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Abstract— Many studies in neuroscience have focused on
interpreting brain activity using functional connectivity (FC).
The most widely used approach for measuring FC is based on
linear correlation (e.g., the Pearson correlation), where the
temporal cofluctuations between functional brain regions are
computed. However, such approaches ignore nonlinear
dependencies among regions that might carry distinctive
information across groups of subjects. In this study, we offer a
deep learning-based approach that also captures nonlinear
temporal relationships between brain networks. Our approach
consists of two main parts: an encoder that learns domain-
specific embeddings of time courses estimated from independent
component analysis (ICA) and a similarity metric that measures
the similarities between the embeddings. We call such
similarities as nonlinear functional relationships between
networks. Our findings on a large dataset (including above 11k
normal control subjects) suggest that male subjects exhibit
stronger nonlinear network-network relationships than female
subjects in most cases. Furthermore, we observe that, unlike FC,
our approach could capture some intra-network relationships,
especially between cognitive control and visual networks, which
are significantly different between males and females, suggesting
that our approach can provide a complementary interpretation
of the functional brain activity to FC.

I. INTRODUCTION

Functional connectivity is a method to measure functional
relationships between brain regions that might be spatially
distant or anatomically disconnected. It quantifies the
statistical dependencies between blood-oxygenation-level-
dependent (BOLD) signals generated during a functional
magnetic resonance imaging (fMRI) scan. Functional
connectivity can be estimated either from time series
computed from a seed-based method (called FC) or time
courses estimated from an ICA method (called functional
network connectivity, FNC) [1]. Both methods have been
widely applied to fMRI (especially resting-state fMRI, rs-
fMRI) data. Networks estimated from ICA are attractive in
terms of reproducibility across sessions and centers as ICA is
not biased towards a prior-knowledge selection of seeds [2].

Many rs-fMRI studies have shown functional connectivity
varies between female and male subjects. For example, [3]
observed that intra-domain networks (especially within default
mode and sensory-motor networks) have stronger FNC in
males than females, while the opposite was found for inter-
domain networks. [4] and [5] reported stronger FC in males
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compared with females in default mode networks.
Furthermore, [6] reported increased FC in parietal and
occipital networks but decreased FC in frontal and temporal
networks in men. Also, the authors found that male subjects
have stronger FNC between cognitive and sensory networks
but weaker FNC between right working memory and attention
networks.

Other rs-fMRI studies have used gender differences in
functional connectivity to predict gender in new data. For
example, [7] predicted gender using FC and highlighted intra-
network connections in default mode, frontoparietal and
sensorimotor networks as the highest contributing features to
the prediction. Also, [8] showed that the connection between
the cingulate cortex, medial and lateral frontal cortex,
temporoparietal regions, precuneus, and insula to other regions
contributed the most to gender classification.

In general, previous gender-related rs-fMRI studies have
mostly used FCs that are derived from correlation-based
approaches, such as the Pearson correlation, in which only the
linear dependencies between time series are considered. While
such approaches are simple to implement and fast to execute,
they fall short in extracting complex nonlinear temporal
patterns that tie together pairs of networks. Hence, in this
paper, we propose a deep learning-based model to extract
“nonlinear” functional couplings/relationships between ICA-
estimated time courses. In light of that, we first adapt a
supervised contrastive learning-based framework, which has
shown promise in the image processing domain, to the time
series data for learning domain-informative embeddings.
Then, we measure the similarity of the embeddings, which
measures the nonlinear functional network couplings
(henceforth, nFNC). Finally, we use nFNC to investigate the
role of gender in differentiating the functional relationships
between pairs of networks.

II. METHOD

We develop a contrastive learning-based model that maps
the input samples, i.e., [CA-estimated time courses, into 128-
dimensional embeddings such that samples of the same classes
fall near each other in a learnable embedding space, while at
the same time, those belonging to other classes are pushed
away from each other. The model is designed in a supervised
setting, where domain labels, such as auditory, visual, etc., are
considered as classes. Our model, in a nutshell, is comprised
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of three main components, 1. an encoder network that
generates normalized embeddings of time course inputs, 2. a
projection head where a supervised contrastive loss is applied,
and 3. a cosine similarity metric layer which is applied on the
normalized outputs from the embedding layer to calculate a
nonlinear similarity between the networks.

A. The encoder network

We utilize a bidirectional long short-term memory (LSTM)
[9] network to learn from the past and future of a time course.
We implement the LSTM in two layers, each of which has a
hidden size of 128. That is, the first recurrent layer is stacked
over the second layer, which processes the first layer’s outputs.
We concatenate the outputs of the two layers, which results in
256 output features. Furthermore, we add a dropout on the first
layer with a dropout probability equal to 0.2. Finally, the 256
outputs are fed into a 128-dimensional fully connected layer,
i.e., the embedding layer, followed by a normalization layer on
top of it. In summary, the encoder maps a 450-length time
course into normalized 128-dimensional high-level
embeddings, which contain the domain information. A
contrastive loss function guides the model to encode domain-
informative embeddings in a supervised way which is
explained in the subsection.
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Figure 1. Proposed model high-level architecture. The model
consists of an LSTM-based encoder that generates normalized
domain-specific embeddings of time courses and a projection head
where the supervised contrastive loss is applied.

B. The projection layer

We stack a fully connected layer, called the projection
layer, on the normalized outputs from the embedding layer.
We then apply a supervised contrastive learning loss [10] on
the normalized outputs of the projection layer. This loss
induces a model for which generated embeddings of same-
domain samples remain close to each other and far from others
in the embedding space. Hence, the encoder network generates
domain-specific embeddings of the input networks.

The contrastive learning loss operates on pair of samples,
including multiple positive pairs (i.e., pairs with samples of the

'The size of negative samples is usually larger than the positive samples.
2 This is an academic study for which no ethical approval was required.

same class) and multiple negative pairs (i.e., pairs with
samples of different classes). In our work, we generate positive
and negative pairs as follows. For a given input network, to
generate a positive pair, we link it with a network of the same
domain of a different subject. Likewise, to generate a negative
pair, we link the sample with a network of a different domain
and a different subject.

A significant benefit of the supervised contrastive loss is
that it computes the loss by comparing and contrasting
multiple positive pairs and multiple negative pairs' per anchor.
Whereas other well-known contrastive learning-based losses
are based on single-positive or/and single-negative pairs in
each batch (e.g., triplet loss [11] and hard negative-mining
[12]). This encourages the supervised contrastive loss to
estimate a more accurate margin between domains and within
networks of the same domain.

C. The similarity metric layer

Once the model is trained, we freeze the encoder network
to generate domain-specific network embeddings. Then, we
compute the cosine similarity between any two embeddings to
quantify how nonlinearly similar their corresponding time
courses are. A large value of similarity suggests a strong
relationship between the underlying brain networks and
conversely.

D. Transferring the knowledge and finetuning

Once the model is pretrained as described, we need to
finetune it for the domain classification task. To do that, we
add a fully-connected linear classification layer on top of the
pre-trained encoder and finetune the overall model while
having the weights of the encoder component frozen.

III. EXPERIMENTAL DATA

A. Participants

We evaluate our proposed model on a resting-state fMRI
(rs-fTMRI) dataset from the UK Biobank study® [13]. The
dataset includes 11754 participants with the same age
distribution between males and females. The demographic
data from the participants are reported in Table 1.

TABLE L. PARTICIPANT DEMOGRAPHICS
Population Age
Number Mean SD Min Max
All 11754 (100%) 62.56 7.38 45 80
Male 5772 (49%) 63.08 7.54 45 80
Female 5982 (51%) 62.07 7.19 46 80

B. Data acquisition and preprocessing

Rs-fMRI data were acquired during a six-minute scan by
a 3-Tesla Siemens Skyra scanner. The preprocessing steps
performed by UK Biobank are motion correlation with
MCFLIRT, normalization based on grand-mean intensity,
Gaussian-weighted high-pass temporal filtering, and EPI and
GDC unwarping (for more details, see here?).

3 https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
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C. Group-independent component analysis

We apply a fully automated spatially constrained ICA [14]
using the NeuroMark framework [15] to our preprocessed data
to estimate one hundred reproducible functional networks.
Subsequently, we choose fifty-three of these networks based
on our empirical filtering policy. ICA estimates both spatial
maps and their corresponding time courses of functional
networks. In this study, we focus only on the time courses,
each having a length of 450 time points. Figure 2 visualizes
the location of these networks in the brain and groups them
into functional domains.

S ™
y=61 =31

Figure 2. Brain networks estimated from ICA. Functional networks are
grouped into seven domains: subcortical (SC, five networks), visual (VI, nine
networks), auditory (AU, two networks), cognitive control (CC, seventeen
networks), sensory-motor (SM, nine networks), default mode (DM, seven
networks), and cerebellar (CB, four networks).

IV. EXPERIMENTAL RESULTS

We trained our proposed model for 200 epochs with a
learning rate of 0.5 and a batch size of 128. We employed a
five-fold cross-validation technique where three folds are
considered as the training set, one fold is considered as the
validation set, and the remaining fold is used as a test set. We
deduplicated these sets to avoid any data leakage. Our model
is implemented in PyTorch, and we used NVIDIA Tesla V100
GPUs with a RAM size of 32GB.

We performed a hyperparameter search using a grid search
strategy to pick the model that generates the most informative
embeddings. The grid search was run on two sets of
parameters for the hidden size and the batch size* on the task
in the method section part D. As such, we used the cross-
entropy loss on the predicted functional domain as a fitness
measure for our grid-search selection strategy.

To evaluate the selected best model, for each subject on the
test dataset, we first compute a similarity matrix with each cell
containing the cosine similarity between the embedding of the
corresponding networks, which we call the nonlinear
functional network coupling matrix (nFNC, for short). Next,
we take the average of the nFNC matrices across female and
male samples separately and calculate the difference between
the resulting two averaged matrices. Figure 3.A visualizes the
difference between the two matrices (the upper triangular
matrix) along with the corresponding cells with significant

4 including a hidden size of 64, 128, 256, and 512, and a batch size of 128,
256,512, and 1024.

false discovery rate (FDR) corrected p-values using a two-
sample t-test (the lower triangular matrix)°. Interestingly, most
(76%) of network-network couplings among male subjects
exhibit a significantly stronger nonlinear nFNC than those of
female subjects. For example, the couplings between the visual
and cognitive control networks, between the subcortical and
default mode networks, and within the cerebellar networks are
stronger in males. This is while, for females, the nFNC matrix
shows stronger functional couplings between the subcortical
and sensory motor networks, within subcortical networks, and
within visual networks.

We furthermore compute the FNC matrix generated from
the Pearson correlation between ICA-estimated time courses.
Figure 3.B shows the difference between the FNC matrix of
males and females, as well as values with significant FDR
corrected p-values from a two-sample t-test in the lower
triangular matrix. We can observe that 55% of networks in
males have significantly stronger FNC than females, this is
especially the case for intra-networks in subcortical, sensory-
motor, and cerebral. On the contrary, the SC-AU, SC-SM,
AU-CB, and SM-CB connections in females are higher than in
males.

Comparing nFNC (Figure 3.A) to FNC (Figure 3.B)
suggests that while in both cases, the corresponding heatmaps
show clustered arrangement of high-intensity points, in terms
of the domains, they present different gender-based patterns.
For example, for males, nFNC shows stronger couplings
between subcortical and cognitive control in most cases, while
this is the opposite in FNC. Also, intra-subcortical networks
have stronger FNC in males, but they have stronger nFNC in
females. On the other hand, both FNC and nFNC show similar
relationships between the two genders in AU-SM, SM-CB,
VI-CB, and VI-DM. Another interesting observation is that
our contrastive learning-based approach detects significant
gender differences in functional relationships, whereas for
FNC this is not the case, especially for VI-CC (see Figure 3.C).

V. DISCUSSION

Overall, our proposed model shows that nonlinear
temporal relationships between brain networks that are
computed based on a contrastive framework can provide
complementary information of brain neural activity to FNC.
Interestingly, nFNC recognizes more links between the visual
networks and cognitive control network than FNC that are
significantly different across the two groups of gender. We
observe a greater number of significantly stronger couplings in
nFNC than in FNC for males, which suggests that nonlinear
relationships are important for evaluating interactions with
gender. Furthermore, we found that males have stronger intra-
networks FNC in sensory-motor and intra-networks nFNC in
default mode, a fact that has been corroborated by other studies
as in [3, 4]. It is also interesting to note that both FNC and
nFNC find consistent strong patterns of couplings between
subcortical and sensory-motor networks and within visual
networks (females) and within cerebellar networks (males).

Last but not least, all the aforementioned observations have
been reported by a model that is trained without any prior

5 Note that the figure shows the difference matrix that is averaged across
the five folds and the p-values that are significant in all the five folds
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Figure 3. Brain networks estimated from ICA. Figure A shows the nonlinear functional relationships between networks computed from a contrastive
learning-based model. Figure B shows the functional network connectivity using the Pearson correlation. Values in the lower triangular matrix are their
corresponding values in the upper triangular matrix that have a significant FDR-corrected p-value from a two-sample t-test. Figure C shows the cells that have

significant p-values in nFNC but not in FNC.
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