its clinical assessment scores [3]. Features for
ML approaches created from Neuroimaging data are usually
used to assess the importance of various brain regions and/or
connections toward a predictive ML task. Standard ML ap-
proaches have often used various ways to handle the high
dimensionality of neuroimaging data by reducing or decom-
posing it to create useful features [4]. While reducing it by
averaging over brain voxels belonging to regions of interest
(ROIs) has been commonly used [5], decomposition methods
to produce data-driven features have also shown to be help-
ful for studying associations with various disorders [6, 7].
Many decomposition approaches have been developed using
methods like principal component analysis (PCA) as well as
independent component analysis (ICA) [6] to create data-
driven brain components corresponding to areas in the brain
and summarizing the high dimensional neuroimaging data
into low dimensional representations. Such approaches have
also found utility in combining information from multiple
datasets [8] and handling multiple data modalities involving
structural and functional features, while yielding subject-
specific features for associative analysis [9].

Since the oncoming of deep learning (DL) models, the
need for having to reduce high-dimensional data into a sum-
marized set of low-dimensional features has been removed
as an additional step for prediction and associative purposes.
This is because DL models have been shown to encode robust
representations directly from voxel-level data as compared to
summarized features from standard ML models, while also
yielding better prediction performance [10, 11].
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However, post hoc feature analysis on both standard
ML and DL models yields a single set of region-level or
voxel-level results that have to be further manually studied
or assigned to multiple brain sub-systems that are affected
by the disorder [12]. Given that brain disorders often have
multiple overlapping variants [13], each affecting multiple
sub-systems in the brain, thus demanding the need for anal-
ysis frameworks to create multi-set or multi-level summaries
of involved complex changes in the brain [14, 15]. While
decomposition methods like independent subspace analysis
have been built upon such promise [6], they have been devel-
oped for only unsupervised decomposition on neuroimaging
data, not involving any particular disorders, thus requiring
further development of complicated posthoc statistical or
manual methods to utilize such subspaces for finding disease-
specific changes in the brain. To uncover such associated
multi-level changes that are involved in a brain disorder, there
is a need to develop novel frameworks that not only encode
associative information in an effective manner, but are also
able to automatically discern the multiple sets of brain sub-
systems that are affected, instead of returning a large single
set of features ranked according to their importance.

We present a new methodological approach aimed at uti-
lizing high-dimensional neuroimaging data with deep learn-
ing, as well as identifying multiple subsystems in the brain
that are associated with changes in target assessments for a
given brain disorder. Our approach involves the use of a DL
model based on a convolutional neural network to first learn
predictive associations between voxel-level neuroimaging
features and target clinical assessments, followed by active
subspace learning and independent components analysis on
the saliency space of the learned models to identify multiple
important directions that characterize the change in the target
clinical assessment with respect to structural features in the
brain. We also perform a robust repeated analysis to ensure
the identification of consistent underlying independent active
subspaces. By testing our model on an Alzheimer’s disease
dataset, we show that our framework is able to: (a) success-
fully automate the process of identifying multiple subspaces
in the brain, (b) compute subspaces in a semi-supervised
manner such that they capture important brain changes with
respect to clinical assessments of a given disorder, (c) utilize
voxel-level information by engaging DL architectures, and
(d) retain comparable predictive performance.

2. METHODS

2.1. Dataset and Pre-Processing

We used structural MRI data from the ADNI dataset (adni .
loni.usc.edu), including only the first visit scans for
1733 subjects (950/783 M/F, age 75.54 + 7.29) with 468
controls (CN), 933 subjects with mild cognitive impairment
(MCI) and 332 subjects with Alzheimer’s Disease (AD). Pre-

processing was done using a standard SPM12 pipeline as
in previous studies [11]. For feeding into the deep learn-
ing architecture, all maps were warped to the standard MNI
space with dimensions 121 x 145 x 121, followed by Gaussian
smoothing (FWHM = 12 mm). As target variable for the anal-
ysis, we used mini-mental score examination (MMSE) score
(mean 26.99, std 2.89, range 9 — 30), which is a global clini-
cal assessment (at a scale of 0 — 30) of cognitive status used
towards diagnosis of cognitive impairment and Alzheimer’s
disease.

2.2. Multimodal Deep CNN Classifier

The features obtained after the pre-processing step mentioned
in subsection 2.1 above were input into a 3D variant of the
AlexNet architecture [16] as shown in step 1 of ??. AlexNet
has been shown to encode predictive features using voxel-
level data successfully [10].

Training of the architecture on for MMSE score regres-
sion was done independently with stratified 10-fold external
cross-validation with 10% data for internal validation dur-
ing training. After training, the gradients computed with
back-propagation were used for the subsequent subspace
learning analysis on the mutually exclusive test sets spanning
the whole dataset from the 10 folds of the external cross-
validation procedure.

2.3. Active Subspace Learning (PCA step)

Let x € R™ be a point in the m-dimensional space of input
features, and consider a function f : R™ — R that maps input
space to the target variable space. It should be noted that in
this case, « could represent structural brain features like GMV
map for a subject with y as the value of the clinically observed
cognitive or biological assessment variable, and f can be the
underlying regression function learned by the DL architecture
upon training. Active subspace learning on Learning of active
subspaces for the mapping f is performed as an eigendecom-
position of covariance of the gradients of f. The covariance
C can be defined as:

C=E[(V.f)(Vah)"] M
€ = =Y (VHx))(TF())T @

In practice, one can estimate C as C from the data. In this
approach, f can be considered to be the function learned by
the 3D-CNN architecture in Figure 1 upon being trained on
a dataset with n subjects, [X,y]|, where X € R™*" and
y € R™

The next step in active subspace learning involves the
eigendecomposition of C to obtain a set of active subspaces
represented by the eigenvectors with significantly large eigen-
values (Equation 4). Subsequently, transformed features X
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salient networks (ISNs) from structural MRI maps. After training a

CNN-based DL architecture with repeated 10-fold cross-validation (step 1), the subject-specific saliency maps from across repetitions are
aggregated (step 2) and decomposed (step 3) using an active subspace learning framework defined in subsection 2.3. Subsequently, ICA is
performed (step 4) on the active subspaces followed by back-reconstruction to obtain the ISN maps.

can be generated by projecting the input data onto the active
subspaces (Equation 5).

C=WAWT 3)
A
Az[A A},Wz[WAWﬂ, @)
I
such that A; = 0,and \; > 0V\; € Ay
X =Wr'X 5)

2.4. Learning of independently salient networks (ISNs)

The procedure of learning active subspaces from the data de-
scribed in subsection 2.3 can be considered as performing
principal component analysis (PCA) on the saliency space of
the data since the active subspaces are essentially mutually
orthogonal directions of maximum variance in the saliency.
In the current context, the input feature space corresponds to
the voxel-level structural MRI maps while the saliency space

corresponds to voxel-level saliency maps generated via gra-
dient back-propagation from the trained CNN architecture as
described in subsection 2.2. Thus, to compute the active sub-
spaces in the data, we performed PCA on the saliency maps
obtained from the test subjects across the 10-fold repetitions
spanning the whole dataset. The model order was selected to
get the top subspaces such that they cover at least 95% of the
variance in the data.

For voxel-level neuroimaging data, independent compo-
nent analysis (ICA) after the PCA step as dimensionality re-
duction is known to give more stable results in terms of com-
puting meaningful sources in larger datasets because of it be-
ing a generative model assuming the sources in the data to
be independent mixtures, which by definition also involves
higher order statistics that just non-correlation maximized by
PCA [6]. Thus, we performed an ICA on the subspace pro-
jections X computed by the PCA step on saliency maps from
across repetitions, to obtain independently salient networks
(ISNs) in the data. The ISNs characterize independent salient
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Fig. 2: Standardized full-brain maps showing independently salient networks (ISNs) for MMSE score. ISNs are computed
by performing a PCA step on the voxel-level saliency maps from a trained DL model (Figure 1) for MMSE regression using
structural gray matter volume (GMYV) maps, followed by ICA to compute the underlying directions of change in MMSE with

respect to the changes in GMYV in the brain.

directions of change in the target variables with respect to
changes in the input. In addition to the ISNs, the ICA proce-
dure also yields subject-specific loadings, which are the pro-
jection of input data onto the ISNs.

This ICA decomposition procedure, which acts on the
PCA loadings matrix X from Equation 5, can be described
as follows:

X = AS (6)
S = WST @)

The matrix A represents the ICA loadings and S rep-
resents the ISNs computed as source ICA components but
in terms of a weighted linear combination active subspaces
in Wa. The ISNs are computed as voxel-level brain maps
by back-reconstruction as shown in Equation 7, representing

multiple independent intrinsically salient brain networks that
characterize the changes in brain structure with respect to the
changes in the clinically observed variable (MMSE).

3. RESULTS

3.1. Computing Independently Salient Networks (ISNs)

Upon training the CNN model, the saliency maps were
computed for test subjects from each repetition using gra-
dient back-propagation followed by Gaussian smoothening
(FWHM=12mm) and global mean removal. A PCA step was
used to reduce the voxel-level saliency maps in MNI space to
1000 constituent active subspaces and loadings so as to cover
at least 95% of variance in the saliency data. Subsequently,
an ICA step with a model order of 10 was performed. This
was followed by back-reconstruction as described in subsec-
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ISN-1 ISN-2 ISN-3 ISN-4 ISN-5 ISN-6 ISN-7 ISN-8 ISN-9 ISN-10
RPall(1.73)  LAmyg(-1.94) SpmGa(-1.35) SMC(-2.54)  FrMC(-1.41) _ SpmGa(1.26) RAmyg(-2.36)  LPall(-1.98)  OccPole(1.16) FrMC(-1.37)
RAmyg(1.39) OccPole(-1.19) LAmyg(1.26)  LPall(1.54) CBv7-10(-1.34) SpmGa(1.05) LAmyg(-1.44) LPuta(-1.65) SpmGa(-1.14) LAmyg(1.10)
OccPole(-1.35)  LPall(-1.15)  OccPole(1.25)  SFG(-1.07)  LBrSt(-1.23)  AngG(0.97)  CBICr(0.91)  CBICK(-1.07)  SupCalc(1.08)  TOfusi(1.05)
LPuta(1.27) FrMC(0.98) SPL(-1.13)  CBICr(-0.92)  LCaud(0.97) LAmyg(-0.83) CBI1-4(0.84) SpmGa(-0.85)  Cun(1.01) LPuta(1.00)
LAmyg(0.99) RAmyg(-0.90) SpmGa(-1.11) LNA(-0.81)  LThal(0.88) RPall(0.81)  CBI7-10(0.83) RAmyg(0.83)  iCalc(0.90) FP(-0.97)
LHipp(0.97) SFG(0.86) PoCG(-1.06)  LOCs(0.80)  CeOper(0.87) SFG(0.80)  CBv5-6(0.80) MTGa(0.80)  SpmGa(-0.73)  Ins(0.70)
TOfusi(0.97)  CBr7-100.79)  AngG(-1.03)  STGp(0.79)  FrOrb(-0.82)  PoCG(0.75)  RCaud(0.78)  AngG(-0.80) PC(0.71) CBI1-4(0.70)
LPall(0.94) RCaud(0.75)  PreCG(-0.98)  Cun(0.77) RThal(0.77) FP(-0.75) LHipp(0.77)  RThal(-0.78)  AngG(-0.70)  LPall(0.65)
ParOper(-0.93)  LOCi(-0.72)  SFG(-0.85)  LPuta(0.74)  STGa(-0.75)  PreCG(0.73)  IFGpo(-0.76) ~SpmGa(-0.77)  RPall(-0.63)  SFG(-0.64)
PlanTe(-0.90) TP(0.70) PC(-0.77)  MTGto(0.70)  CBI1-4(-0.75)  SMC(0.72)  RHipp(-0.75) TfusiA(-0.77) RAmyg(-0.59) CBI5-6(0.63)
SC-VIS SC-CC DMN CC-SM SC-cC SM-SC DMN-SM AUD-SC VIS-DMN  CC-SC-AUD

Table 1: The top 10 regions of interest (ROISs) for all ISNs sorted based on mean contributive strength defined as mean of z-score
of standardized ISN map across ROI voxels with |z| > 1 in the given ISN map. Mean strengths are shown in parentheses with
signs indicating whether the particular ROI had a positive or negative contribution in the ISN towards change in MMSE score.
Full names and coordinates for the ROIs can be found at this link. The lowermost row for each ISN represents the primary
brain domains of the involved ROIs based on their function. These domains are: the default mode network (DMN), visual areas
(VIS), auditory areas (AU), cerebellar areas (CB), cognitive control (CC), sensorimotor (SM) and sub-cortical (SC) areas.

tion 2.4 to get brain maps for 10 independently salient net-
works (ISNs) that characterize the change in MMSE scores
with respect to structural GMV features. Figure 2 shows the
10 back-reconstructed ISNs as standardized brain maps.

3.2. Prediction Performance

Hyperparameter tuning for batch size (bs) and learning rate
(Ir) was performed on the CNN architecture shown in Fig-
ure 1 to obtain an optimally performing model for MMSE
regression (bs=32, Ir=0.01). We did external 10-fold cross-
validation, leading to 10 repetitions of the training and testing
procedure on the dataset. Each repetition involved an inter-
nal validation on 10% samples taken out of training data for
learning the optimal model. The model’s performance (Pear-
son correlation = 0.56£0.07, MAE = 1.83+0.06) was com-
parable to previous works involving MMSE regression using
deep learning on GMV maps [10]. It should be noted that
in the scope of this study, the main aim was computing rele-
vant ISNs, given the regression model learns with comparable
performance to previous studies.

3.3. Biological relevance of ISNs

Table 1 shows the top 10 regions of interest (ROIs) in the
brain and the involved brain domains from each of the ISN
sorted according to the mean contributive strength across the
ROI voxels calculated as the mean z-score across ROI vox-
els in the standardized ISN brain maps. As listed in Table 1,
we found that the ISNs cover important regions in various
brain domains namely the default mode network (DMN), vi-
sual areas (VIS), auditory areas (AU), cerebellar areas (CB),
cognitive control (CC), sensorimotor (SM) and sub-cortical
(SC) areas. For example, the first ISN corresponds to SC-
VIS, the second one to SC-CC, the third to DMN, and so on.
The set of domains and ROIs are interesting because many of
these are the ones involved in what MMSE measures, namely:

orientation, attention, memory, language, and visual-spatial
skills. Essentially, our framework is able to uncover indepen-
dent brain subsystems that characterize the multiple aspects
of changes captured by the composite MMSE score.

Brain areas like the hippocampus, amygdala, parahip-
pocampal gyrus, occipital pole, fusiform gyrus, and cerebel-
lum feature in the ISNs. Moreover, the thalamus, putamen,
and caudate are also part of many ISNs. These observations
agree with the results from earlier studies regarding the brain
areas disrupted in Alzheimer’s disease [17].

4. CONCLUSION

In this work, we present a novel methodology to compute in-
dependent networks in the brain that characterize the saliency
of brain structure towards changes captured by target clini-
cal assessments (MMSE score) for a given disorder. Instead
of performing unsupervised decompositions, our framework
is able to take into account the saliency information from
specific target clinical assessments while also utilizing voxel-
level data in a deep learning framework. Moreover, instead
of simply summarizing a list of important associated brain ar-
eas, our framework is aimed at an automated computation of
intrinsic brain networks associated with a particular clinical
variable. Our framework is able to successfully synthesize the
goals of saliency analysis and subspace decomposition into a
single automated pipeline while also handling voxel-level fea-
tures from the brain.

In summary, such frameworks are essential for biomarker
development for brain disorders as they offer an integrated
approach for studying associations of the changes in the brain
with the onset of brain disorders. In future, this approach can
be extended to synthesize information from multimodal data
as well as multiple clinical assessments at the same time.
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