

Phage infection fronts trigger early sporulation and collective defense in bacterial populations

Andreea Măgălie,^{1, 2} Anastasios Marantos,³ Daniel A. Schwartz,⁴
Jacopo Marchi,⁵ Jay T. Lennon,^{4, *} and Joshua S. Weitz^{6, 7, 8, †}

¹*School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA*

²*Interdisciplinary Graduate Program in Quantitative Biosciences,*

Georgia Institute of Technology, Atlanta, GA, USA

³*Center for Models of Life, Niels Bohr Institute,*

University of Copenhagen, Copenhagen, Denmark.

⁴*Department of Biology, Indiana University, Bloomington, IN, USA*

⁵*Department of Biology, University of Maryland, College Park, MD, USA*

⁶*Department of Biology, University of Maryland, College Park, MD USA*

⁷*Department of Physics, University of Maryland, College Park, MD USA*

⁸*Institut de Biologie, École Normale Supérieure, Paris, France*

I. ABSTRACT

Bacteriophage (phage) infect, lyse, and propagate within bacterial populations. However, physiological changes in bacterial cell state can protect against infection even within genetically susceptible populations. One such example is the generation of endospores by *Bacillus* and its relatives, characterized by a reversible state of reduced metabolic activity that protects cells against stressors including desiccation, energy limitation, antibiotics, and infection by phage. Here we tested how sporulation at the cellular scale impacts phage dynamics at population scales when propagating amongst *B. subtilis* in spatially structured environments. Initially, we found that plaques resulting from infection and lysis were approximately 3-fold smaller on lawns of sporulating wild-type bacteria vs. non-sporulating bacteria. Notably, plaque size was reduced due to an early termination of expanding phage plaques rather than the reduction of plaque growth speed. Microscopic imaging of the plaques revealed ‘sporulation rings’, i.e., spores enriched around plaque edges relative to phage-free regions. We developed a series of mathematical models of phage, bacteria, spore, and small molecules that recapitulate plaque dynamics and identify a putative mechanism: sporulation rings arise in response to lytic activity. In aggregate, sporulation rings inhibit phage from accessing susceptible cells even when sufficient resources are available for further infection and lysis. Together, our findings identify how dormancy can self-limit phage infections at population scales, opening new avenues to explore the entangled fates of phages and their bacterial hosts in environmental and therapeutic contexts.

1

II. INTRODUCTION

2 Dormancy is a survival strategy found across different types of organisms, including microorganisms. Through
3 dormancy, bacteria enter a long-term, albeit reversible state of reduced metabolic activity without cell division,
4 enhancing survival in the face of environmental stress [1–3]. One ancient and prevalent type of dormancy in bacteria
5 is endosporulation, which is found among *Bacillus* and *Clostridia*. Edosporulation is a complex developmental process
6 that requires a genome duplication prior to asymmetric septum production, forespore formation, engulfment of the
7 mother cell, which ultimately leads to the production of protein-rich endospore (or ‘spore’). Such spores are tolerant
8 to a wide range of environmental stressors, including extreme temperatures, UV radiation, desiccation, and energy
9 limitation [4]. Spores are abundant and have a cosmopolitan distribution (e.g., there is an excess of 10^{28} endospores
10 in marine sediments alone [5]), can survive for extended periods of time (e.g., thousands or millions of years [6–9]),
11 and can harbor genetic diversity given accumulation of genes in a dormant ‘seed bank’ [3, 10, 11].

12 Dormancy also has the potential to protect microorganisms against viral infection. Phage can account for a
13 significant fraction of bacterial mortality [12, 13]. As a result, bacteria have evolved a wide range of intracellular
14 and extracellular mechanisms to prevent phage infection and/or inhibit the viral replication cycle [14–17]. Well-
15 characterized anti-viral defense systems span surface-based resistance (e.g., modifications or deletion of receptors that
16 prevent viral infection) to intracellular defense/immunity (e.g., CRISPR/Cas or resistance-modification systems [14,
17, 18, 19]. However, phenotypic variants of genetically identical microbes can also provide a refuge from phage infection.
18 Examples include the decrease of phage infection of stationary phase or slow-growing bacteria [20], persister cells [21],
19 and endospores [22]. These phenotypic obstacles are not a guarantee of protection. For example, phage T4 is capable

20 of infecting and lysing stationary phase *E. coli* [23] while phage λ can infect and lyse persister *E. coli* cells even if
21 prophage induction is inhibited [24]. In the case of *Bacillus* endospores, the protective outer layer is distinct from
22 that of the actively growing cell and can be depleted or devoid of phage receptor binding domains. As a result, phage
23 adsorption to spores can be reduced significantly and in some cases effectively stopped altogether [22].

24 The ability of dormancy to reduce adsorption of virions to cell surfaces may have consequences for population-level
25 feedback between viruses and microbial hosts. For example, in well-mixed experimental systems, spores stabilized
26 oscillatory host dynamics induced by phage, which reduced the extent of local population crashes [22]. The initiation
27 and exit from dormancy may also be directly linked to interactions with viruses. For example, phage infections can
28 trigger cell-specific dormancy initiation in *Listeria ivanovii* such that intracellular viral genomes can be eliminated
29 during resuscitation out of dormancy [25, 26] – further mitigating the impacts of infection. Likewise, phage genomes
30 may encode for transcription factors that change sporulation patterns in the host, potentially to circumvent host
31 defense and lead to entrapment of viruses in spores [27–31]. Altogether, there is growing evidence dormancy initiation
32 and revival at cellular scales is modulated as part of coevolved defense and counterdefense systems.

33 Scaling up the interplay of viral infection and dormancy from cellular to population scales requires accounting for
34 feedback with the environment. Although many phage-bacteria studies are conducted *in vitro* in shaken flasks, phage
35 infection of bacteria commonly occurs in soils, on surfaces and/or particles, and within metazoan hosts with distinct
36 selection criteria induced by the spatial structure of the environment [32–35]. First, adjacent cells are more likely
37 to be more closely related than if selecting cells from a population at large [36]. Second, resource environments can
38 be patchy with variation in local availability of resources that differ substantially from the average, impacting the
39 outcome of phage-bacteria interactions [37]. Third, lysis will not impact all other bacteria equally, instead the local
40 propagation of phage (along with cellular debris and signals associated with infection and lysis) have the potential to
41 influence cell fates close to sites of viral infection [18, 38–42]. All of these factors present new challenges in developing
42 predictive models of eco-evolutionary phage-host dynamics in structured environments.

43 Here, we explore the interplay between dormancy and viral growth in a simplified, spatially structured environment
44 as a means to address if and how dormancy modulates the spread of viruses within *B. subtilis* populations. To do so,
45 we used conventional plaque assays to evaluate viral growth on a lawn of spore-forming (wild type) and non spore-
46 forming (mutant) hosts. Phage plaques grew at the same rate initially yet produced significantly different final plaque
47 sizes: smaller plaques in wild type vs. mutant hosts. Subsequent microscopic imaging revealed that plaques in the wild
48 type host were surrounded by a ring of mature endospores well before the appearance of endospores far from plaque
49 centers. As we show, this observation catalyzed the integrated development of experiments and mathematical models
50 to explore how dormancy could form a type of collective defense that mitigates the impact of phage propagation at
51 population scales.

52 III. METHODS

53 A. Experimental setup

54 1. Bacterial strains and growth conditions

55 We used two 168 $\Delta 6$ *Bacillus subtilis* strains: a wild type which can sporulate, and a SPOIIIE mutant in which
56 the SPOIIIE gene has been deleted (Δ SPOIIIE, further referred to as the mutant strain). This mutation prevents the
57 cell from sporulating at the asymmetrical division stage *II* which is early in the sporulation process [43] while not
58 changing the fitness or phage infection dynamics of the WT strain [22]. We note that the $\Delta 6$ *Bacillus* strain has a
59 reduced genome, lacks prophages, is immotile, and has reduced biofilm-forming capacity [44]. The $\Delta 6$ *Bacillus* strain
60 is also resistant to chloramphenicol (shown as Cm^R in Table I).

61 To assist with visualization of spore development, we used a fluorescent sporulation reporter, GFP fused to a spore
62 coat protein, under its native promoter (amyE::PcotYZ-gfp-cotZ) into both the WT and Δ SPOIIIE strains. This
63 reporter expresses relatively late in sporulation [45]. For detailed strain construction information, please consult SI
64 Section VIA. Note that GFP is only expressed in the WT strain given that it is controlled by a sporulation-specific
65 promoter.

66 Bacterial cultures were grown in Difco Sporulation Medium (DSM), supplemented with 5 μ g/mL chloramphenicol.
67 DSM is a rich media that is used to obtain high sporulation rates [46, 47]. The cells were streaked from glycerol stock
68 and grown at 37°C overnight in a shaking incubator (200 RPM) to ensure aeration of the culture. After overnight
69 growth, cells were inoculated from a singular colony and grown under identical conditions for \approx 5 h until they reach
70 OD \approx 0.5.

71

2. Phage strains and plaque assay

72 We used two wild type bacteriophages of *Bacillus subtilis*: SPO1 and SPP1 (see Table I for more details on phage
73 strains). The plaque assay protocol was adapted from the ‘tube free agar-overlay’ protocol [48]. In brief, 100 μ l of cell
74 culture at OD 0.5, 100 μ l of viral solution and 2.5 ml of 0.3% agar soft overlay at 55°C were spotted directly on the
75 DSM 1.5% agar. Immediately after the overlay was poured, the plates were homogenized to help ensure that bacteria
76 and viruses were evenly distributed. After the overlay sets at room temperature for 10 min, the plates were moved to
77 a 37°C incubator to grow overnight.

78 To acquire time-lapse imaging of the plaque development, the plates were placed on top of a white LED screen in a
79 37°C room. Top-down images were captured every 5 min for 15 h. The imaging protocol was the same for end-point
80 images in that plates were set on top of a white LED screen and a top-down image was acquired. The end-point
81 images were taken once the plaques reached a stable state, after 15 h at 37°C.

82

3. Micro plaque assay

83 We developed a ‘micro’ plaque assay to examine the microscale features of viral plaques. Bacterial cultures were
84 grown to reach exponential phase as described in Section III A 1. We then prepared a viral dilution series to reach
85 a concentration of $\sim 4 \cdot 10^4$ pfu/ml. Concurrently, agar pads were prepared by pouring 6 mL of DSM medium with
86 a 2% agarose concentration on a 60 x 15 mm Petri dish (based on protocol 3.3 from [49]). Using aseptic technique,
87 the agar was cut with a scalpel into nine squares (1cm x 1 cm) (Fig. S1 panels A-D). Once the bacterial cultures
88 reached OD ~ 0.5 , 1 mL of culture was concentrated by centrifugation at 15000 rpm for 5 min. 900 μ l of supernatant
89 was removed and the remaining 100 μ l before tubes were mixed in a vortex and spun down via centrifugation. The
90 remaining 100 μ l of concentrated culture was mixed with 50 μ l of viral solution. Immediately afterwards, 2 μ l of the
91 bacteria-virus mixture was spotted onto a 50 mm glass-bottom Petri dish (prod no 14027-20 Ted Pella). These smaller
92 plates have a 50 mm glass bottom compatible with microscopy. A 1 cm x 1cm agar pad was placed on top of each
93 droplet, enabling four experiments for each glass-bottom Petri dish. We then incubated the Petri dish at 37°C for
94 8-12 h before imaging (Fig. S1 panel E).

95

B. Image analysis

96

1. Time-lapse and final point image analysis

97 We differentiated plaques from bacterial lawn using a binarization method. Plaque centers were identified as the
98 centroid of the largest connected component. We then iterated backwards in time to determine the centroid and
99 plaque size in previous frames. Full details of the inward moving plaque identification algorithm with intermediate
100 images are reported in SI Sections VIB 1 and VIB 2.

101

2. GFP image analysis

102 We subtracted background fluorescence to compute the average GFP intensity relative to the center of the plaque.
103 The corrected image was used to identify the center of the plaque. Finally, the distance between each pixel and the
104 center was calculated to obtain panel B in Fig. 3; full description provided in SI section VIB 4.

105

C. Mathematical models and simulations

106

1. Mathematical modeling

107 We developed a series of nonlinear partial differential equation models of phage-bacteria interactions in a spatially
108 explicit context, building upon mechanisms described in well-mixed [50] and structured [41] populations. In this
109 model, susceptible bacteria S grow on resources R and can be infected by viruses V yielding infected cells I . Infected
110 cells can lyse releasing new viruses. Susceptible cells can also transition to dormant spores D – phage cannot adsorb to
111 spores [22]. To account for different modes of dormancy initiation, we developed three different model variants: Model
112 R, Model V and Model M (Fig. 4) that differentiate the mechanism underlying dormancy initiation: R - depletion of

113 resources; V - interaction with virus particles and, separately, resource depletion; M - interaction with lysis-associated
 114 molecules and, separately, resource depletion. Initially, susceptible cells and resources are uniformly distributed while
 115 viruses are concentrated at the central point. There are no dormant or infected cells at the beginning of a simulation.
 116 In all model variants, we explicitly account for the spatiotemporal dynamics of populations.

117 *Model R - Resource-only dependent dormancy*

Model R assumes that sporulation in *Bacillus subtilis* is triggered by starvation [3, 43, 51], specifically, dormancy is initiated at a low rate when resources are high and at a much higher rate when resources are depleted [52, 53]. The associated partial differential equations are as follows:

$$\begin{aligned}
 \frac{\partial \tilde{R}}{\partial t} &= - \underbrace{g(\tilde{R})S}_{\text{cell growth}} + \underbrace{D_R \nabla^2 \tilde{R}}_{\text{resource diffusion}} \\
 \frac{\partial S}{\partial t} &= \underbrace{g(\tilde{R})S}_{\text{cell growth}} - \underbrace{\phi SV}_{\text{viral infection}} - \underbrace{f(\tilde{R})S}_{\text{dormancy initiation}} \\
 \frac{\partial I_1}{\partial t} &= \underbrace{\phi SV}_{\text{viral infection}} - \underbrace{\eta(\tilde{R})n_I I_1}_{\text{to next infected state}} \\
 \frac{\partial I_i}{\partial t} &= \underbrace{\eta(\tilde{R})n_I I_{i-1}}_{\text{from previous infected state}} - \underbrace{\eta(\tilde{R})n_I I_i}_{\text{to next infected state or viral lysis}} \\
 \frac{\partial V}{\partial t} &= \underbrace{\beta \eta(\tilde{R}) I_{n_I}}_{\text{viral lysis}} - \underbrace{\omega V}_{\text{viral decay}} - \underbrace{\phi(S + I_{total})V}_{\text{viral infection}} + \underbrace{D_V \nabla^2 V}_{\text{viral diffusion}} \\
 \frac{\partial D}{\partial t} &= \underbrace{f(\tilde{R})S}_{\text{dormancy initiation}}
 \end{aligned} \tag{1}$$

where $\tilde{R}(\mathbf{x}, t)$ is the rescaled density of resources, expressed in units of cells/mL. The rescaling is performed as $[\tilde{R}] = [R/\epsilon] = \frac{\frac{\mu g}{\text{cells}}}{\frac{\mu g}{\text{cells}}} = \frac{\text{cells}}{\text{mL}}$, where ϵ denotes the rate of resource to bacteria conversion measured in $\mu\text{g}/\text{cells}$ (see Table II and Parameter estimations for details). Similarly, $S(\mathbf{x}, t)$, $I(\mathbf{x}, t)$ and $D(\mathbf{x}, t)$ are the densities of susceptible, infected, and dormant bacteria (i.e., spores), respectively, each in units of cells/mL. V designates the density of phage in viruses/mL. Here, immotile bacteria grow by consuming resources while resources diffuse at distinct rates. Susceptible cells can be infected by virulent phage with infection rate ϕ or become dormant if the density of the resources is sufficiently low. Once infected, the cells go through a series of sequential stages n_I of infected states I_i (the sum of which is given by $I_{total} = \sum_{i=1}^{n_I} I_i$), resulting in an effective latent time delay which follows an Erlang distribution. After the latency period, the infected cells burst yielding new free viruses with burst size β . Virus particles can adsorb to cells at a rate ϕ and decay with rate ω . The bacterial growth rate $g(\tilde{R})$, dormancy rate $f(\tilde{R})$ and latent time $\eta(\tilde{R})$ are dependent on available resources and are given by:

$$g(\tilde{R}) = r_{max} \frac{\tilde{R}}{\tilde{K}_g + \tilde{R}} \tag{2}$$

$$f(\tilde{R}) = \frac{d_{max}}{1 + e^{s(\tilde{R} - \sigma)}} \tag{3}$$

$$\eta(\tilde{R}) = \eta_{max} \frac{g(\tilde{R})}{g(\tilde{R}_0)}. \tag{4}$$

118 The growth rate function follows the Monod equation where r_{max} is the maximum bacterial growth rate and \tilde{K}_g the
 119 rescaled Monod constant (similarly to R, $[\tilde{K}_g] = [K_g/\epsilon] = \frac{\frac{\mu g}{\text{cells}}}{\frac{\mu g}{\text{cells}}} = \frac{\text{cells}}{\text{mL}}$). The dormancy rate function is assumed
 120 to be solely dependent on resources but with sporulation starting effectively only when the resource density is close
 121 to a fraction σ of the Monod constant (for Model R $\sigma \approx 0.282\tilde{K}_g$). The ‘sharpness’ of the transition to dormancy
 122 is determined by the value of parameter s . Finally, we choose a resource dependent lysis rate that is proportional
 123 to the growth rate $g(R)$ [54, 55]. This choice is justified by the fact that the plaques stop growing as bacteria have

124 exhausted the available resources. Full details of parameter estimation are in Section VI C 2 and model parameters
 125 are in Table II.

126

Model V - Contact mediated dormancy

In Model V, dormancy can be initiated via starvation or with a probability $p \in (0, 1)$ upon interacting with a virus particle. This yields a family of (p, σ) combinations that exhibit identical plaque growth dynamics, with the $(p = 0, \sigma = 0.282\tilde{K}_g)$ case corresponding to Model R. In order to account for a time delay for spore formation we introduce a series of multiple sequential stages n_E to become dormant [53]. Hence, the dormancy initiation time follows an Erlang distribution. The transition to dormancy is immediate for $n_E = 0$, while a delay is introduced for $n_E > 0$ ($E_{total} = \sum_{i=1}^{n_E} E_i$). The net transition rate between the E-states is λn_E , where $\lambda = \frac{4}{3} hrs^{-1}$, so that the mean transition rate remains constant with varying number of states. In this model formulation, cells transitioning to dormancy can become infected by phage, whereas spores cannot be infected (see Discussion for elaboration on the consequences of relaxing this assumption). All other parameter values are retained across models R and V (as shown in Fig. 4 and Table II). The new terms in Model V are listed in red text, the remainder are shared with Model R:

$$\begin{aligned}
 \frac{\partial \tilde{R}}{\partial t} &= -\underbrace{g(\tilde{R})(S + E_{total})}_{\text{cell growth}} + \underbrace{D_R \nabla^2 \tilde{R}}_{\text{resource diffusion}} \\
 \frac{\partial S}{\partial t} &= \underbrace{g(\tilde{R})S}_{\text{cell growth}} - \underbrace{f(\tilde{R})S}_{\text{dormancy initiation}} - \underbrace{(1-p)\phi SV}_{\text{viral infection}} - \underbrace{p\phi SV}_{\text{dormancy initiation}} \\
 \frac{\partial I_1}{\partial t} &= \underbrace{(1-p)\phi(S + E_{total})V}_{\text{viral infection}} - \underbrace{\eta(\tilde{R})n_I I_1}_{\text{to next infected state}} \\
 \frac{\partial I_i}{\partial t} &= \underbrace{\eta(\tilde{R})n_I I_{i-1}}_{\text{from previous infected state}} - \underbrace{\eta(\tilde{R})n_I I_i}_{\text{to next infected state or viral lysis}} \\
 \frac{\partial V}{\partial t} &= \underbrace{\beta\eta(\tilde{R})n_I I_{n_I}}_{\text{viral lysis}} - \underbrace{\phi(S + I_{total} + E_{total})V}_{\text{viral infection}} - \underbrace{\omega V}_{\text{viral decay}} + \underbrace{D_V \nabla^2 V}_{\text{viral diffusion}} \\
 \frac{\partial E_1}{\partial t} &= \underbrace{f(\tilde{R})S}_{\text{dormancy initiation}} + \underbrace{p\phi SV}_{\text{dormancy initiation}} - \underbrace{\lambda n_E E_1}_{\text{dormancy process}} - \underbrace{(1-p)\phi E_1 V}_{\text{infection of exposed transitioning cells}} \\
 \frac{\partial E_i}{\partial t} &= \underbrace{\lambda n_E E_{i-1}}_{\text{from previous transitioning state}} - \underbrace{\lambda n_E E_i}_{\text{to next transitioning state or to dormancy}} - \underbrace{(1-p)\phi E_i V}_{\text{infection of exposed transitioning cells}} \\
 \frac{\partial D}{\partial t} &= \begin{cases} \underbrace{f(\tilde{R})S}_{\text{dormancy initiation}} + \underbrace{p\phi SV}_{\text{dormancy initiation}}, & n_E = 0 \\ \underbrace{\lambda n_E E_{n_E}}_{\text{transition to dormancy}}, & n_E > 0. \end{cases} \quad (5)
 \end{aligned}$$

127

Model M - Dormancy mediated by lysate-associated molecules

128 Model M represents a scenario where sporulation can be triggered by diffusible molecules released upon cell lysis.
 129 Additional parameters include the rate at which these lysate-associated molecules trigger a susceptible cell to become
 130 dormant, $\mu = 5 \cdot 10^{-11} \text{mL}/(\text{hrs} \cdot (\text{cells}))$, the number of molecules released upon lysis $m = 10^4$ molecules/cell, and the
 131 diffusion constant $D_M = 4 \cdot 10^5 \mu\text{m}^2/\text{hrs}$. The parameters $\sigma = 0.2\tilde{K}_g$ and molecular concentrations are in cells/mL
 132 - representing the equivalent density of cell-to-spore transitions that molecules can trigger. The following system
 133 of equations expands Model R and Model V (see equations sets (1) and (5) for comparison with the black and red
 134 elements in Model M respectively) with the blue terms that are introduced in Model M.

$$\begin{aligned}
 \frac{\partial \tilde{R}}{\partial t} &= -\underbrace{g(\tilde{R})(S + \mathbf{E}_{total})}_{\text{cell growth}} + \underbrace{D_R \nabla^2 \tilde{R}}_{\text{resource diffusion}} \\
 \frac{\partial S}{\partial t} &= \underbrace{g(\tilde{R})S}_{\text{cell growth}} - \underbrace{\phi SV}_{\text{viral infection}} - \underbrace{f(\tilde{R})S}_{\text{dormancy initiation}} - \underbrace{\mu MS}_{\text{dormancy initiation}} \\
 \frac{\partial M}{\partial t} &= \underbrace{m\eta(\tilde{R})I_{n_I}}_{\text{molecule from lysate}} - \underbrace{\mu MS}_{\text{dormancy initiation}} + \underbrace{D_M \nabla^2 M}_{\text{molecule diffusion}} \\
 \frac{\partial I_1}{\partial t} &= \underbrace{\phi(S + \mathbf{E}_{total})V}_{\text{viral infection}} - \underbrace{\eta(\tilde{R})n_I I_1}_{\text{to next infected state}} \\
 \frac{\partial I_i}{\partial t} &= \underbrace{\eta(\tilde{R})n_I I_{i-1}}_{\text{from previous infected state}} - \underbrace{\eta(\tilde{R})n_I I_i}_{\text{to next infected state or viral lysis}} \\
 \frac{\partial V}{\partial t} &= \underbrace{\beta\eta(\tilde{R})I_{n_I}}_{\text{viral lysis}} - \underbrace{\phi(S + I_{total} + \mathbf{E}_{total})V}_{\text{viral infection}} - \underbrace{\omega V}_{\text{viral decay}} + \underbrace{D_V \nabla^2 V}_{\text{viral diffusion}} \\
 \frac{\partial \mathbf{E}_1}{\partial t} &= \underbrace{f(\tilde{R})S}_{\text{dormancy initiation}} + \underbrace{\mu MS}_{\text{dormancy initiation}} - \underbrace{\lambda n_E \mathbf{E}_1}_{\text{dormancy initiation}} - \underbrace{\phi E_1 V}_{\text{infection of exposed transitioning cells}} \\
 \frac{\partial \mathbf{E}_i}{\partial t} &= \underbrace{\lambda n_E E_{i-1}}_{\text{from previous transitioning state}} - \underbrace{\lambda n_E E_i}_{\text{to next transitioning state or to dormancy}} - \underbrace{\phi E_i V}_{\text{infection of exposed transitioning cells}} \\
 \frac{\partial D}{\partial t} &= \underbrace{\lambda n_E E_{n_E}}_{\text{transition to dormancy}}
 \end{aligned} \tag{6}$$

135

D. Data and code availability

136 All simulations were carried out in Python (Jupyter notebooks) and image analysis was carried out in MATLAB v
 137 2020a. Scripts and data are available on Github at https://github.com/WeitzGroup/Plaque_early_sporulation.

138

IV. RESULTS

A. Plaque growth dynamics in sporulating vs. non-sporulating hosts

140 We performed standard plaque assays of phage SPO1 with wild type and mutant hosts at 37° C over a 15 h period,
 141 as described in section III A 2. In both cases, phages proliferated and generated macroscopic zones of clearance, i.e.,
 142 plaques. On average, the radius of mutant plaques was ~ 2.2 fold greater than the radius of wild type plaques (Fig.
 143 1 A). Mutant plaques radii were $1.43 \text{ mm} \pm 0.33 \text{ mm}$ and wild type plaques were $0.64 \text{ mm} \pm 0.2 \text{ mm}$ (t-test, $p < 10^{-3}$).
 144 We assessed the generality of this finding by comparing plaque sizes on sporulating vs. non-sporulating hosts using a
 145 different bacteriophage, SPP1. In this case, we observed a 3.5 fold plaque radius reduction for bacteriophage SPP1
 146 $p < 10^{-3}$, given mutant plaque radii of $1.22 \text{ mm} \pm 0.15 \text{ mm}$ and wild type plaque radii of $0.35 \text{ mm} \pm 0.12 \text{ mm}$ as shown
 147 in Fig. S2). Hence, we observe a similar phenomena across multiple phage types: plaque size is reduced by 2-4 fold
 148 in a population of sporulating bacteria vs. non-sporulating bacteria.

149 In order to further quantify plaque growth dynamics on sporulating vs. non-sporulating hosts, we recorded a time-
 150 lapse of the SPO1 plaques. We extracted the plaque sizes at every 5 min over 15 h (see Methods section III B and SI
 151 section VI B 2), Fig. 2). Both mutant and wild type plaques started growing at the 3 h mark and continued to grow
 152 for 2 h. However, the wild type plaques reached a plateau shortly after 5 h, whereas the mutant plaques continued to
 153 grow until reaching a plateau at 13 h (see differences in wild type and mutant dynamics, Figure 2). The difference
 154 in plaque growth duration is associated with differences in plaque sizes – mutant mean plaque size of $1.28 \pm 0.24 \text{ mm}$
 155 vs. wild type mean plaque size of $0.43 \pm 0.12 \text{ mm}$. Notably, the reduction of plaque size in sporulating hosts across
 156 different phage (Figures 1 and 2) are robust to experimental conditions required for both time-lapse and endpoint
 157 measurements.

158 We distinguish three phases of plaque development: a lag phase in which plaques are not visible, an enlargement
159 phase in which plaques appear to be growing at a constant rate and a termination phase in which plaques stop
160 growing, presumably due to a halt in phage replication [38]. We fit a linear function to the enlargement phase for each
161 mutant and wild type trajectory to obtain 46 growth rates for mutant plaques and 100 growth rates for wild type
162 plaques. The mutant mean growth rate is $117 \pm 26 \mu\text{m}/\text{hr}$ and the mean wild type growth rate was $136 \pm 69 \mu\text{m}/\text{hr}$.
163 We conducted a bootstrap resampling of growth rates and find that a fraction $p = 0.066$ of 10^5 slope differences in
164 randomized groups exceed that of the observed difference of $19 \mu\text{m}/\text{hr}$ (see Fig. S6). Hence, the growth rate differences
165 of the two bacterial strains are not significantly different, despite the observation that the final mean plaque size is
166 almost three times larger for mutant compared to wild type. The early cessation of plaque growth in sporulating vs.
167 non-sporulating hosts suggests that there are additional mechanisms limiting the ability of phage to lyse hosts.

168 **B. Sporulation analysis across plaque transects**

169 In order to explore the basis for our observation of early cessation of plaques in sporulating hosts, we developed a
170 microscopic plaque assay to quantify the levels and locations of mature endospores relative to plaque centers. Fig. 3)
171 contrasts the bright-field image with the resulting microscopic plaque assay (see section III A 3). The bright-field image
172 of a plaque is shown in panel A; it resembles a traditional viral plaque with a clearing in the middle surrounded by a
173 bacterial lawn. However, as shown in Fig. 3B, there is an absence of spores near the plaque center and an enhancement
174 of spores around the edge of the plaque compared to the rest of the bacterial lawn. This enhancement of spore density
175 near plaque edges relative to the rest of the bacterial lawn was captured 8 h after the initiation of the experiment and
176 represents a critical transient that would otherwise be missed in end-point analysis. Indeed, after a prolonged time
177 period of $\sim 16\text{h}$, the bacterial lawn reached sporulation levels similar to those found around the plaque edge (Fig. 3
178 F). This suggests that sporulation is triggered earlier in cells that are close to regions with enhanced viral-induced
179 lysis. We note that the enhancement of sporulation around plaque edges is robust, and observed across multiple
180 plaques in multiple experiments. Fig. 3D-F shows examples of multiple stages of the enhancement of spores around
181 plaque edges, including at later stages where the densities of cells around plaque edges matches that of intensities in
182 the background (Fig. S7).

183 The distribution of spores relative to plaque centers was further quantified by measuring the GFP intensity as a
184 function of the distance to the center of the plaque (Fig. 3C). In each case, we identified plaque centers and then
185 averaged GFP intensity in an annulus of a fixed distance from the center. The lowest GFP level was obtained when
186 the distance to plaque center was less than $\sim 25 \mu\text{m}$. GFP expression increased between $\sim 15 \mu\text{m}$ - $100 \mu\text{m}$ before
187 decreasing to background levels far from plaque centers. This quantitative enhancement of GFP intensity associated
188 with the early emergence of spores is localized to plaque centers – again emphasizing the importance of a dynamical
189 feedback between a spreading viral population associated with localized lysis and the early onset of endosporulation.
190 These findings also raise the question on what cellular mechanisms are compatible with the emergence of a collective
191 ring of spores outside plaque edges associated with early plaque termination.

192 **C. Modeling plaque growth given dormancy initiation by resource depletion**

193 We developed and analyzed a mathematical model of phage spreading across a bacterial lawn including either
194 sporulating (S^+) or non-sporulating (S^-) bacteria to better understand what factors affect plaque growth. The
195 mathematical model initially included bacteria growth, viral infection and lysis, the potential diffusion of virus particles
196 and resources as well as the initiation of cellular dormancy due to resource depletion (full details in Sec. III C 1). Our
197 objective was to compare simulated plaque spreading dynamics with observations arising from both macroscopic and
198 microscopic plaque assay experiments. As noted, macroscopic plaque analysis revealed that plaques are substantially
199 smaller when grown on sporulating vs. non-sporulating hosts due to an early termination of plaque growth rather
200 than a change in plaque growth speed. Further, microscopic plaque analysis revealed the early emergence of a ring of
201 endospores around the edge of plaques before that found in the bulk. In developing this partial differential equation
202 (PDE) model, we first evaluated the scenario where starvation induces dormancy. We term this the resource-dependent
203 model or Model R, such that sporulation is enhanced at low resource concentrations and suppressed at high resource
204 concentrations [3, 43, 51].

205 The PDE model of phage-bacteria interactions in a depleting resource environment generates a spreading wave.
206 Model R reproduces the macroscale observation of reduced plaque size in sporulation vs. non-sporulating hosts (con-
207 trast Fig. 1, experimental results with Fig. 5A, simulation results). The underlying reason is that viruses spreading in
208 the wildtype population have fewer available cells to infect compared to those in the mutant population. Furthermore,
209 Model R also reproduces the early, equivalent plaque growth dynamics and the early cessation of expansion observed

210 in plaques associated with the S^+ vs. S^- strain, as corroborated by Fig. 5B. In a model with starvation-induced
211 sporulation, dormancy typically starts from the exterior part of the plate where bacteria growth is not controlled by
212 phage. Therefore outside the plaque, resources are abruptly depleted sooner, triggering dormancy in a large fraction
213 of cells uniformly distributed out of the reach of phage activity (i.e., outside the plaque). Phage originating from the
214 plaque's center will eventually reach a region with dormant cells present at relatively higher densities, which prevents
215 further infection and amplification of plaque spread leading to smaller plaques for the S^+ strain.

216 Despite the agreement with macroscale observations of plaque dynamics, Model R incorrectly predicts that sporulation
217 density should continue to increase away from plaque centers into the bulk bacterial lawn in contrast to micro
218 plaque assays (see Fig. 6A,B). This increase arises because resources are consumed equally in the absence of viruses
219 triggering a uniformly distributed background of dormant cells. With increasing proximity to the plaque there are
220 fewer susceptible bacteria due to lysis, leading to higher resource availability and lower dormant cell densities. At the
221 edge of the plaque there is a precipitous decrease in bacteria density as all cells are killed, corresponding to a sharp
222 decrease in dormant cells (see Fig. 6A,B). Therefore, in this model the decrease in resources is fastest farther from
223 regions of viral infection and lysis, i.e., from the 'outside' of the plate towards the phage-occupied center. Model R's
224 prediction that spore densities should increase with distance from the plaque center both transiently and at the end
225 point suggests that processes beyond starvation are inducing spore formation in the experimental system.

226 D. Modeling phage plaque growth given direct, infection-triggered sporulation

227 Next, we evaluated Model V in which bacteria dormancy is triggered by two distinct mechanisms: (i) resource
228 depletion, as in Model R; (ii) infection by phage. Like Model R, Model V can reproduce quantitative plaque growth
229 dynamics, insofar as plaques grow at the same speed on both sporulating and non-sporulating hosts yet stop earlier on
230 sporulating hosts vs. non-sporulating hosts (see Fig. 5C and Fig. S9). In Model V, viruses diffusing at the plaque front
231 can trigger cellular dormancy amongst newly infected cells before population growth-induced depletion of resources.
232 Hence, viruses spreading on sporulating hosts will be diluted out through encounter with hosts, eventually leading to
233 the early cessation of plaques relative to that of viruses growing on mutant hosts that cannot form endospores.

234 Although Model V and Model R may both be compatible with the macroscopic plaque growth dynamics, they
235 differ in the emergence spatiotemporal profile of spores. In Model V, the spore density increases outwards from the
236 center as there are not enough cells inside the plaque for appreciable infections to take place. Likewise, further away
237 from the plaque, there is less phage-induced dormancy. If resources have not dropped yet below the critical value of
238 σ , the spore density drops, reproducing the experimentally observed peak at the edge of the plaque (see Fig. 6C,D).
239 Similarly to our experiments (Fig. 3D-F), the peak in our simulations is transient, emerging at ≈ 3 h and persisting
240 until $t \approx 7$ h. Given that there is a 4-5 h interval between the transition to dormancy and the expression of GFP,
241 this simulated onset at $t \approx 3$ h closely aligns with our experimental observations, which show the peak at $t \approx 8$ h.

242 The localized sporulation peak around plaque edges is transient given that dormancy is initiated in 'far-field' cells
243 distant from plaque centers as a result of resource depletion. Consequently, Model V will relax to the same steady-
244 state spore density profile as in Model R. Therefore Model V can qualitatively reproduce the transient sporulation
245 enhancement around the plaques as manifested in the comparison between the experimental (Fig. 3) and the modeling
246 results (Fig. 6C,D) at $t = 5$ h. However, Model V also produces dormant cells from the early stages of the plaque
247 formation, with spores within the plaque building up right away from its center (see Fig. 6C,D). Conversely, in the
248 experiments, the central region of the plaque typically does not have spores (see Fig. 3).

249 Thus far the modeling results in Fig. 6C,D assume direct conversion from susceptible cell (S) to dormant cell (D).
250 We next evaluated the robustness of our findings for Model V by including a more realistic delay before the onset of
251 dormancy, through the introduction of a sequence of multiple intermittent states n_E (see Methods, Model V). Given
252 the inclusion of a delay before dormant cells resist subsequent viral infection [53], we find that Model V continues to
253 reproduce plaque growth dynamics (see Fig. 5C and Fig. S9A) but does not generate a ring of increased dormant
254 cells around the plaque (see Fig. 6E,F and Fig. S10). In Model V, bacterial initiation of dormancy can be the result
255 of direct interaction with phage. Hence, cells are not preconditioned to initiate dormancy required to generate an
256 annulus of dormant cells. In aggregate, once an explicit latent period is introduced then although virus spread may
257 decrease, the net result is – like Model R – that resource scarcity becomes the primary driver of dormancy and the
258 spatiotemporal profiles of spores are incompatible with experiments.

259 E. Modeling phage plaque growth given infection-associated molecule-triggered sporulation

260 An alternative hypothesis is that dormancy may be initiated inside cells that have not yet been infected by phages
261 due to the uptake of host metabolites, host lysis signals, and/or viral proteins that diffuse through the environment

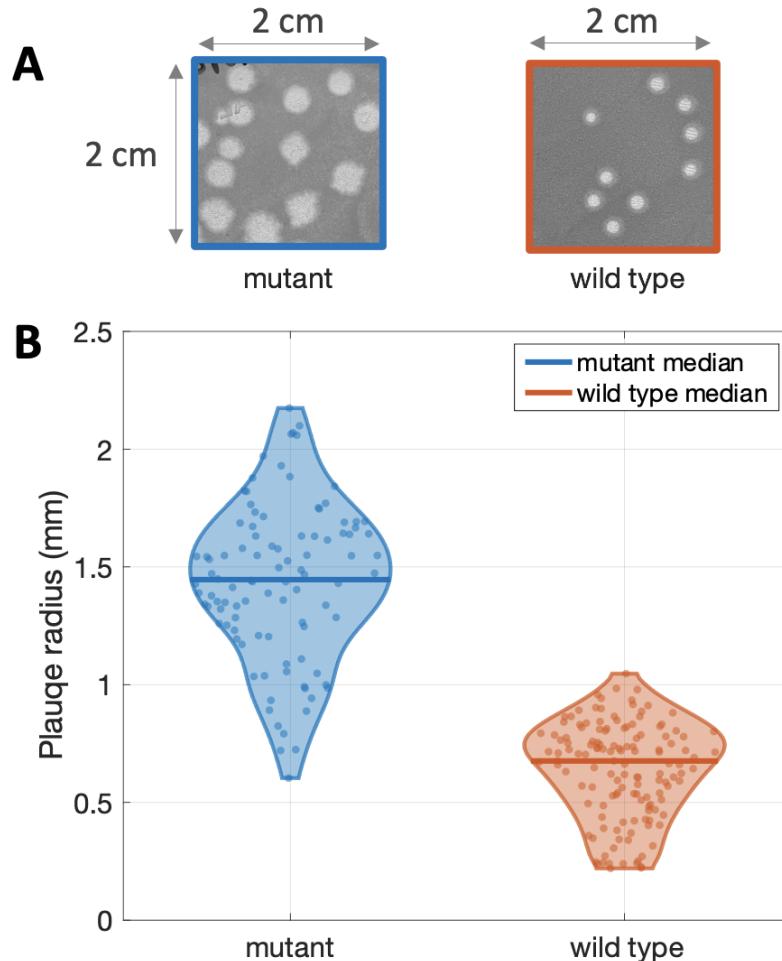
262 faster than virions. Hence, we evaluate Model M in which dormancy can be initiated through one of two mechanisms:
263 (i) resource depletion, as in Model R; (ii) uptake of infection-associated molecular triggers. Model M can reproduce
264 the observed reduction of the plaque size in systems with sporulating vs. non-sporulating cells as well as quantitative
265 plaque growth dynamics, as shown in Fig. 5D and Fig. S9B. Notably, Model M also successfully replicates the
266 transient peak of sporulation around the plaques for the same time-period as Model V with $n_E = 0$ and with a
267 delayed transition to dormancy (unlike Model V; see Fig. 6G-J). Central to this observation is the assumption that
268 the signaling molecule diffuses faster than viruses. At a certain distance from the center, cells encountering the
269 molecule initiate and complete differentiation into mature endospores resistant to infection at densities high enough
270 to stop plaque propagation. Towards the center, lysis kills cells that are transitioning to spores, reducing their
271 density. Farther out than the peak, the spore density decreases again given that the diffusing molecule associated
272 with sporulation initiation will not reach sufficiently high densities yet. Unlike either Model R or Model V, Model M
273 can also reproduce a central region of the plaque, empty of spores and cells (see Fig. 6G-J) as observed experimentally
274 (see Fig. 3).

275 V. DISCUSSION

276 In this study, we tested the effect of sporulation on phage plaque formation within *B. subtilis* populations. Macro-
277 scopic plaque analysis revealed that phage plaques grow at indistinguishable rates in sporulating (wild type) vs. non-
278 sporulating (mutant) strains. However, plaques grown on wild type populations exhibit rapid and earlier cessation
279 of growth compared to those grown on the mutant strain, leading to 2-3 fold smaller plaque sizes. Via a microscopic
280 imaging assay of the interior and boundary of plaques, we found that sporulation is enhanced around plaque edges well
281 before resource depletion leads to the emergence of spores in the population as a whole. Together our findings suggest
282 that the emergence of enhanced sporulation in proximity to lysis events serves as a collective, protective mechanism
283 against further phage dispersion and lysis.

284 We were able to recapitulate the spatiotemporal dynamics of plaque front growth and the emergence of an annulus
285 of spores around plaques with a spatially explicit model of virus-microbe interactions that incorporates lysis-associated
286 initiation of dormancy. Notably, models in which dormancy is initiated due to resource depletion and/or infection alone
287 do not recapitulate the formation of an annulus of spores around plaques associated with early plaque termination.
288 Instead, the emergence of an annulus of spores surrounding phage plaques as observed in micro plaque assays can
289 arise given relatively faster rates of the diffusion of infection-associated molecules that can trigger dormancy initiation
290 compared to virus particle diffusion (see Figure 7). The rationale is that faster diffusion of molecules enables cells to
291 initiate dormancy in advance of virion arrival and well before resources are depleted far from plaque centers. Hence,
292 the combined evidence from plaque assays, microscopic imaging, and mathematical models shows that dormancy
293 is locally enhanced by lysis events and that this enhanced dormancy can, in turn, slow the propagation of viral
294 populations.

295 We posit that there are multiple classes of cellular mechanisms that could give rise to enhanced sporulation around
296 plaques. First, it has recently been shown that a specific type of siderophore (coelichelin) released by a competitor
297 *Streptomyces* strain can reduce iron availability within *B. subtilis* populations, which in turn limits sporulation [56].
298 While this interspecies effect alters the outcome of competition, iron availability may also influence spore initiation
299 with implication for phage infection. For example, viral lysis within a developing plaque may increase the local
300 concentration of bioavailable iron which is then used by *B. subtilis* to make endospores — leading to a strongly,
301 self-limiting plaque. Second, in another recent study, a extracytoplasmic sigma factor (σ X) was shown to remodel the
302 cell wall components of *B. subtilis* in a way that confers phage tolerance in a sporulation-independent manner [57].
303 Specifically, a stress-response RNA polymerase (σ X) activates enzymes that remodel the cell wall including receptors
304 (i.e., teichoic acids) that are involved in phage adsorption and plaque kinetics. As a result, a transient phage tolerance
305 response restricts the lysis-induced proliferation of viruses as transcription factors released by infected neighboring cells
306 contact uninfected bacteria. Thus, danger signals can lead to similar outcomes of phage defense in spatially structured
307 population, but for different reasons. Finally, the release and uptake of small peptides can also alter viral-associated
308 cell fate in *B. subtilis*. For example, when infected by SPbeta phages, there is a shift from lysis to lysogeny as the
309 concentration of the communication peptide arbitrium increases during a population-wide infection [58–60]. Future
310 work that explores the resource and signaling landscape modulated by lysis and the relative concentration of infection
311 within spores (i.e., virospores) would provide further insights into the causes and consequences of sporulation-virus
312 feedback in spatially structured habitats across multiple scales.


313 Irrespective of the molecular mechanisms, sporulation is a complex and energetically costly bacterial strategy that
314 can help cells survive through extreme, often fluctuating, environmental conditions. As such, limitation of viral
315 dispersion by sporulating cells has key implications for the eco-evolutionary dynamics of phage and bacteria. For
316 instance, early sporulation reduces the number of productive infections and the potential for the generation of phage

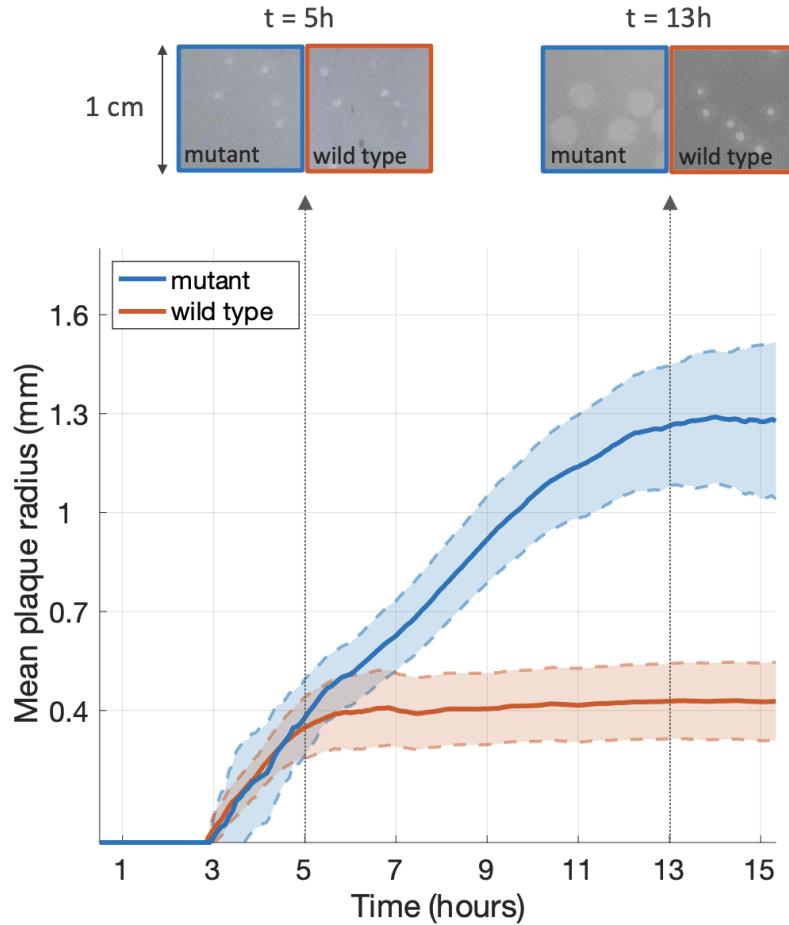
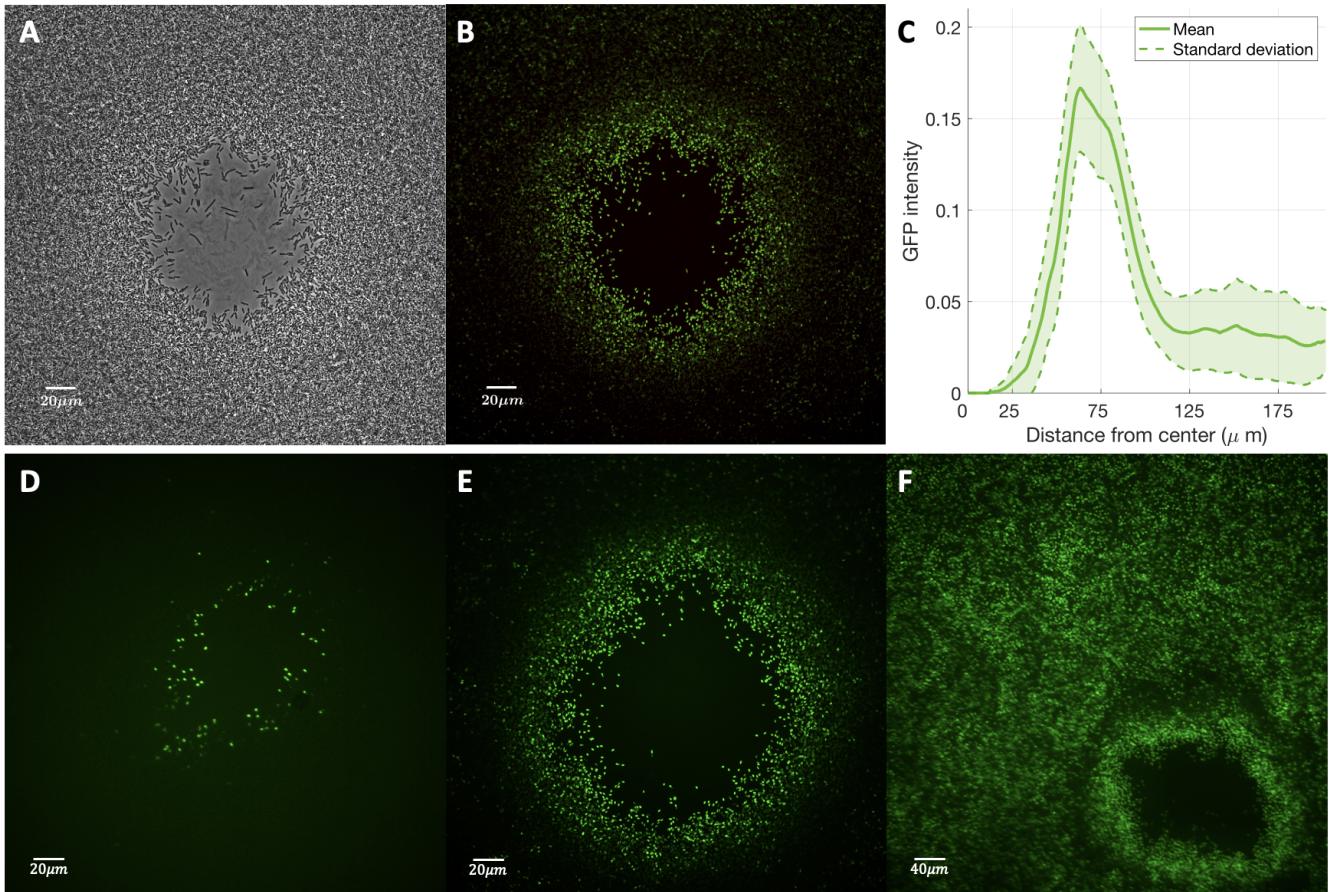
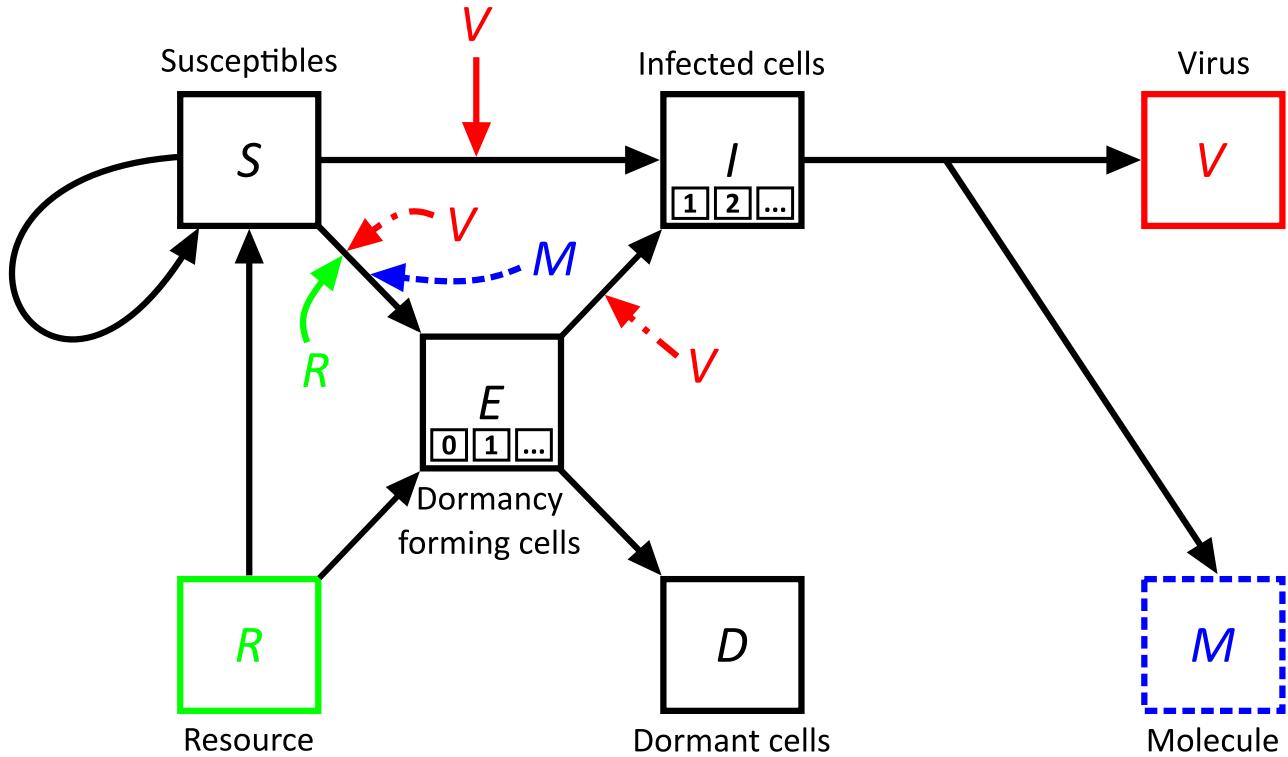
317 progeny, including host-range mutants. The rapid dispersal and spatial localization of lysis-associated signals could
318 limit phage spread, even in the absence of the evolution of phage-resistant bacterial mutants [22]. However, sporulation
319 may not necessarily constitute a long-term protection against phage infection. For at least some phages that infect
320 *Bacillus*, the lytic reproductive cycle is arrested when a host has already begun to initiate the process of sporulation.
321 Proteins involved in spore development (Spo0A) can bind to regions of the phage genome (0A boxes) that halt the
322 infection cycle. Subsequently, other genes acquired by phages (*parS*) assist with the translocation of the virus genome
323 into the developing forespore, where it resides in an unincorporated state until host germination, at which time the
324 virus can resume its lytic infection cycle [61–63].

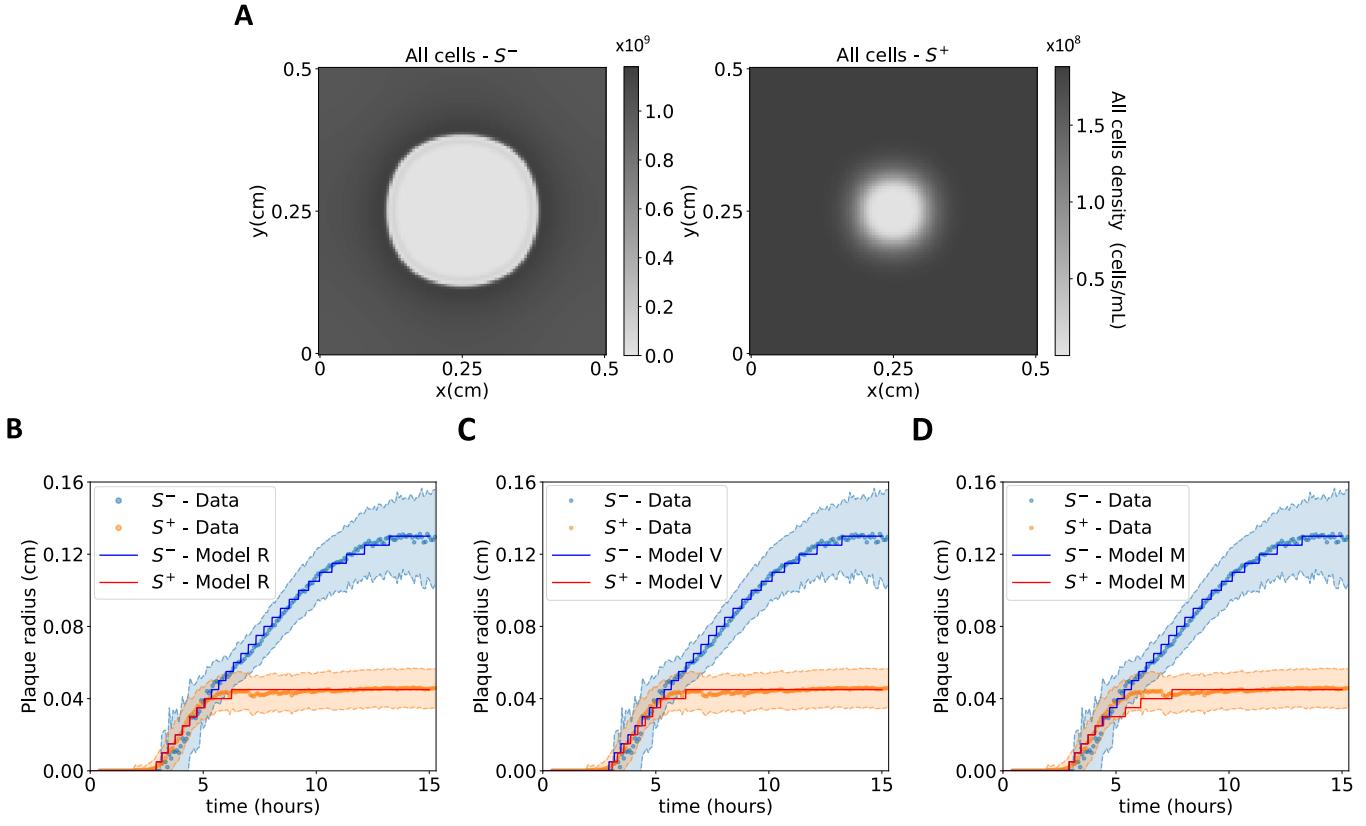
325 In closing, our findings reveal a novel mechanism by which phage infections can be self-limiting leading to a
326 collective defense mechanism that restricts phage spatial spread even when nearby hosts remain available, albeit
327 inaccessible. These findings provide additional context for evaluating the ecoevolutionary dynamics of sporulation
328 in environmental and therapeutic contexts given the link between cellular and population fates. In doing so, it will
329 be essential to consider the consequences of limitations of viral infections across scales including the possibility that
330 collective defense in the near-term may lead to vulnerabilities in the long-term as spores and their viruses re-encounter
331 favorable conditions.

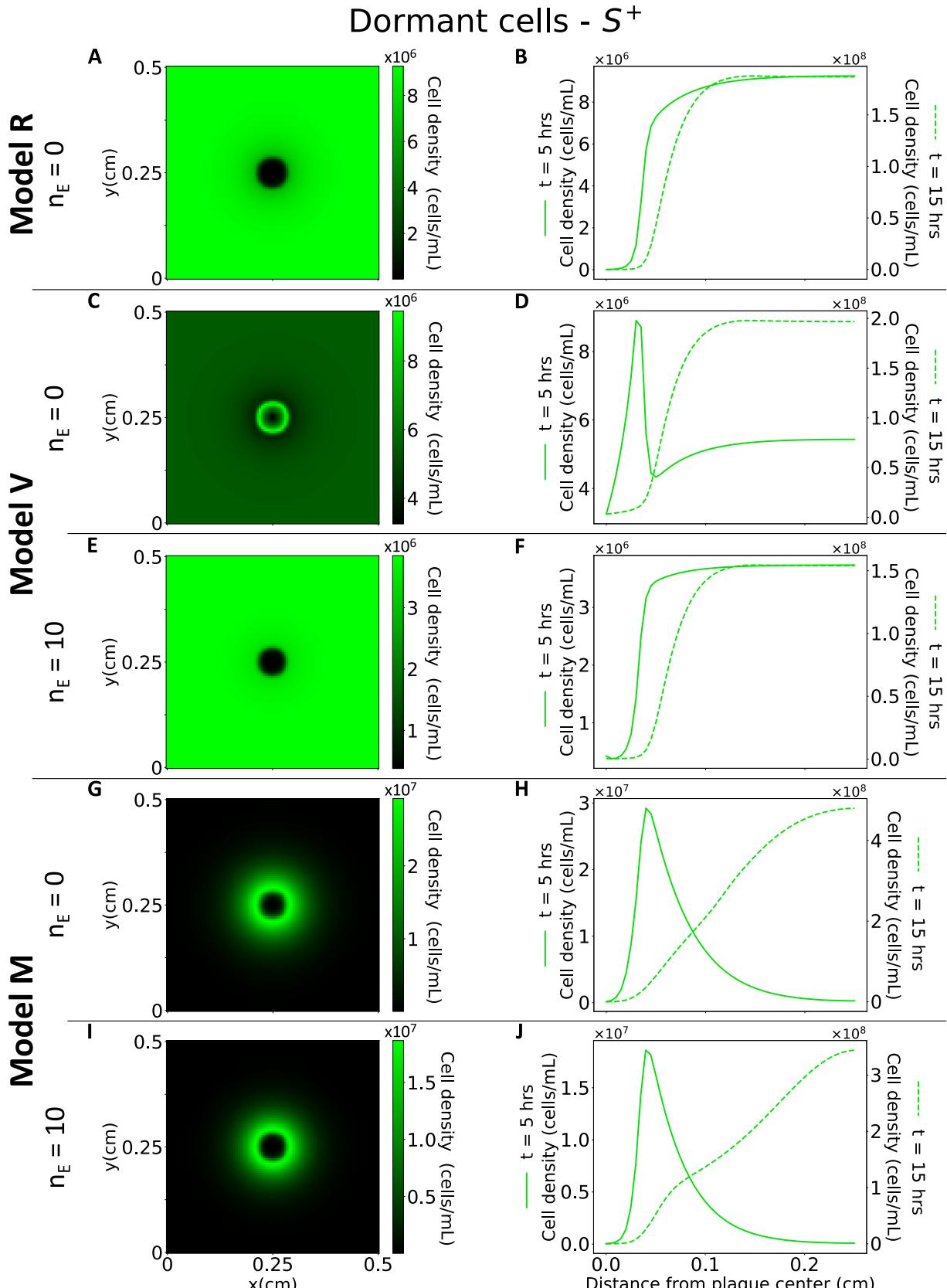
332 VI. ACKNOWLEDGEMENTS

333 We acknowledge Zhongqing Ren, Caroline Dunn, along with the Wang and Kearns laboratories at Indiana University
334 for assistance with microscopy and imaging. We would also like to thank Emily Long for assistance with preliminary
335 data, Thomas Day for advice with image analysis and Adriana Lucia-Sanz for the code review. This work was
336 supported by National Science Foundation (DEB - 1934554 to JTL and DS, DBI - 2022049 to JTL and DEB -
337 1934586 to JSW, Simons Foundation (930382 to JSW), US Army Research Office Grant (W911NF-14-3071-0411 and
338 W911NF-22-1-0014 to JTL), the National Aeronautics and Space Administration (80NSSC20K0618 to JTL) and
339 the European Research Council (Horizon 2020 research and innovation program - grant agreement No. 740704 to
340 Anastasios M). JSW was supported, in part, by the Chaires Blaise Pascal program of the Île-de-France region.

FIG. 1: Plaque sizes of phage SPO1 with mutant and wild type host. (A) Square cropped sections of size 2cm x 2cm from mutant (left) and wild type (right) plaque assays are shown. Both plaque assays were carried as described in section III A 2. mutant and wild type plaque assays were prepared in parallel and have the same initial and growth conditions. (B) Final plaque size of the two plaque assays shown in panel A. The images were analyzed using binarization and watershed algorithm (see SI section VIB 1). The plaque sizes (98 plaques for mutant and 137 for wild type) were plotted using a violin plot and individual points are shown as a scatter plot. The median mutant and wild type plaque sizes are shown through the horizontal bold lines. Mutant plaques have a radius of $1.43 \pm 0.33\text{mm}$ and wild type plaques have a radius of $0.64 \pm 0.2\text{mm}$. A two sample t-test was performed to reject the hypothesis that the two distributions have equal means with a p-value less than 10^{-3} .


FIG. 2: **Time lapse of plaque growth for mutant and wild type host.** A traditional plaque assay was performed at 37°C and images were captured every 5 minutes over a period of 15 hours. The plaque sizes were estimated for each time point (46 plaques for mutant and 100 plaques for wild type) using image analysis techniques summarized in Section III B and described in detail in SI section VI B 2. Cropped sections from the time-lapse are shown at 5 and 13 hours for parts of the mutant and wild type plates. The mean over all plaques is shown in the solid line and the standard deviation is shown in the shaded area. Intermediate images of the independent plaque trajectories are shown in Figure S5.


FIG. 3: Sporulation is enhanced around plaque edges. Bright-field image of micro plaque assay is shown in panel A and fluorescent images are shown in panels B, D, E and F. Images A, B, D and E were taken at 40x magnification and image F at 20x magnification. The micro plaque assay was carried out with phage SPO1. The GFP image was adjusted to remove background fluorescence and enhance contrast (see section VIB 4). (C) GFP analysis of image in panel B. An averaging filter is applied on the image in panel B to obtain an adjusted GFP image. The green component in every pixel is then computed based on the distance to the center of the plaque (see SI section VIB 4). Distance to the center of the plaque is shown on the x-axis in μm and GFP intensity in the adjusted image is shown on the y axis. The solid line represents the mean and the shaded area is the standard deviation. Panels D, E and F show micro plaque assays at different time points from earliest in panel D to latest in panel F. The image in panel D was taken within the first 8 hours when only cells in the vicinity of the plaque were sporulating. The image in panel F was taken after 12 hours when most of the cells have transitioned to spores.

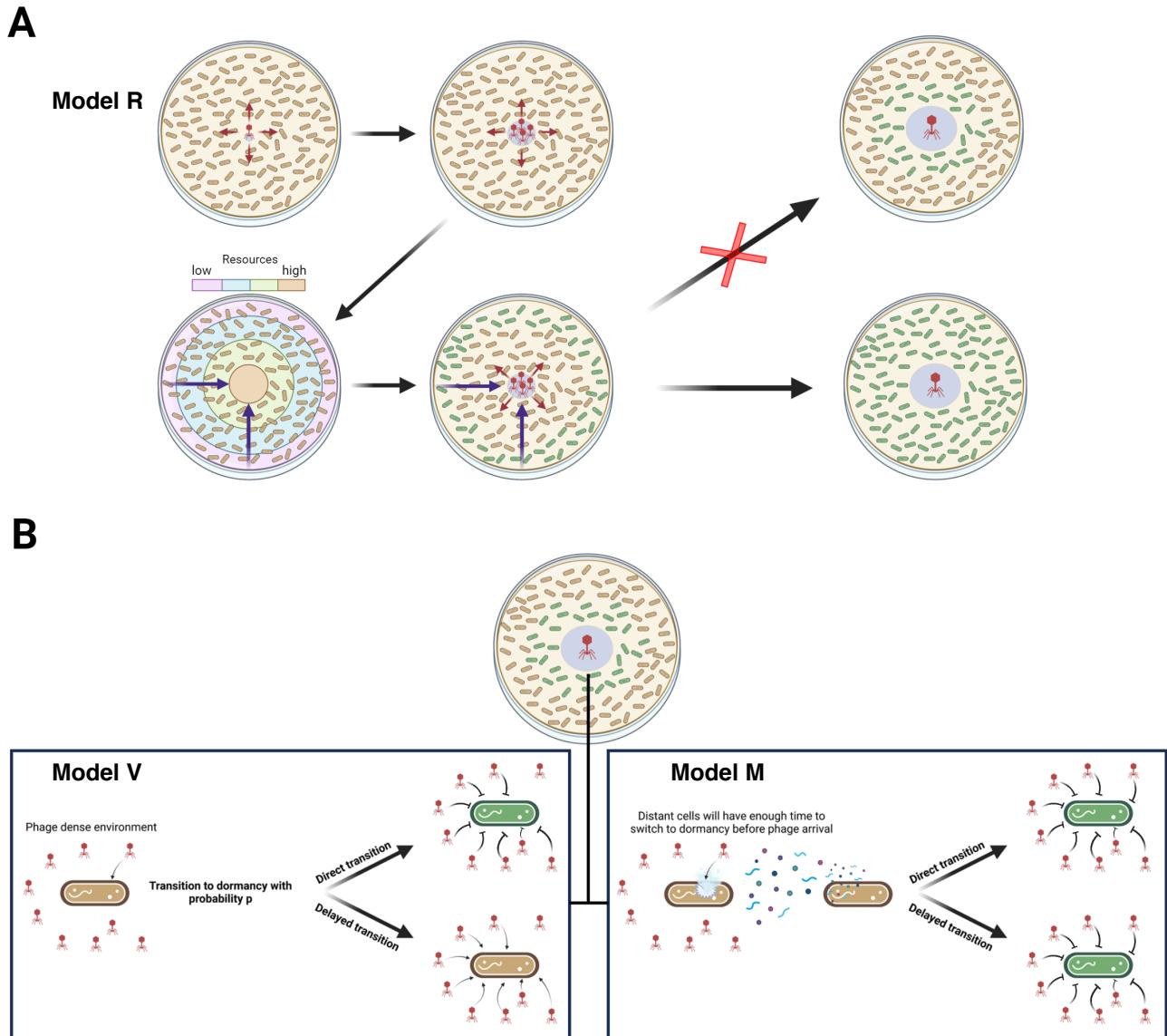

FIG. 4: Schematic comparison of Models R, V, and M. Each shape represents a specific element in the system. Squares correspond to explicit limited resources (R), susceptible bacteria (S), infected bacteria (I), dormant bacteria (D), bacteria transitioning to dormancy while exposed to viruses (E), free viruses (V) and signaling molecules (M). In the E and I boxes, the smaller boxes signify the potential number of E and I states, denoted as n_E and n_I respectively. The number of states defines the duration that cells spend in that state (see Methods-Mathematical Modeling III C 1). For the E states, n_E can be set equal to zero, which corresponds to a direct transition from the susceptible state to the dormant state. The arrows indicate interactions, with their direction showing causal effects. The central elements of Model R, Model V, and Model M are highlighted in green, red, and blue respectively. These are, the Resource for Model R, where we assume resource-only dependent dormancy, the Virus for Model V, where dormancy can be triggered by viral contact aside from starvation and the Molecule for Model M, where we assume an infection-associated molecule is an additional, potential initiator for dormancy. Elements with solid lines are shared across all models, whereas elements with dashed lines are unique to specific models and correspond to the model of the same color.

FIG. 5: Impact of sporulation on plaque size for Models R, V, and M. (A) A snapshot from the spatial simulation of bacterial densities in Model R, taken at 15 hours, corresponding to the terminal point of the time-series shown in panel B, using parameters from Table II. (B-D) Overlay of experimental data and computational simulations shows the time evolution of the mean plaque radius for the *S-* and *S+* strains in Models R, V, and M, respectively. In the simulations, a plaque is defined as the area where cell density is less than 10% of the maximum density at that time point. The results exhibit robustness to variations in that threshold, attributed to the abrupt density changes at plaque boundaries. In panels C and D, simulations for Model V and Model M respectively are performed with $n_E = 10$. Results are replicable across different values of n_E (see Fig. S9 for the $n_E = 0$ case).

FIG. 6: Simulated plaque growth and distribution of dormant cells for the S^+ host at $t = 5$ hrs after phage addition. The arrangement of the simulation results aligns with that presented in Fig. 3B,C. Rows are organized by model type as results for Models R, V and M. The left column (panels A, C, E, G, I) depict dormant cell densities' 2-D spatial distribution. The results correspond to $t = 5$ hrs, which is centered in the time frame of $t \approx 3 - 7$ hrs during which the transient peak in sporulation around the plaque emerges in our simulations. The right column (panels B, D, F, H, J) show the distance profile of dormant cells distribution starting from the center of the plaque. The solid line (primary y-axis) corresponds to results at time = 5 hrs and is effectively a 1-D slice of the left panel at the same row, showing the radial distribution of dormant cells starting from the center of the plaque and moving outwards. The dashed line, plotted on the secondary y-axis, represents the progression of the solid line at 15 hours.

FIG. 7: Schematic of lysate-associated termination of plaque fronts and the emergence of sporulation annuli. (A) In classic resource-limited models of dormancy initiation, resources should be depleted more rapidly in regions without phage clearance, as cells grow to higher density. Hence sporulation should theoretically proceed from the ‘outside’ inwards rather than leading to an annulus as observed experimentally. (B) Alternative sporulation-induced mechanisms include direct initiation by infection and indirect initiation through a signalling molecule. If virus contact initiates dormancy, then it is possible for a sporulation annulus to emerge insofar as the transition is immediate (i.e., cell takeover fails). However, given that protective benefits of dormancy typically accrue after a maturation delay, then contact alone is insufficient to yield a sporulation annulus. In contrast, the earlier arrival of a signalling molecule in the viral lysate (that diffuses faster than phage particles) would catalyze earlier dormancy initiation and generate a sporulation annulus around plaques whether dormancy initiation was direct or delayed. *Note: in all panels, brown denotes active cells and green denotes mature spores.*

341 [1] N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler, “Bacterial persistence as a phenotypic switch,” *Science*,
342 vol. 305, no. 5690, pp. 1622–1625, 2004.

343 [2] E. S. Rittershaus, S. H. Baek, and C. M. Sassetti, “The normalcy of dormancy: Common themes in microbial quiescence,”
344 *Cell Host Microbe*, vol. 13, pp. 643 – 651, 2013.

345 [3] J. T. Lennon and S. E. Jones, “Microbial seed banks: the ecological and evolutionary implications of dormancy,” *Nature*
346 *reviews microbiology*, vol. 9, no. 2, pp. 119–130, 2011.

347 [4] W. R. Shoemaker, S. E. Jones, M. E. Muscarella, M. G. Behringer, B. K. Lehmkuhl, and J. T. Lennon, “Microbial
348 population dynamics and evolutionary outcomes under extreme energy limitation,” *Proceedings of the National Academy*
349 *of Sciences*, vol. 118, no. 33, p. e2101691118, 2021.

350 [5] L. Wörmer, T. Hoshino, M. W. Bowles, B. Viehweger, R. R. Adhikari, N. Xiao, G.-I. Uramoto, M. Könneke, C. S. Lazar,
351 Y. Morono, F. Inagaki, and K.-U. Hinrichs, “Microbial dormancy in the marine subsurface: Global endospore abundance
352 and response to burial,” *Sci. Adv.*, vol. 5, p. eaav1024, Feb. 2019.

353 [6] P. Setlow, “I will survive: DNA protection in bacterial spores,” *Trends Microbiol.*, vol. 15, pp. 172–180, Apr. 2007.

354 [7] W. L. Nicholson, N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow, “Resistance of *Bacillus* Endospores to Extreme
355 Terrestrial and Extraterrestrial Environments,” *Microbiology and molecular biology reviews : MMBR*, vol. 64, no. 3,
356 pp. 548–572, 2000.

357 [8] S. J. Tan and TS, “Spore Formation in *Bacillus Subtilis*,” *Bone*, vol. 23, no. 1, pp. 1–7, 2008.

358 [9] E. Kashuba, A. A. Dmitriev, S. M. Kamal, O. Melefors, G. Griva, U. Römling, I. Ernberg, V. Kashuba, and A. Bouchkov,
359 “Ancient permafrost staphylococci carry antibiotic resistance genes,” *Microbial ecology in health and disease*, vol. 28, no. 1,
360 p. 1345574, 2017.

361 [10] S. E. Jones and J. T. Lennon, “Dormancy contributes to the maintenance of microbial diversity,” *Proceedings of the*
362 *National Academy of Sciences of the United States of America*, 2010.

363 [11] J. T. Lennon, F. den Hollander, M. Wilke-Berenguer, and J. Blath, “Principles of seed banks and the emergence of
364 complexity from dormancy,” *Nature Communications*, vol. 12, no. 1, p. 4807, 2021.

365 [12] M. Breitbart, C. Bonnain, K. Malki, and N. A. Sawaya, “Phage puppet masters of the marine microbial realm,” *Nature*
366 *microbiology*, vol. 3, no. 7, pp. 754–766, 2018.

367 [13] M. C. Carlson, F. Ribale, I. Maidanik, B. P. Durham, Y. Hulata, S. Ferrón, J. Weissenbach, N. Shamir, S. Goldin,
368 N. Baran, *et al.*, “Viruses affect picocyanobacterial abundance and biogeography in the north pacific ocean,” *Nature*
369 *microbiology*, vol. 7, no. 4, pp. 570–580, 2022.

370 [14] S. J. Labrie, J. E. Samson, and S. Moineau, “Bacteriophage resistance mechanisms,” *Nature Reviews Microbiology*, vol. 8,
371 no. 5, pp. 317–327, 2010.

372 [15] J. T. Rostøl and L. Marraffini, “(ph)ighting phages: How bacteria resist their parasites,” *Cell Host & Microbe*, vol. 25,
373 no. 2, pp. 184–194, 2019.

374 [16] W. P. J. Smith, B. R. Wucher, C. D. Nadell, and K. R. Foster, “Bacterial defences: mechanisms, evolution and antimicrobial
375 resistance,” *Nature Reviews Microbiology*, vol. 21, no. 8, pp. 519–534, 2023.

376 [17] A. Bernheim and R. Sorek, “The pan-immune system of bacteria: antiviral defence as a community resource,” *Nat. Rev.*
377 *Microbiol.*, vol. 18, pp. 113–119, Feb. 2020.

378 [18] S. T. Abedon and J. Yin, *Bacteriophage Plaques: Theory and Analysis*, pp. 161–174. Totowa, NJ: Humana Press, 2009.

379 [19] A. Millman, S. Melamed, A. Leavitt, S. Doron, A. Bernheim, J. Hör, J. Garb, N. Bechon, A. Brandis, A. Lopatina,
380 *et al.*, “An expanded arsenal of immune systems that protect bacteria from phages,” *Cell host & microbe*, vol. 30, no. 11,
381 pp. 1556–1569, 2022.

382 [20] E. L. Attrill, U. Lapińska, E. R. Westra, S. V. Harding, and S. Pagliara, “Slow growing bacteria survive bacteriophage in
383 isolation,” *ISME communications*, vol. 3, no. 1, p. 95, 2023.

384 [21] L. Fernández-García, J. Kirigo, D. Huelgas-Méndez, M. Tomás, R. García-Contreras, and T. K. Wood, “Phages produce
385 persisters,” *bioRxiv*, 2023.

386 [22] D. A. Schwartz, W. R. Shoemaker, A. Măgălie, J. S. Weitz, and J. T. Lennon, “Bacteria-phage coevolution with a seed
387 bank,” *The ISME Journal*, 2023.

388 [23] D. Bryan, A. El-Shibiny, Z. Hobbs, J. Porter, and E. M. Kutter, “Bacteriophage t4 infection of stationary phase *e. coli*:
389 life after log from a phage perspective,” *Frontiers in microbiology*, vol. 7, p. 1391, 2016.

390 [24] S. Pearl, C. Gabay, R. Kishony, A. Oppenheim, and N. Q. Balaban, “Nongenetic individuality in the host–phage interaction,”
391 *PLoS biology*, vol. 6, no. 5, p. e120, 2008.

392 [25] A. J. Meeske, S. Nakandakari-Higa, and L. A. Marraffini, “Cas13-induced cellular dormancy prevents the rise of CRISPR-
393 resistant bacteriophage,” *Nature*, 2019.

394 [26] M. C. Williams, A. E. Reker, S. R. Margolis, J. Liao, M. Wiedmann, E. R. Rojas, and A. J. Meeske, “Restriction
395 endonuclease cleavage of phage DNA enables resuscitation from Cas13-induced bacterial dormancy,” *Nature Microbiology*,
396 vol. 8, no. 3, pp. 400–409, 2023.

397 [27] Y. Fu, L. Liang, S. Deng, Y. Wu, Y. Yuan, and M. Gao, “Novel spore lytic enzyme from a *Bacillus* phage leading to spore
398 killing,” *Enzyme and Microbial Technology*, vol. 142, p. 109698, 2020.

399 [28] A. Dragoš, B. Priyadarshini, Z. Hasan, M. L. Strube, P. J. Kempen, G. Maróti, C. Kaspar, B. Bose, B. M. Burton, I. B.
400 Bischofs, and Á. T. Kovács, “Pervasive prophage recombination occurs during evolution of spore-forming *Bacilli*,” *The*
401 *ISME Journal*, vol. 15, no. 5, pp. 1344–1358, 2021.

402 [29] D. A. Schwartz, B. K. Lehmkuhl, and J. T. Lennon, “Phage-encoded sigma factors alter bacterial dormancy,” *mSphere*,
403 vol. 7, p. e0029722, Aug. 2022.

404 [30] M. Butala and A. Dragoš, “Unique relationships between phages and endospore-forming hosts,” *Trends Microbiol.*, vol. 31,
405 pp. 498–510, May 2023.

406 [31] S. D. A., R.-R. J. A., S. Michael, F. R. M., D. R. A., W. K. C., and L. J. T., “Human-Gut Phages Harbor Sporulation Genes,”
407 *mBio*, vol. 14, pp. e00182–23, apr 2023.

408 [32] S. J. Schrag and J. E. Mittler, “Host-Parasite Coexistence: The Role of Spatial Refuges in Stabilizing Bacteria-Phage
409 Interactions,” *The American Naturalist*, vol. 148, pp. 348–377, sep 1996.

410 [33] J. J. Bull, K. A. Christensen, C. Scott, B. R. Jack, C. J. Crandall, and S. M. Krone, “Phage-bacterial dynamics with
411 spatial structure: Self organization around phage sinks can promote increased cell densities,” *Antibiotics (Basel)*, vol. 7,
412 Jan. 2018.

413 [34] S. Testa, S. Berger, P. Piccardi, F. Oechslin, G. Resch, and S. Mitri, “Spatial structure affects phage efficacy in infecting
414 dual-strain biofilms of *Pseudomonas aeruginosa*,” *Communications Biology*, vol. 2, no. 1, p. 405, 2019.

415 [35] J. J. Dennehy and S. T. Abedon, *Bacteriophage Ecology*, pp. 253–294. Cham: Springer International Publishing, 2021.

416 [36] E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czirok, and T. Vicsek, “Generic modelling of cooperative growth
417 patterns in bacterial colonies,” *Nature*, vol. 368, no. 6466, pp. 46–49, 1994.

418 [37] T. Poisot, G. Lepennetier, E. Martinez, J. Ramsayer, and M. E. Hochberg, “Resource availability affects the structure of
419 a natural bacteria–bacteriophage community,” *Biology letters*, vol. 7, no. 2, pp. 201–204, 2011.

420 [38] A. L. Koch, “The growth of viral plaques during the enlargement phase,” *Journal of Theoretical Biology*, vol. 6, no. 3,
421 pp. 413–431, 1964.

422 [39] L. You and J. Yin, “Amplification and spread of viruses in a growing plaque,” *Journal of Theoretical Biology*, vol. 200,
423 no. 4, pp. 365–373, 1999.

424 [40] R. Gallet, S. Kannoly, and I.-N. Wang, “Effects of bacteriophage traits on plaque formation,” *BMC Microbiology*, vol. 11,
425 no. 1, p. 181, 2011.

426 [41] N. Mitarai, S. Brown, and K. Sneppen, “Population dynamics of phage and bacteria in spatially structured habitats using
427 phage λ and *Escherichia coli*,” *Journal of Bacteriology*, vol. 198, no. 12, pp. 1783–1793, 2016.

428 [42] S. Sinha, R. K. Grewal, and S. Roy, *Chapter Three - Modeling Bacteria-Phage Interactions and Its Implications for Phage
429 Therapy*, vol. 103, pp. 103–141. Academic Press, 2018.

430 [43] J. G. Piggot, P.J.; Coote, “Genetic aspects of bacterial endospore formation,” *Bacteriological reviews*, no. 40(4), p. 908–962,
431 1976.

432 [44] D. R. Reuß, A. Thürmer, R. Daniel, W. J. Quax, and J. Stölke, “Complete genome sequence of *ji*l* bacillus subtilis**ji*l**
433 subsp. *ji*l* subtilis**ji*l**, strain ∆6,” *Genome Announcements*, vol. 4, no. 4, pp. 10.1128/genomea.00759–16, 2016.

434 [45] P. T. McKenney and P. Eichenberger, “Dynamics of spore coat morphogenesis in *Bacillus subtilis*,” *Mol. Microbiol.*, vol. 83,
435 pp. 245–260, Jan. 2012.

436 [46] P. Schaeffer, J. Millet, and J. P. Aubert, “Catabolic repression of bacterial sporulation,” *Proceedings of the National
437 Academy of Sciences*, vol. 54, no. 3, pp. 704–711, 1965.

438 [47] L. Li, J. Jin, H. Hu, I. F. Deveau, S. L. Foley, and H. Chen, “Optimization of sporulation and purification methods for
439 sporicidal efficacy assessment on *Bacillus* spores,” *Journal of Industrial Microbiology and Biotechnology*, vol. 49, p. kuac014,
440 jul 2022.

441 [48] M. F. Kauffman, K.M.; Polz, “Streamlining standard bacteriophage methods for higher throughput,” *MethodsX*, p. 159–172,
442 2018.

443 [49] P. Wang, X.; Montero Llopis, “Visualizing *Bacillus subtilis* During Vegetative Growth and Spore Formation,” In: Leake,
444 M. (eds) *Chromosome Architecture. Methods in Molecular Biology*, vol. 1431, 2016.

445 [50] W. J.S., *Quantitative Viral Ecology: Dynamics of Viruses and Their Microbial Hosts*. Monographs in Population Biology,
446 Princeton: Princeton University Press, 2015.

447 [51] A. Aertsen and C. W. Michiels, “Stress and how bacteria cope with death and survival,” *Critical Reviews in Microbiology*,
448 vol. 30, pp. 263 – 273, 2004.

449 [52] E. Kussell and S. Leibler, “Phenotypic diversity, population growth, and information in fluctuating environments,” *Science*,
450 vol. 309, no. 5743, pp. 2075–2078, 2005.

451 [53] A. Mägälie, D. A. Schwartz, J. T. Lennon, and J. S. Weitz, “Optimal dormancy strategies in fluctuating environments
452 given delays in phenotypic switching,” *Journal of theoretical biology*, vol. 561, p. 111413, 2023.

453 [54] J. S. Weitz and J. Dushoff, “Alternative stable states in host–phage dynamics,” *Theoretical Ecology*, vol. 1, no. 1, pp. 13–19,
454 2008.

455 [55] Z. Wang and N. Goldenfeld, “Fixed points and limit cycles in the population dynamics of lysogenic viruses and their
456 hosts,” *Phys. Rev. E*, vol. 82, p. 011918, Jul 2010.

457 [56] Z. Zang, C. Zhang, K. J. Park, D. A. Schwartz, R. Podicheti, J. T. Lennon, and J. P. Gerdt, “Bacterium secretes chemical
458 inhibitor that sensitizes competitor to bacteriophage infection,” *bioRxiv*, 2024.

459 [57] E. Tzipilevich, O. Pollak-Fiyaksel, B. Shraiteh, and S. Ben-Yehuda, “Bacteria elicit a phage tolerance response subsequent
460 to infection of their neighbors,” *EMBO J.*, vol. 41, p. e109247, Feb. 2022.

461 [58] Z. Erez, I. Steinberger-Levy, M. Shamir, S. Doron, A. Stokar-Avihail, Y. Peleg, S. Melamed, A. Leavitt, A. Savidor,
462 S. Albeck, *et al.*, “Communication between viruses guides lysis-lysogeny decisions,” *Nature*, vol. 541, no. 7638, pp. 488–
463 493, 2017.

464 [59] S. Zamora-Caballero, C. Chmielowska, N. Quiles-Puchalt, A. Brady, F. G. Del Sol, J. Mancheño-Bonillo, A. Felipe-Ruiz,
465 W. J. Meijer, J. R. Penades, and A. Marina, “Antagonistic interactions between phage and host factors control arbitrium

466 lysis–lysogeny decision,” *Nature microbiology*, pp. 1–12, 2024.

467 [60] P. Guler, S. O. Bendori, T. Borenstein, N. Aframian, A. Kessel, and A. Eldar, “Arbitrium communication controls phage

468 lysogeny through non-lethal modulation of a host toxin–antitoxin defence system,” *Nature Microbiology*, pp. 1–11, 2024.

469 [61] W. J. Meijer, V. Castilla-Llorente, L. Villar, H. Murray, J. Errington, and M. Salas, “Molecular basis for the exploitation

470 of spore formation as survival mechanism by virulent phage $\phi 29$,” *The EMBO Journal*, vol. 24, no. 20, pp. 3647–3657,

471 2005.

472 [62] A. L. Sonenshein, “Bacteriophages: how bacterial spores capture and protect phage dna,” *Current biology*, vol. 16, no. 1,

473 pp. R14–R16, 2006.

474 [63] N. Gabiatti, P. Yu, J. Mathieu, G. W. Lu, X. Wang, H. Zhang, H. M. Soares, and P. J. Alvarez, “Bacterial endospores

475 as phage genome carriers and protective shells,” *Applied and Environmental Microbiology*, vol. 84, no. 18, pp. e01186–18,

476 2018.

477 [64] J. Radeck, K. Kraft, J. Bartels, T. Cikovic, F. Dürr, J. Emenegger, S. Kelterborn, C. Sauer, G. Fritz, S. Gebhard, and

478 T. Mascher, “The bacillus BioBrick box: generation and evaluation of essential genetic building blocks for standardized

479 work with bacillus subtilis,” *J. Biol. Eng.*, vol. 7, p. 29, Dec. 2013.

480 [65] B. R. Belitsky and A. L. Sonenshein, “Role and regulation of bacillus subtilis glutamate dehydrogenase genes,” *J. Bacteriol.*,

481 vol. 180, pp. 6298–6305, Dec. 1998.

482 [66] H. Westers, R. Dorenbos, J. M. van Dijl, J. Kabel, T. Flanagan, K. M. Devine, F. Jude, S. J. Seror, A. C. Beekman,

483 E. Darmon, C. Eschevins, A. de Jong, S. Bron, O. P. Kuipers, A. M. Albertini, H. Antelmann, M. Hecker, N. Zamboni,

484 U. Sauer, C. Bruand, D. S. Ehrlich, J. C. Alonso, M. Salas, and W. J. Quax, “Genome engineering reveals large dispensable

485 regions in bacillus subtilis,” *Mol. Biol. Evol.*, vol. 20, pp. 2076–2090, Dec. 2003.

486 [67] C. R. Stewart, S. R. Casjens, S. G. Cresawn, J. M. Houtz, A. L. Smith, M. E. Ford, C. L. Peebles, G. F. Hatfull, R. W.

487 Hendrix, W. M. Huang, and M. L. Pedulla, “The genome of bacillus subtilis bacteriophage SPO1,” *J. Mol. Biol.*, vol. 388,

488 pp. 48–70, Apr. 2009.

489 [68] J. Dormand and P. Prince, “A family of embedded runge-kutta formulae,” *Journal of Computational and Applied Mathematics*, vol. 6, no. 1, pp. 19–26, 1980.

490 [69] L. F. Shampine, “Some practical runge-kutta formulas,” *Mathematics of Computation*, vol. 46, pp. 135–150, 1986.

491 [70] J. Errington and L. T. v. d. Aart, “Microbe profile: Bacillus subtilis: model organism for cellular development, and

492 industrial workhorse,” *Microbiology*, vol. 166, no. 5, pp. 425–427, 2020.

493 [71] P. Wei and C. Stewart, “A cytotoxic early gene of bacillus subtilis bacteriophage spo1,” *Journal of bacteriology*, vol. 175,

494 p. 7887–7900, December 1993.

495 [72] F. De Paepe, Marianne; Taddei, “Viruses’ life history: Towards a mechanistic basis of a trade-off between survival and

496 reproduction among phages,” *PLOS Biology*, vol. 4, p. null, 06 2006.

497 [73] G. Parker, R. Daniel, and J. Errington, “Timing and genetic regulation of commitment to sporulation in bacillus subtilis,”

498 *Microbiology (Reading, England)*, vol. 142 (Pt 12), p. 3445–3452, December 1996.

499 [74] H. Berg and E. Purcell, “Physics of chemoreception,” *Biophysical Journal*, vol. 20, pp. 193–219, Nov. 1977. Publisher:

500 Elsevier.

501 [75] J. J. Barr, R. Auro, N. Sam-Soon, S. Kassegne, G. Peters, N. Bonilla, M. Hatay, S. Mourtada, B. Bailey, M. Youle, B. Felts,

502 A. Baljon, J. Nulton, P. Salamon, and F. Rohwer, “Subdiffusive motion of bacteriophage in mucosal surfaces increases the

503 frequency of bacterial encounters,” *Proceedings of the National Academy of Sciences*, vol. 112, no. 44, pp. 13675–13680,

504 2015.

505