
  

 

Abstract4 Many studies in neuroscience have focused on 

interpreting brain activity using functional connectivity (FC). 

The most widely used approach for measuring FC is based on 

linear correlation (e.g., the Pearson correlation), where the 

temporal cofluctuations between functional brain regions are 

computed. However, such approaches ignore nonlinear 

dependencies among regions that might carry distinctive 

information across groups of subjects. In this study, we offer a 

deep learning-based approach that also captures nonlinear 

temporal relationships between brain networks. Our approach 

consists of two main parts: an encoder that learns domain-

specific embeddings of time courses estimated from independent 

component analysis (ICA) and a similarity metric that measures 

the similarities between the embeddings. We call such 

similarities as nonlinear functional relationships between 

networks. Our findings on a large dataset (including above 11k 

normal control subjects) suggest that male subjects exhibit 

stronger nonlinear network-network relationships than female 

subjects in most cases. Furthermore, we observe that, unlike FC, 

our approach could capture some intra-network relationships, 

especially between cognitive control and visual networks, which 

are significantly different between males and females, suggesting 

that our approach can provide a complementary interpretation 

of the functional brain activity to FC. 

I. INTRODUCTION 

Functional connectivity is a method to measure functional 
relationships between brain regions that might be spatially 
distant or anatomically disconnected. It quantifies the 
statistical dependencies between blood-oxygenation-level-
dependent (BOLD) signals generated during a functional 
magnetic resonance imaging (fMRI) scan. Functional 
connectivity can be estimated either from time series 
computed from a seed-based method (called FC) or time 
courses estimated from an ICA method (called functional 
network connectivity, FNC) [1]. Both methods have been 
widely applied to fMRI (especially resting-state fMRI, rs-
fMRI) data. Networks estimated from ICA are attractive in 
terms of reproducibility across sessions and centers as ICA is 
not biased towards a prior-knowledge selection of seeds [2].   

Many rs-fMRI studies have shown functional connectivity 
varies between female and male subjects. For example, [3] 
observed that intra-domain networks (especially within default 
mode and sensory-motor networks) have stronger FNC in 
males than females, while the opposite was found for inter-
domain networks. [4] and [5] reported stronger FC in males 
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compared with females in default mode networks. 
Furthermore, [6] reported increased FC in parietal and 
occipital networks but decreased FC in frontal and temporal 
networks in men. Also, the authors found that male subjects 
have stronger FNC between cognitive and sensory networks 
but weaker FNC between right working memory and attention 
networks.  

Other rs-fMRI studies have used gender differences in 
functional connectivity to predict gender in new data. For 
example, [7] predicted gender using FC and highlighted intra-
network connections in default mode, frontoparietal and 
sensorimotor networks as the highest contributing features to 
the prediction. Also, [8] showed that the connection between 
the cingulate cortex, medial and lateral frontal cortex, 
temporoparietal regions, precuneus, and insula to other regions 
contributed the most to gender classification. 

In general, previous gender-related rs-fMRI studies have 
mostly used FCs that are derived from correlation-based 
approaches, such as the Pearson correlation, in which only the 
linear dependencies between time series are considered. While 
such approaches are simple to implement and fast to execute, 
they fall short in extracting complex nonlinear temporal 
patterns that tie together pairs of networks. Hence, in this 
paper, we propose a deep learning-based model to extract 
<nonlinear= functional couplings/relationships between ICA-
estimated time courses. In light of that, we first adapt a 
supervised contrastive learning-based framework, which has 
shown promise in the image processing domain, to the time 
series data for learning domain-informative embeddings. 
Then, we measure the similarity of the embeddings, which 
measures the nonlinear functional network couplings 
(henceforth, nFNC). Finally, we use nFNC to investigate the 
role of gender in differentiating the functional relationships 
between pairs of networks.  

II. METHOD 

We develop a contrastive learning-based model that maps 
the input samples, i.e., ICA-estimated time courses, into 128-
dimensional embeddings such that samples of the same classes 
fall near each other in a learnable embedding space, while at 
the same time, those belonging to other classes are pushed 
away from each other. The model is designed in a supervised 
setting, where domain labels, such as auditory, visual, etc., are 
considered as classes. Our model, in a nutshell, is comprised 
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of three main components, 1. an encoder network that 
generates normalized embeddings of time course inputs, 2. a 
projection head where a supervised contrastive loss is applied, 
and 3. a cosine similarity metric layer which is applied on the 
normalized outputs from the embedding layer to calculate a 
nonlinear similarity between the networks. 

A. The encoder network 

We utilize a bidirectional long short-term memory (LSTM) 
[9] network to learn from the past and future of a time course. 
We implement the LSTM in two layers, each of which has a 
hidden size of 128. That is, the first recurrent layer is stacked 
over the second layer, which processes the first layer9s outputs. 
We concatenate the outputs of the two layers, which results in 
256 output features. Furthermore, we add a dropout on the first 
layer with a dropout probability equal to 0.2. Finally, the 256 
outputs are fed into a 128-dimensional fully connected layer, 
i.e., the embedding layer, followed by a normalization layer on 
top of it. In summary, the encoder maps a 450-length time 
course into normalized 128-dimensional high-level 
embeddings, which contain the domain information. A 
contrastive loss function guides the model to encode domain-
informative embeddings in a supervised way which is 
explained in the subsection. 

 
Figure 1. Proposed model high-level architecture. The model 

consists of an LSTM-based encoder that generates normalized 

domain-specific embeddings of time courses and a projection head 

where the supervised contrastive loss is applied. 

B. The projection layer 

We stack a fully connected layer, called the projection 
layer, on the normalized outputs from the embedding layer. 
We then apply a supervised contrastive learning loss [10] on 
the normalized outputs of the projection layer. This loss 
induces a model for which generated embeddings of same-
domain samples remain close to each other and far from others 
in the embedding space. Hence, the encoder network generates 
domain-specific embeddings of the input networks. 

The contrastive learning loss operates on pair of samples, 
including multiple positive pairs (i.e., pairs with samples of the 

 
1The size of negative samples is usually larger than the positive samples. 
2 This is an academic study for which no ethical approval was required. 

same class) and multiple negative pairs (i.e., pairs with 
samples of different classes). In our work, we generate positive 
and negative pairs as follows. For a given input network, to 
generate a positive pair, we link it with a network of the same 
domain of a different subject. Likewise, to generate a negative 
pair, we link the sample with a network of a different domain 
and a different subject.  

A significant benefit of the supervised contrastive loss is 
that it computes the loss by comparing and contrasting 
multiple positive pairs and multiple negative pairs1 per anchor. 
Whereas other well-known contrastive learning-based losses 
are based on single-positive or/and single-negative pairs in 
each batch (e.g., triplet loss [11] and hard negative-mining 
[12]). This encourages the supervised contrastive loss to 
estimate a more accurate margin between domains and within 
networks of the same domain.  

C. The similarity metric layer 

Once the model is trained, we freeze the encoder network 
to generate domain-specific network embeddings. Then, we 
compute the cosine similarity between any two embeddings to 
quantify how nonlinearly similar their corresponding time 
courses are. A large value of similarity suggests a strong 
relationship between the underlying brain networks and 
conversely.  

D. Transferring the knowledge and finetuning   

Once the model is pretrained as described, we need to 
finetune it for the domain classification task. To do that, we 
add a fully-connected linear classification layer on top of the 
pre-trained encoder and finetune the overall model while 
having the weights of the encoder component frozen.  

III. EXPERIMENTAL DATA 

A.  Participants 

We evaluate our proposed model on a resting-state fMRI 
(rs-fMRI) dataset from the UK Biobank study2 [13]. The 
dataset includes 11754 participants with the same age 
distribution between males and females. The demographic 
data from the participants are reported in Table 1. 

TABLE I.  PARTICIPANT DEMOGRAPHICS 

 
Population 

Number 

Age 

Mean SD Min Max 

All 11754 (100%) 62.56 7.38 45 80 

Male 5772 (49%) 63.08 7.54 45 80 

Female 5982 (51%) 62.07 7.19 46 80 

B. Data acquisition and preprocessing 

 Rs-fMRI data were acquired during a six-minute scan by 
a 3-Tesla Siemens Skyra scanner. The preprocessing steps 
performed by UK Biobank are motion correlation with 
MCFLIRT, normalization based on grand-mean intensity, 
Gaussian-weighted high-pass temporal filtering, and EPI and 
GDC unwarping (for more details, see here3). 

3 https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf  
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C.  Group-independent component analysis 

We apply a fully automated spatially constrained ICA [14] 
using the NeuroMark framework [15] to our preprocessed data 
to estimate one hundred reproducible functional networks. 
Subsequently, we choose fifty-three of these networks based 
on our empirical filtering policy. ICA estimates both spatial 
maps and their corresponding time courses of functional 
networks. In this study, we focus only on the time courses, 
each having a length of 450 time points. Figure 2 visualizes 
the location of these networks in the brain and groups them 
into functional domains. 

 
Figure 2. Brain networks estimated from ICA. Functional networks are 

grouped into seven domains: subcortical (SC, five networks), visual (VI, nine 

networks), auditory (AU, two networks), cognitive control (CC, seventeen 

networks), sensory-motor (SM, nine networks), default mode (DM, seven 

networks), and cerebellar (CB, four networks). 

IV. EXPERIMENTAL RESULTS 

We trained our proposed model for 200 epochs with a 
learning rate of 0.5 and a batch size of 128. We employed a 
five-fold cross-validation technique where three folds are 
considered as the training set, one fold is considered as the 
validation set, and the remaining fold is used as a test set. We 
deduplicated these sets to avoid any data leakage. Our model 
is implemented in PyTorch, and we used NVIDIA Tesla V100 
GPUs with a RAM size of 32GB.  

We performed a hyperparameter search using a grid search 
strategy to pick the model that generates the most informative 
embeddings. The grid search was run on two sets of 
parameters for the hidden size and the batch size4 on the task 
in the method section part D. As such, we used the cross-
entropy loss on the predicted functional domain as a fitness 
measure for our grid-search selection strategy.  

To evaluate the selected best model, for each subject on the 
test dataset, we first compute a similarity matrix with each cell 
containing the cosine similarity between the embedding of the 
corresponding networks, which we call the nonlinear 
functional network coupling matrix (nFNC, for short). Next, 
we take the average of the nFNC matrices across female and 
male samples separately and calculate the difference between 
the resulting two averaged matrices. Figure 3.A visualizes the 
difference between the two matrices (the upper triangular 
matrix) along with the corresponding cells with significant 

 
4 including a hidden size of 64, 128, 256, and 512, and a batch size of 128, 

256, 512, and 1024. 

false discovery rate (FDR) corrected p-values using a two-
sample t-test (the lower triangular matrix)5. Interestingly, most 
(76%) of network-network couplings among male subjects 
exhibit a significantly stronger nonlinear nFNC than those of 
female subjects. For example, the couplings between the visual 
and cognitive control networks, between the subcortical and 
default mode networks, and within the cerebellar networks are 
stronger in males. This is while, for females, the nFNC matrix 
shows stronger functional couplings between the subcortical 
and sensory motor networks, within subcortical networks, and 
within visual networks.  

We furthermore compute the FNC matrix generated from 
the Pearson correlation between ICA-estimated time courses. 
Figure 3.B shows the difference between the FNC matrix of 
males and females, as well as values with significant FDR 
corrected p-values from a two-sample t-test in the lower 
triangular matrix. We can observe that 55% of networks in 
males have significantly stronger FNC than females, this is 
especially the case for intra-networks in subcortical, sensory-
motor, and cerebral. On the contrary, the SC-AU, SC-SM, 
AU-CB, and SM-CB connections in females are higher than in 
males. 

Comparing nFNC (Figure 3.A) to FNC (Figure 3.B) 
suggests that while in both cases, the corresponding heatmaps 
show clustered arrangement of high-intensity points, in terms 
of the domains, they present different gender-based patterns. 
For example, for males, nFNC shows stronger couplings 
between subcortical and cognitive control in most cases, while 
this is the opposite in FNC. Also, intra-subcortical networks 
have stronger FNC in males, but they have stronger nFNC in 
females. On the other hand, both FNC and nFNC show similar 
relationships between the two genders in AU-SM, SM-CB, 
VI-CB, and VI-DM. Another interesting observation is that 
our contrastive learning-based approach detects significant 
gender differences in functional relationships, whereas for 
FNC this is not the case, especially for VI-CC (see Figure 3.C). 

V. DISCUSSION 

Overall, our proposed model shows that nonlinear 
temporal relationships between brain networks that are 
computed based on a contrastive framework can provide 
complementary information of brain neural activity to FNC. 
Interestingly, nFNC recognizes more links between the visual 
networks and cognitive control network than FNC that are 
significantly different across the two groups of gender. We 
observe a greater number of significantly stronger couplings in 
nFNC than in FNC for males, which suggests that nonlinear 
relationships are important for evaluating interactions with 
gender. Furthermore, we found that males have stronger intra-
networks FNC in sensory-motor and intra-networks nFNC in 
default mode, a fact that has been corroborated by other studies 
as in [3, 4]. It is also interesting to note that both FNC and 
nFNC find consistent strong patterns of couplings between 
subcortical and sensory-motor networks and within visual 
networks (females) and within cerebellar networks (males). 

Last but not least, all the aforementioned observations have 
been reported by a model that is trained without any prior 

5 Note that the figure shows the difference matrix that is averaged across 

the five folds and the p-values that are significant in all the five folds 
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knowledge of gender or any other subject-specific information 
(e.g., age), and hence, the results are less subject to bias.   

VI. CONCLUSION AND FUTURE WORK 

In this paper, we propose a deep learning-based model to 

extract the nonlinear relationship between brain networks. We 

show that our model can learn domain-informative 

embeddings of the brain networks by comparing and 

contrasting the inter- and intra-domain networks. We use a 

similarity metric on the embeddings to measure the extent of 

similarity, which result in a map of nonlinear functional 

network couplings (nFNC). We observe that the differences 

between nFNC of males and females vary differently across 

the functional domains. Furthermore, our results reveal that 

most network-network couplings (76%) have a significantly 

stronger nFNC than in male subjects. Finally, a comparison 

between nFNC and FNC suggests that nonlinear relationships 

between networks can provide some complementary 

information to the linear correlations between networks.  

As a future work, we would like to apply the proposed 

approach to other datasets and investigate the differences 

between groups of patients vs. controls as well as young 

subjects vs. old ones to evaluate the importance of capturing 

nonlinear relationships. We are also interested in using the 

nFNC matrices for the prediction of age, gender, and 

diagnosis. 
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Figure 3. Brain networks estimated from ICA. Figure A shows the nonlinear functional relationships between networks computed from a contrastive 

learning-based model. Figure B shows the functional network connectivity using the Pearson correlation. Values in the lower triangular matrix are their 

corresponding values in the upper triangular matrix that have a significant FDR-corrected p-value from a two-sample t-test. Figure C shows the cells that have 

significant p-values in nFNC but not in FNC. 
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