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ABSTRACT

We present a novel deep learning framework to automati-

cally compute independently salient networks in the brain

that characterize the underlying changes in the brain in asso-

ciation with clinically observed assessments. Unsupervised

approaches for high-dimensional neuroimaging data focus

on computing low-dimensional brain components for sub-

sequent analysis, while supervised learning approaches aim

for predictive performance and yielding a single list of asso-

ciative feature importance, thus making it hard to interpret

at the level of brain subsystems. Our approach integrates

the goals of decomposition into lower dimensional subspaces

and, identifying salient brain subsystems into a single au-

tomated framework. We first train a convolutional neural

network on structural brain features to predict clinical as-

sessments, followed by a multi-step decomposition in the

saliency space to compute salient brain networks that intrin-

sically characterize the brain changes associated with the

assessment. Through a repeated training procedure on an

Alzheimer’s disease (AD) dataset, we show that our method

effectively computes AD-related salient brain subsystems

directly from high-dimensional neuroimaging data, while

maintaining predictive performance. Such approaches are

crucial for data-driven biomarker development for brain dis-

orders.

Index Terms— Deep Learning, Subspace Learning, Neu-

roimaging, Saliency Analysis, Alzheimer’s Disease, Ageing,

Independent Component Analysis

1. INTRODUCTION

Brain disorders often involve changes that affect structure as

well as function of multiple subsystems of the brain. The

structural differences that manifest in patients with increas-

ing severity of neurodegenerative disorders like Alzheimer’s

disease involve an interplay of complex changes in the brain

and often require nuanced frameworks to analyze. With the

hope of developing relevant biomarkers for various brain

disorders, neuroimaging techniques like magnetic resonance

Corresponding author: Ishaan Batta (ibatta@gsu.edu)

imaging (MRI) have been very promising for looking into

such changes in a considerably detailed manner [1]. While

MRI produces a detailed map of the full brain with a millime-

ter resolution, analyzing the resultant high-dimensional data

from cohorts to extract meaningful signatures for disorder-

related changes has been challenging. Numerous statistical

and machine learning (ML) approaches have focused on the

goal of utilizing neuroimaging data to understand these as-

sociated brain changes across subjects as well as lifespan

[2, 3].

A prominent way for such approaches to study brain

changes in disorders is to identify the set of brain regions that

are either associated with or are predictive of a particular dis-

order class and its clinical assessment scores [3]. Features for

ML approaches created from Neuroimaging data are usually

used to assess the importance of various brain regions and/or

connections toward a predictive ML task. Standard ML ap-

proaches have often used various ways to handle the high

dimensionality of neuroimaging data by reducing or decom-

posing it to create useful features [4]. While reducing it by

averaging over brain voxels belonging to regions of interest

(ROIs) has been commonly used [5], decomposition methods

to produce data-driven features have also shown to be help-

ful for studying associations with various disorders [6, 7].

Many decomposition approaches have been developed using

methods like principal component analysis (PCA) as well as

independent component analysis (ICA) [6] to create data-

driven brain components corresponding to areas in the brain

and summarizing the high dimensional neuroimaging data

into low dimensional representations. Such approaches have

also found utility in combining information from multiple

datasets [8] and handling multiple data modalities involving

structural and functional features, while yielding subject-

specific features for associative analysis [9].

Since the oncoming of deep learning (DL) models, the

need for having to reduce high-dimensional data into a sum-

marized set of low-dimensional features has been removed

as an additional step for prediction and associative purposes.

This is because DL models have been shown to encode robust

representations directly from voxel-level data as compared to

summarized features from standard ML models, while also

yielding better prediction performance [10, 11].
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However, post hoc feature analysis on both standard

ML and DL models yields a single set of region-level or

voxel-level results that have to be further manually studied

or assigned to multiple brain sub-systems that are affected

by the disorder [12]. Given that brain disorders often have

multiple overlapping variants [13], each affecting multiple

sub-systems in the brain, thus demanding the need for anal-

ysis frameworks to create multi-set or multi-level summaries

of involved complex changes in the brain [14, 15]. While

decomposition methods like independent subspace analysis

have been built upon such promise [6], they have been devel-

oped for only unsupervised decomposition on neuroimaging

data, not involving any particular disorders, thus requiring

further development of complicated posthoc statistical or

manual methods to utilize such subspaces for finding disease-

specific changes in the brain. To uncover such associated

multi-level changes that are involved in a brain disorder, there

is a need to develop novel frameworks that not only encode

associative information in an effective manner, but are also

able to automatically discern the multiple sets of brain sub-

systems that are affected, instead of returning a large single

set of features ranked according to their importance.

We present a new methodological approach aimed at uti-

lizing high-dimensional neuroimaging data with deep learn-

ing, as well as identifying multiple subsystems in the brain

that are associated with changes in target assessments for a

given brain disorder. Our approach involves the use of a DL

model based on a convolutional neural network to first learn

predictive associations between voxel-level neuroimaging

features and target clinical assessments, followed by active

subspace learning and independent components analysis on

the saliency space of the learned models to identify multiple

important directions that characterize the change in the target

clinical assessment with respect to structural features in the

brain. We also perform a robust repeated analysis to ensure

the identification of consistent underlying independent active

subspaces. By testing our model on an Alzheimer’s disease

dataset, we show that our framework is able to: (a) success-

fully automate the process of identifying multiple subspaces

in the brain, (b) compute subspaces in a semi-supervised

manner such that they capture important brain changes with

respect to clinical assessments of a given disorder, (c) utilize

voxel-level information by engaging DL architectures, and

(d) retain comparable predictive performance.

2. METHODS

2.1. Dataset and Pre-Processing

We used structural MRI data from the ADNI dataset (adni.

loni.usc.edu), including only the first visit scans for

1733 subjects (950/783 M/F, age 75.54 ± 7.29) with 468
controls (CN), 933 subjects with mild cognitive impairment

(MCI) and 332 subjects with Alzheimer’s Disease (AD). Pre-

processing was done using a standard SPM12 pipeline as

in previous studies [11]. For feeding into the deep learn-

ing architecture, all maps were warped to the standard MNI

space with dimensions 121×145×121, followed by Gaussian

smoothing (FWHM = 12 mm). As target variable for the anal-

ysis, we used mini-mental score examination (MMSE) score

(mean 26.99, std 2.89, range 9− 30), which is a global clini-

cal assessment (at a scale of 0 − 30) of cognitive status used

towards diagnosis of cognitive impairment and Alzheimer’s

disease.

2.2. Multimodal Deep CNN Classifier

The features obtained after the pre-processing step mentioned

in subsection 2.1 above were input into a 3D variant of the

AlexNet architecture [16] as shown in step 1 of ??. AlexNet

has been shown to encode predictive features using voxel-

level data successfully [10].

Training of the architecture on for MMSE score regres-

sion was done independently with stratified 10-fold external

cross-validation with 10% data for internal validation dur-

ing training. After training, the gradients computed with

back-propagation were used for the subsequent subspace

learning analysis on the mutually exclusive test sets spanning

the whole dataset from the 10 folds of the external cross-

validation procedure.

2.3. Active Subspace Learning (PCA step)

Let x ∈ R
m be a point in the m-dimensional space of input

features, and consider a function f : Rm → R that maps input

space to the target variable space. It should be noted that in

this case, x could represent structural brain features like GMV

map for a subject with y as the value of the clinically observed

cognitive or biological assessment variable, and f can be the

underlying regression function learned by the DL architecture

upon training. Active subspace learning on Learning of active

subspaces for the mapping f is performed as an eigendecom-

position of covariance of the gradients of f . The covariance

C can be defined as:

C = E
[

(∇xf)(∇xf)
T
]

(1)

Ĉ =
1

n

n
∑

i=1

(∇f(xi))(∇f(xi))
T (2)

In practice, one can estimate C as Ĉ from the data. In this

approach, f can be considered to be the function learned by

the 3D-CNN architecture in Figure 1 upon being trained on

a dataset with n subjects, [X,y], where X ∈ R
m×n, and

y ∈ R
n.

The next step in active subspace learning involves the

eigendecomposition of C to obtain a set of active subspaces

represented by the eigenvectors with significantly large eigen-

values (Equation 4). Subsequently, transformed features X̂
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Fig. 1: An overview of the methodology to compute independently salient networks (ISNs) from structural MRI maps. After training a

CNN-based DL architecture with repeated 10-fold cross-validation (step 1), the subject-specific saliency maps from across repetitions are

aggregated (step 2) and decomposed (step 3) using an active subspace learning framework defined in subsection 2.3. Subsequently, ICA is

performed (step 4) on the active subspaces followed by back-reconstruction to obtain the ISN maps.

can be generated by projecting the input data onto the active

subspaces (Equation 5).

C = WΛWT (3)

Λ =

[

ΛA

ΛI

]

, W = [WA WI ] , (4)

such that ΛI ≈ 0, and λi k 0 ∀λi ∈ ΛA

X̂ = WA
TX (5)

2.4. Learning of independently salient networks (ISNs)

The procedure of learning active subspaces from the data de-

scribed in subsection 2.3 can be considered as performing

principal component analysis (PCA) on the saliency space of

the data since the active subspaces are essentially mutually

orthogonal directions of maximum variance in the saliency.

In the current context, the input feature space corresponds to

the voxel-level structural MRI maps while the saliency space

corresponds to voxel-level saliency maps generated via gra-

dient back-propagation from the trained CNN architecture as

described in subsection 2.2. Thus, to compute the active sub-

spaces in the data, we performed PCA on the saliency maps

obtained from the test subjects across the 10-fold repetitions

spanning the whole dataset. The model order was selected to

get the top subspaces such that they cover at least 95% of the

variance in the data.

For voxel-level neuroimaging data, independent compo-

nent analysis (ICA) after the PCA step as dimensionality re-

duction is known to give more stable results in terms of com-

puting meaningful sources in larger datasets because of it be-

ing a generative model assuming the sources in the data to

be independent mixtures, which by definition also involves

higher order statistics that just non-correlation maximized by

PCA [6]. Thus, we performed an ICA on the subspace pro-

jections X̂ computed by the PCA step on saliency maps from

across repetitions, to obtain independently salient networks

(ISNs) in the data. The ISNs characterize independent salient
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Fig. 2: Standardized full-brain maps showing independently salient networks (ISNs) for MMSE score. ISNs are computed

by performing a PCA step on the voxel-level saliency maps from a trained DL model (Figure 1) for MMSE regression using

structural gray matter volume (GMV) maps, followed by ICA to compute the underlying directions of change in MMSE with

respect to the changes in GMV in the brain.

directions of change in the target variables with respect to

changes in the input. In addition to the ISNs, the ICA proce-

dure also yields subject-specific loadings, which are the pro-

jection of input data onto the ISNs.

This ICA decomposition procedure, which acts on the

PCA loadings matrix X̂ from Equation 5, can be described

as follows:

X̂ = AS (6)

Ŝ = WAST (7)

The matrix A represents the ICA loadings and S rep-

resents the ISNs computed as source ICA components but

in terms of a weighted linear combination active subspaces

in WA. The ISNs are computed as voxel-level brain maps

by back-reconstruction as shown in Equation 7, representing

multiple independent intrinsically salient brain networks that

characterize the changes in brain structure with respect to the

changes in the clinically observed variable (MMSE).

3. RESULTS

3.1. Computing Independently Salient Networks (ISNs)

Upon training the CNN model, the saliency maps were

computed for test subjects from each repetition using gra-

dient back-propagation followed by Gaussian smoothening

(FWHM=12mm) and global mean removal. A PCA step was

used to reduce the voxel-level saliency maps in MNI space to

1000 constituent active subspaces and loadings so as to cover

at least 95% of variance in the saliency data. Subsequently,

an ICA step with a model order of 10 was performed. This

was followed by back-reconstruction as described in subsec-
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ISN-1 ISN-2 ISN-3 ISN-4 ISN–5 ISN-6 ISN-7 ISN-8 ISN-9 ISN-10

RPall(1.73) LAmyg(-1.94) SpmGa(-1.35) SMC(-2.54) FrMC(-1.41) SpmGa(1.26) RAmyg(-2.36) LPall(-1.98) OccPole(1.16) FrMC(-1.37)

RAmyg(1.39) OccPole(-1.19) LAmyg(1.26) LPall(1.54) CBv7-10(-1.34) SpmGa(1.05) LAmyg(-1.44) LPuta(-1.65) SpmGa(-1.14) LAmyg(1.10)

OccPole(-1.35) LPall(-1.15) OccPole(1.25) SFG(-1.07) LBrSt(-1.23) AngG(0.97) CBlCr(0.91) CBlCr(-1.07) SupCalc(1.08) TOfusi(1.05)

LPuta(1.27) FrMC(0.98) SPL(-1.13) CBlCr(-0.92) LCaud(0.97) LAmyg(-0.83) CBl1-4(0.84) SpmGa(-0.85) Cun(1.01) LPuta(1.00)

LAmyg(0.99) RAmyg(-0.90) SpmGa(-1.11) LNA(-0.81) LThal(0.88) RPall(0.81) CBl7-10(0.83) RAmyg(0.83) iCalc(0.90) FP(-0.97)

LHipp(0.97) SFG(0.86) PoCG(-1.06) LOCs(0.80) CeOper(0.87) SFG(0.80) CBv5-6(0.80) MTGa(0.80) SpmGa(-0.73) Ins(0.70)

TOfusi(0.97) CBr7-10(0.79) AngG(-1.03) STGp(0.79) FrOrb(-0.82) PoCG(0.75) RCaud(0.78) AngG(-0.80) PC(0.71) CBl1-4(0.70)

LPall(0.94) RCaud(0.75) PreCG(-0.98) Cun(0.77) RThal(0.77) FP(-0.75) LHipp(0.77) RThal(-0.78) AngG(-0.70) LPall(0.65)

ParOper(-0.93) LOCi(-0.72) SFG(-0.85) LPuta(0.74) STGa(-0.75) PreCG(0.73) IFGpo(-0.76) SpmGa(-0.77) RPall(-0.63) SFG(-0.64)

PlanTe(-0.90) TP(0.70) PC(-0.77) MTGto(0.70) CBl1-4(-0.75) SMC(0.72) RHipp(-0.75) TfusiA(-0.77) RAmyg(-0.59) CBl5-6(0.63)

SC-VIS SC-CC DMN CC-SM SC-CC SM-SC DMN-SM AUD-SC VIS-DMN CC-SC-AUD

Table 1: The top 10 regions of interest (ROIs) for all ISNs sorted based on mean contributive strength defined as mean of z-score

of standardized ISN map across ROI voxels with |z| > 1 in the given ISN map. Mean strengths are shown in parentheses with

signs indicating whether the particular ROI had a positive or negative contribution in the ISN towards change in MMSE score.

Full names and coordinates for the ROIs can be found at this link. The lowermost row for each ISN represents the primary

brain domains of the involved ROIs based on their function. These domains are: the default mode network (DMN), visual areas

(VIS), auditory areas (AU), cerebellar areas (CB), cognitive control (CC), sensorimotor (SM) and sub-cortical (SC) areas.

tion 2.4 to get brain maps for 10 independently salient net-

works (ISNs) that characterize the change in MMSE scores

with respect to structural GMV features. Figure 2 shows the

10 back-reconstructed ISNs as standardized brain maps.

3.2. Prediction Performance

Hyperparameter tuning for batch size (bs) and learning rate

(lr) was performed on the CNN architecture shown in Fig-

ure 1 to obtain an optimally performing model for MMSE

regression (bs=32, lr=0.01). We did external 10-fold cross-

validation, leading to 10 repetitions of the training and testing

procedure on the dataset. Each repetition involved an inter-

nal validation on 10% samples taken out of training data for

learning the optimal model. The model’s performance (Pear-

son correlation = 0.56±0.07, MAE = 1.83±0.06) was com-

parable to previous works involving MMSE regression using

deep learning on GMV maps [10]. It should be noted that

in the scope of this study, the main aim was computing rele-

vant ISNs, given the regression model learns with comparable

performance to previous studies.

3.3. Biological relevance of ISNs

Table 1 shows the top 10 regions of interest (ROIs) in the

brain and the involved brain domains from each of the ISN

sorted according to the mean contributive strength across the

ROI voxels calculated as the mean z-score across ROI vox-

els in the standardized ISN brain maps. As listed in Table 1,

we found that the ISNs cover important regions in various

brain domains namely the default mode network (DMN), vi-

sual areas (VIS), auditory areas (AU), cerebellar areas (CB),

cognitive control (CC), sensorimotor (SM) and sub-cortical

(SC) areas. For example, the first ISN corresponds to SC-

VIS, the second one to SC-CC, the third to DMN, and so on.

The set of domains and ROIs are interesting because many of

these are the ones involved in what MMSE measures, namely:

orientation, attention, memory, language, and visual-spatial

skills. Essentially, our framework is able to uncover indepen-

dent brain subsystems that characterize the multiple aspects

of changes captured by the composite MMSE score.

Brain areas like the hippocampus, amygdala, parahip-

pocampal gyrus, occipital pole, fusiform gyrus, and cerebel-

lum feature in the ISNs. Moreover, the thalamus, putamen,

and caudate are also part of many ISNs. These observations

agree with the results from earlier studies regarding the brain

areas disrupted in Alzheimer’s disease [17].

4. CONCLUSION

In this work, we present a novel methodology to compute in-

dependent networks in the brain that characterize the saliency

of brain structure towards changes captured by target clini-

cal assessments (MMSE score) for a given disorder. Instead

of performing unsupervised decompositions, our framework

is able to take into account the saliency information from

specific target clinical assessments while also utilizing voxel-

level data in a deep learning framework. Moreover, instead

of simply summarizing a list of important associated brain ar-

eas, our framework is aimed at an automated computation of

intrinsic brain networks associated with a particular clinical

variable. Our framework is able to successfully synthesize the

goals of saliency analysis and subspace decomposition into a

single automated pipeline while also handling voxel-level fea-

tures from the brain.

In summary, such frameworks are essential for biomarker

development for brain disorders as they offer an integrated

approach for studying associations of the changes in the brain

with the onset of brain disorders. In future, this approach can

be extended to synthesize information from multimodal data

as well as multiple clinical assessments at the same time.
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