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In recent years, the use of convolutional neural networks (CNNs) for raw resting-
state electroencephalography (EEG) analysis has grown increasingly common. However,
relative to earlier machine learning and deep learning methods with manually extracted
features, CNNs for raw EEG analysis present unique problems for explainability. As
such, a growing group of methods have been developed that provide insight into the
spectral features learned by CNNs. However, spectral power is not the only important
form of information within EEG, and the capacity to understand the roles of specific
multispectral waveforms identified by CNNs could be very helpful. In this study, we
present a novel model visualization-based approach that adapts the traditional CNN
architecture to increase interpretability and combines that inherent interpretability with a
systematic evaluation of the model via a series of novel explainability methods. Our
approach evaluates the importance of spectrally distinct first-layer clusters of filters
before examining the contributions of identified waveforms and spectra to cluster
importance. We evaluate our approach within the context of automated sleep stage
classification and find that, for the most part, our explainability results are highly
consistent with clinical guidelines. Our approach is the first to systematically evaluate
both waveform and spectral feature importance in CNNs trained on resting-state
EEG data.

Keywords: explainable Al, spectral explainability, EEG, CNNs, sleep stage classification, deep learning

INTRODUCTION

In recent years, the use of convolutional neural networks (CNNs) in the analysis of raw
electroencephalography (EEG) data has grown considerably. These classifiers have the advantage
over standard machine learning and deep learning classifiers paired with manual feature extraction
in that they don’t require any prior assumptions about the important features within the data and
that they automate feature extraction. While this is the case, pairing automated feature extraction
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with raw time-series data also causes problems with
explainability, which is highly important in sensitive domains like
healthcare. As such, novel methods for explaining CNNs trained
on raw EEG data are needed. In this study, we present a novel
approach that pairs a CNN architecture adapted for increased
interpretability with a series of systematic model perturbations
that provide valuable insight into the features extracted by the
CNN and the relative importance of those features. Unlike
previous approaches that have mainly provided insight into key
frequency feature extracted by CNNs, we provide insight into
both the frequencies and waveforms extracted by CNNs.

Prior to the recent trend of applying CNNs to raw
electrophysiology data for automated feature extraction, it was
common to manually create features and apply machine learning
or deep learning approaches with traditional explainability
methods when analyzing electrophysiology data. The user-
created features typically reflected either time domain or
frequency domain (Ince et al., 2008; Kwon et al., 2018; Chen
et al,, 2019; Ruffini et al., 2019; Ellis et al., 2021g) aspects of the
data. A strength of this approach was that it could be applied
alongside explainability methods initially developed outside the
domain of electrophysiology analysis like layer-wise relevance
propagation (LRP) (Bach et al., 2015), Grad-CAM (Selvaraju
etal., 2020), and activation maximization (Simonyan et al., 2013).
However, the use of user-selected input features also inherently
limited the available feature space, thereby limiting the potential
performance of classifiers.

As such, more studies have begun to apply CNNs to raw
electrophysiology analysis. While this application can improve
model performance, applying traditional explainability methods
to raw time-series samples makes it very difficult to know
what time or frequency features are extracted by classifiers and
to draw global conclusions about the importance of extracted
features (Sturm et al., 2016). It should be noted that this
difficulty is not applicable to identifying spatial importance
(Sturm et al., 2016) or modality importance (Ellis et al., 2021a,b,f,
2022), in multichannel or multimodal classification, respectively.
However, this difficultyis applicable when trying to understand
the temporal and spectral features extracted by classifiers.

In response to the need for improved explainability in
CNNs applied to raw electrophysiology data, a new field of
explainability for CNN-based raw electrophysiology classification
has developed. The vast majority of these methods provide
insight into frequency-based features extracted by CNN.
These methods can loosely be divided into four categories:
(Ellis et al, 2021g) interpretable architectures (Chen et al,
2019) activation maximization approaches, (Kwon et al,
2018) perturbation approaches, and (Ince et al., 2008) model
visualization approaches. Interpretable architectures involve
structuring filters in the first convolutional layer such that they
only extract spectral features (Borra et al., 2019, 2020). While
these methods are very innovative, they still inherently restrict
the feature space to frequency features. Several studies have
presented methods that use activation maximization to identify
spectral features that maximize activation of the CNN (Tsinalis
et al., 2016b; Ellis et al., 2021h; Pathak et al., 2021). Two studies
examined the effect of sinusoids at different frequencies upon

activations of nodes in the early layers of the classifier (Tsinalis
et al.,, 2016b; Ellis et al., 2021h; Pathak et al., 2021), and the
remaining study varied the spectral representation of a sample
until it maximized the activation of the final output node (Ellis
etal., 2021h). Other existing studies involve perturbing canonical
frequency bands of samples and examining the effect upon the
predictions (Schirrmeister et al., 2017; Ellis et al,, 2021e) or
performance of a classifier (Nahmias and Kontson, 2020). The
last category of methods involves training a CNN with long first-
layer filters that can be converted to the frequency domain after
training and visualized to examine the spectral features extracted
by the model (Tsinalis et al.,, 2016b). While these methods do
provide useful insight into extracted spectra, they do not provide
effective insight into extracted time-domain features.

For the most part, existing approaches that provide insight
into insight into time-domain features of EEG are of limited
utility. One study perturbs windows of a time-domain sample
(Pathak et al., 2021). However, when datasets consist of thousands
of samples and there is no way to combine insights from the
perturbation of each sample, that approach does not provide
useful global conclusions on the nature of the time-domain
features extracted. Another study used activation maximization
to optimize the spectral content of a sample (Ellis et al., 2021h).
While the method does yield a sample in the time domain
that maximizes activation for a particular class, it does not
provide insight into the relative importance of different time
domain features. A couple of other studies have used activation
maximization for insight into the time domain (Yoshimura et al.,
2019, 2021). However, they were only applied to networks trained
on samples that were around 30 time points long, and EEG
samples can be hundreds to thousands of time points long.
Additionally, a previous study showed that these methods do
not generalize well to sample lengths relevant for EEG analysis
(Ellis et al., 2021h). It should be noted that existing explainability
methods can be applied to some forms of electrophysiology
like electrocardiograms (ECG) that have regularly repeated
waveforms (Porumb et al., 2020; Frick et al., 2021). However,
these applications rely upon the regular repetition of waveforms,
and that repetition is not present in forms of electrophysiology
like resting-state magnetoencephalography and EEG. Methods
which provide useful insight into time domain features (Ellis
et al,, 2021d) extracted by CNNs for EEG involve training a
CNN with filters in the first layer that are long enough to extract
distinct waveforms (Tsinalis et al., 2016b; Lawhern et al., 2018).
The filters can then be visualized and perturbed to examine the
relative importance of each waveform within the filters to the
classifier performance. We developed this method in a previous
study (Ellis et al., 2021d), and we expand upon it here to provide
a systematic approach for explaining CNNs trained on raw
electrophysiology time-series.

In this study, we use sleep stage classification as a testbed to
demonstrate the utility of our approach. Sleep stage classification
has several noteworthy characteristics that make it ideal for
our application (Ellis et al., 2021g). The domain of sleep
stage classification has well-characterized spectral and temporal
features, so we can evaluate whether our explainability results are
consistent with established scientific knowledge (Iber et al., 2007;
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Chen et al,, 2019). There are multiple large publicly available
datasets within the domain of sleep stage classification that help
with reproducibility of analyses (Quan et al., 1997; PhysioNet,
2002; Khalighi et al., 2016; Kwon et al., 2018). Multiple studies
have already presented explainability methods for the domain of
sleep stage classification, which will make it easier to compare our
findings with results from previous studies (Tsinalis et al., 2016b;
Ellis et al., 2021c,e,h; Pathak et al., 2021).

In summary, in this study, we present a novel systematic
approach for gaining insight into the features extracted by CNNs
on raw, resting-state EEG data and into the relative importance
of those features. We train a CNN for automated sleep stage
classification with a publicly available dataset and structure
the first layer of the architecture such that we can visualize
the waveforms extracted by the model. We convert the first
layer filters of the model to the frequency domain and identify
clusters of filters with distinct spectral characteristics. We then
examine the relative importance of each cluster of filters. After
identifying the importance of each cluster, we examine how much
of that importance is attributable to spectra and to multispectral
waveforms within each cluster. Unlike previous methods that
only provided insight into key spectral features, we provide
insight into both key spectral features and waveforms. Figure 1
shows an overview of our methods.

MATERIALS AND METHODS

In this study, we use EEG sleep stage data to train a CNN. We
then visualize the first layer filters of the CNN, convert them
to the frequency domain, and cluster them. After clustering
the filters, we ablate each cluster to determine their importance
and perturb their frequency and time domain representations
for insight into the importance of the spectra and waveforms
within each cluster.

Dataset and Data Preprocessing

In this study, we used the Sleep Cassette subset of the PhysioNet
(Goldberger et al, 2000). Sleep-EDF Database Expanded
(PhysioNet, 2002). The Sleep Cassette subset contains 153 20-h
recordings from 78 healthy individuals. Each individual had two

subsequent recordings of day-night periods while at home. The
dataset includes electroencephalogram (EEG), electrooculogram
(EOG), electromyogram (EMG), oro-nasal airflow, and rectal
body temperature. However, in our study, we just used EEG from
the FPz-Cz electrode recorded at 100 Hertz (Hz). The data was
assigned by experts to Awake, REM, NREM1, NREM2, NREM3,
and NREM4 stages in 30-s intervals.

We segmented the data into 30-s samples based on the expert
assigned intervals. To alleviate data imbalances, we removed
Awake data from the start of the recordings and part of the end
of the recordings. Using clinical guidelines, we made NREM3
and NREM4 a single class. After removing samples, we separately
z-scored the EEG data from each recording. Table 1 shows the
resulting distribution of samples in each class.

Model Development

Here, we discuss our model development and evaluation
approach. We implemented our model architecture and
training in Keras 2.2.4 (Chollet, 2015) and Tensorflow 1.15.0
(Abadi et al., 2016).

Architecture

We utilized a 1D-CNN architecture that had long filters
in the first convolutional layer to make it easier to apply
explainability methods and gain insight into extracted waveforms
and frequency bands. The architecture that we used was originally
developed in Tsinalis et al. (2016b) for 150-s segments that
frequently included multiple sleep stages. We adapted it to
make it compatible with our shorter 30-s segments that only
included a single sleep stage. This adaptation made it easier
to compare our explainability results to domain knowledge on
the key characteristics of each sleep stage. Figure 2 shows our
classifier architecture.

Cross-Validation and Training Approach

When developing our architecture and training our classifier,
we used a 10-fold cross-validation approach. In each fold, we
randomly assigned 63, 7, and 8 subjects to training, validation,
and test groups, respectively. To address class imbalances, we
weighted our categorical cross entropy loss function. We also
used a stochastic gradient descent optimizer with a batch size

Evaluate Model
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Importance
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FIGURE 1 | Overview of methods. We train a CNN for sleep stage classification and evaluate its performance. We then visualize the first layer filters of the CNN,
convert them to the frequency domain, and cluster them. After clustering the filters, we ablate each cluster to determine its importance and perturb their frequency
and time domain representations to determine how much of cluster importance is attributable to the spectra and waveforms within each cluster.
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of 100 and an adaptive learning rate with an initial value of
0.015 that decreased by 10% after each set of five epochs that
did not have a corresponding increase in validation accuracy.
We applied early stopping if 20 epochs occurred without an
increase in validation accuracy. The maximum number of
training epochs was 30. Additionally, we shuffled the training
data between each epoch.

Performance Evaluation

When evaluating the test performance of our model, we
computed the precision, recall, and F1-score for each class in each
fold. After computing the metrics for each fold, we calculated
the mean and standard deviation of each metric across folds.
The equations below show the formulas for precision, recall, and
F1-score.

True Positive

Precision = — —
True Positive + False Positive

True Positive
Recall =

True Positive + False Negative

Precision x Recall
Precision + Recall

Explainability -
Filters

To better understand the global extraction of features by
the model, we selected the model from the fold with the
highest weighted Fl-score on the test data. We then used
a Fast Fourier Transform (FFT) to convert the 30 filters
in the first convolutional layer into the frequency domain.
Next, we calculated the spectral power between 0 and 50 Hz.
We then performed two rounds of k-means clustering using
scikit-learn (Pedregosa et al., 2011). In the first round of
clustering, we used 50 initialization and applied the silhouette
method to determine the optimal number of clusters. After
determining the optimal number of clusters, we redid the
clustering with 100 initializations with the optimal number
of clusters and examined the spectra of the filters within
each cluster.

Identifying Clusters of

Explainability - Examining Importance of

Each Cluster of Filters

After identifying clusters of filters, we sought to understand
the relative importance of each of the clusters. We applied
two methods to this end: ablation and layer-wise relevance
propagation (LRP). In our ablation approach, we replaced
each cluster of filters with zeros and measured the percent
change in the weighted Fl-score and class-specific F1-
scores following ablation. A large negative percent change
in performance after ablation corresponds to increase
cluster importance.

We implemented LRP using the Innvestigate toolbox (Alber
et al,, 2019). LRP (Bach et al, 2015) is a popular gradient-
based feature attribution method (Ancona et al., 2018). Rather
than examining the effect of perturbing the model, it utilizes the

TABLE 1 | Distribution of samples.

Awake  NREM1 NREM2  NREM3 REM Total
Number 85,034 21,622 69,132 13,039 25,8356 214,562
Percent 39.63 10.08 32.22 06.08 12.04 100

gradients and activations of the network to estimate relevance
(i.e., importance). LRP can output both positive and negative
relevance. Positive relevance indicates that particular features
provide evidence for a sample being assigned to the class it
is ultimately assigned to by the classifier. In contrast, negative
relevance indicates features that provide evidence for a sample
being assigned to classes other than what it is ultimately assigned
to by the classifier. In this study, we used the af relevance rule
with an o of 1 and a f of 0 to filter out all negative relevance and
only propagate positive relevance. The equation below shows the

af-rule.
(ajwye)" (@wik) )
R, = (03 — — Rk
' Zk:( Zo,j (”‘J”V"jk)+ ZO,] (“J’ij)

Where the subscript k corresponds to a value for one of K
nodes in a deeper layer and j corresponds to a value for one
of J nodes in a shallower layer. The activation output by the
shallower layer is referred to as a;, and the model weights are
referred to by w. The relevance is split into positive and negative
portions when propagated backwards. The variables a and f
control how much positive and negative relevance are propagated
backwards, respectively.

Layer-wise relevance propagation typically gives relevance
values for individual features, but we wanted to gain insight
into filter importance. As such, we computed the relevance
for the first layer convolutional layer activations of all test
samples, computed the percentage of relevance assigned to each
cluster for each subject, summed the relevance values within
each predicted class and cluster, and then scaled the relevance
values of each respective cluster by the total number of filters
minus the number of filters in each cluster divided by the total
number of filters. After understanding the relative importance
of each cluster of filters, we sought to understand the important
components of each cluster of filters. The equation below shows
how we computed the importance for each class and cluster.

NR ZchstCS F— Fc
€= ZstfS F

Where NR¢ indicates the normalized relevance within a
particular cluster (C) and class, R indicates relevance, f indicates
a filter, c indicates a cluster, s indicates a subject within cluster C,
F indicates the total number of filters, and F¢ indicates the total
number of filters in a cluster.

Explainability - Examining Why Filter
Clusters Are Important Spectrally

While visualizing the frequency domain of each cluster of filters
provided insight into the frequencies learned by the classifier,
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FIGURE 2 | CNN architecture. The feature extraction and classifier segments of the classifier are indicated by Sections (i) and (i), respectively. (i) has of a 1D
convolutional (conv1d) layer (30 filters, length of 200, stride of 1), a 1D max pooling (pool1d) layer (pooling size of 15, stride of 10), a conv2d layer (400 filters,
30 x 25 filter size, stride of 1 x 1), and a pool2d layer (pooling size of 10 x 1, stride of 1 x 2). (i) has 2 dense layers (500 nodes) and an output dense layer (5
nodes). Layers with an “R” or an “S” have RelLU or softmax activation functions, respectively.
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they did not necessarily indicate the relative importance of each
of the frequency bands within each cluster of filters. As such,
we performed a separate analysis to understand the relative
importance of each frequency band within each cluster of
filters. To this end, we (Ellis et al., 2021g) iteratively converted
each cluster of filters to the frequency domain using an FFT,
(Chen et al., 2019) replaced coefficients of a particular frequency
band with zeros, (Kwon et al., 2018) converted the perturbed
coeflicients back to the time domain, (Ince et al., 2008) used the
perturbed model to generate predictions for the test data, and
(Ruffini et al., 2019) examined the change in F1-scores following
perturbation. When perturbing the frequency domain of the
filters, we perturbed five frequency bands that were in units of
Hertz (Hz) - 8 (0 - 4 Hz), 6 (4 - 8 Hz), a (8 - 12 Hz), B (12 -
25 Hz), and y (25 - 50 Hz).

Explainability — Examining Why Clusters

Are Important Temporally

To understand the relative importance of the waveforms within
each of the filters, we developed a novel weight perturbation
approach including the following steps: (Ellis et al., 2021g). We
calculated the class-specific F1-scores and weighted F1-score
of the model on the test data (Chen et al., 2019). We used
a sliding window approach to ablate (i.e., replace with values
of zero) some of the first-layer filters weights of the model.
Note that each filter in the first layer had a length of 200
weights (Kwon et al.,, 2018). We used the model with ablated
weights to predict labels for the test data and calculated the
percent change in Fl-scores (Ince et al.,, 2008). We designated
the percent change in class-specific F1-score as the importance
of the point at the center of the window (Ruffini et al., 2019).
We restored the model weights to their original pre-ablation
values (Bach et al, 2015). We moved the sliding window
along the filter with a specific step size and repeated steps
2 through 5 until all weights in the filter had corresponding
importance values (Selvaraju et al., 2020). We repeated steps
2 through 6 for the next filter until importance values were
obtained for weights in all filters. The sliding window had a
window length of 25 points and a step size of one point. To
ensure that each individual weight had an assigned importance

value, we zero-padded the filters prior to the sliding window
ablation process.

RESULTS

In this section, we describe the performance of our model and the
results of each of the explainability analyses that we performed.

Model Performance

Table 2 shows our model performance results. The performance
of our model was reasonable overall. The classifier generally
had highest performance for the Awake class, followed by
performance for NREM2. Additionally, performance for Awake
and NREM2 had a low standard deviation and was generally
consistent across folds. Performance for NREM3 and was
comparable to REM. NREM3 had a noticeably higher mean recall
than REM and a slightly higher mean F1-score than REM. REM
had a markedly higher mean precision than NREM3. However,
REM had much lower levels in variation of performance across
folds than NREM3. Interestingly, NREMI1 performance was
above chance level but still much lower than the performance
for all other classes across metrics. NREM1 had lower levels
of variation in precision and the Fl-score across folds but
higher levels of variation in recall. Our classification performance
was somewhat lower than the performance of the classifier in
Tsinalis et al. (2016b). This is likely due to our choice to use
30-s samples from one sleep stage rather than 150-s segments
with multiple sleep stages that included state transitions. This
choice aided our goal in evaluating the utility of our proposed
explainability approach, as it made it easier to directly compare
our explainability results with the well-characterized features of
individual sleep stages.

Results for Clustering Spectra

We identified three clusters with our clustering approach.
Figure 3 shows the filters for each cluster in the time domain
and in the frequency domain. Clusters 0, 1, and 2 were assigned
3, 16, and 11 of the 30 filters, respectively. Cluster 0 was the
smallest cluster. It contained sinusoids of varying amplitude that
were predominantly associated with the lower p band, although
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one of the filters had some o activity. Cluster 1 was the largest
cluster. Although it contained a mixture of frequencies, it was
predominantly composed of upper f band activity and some
upper 6 and lower a. In contrast to the other clusters, Cluster
2 was primarily composed of filters extracting § and lower 6-
band activity. Interestingly, several filters did extract lower p-
band activity. There were a number of dominant low frequency
waveforms in Cluster 2 filters that were not purely sinusoidal (e.g.,
in filters 20, 21, 26, and 28).

Results for Cluster Importance

Figure 4 shows the overall importance of each cluster to the
classifier using both LRP and ablation. With a few exceptions
both methods yield similar results. The results are the same
for NREM2, NREM3, and REM. They show that Cluster
2 is most important across the three classes. Additionally,
across both methods Cluster 1 is second most important for
REM and NREM3, while Cluster 0 is second most important
for NREM2. For NREM1 and Awake, there are some key
differences. Namely, LRP finds Cluster 2 followed by Cluster
1 to be most important. In contrast, ablation finds Cluster 2
followed by Cluster 1 to be most important. For both methods,
Cluster 0 is of low to moderate importance for all classes
except NREM2. Additionally, the weighted Fl-score of the
ablation indicates that Clusters 1 and 2, followed by Cluster 0,
are most important.

Results for Cluster-Specific Spectral
Perturbation

Our previous analyses characterized and identified the relative
importance of each cluster of filters. To examine the importance
of different spectra within each cluster, we perturbed the
frequency bands in each cluster and examined their effect on
classifier performance. Figure 5 shows the results for our spectral
perturbation analysis. p was the most important band within
Cluster 0. While there were small levels of 8 and «a activity (as
shown in Figure 3) in the cluster, the bands had little to no
importance. Similar to in Cluster 0,  was the most important
band in Cluster 1, having strong effects on NREM1 and minor
effects on NREM3 and REM. Importantly, 8 and 6 were most
important in Cluster 2. Perturbation of § had strong effects upon
all classes except Awake, and perturbation of 6 had a strong
effect on REM, with low to moderate effects on NREM1 and
NREM2. Interestingly, the Awake class was not strongly affected
by the perturbation of frequency bands in any of the classes.
The strongest effects of spectral perturbation across clusters and
bands were those of Cluster 2 8 and 6 upon REM.

Results for Temporal Filter Ablation

After examining the key frequencies of each cluster of filters,
we examined the waveforms extracted by the filters. Figure 6
shows the results of our temporal ablation analysis. The change
in weighted F1-score identified the overall impact of the temporal
ablation upon the classifier performance. Ablation of the Cluster
1 windows had a slight impact upon classifier performance
across most filters and windows, while ablation of Cluster 0
windows had no noticeable effect. Ablation of Cluster 2 windows
resulted in large levels of localized importance in parts of
filters 21, 26, and 29.

Similar waveforms showed impacts upon class-specific F1-
scores. However, there were also some variations. Note that
references to timepoints in this paragraph refer to the first-layer
filters which are 2 s long (i.e., 200 weights per filter, with a
data sampling rate of 100 Hz) and correspond to the x-axis of
Figure 6. Interestingly, timepoints 0.8 to 1.1 s of filter 20 were
of modest importance for NREM1 and REM but not for other
classes. Timepoints from 0 to 0.5 s of filter 21 in Cluster 2
had high importance across all classes, with highest importance
for NREM1, NREM2, and REM and noticeably less importance
for Awake and NREM3. Timepoints 1.00 to 1.25 s of filter 26
had little importance for Awake but moderate (i.e., NREMI,
NREM2, NREM3) to high (i.e., REM) levels of importance for
other classes. Timepoints 1.0 to 1.25 s of filter 28 were important
for NREM1, NREM2, and REM. Timepoints 0.25 to 0.5 s of
filter 29 had moderate levels of importance for NREM2, NREM3,
and REM. Interestingly, timepoints 0.5 to 1.0 s of filter 17 were
important for NREM2 and NREM3, with other parts of the filter
also being important for NREM3. Part of filter 12 were also
noticeably important for NREM1.

DISCUSSION

In this section, we discuss how the results from our analyses
relate to one another to explain the model more effectively and
how those results compare to existing knowledge from the sleep
domain. Unless otherwise specified, when we discuss the results
within the context of domain knowledge, we are comparing them
to the AASM Manual (Iber et al., 2007).

Developing a High Performing Classifier

Classifier performance was highest for the Awake class, which
makes sense given that the Awake class had the largest number
of samples and that it has clear differences from the other classes.
Although NREM1 performance was low, that is acceptable.
Most sleep stage classification studies have difficulty classifying
NREMI eftectively (Tsinalis et al., 2016a; Supratak et al., 2017;

TABLE 2 | Model test performance.

Awake NREM1 NREM2 NREM3 REM
Precision 94.90 £+ 02.67 38.47 + 04.85 79.83 £+ 04.56 63.02 + 12.25 67.27 +£ 08.53
Recall 89.12 £ 02.44 41.10 £ 10.46 79.12 £ 06.77 75.55 + 15.04 68.65 + 06.44
F1 91.88 + 01.82 38.56 + 04.37 79.20 £ 01.67 67.89 &+ 11.09 67.41 £ 04.80
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FIGURE 4 | Filter cluster importance with LRP and ablation. Panels (A,B) show the global importance of each cluster of filters using LRP and ablation, respectively.
Importantly, red, yellow, and blue values show importance of Clusters O, 1, and 2, respectively.

Chambon et al.,, 2018; Michielli et al., 2019), possibly because
it is one of the smaller sample groups and can appear similar
to Awake and REM (Quan et al., 1997; Goldberger et al., 2000;
PhysioNet, 2002; Iber et al., 2007; Pedregosa et al., 2011; Chollet,
2015; Abadi et al., 2016; Khalighi et al., 2016; Tsinalis et al., 2016a;
Ancona et al., 2018; Alber et al., 2019; Michielli et al., 2019;
Ellis et al., 2021c). Some studies have gone so far as to develop
hierarchical models specifically designed to improve performance
for NREM1 classification (Michielli et al., 2019). After Awake,

the performance of the classifier for NREM2, NREM3, and REM
seem to be loosely related to the number of samples in each class.

Identifying Filter Clusters With Distinct
Spectral Features and Quantifying Their

Relative Importance
In our first analysis, we visualized the first layer filters of
the model from the fold with the highest Fl-score. We then

Frontiers in Neuroinformatics | www.frontiersin.org 7

May 2022 | Volume 16 | Article 872035



Ellis et al.

Explainable CNNs for EEG Analysis

Cluster 0 Cluster 1 Cluster 2
(]
0 5
O
n
by
5 -
)
1)
-10 _&%
o
=
-15 ¢
I~
[
-4
-20
a
FIGURE 5 | Effect of cluster-level spectral perturbation on each class. The leftmost, middle, and rightmost panels show the percent change in class-specific
F1-score that resulted from perturbing each frequency band in Clusters O, 1, and 2, respectively.
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NREM2, NREM3, and REM class-specific F1-scores, respectively. Red, yellow, and blue lines show weights for Clusters O, 1, and 2, respectively. Markers at each
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visualization of importance for both low and high levels of importance.
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clustered the filters in the frequency domain to identify sets of
spectrally distinct filters. Interestingly, all canonical frequency
bands were present in at least one of the filter clusters. Cluster
0 contained large amounts of lower B activity and is highly
important for identifying NREM2. This makes sense given that
NREM?2 often contains sleep spindles that appear in the lower
B band (ie., 12 - 14 Hz). Cluster 0 was also important for
identifying NREM1 and REM and was overall least important
for identifying classes other than NREM2. Interestingly, previous
studies have shown increased levels of P activity during REM
(Vijayan et al,, 2017). Cluster 1 was characterized as having some
lower frequency activity (upper 6 and lower o) but predominantly
higher frequency activity (upper p and y). It was very important
for identifying Awake, NREM1, and REM samples. The often
erratic and high frequency activity of Awake could explain
why the cluster was important for identifying the Awake class.
Incidentally, NREMI is often characterized by low amplitude,
mixed frequency activity within the 6 range, which could indicate
why the cluster was important for NREM1. Moreover, as REM is
often characterized as multispectral, it makes sense that a cluster
having multiple distinct frequency bands would be important for
identifying REM. Cluster 2 was characterized by low frequency
3 and 0 activity and was very important for identifying NREM2,
NREM3, and REM, with moderate importance for NREMI. Its
importance for NREM1 could be attributed to its extraction of
low amplitude 6 activity. NREM2 often includes K-complexes
that appear within the § band. Given that Cluster 2 extracts 3
activity and extracts waveforms in a number of filters (i.e., 20,
23, 24, 25, 26, and 28) that resemble k-complexes, it is very
reasonable that Cluster 2 would be important for identifying
NREM2. Importantly, the main feature of NREM3 is 3 activity,
which could explain why Cluster 2 is so important for NREM3.
Lastly, REM has previously been associated with high levels of
frontal 0 activity (Vijayan et al., 2017).

Confirming Spectral Importance of
Clusters

Based on our initial identification of clusters of filters and the
relative importance of the clusters for each class, we suggested
a number of reasons why the filters might be important to
particular classes. However, our previous cluster ablation analysis
did not provide definitive evidence regarding the importance of
the spectral features present in each cluster. Here, we examine
the effects of perturbing the canonical frequency bands within
each cluster and examine their relative impact upon classifier
performance. Overall, the effect of perturbing the individual
bands within each cluster does not sum up to the effect of
ablating each cluster, which could indicate that all of the useful
information in the filters was not found in the spectral features
extracted. For example, the perturbation of frequency bands
across all clusters did not affect performance for Awake, which
could indicate waveforms, rather than frequency bands, were
important for identifying Awake.

Our previous cluster importance analysis indicated that
Cluster 0 was highly important for NREM2, with moderate
importance for NREM1 and REM, and little to no importance

for Awake and NREM3. Our spectral perturbation analysis
confirmed that B was the only important frequency band in
Cluster 0. Additionally, perturbing B in Cluster 0 had a larger
impact upon NREM2 than the perturbation of any other band
in Clusters 1 and 2. REM is often characterized as having
high B activity (Vijayan et al.,, 2017), which could explain the
importance of Cluster 0 p upon REM, but NREMI is not
typically associated with B, which could indicate that the classifier
incorrectly associated p with NREM1 and could explain the poor
performance of the classifier for the sleep stage. The effect of
perturbing p in Cluster 1 upon NREM1 was the largest effect
of any pair of classes and bands within Cluster 1. Interestingly,
perturbation of individual frequency bands in Cluster 1 seemed
to have very little impact upon Awake and REM. Given the
importance of the cluster for identifying the stages, that could
indicate that the classifier did not rely solely upon extracted
spectral features or upon any single frequency band within the
cluster when identifying Awake and REM. Instead, the classifier
might rely more upon extracted waveforms. The perturbation of
3 and 6 in Cluster 2 was particularly impactful across multiple
classes, particularly the REM class that is characterized as having
high levels of 6 activity (Vijayan et al., 2017). Similar to our
previous hypotheses and consistent with clinical guidelines,
perturbing 6 in Cluster 2 did impact NREM1 performance, and
perturbing 3 impacted NREM3 performance.

Examining Importance of Extracted

Waveforms

Our analysis of the importance of the canonical frequency bands
within each cluster did not fully explain the importance of
each cluster to the individual sleep stages. As such, to more
fully understand the importance of each cluster, we sought
to examine the importance of individual waveforms within
the filters to performance for each class. The importance of
Cluster 0 to NREM2 was primarily explained by the extraction
of B activity. However, by perturbing filters 1 (i.e., 0.75 to
1.25 s) and 2 (1.0 to 1.25 s) in Cluster 0, we can see
some time windows where waveforms resembling sleep spindles
seem to be of some importance. While perturbing individual
frequency bands in Cluster 1 seemed to have little impact, the
perturbation of individual waveforms in Cluster 1 seemed to
generally have more of an impact than the perturbation of
most time windows in other clusters, which could indicate that
the temporal characteristics of the filters were more important
than their spectral characteristics. This could also explain the
importance of Cluster 1 for identifying Awake and NREMI.
Lastly, as Cluster 2 had more low frequency activity, there
were more clearly discernable waveforms of strong importance
to the classifier performance. Perturbation of filter 21 (ie.,
0.00 to 0.50 s) was of high but varying importance across all
classes. Low frequency oscillations in a several filters (i.e., 27
and 29) were important for identifying NREM2. Additionally,
waveforms resembling k-complexes in multiple filters (i.e., 23, 25,
26, 28) were also of some importance for identifying NREM2.
Low frequency activity was present across multiple filters. Like
for NREM2, the classifier relied heavily upon § waveforms
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when identifying NREM3. Additionally, Filter 21, which has
a waveform resembling a vertex sharp wave from (0.00 to
0.50 s), was particularly importance across nearly all classes,
and was most important in NREM1, NREM2, and REM. The
importance of vertex sharp waves in NREM1 could explain its
importance for the class.

Limitations and Next Steps

One of the key contributions of this paper is the combination
of a model architecture that is structured to enable increased
interpretability with a systematic approach for examining the key
spectral and temporal features learned by the classifier. While
the filter size of our first layer enabled the visualization of the
extracted filters, it also made the training and evaluation of
the architecture very computationally intensive. Future iterations
of this analysis approach could likely find sufficient levels of
explanatory insight with filter lengths equivalent to 0.5 or 1.0 s
of signal, while also having a model that could be trained
and evaluated with more computational efficiency. Additionally,
this study only used data from one electrode. The use of
one electrode is common in sleep stage classification, but less
so in other domains of EEG analysis. Future iterations of
this approach could be generalized to multichannel data by
perturbing filters when they are applied to individual channels
but not to other channels. Lastly, we applied our approach to
sleep stage classification so that we could evaluate its efficacy
within a well-characterized domain. In the future, our approach
might be applied for biomarker identification in domains that are
poorly characterized. It would also be possible to examine the
effect of perturbation upon the probability of individual samples

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).
“TensorFlow: a system for large-scale machine learning,” in Proceedings of the
12th USENIX Symposium on Operating Systems Design and Implementation,
(Savannah, GA: USENIX Association).

Alber, M., Lapuschkin, S., Seegerer, P., Higele, M., Schiitt, K. T., Montavon, G.,
etal. (2019). INNvestigate neural networks! J. Mach. Learn. Res. 20, 1-8.

Ancona, M., Ceolini, E., Oztireli, C., and Gross, M. (2018). “Towards
Better Understanding of Gradient-based Attribution Methods for Deep
Neural Networks,” in International Conference on Learning Representations,
(Vancouver: ICLR).

Bach, S., Binder, A., Montavon, G., Klauschen, F., Miiller, K. R., and Samek, W.
(2015). On pixel-wise explanations for non-linear classifier decisions by layer-
wise relevance propagation. PLoS One 10:¢0130140. doi: 10.1371/journal.pone.
0130140doi

Borra, D., Fantozzi, S., and Magosso, E. (2020). Interpretable and lightweight
convolutional neural network for EEG decoding: application to movement
execution and imagination. Neural Netw. 129, 55-74. doi: 10.1016/j.neunet.
2020.05.032

Borra, D., Fantozzi, S., and Magosso, E. E. E. G. (2019). “Motor Execution Decoding
via Interpretable Sinc-Convolutional Neural Networks” in Mediterranean
Conference on Medical and Biological Engineering and Computing [Internet],
(New York: International Publishing), 1515-1525. doi: 10.1007/978-3-030-
31635-8_188

Chambon, S., Galtier, M. N., Arnal, P. J.,, Wainrib, G., and Gramfort, A. A.
(2018). deep learning architecture for temporal sleep stage classification using
multivariate and multimodal time series. IEEE Trans. Neural Syst. Rehabil. Eng.
26, 758-769. doi: 10.1109/TNSRE.2018.2813138

belonging to a class or upon subject-specific performance metrics
for the purpose of personalized biomarker identification.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.physionet.org/content/sleep-
edfx/1.0.0/.

AUTHOR CONTRIBUTIONS

CE helped with conception of the manuscript, performed the
analyses, and wrote and edited the manuscript. RM helped with
the conception and editing of the manuscript. VC helped with
the editing of the manuscript and provided funding for the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was funded by the NIH grant ROIMH123610 and
NSF grant 2112455.

ACKNOWLEDGMENTS

We thank those who collected the Sleep-EDF Database
Expanded on PhysioNet.

Chen, H., Song, Y., and Li, X. (2019). Use of deep learning to detect personalized
spatial-frequency abnormalities in EEGs of children with ADHD. J. Neural Eng.
19:16. doi: 10.1088/1741-2552/ab3a0a

Chollet, F. (2015). Keras. San Francisco: GitHub.

Ellis, C. A., Carbajal, D. A., Zhang, R, Miller, R. L., Calhoun, V. D., and Wang,
M. D. (2021a). An Explainable Deep Learning Approach for Multimodal
Electrophysiology Classification. bioRxiv [Preprint]. doi: 10.1101/2021.05.12.
443594

Ellis, C. A., Carbajal, D. A., Zhang, R,, Sendi, M. S. E., Miller, R. L., Calhoun, V. D.,
et al. (2021b). “A Novel Local Ablation Approach For Explaining Multimodal
Classifiers,” in 2021 IEEE 21st International Conference on Bioinformatics and
Bioengineering, (Kragujevac: IEEE).

Ellis, C. A., Miller, R. L., and Calhoun, V. D. A. (2021e). “Novel Local Explainability
Approach for Spectral Insight into Raw EEG-Based Deep Learning Classifiers,”
in 21st IEEE International Conference on Biolnformatics and BioEngineering,
(Serbia: IEEE).

Ellis, C. A., Miller, R. L., and Calhoun, V. D. A. (2021c). Gradient-based Spectral
Explainability Method for EEG Deep Learning Classifiers. bioRxiv. [Preprint].
doi: 10.1101/2021.07.14.452360

Ellis, C. A., Miller, R. L., and Calhoun, V. D. A. (2021d). Model
Visualization-based Approach for Insight into Waveforms and Spectra
Learned by CNNs. bioRxiv [Preprint]. doi: 10.1101/2021.12.16.47
3028

Ellis, C. A., Miller, R. L., Calhoun, V. D., and Wang, M. D. A. (2021f). “Gradient-
based Approach for Explaining Multimodal Deep Learning Classifiers,” in
2021 IEEE 21st International Conference on Bioinformatics and Bioengineering,
(kragujevac: IEEE).

Ellis, C. A., Sendi, M. S. E., Miller, R., and Calhoun, V. A. (2021g). “Novel
Activation Maximization-based Approach for Insight into Electrophysiology

Frontiers in Neuroinformatics | www.frontiersin.org

May 2022 | Volume 16 | Article 872035



Ellis et al.

Explainable CNNs for EEG Analysis

Classifiers,” in 2021 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), (Housto: IEEE).

Ellis, C. A., Sendi, M. S., Willie, J. T., and Mahmoudi, B. (2021h). “Hierarchical
Neural Network with Layer-wise Relevance Propagation for Interpretable
Multiclass Neural State Classification,” in 10th International IEEE/EMBS
Conference on Neural Engineering, (Italy: IEEE), 18-21.

Ellis, C. A., Sendi, M. S. E., Zhang, R., Carbajal, D. A., Wang, M. D., Miller,
L., et al. (2022). Novel Methods for Elucidating Modality Importance in
Multimodal Electrophysiology Classifiers. bioRxiv [preprint]. doi: 10.1101/
2022.01.01.474276

Frick, T., Glige, S., Rahimi, A., Benini, L, and Brunschwiler, T. (2021).
“Explainable Deep Learning for Medical Time Series Data,” in Lecture Notes of
the Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering, LNICST, (Germany: Springer), 244-256.

Goldberger, A. L., Amaral, L. A,, Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark,
R. G, et al. (2000). PhysioBank. PhysioToolkit, and PhysioNet: components
of a New Research Resource for Complex Physiologic Signals. Circulation 101,
€215-¢220. doi: 10.1161/01.cir.101.23.e215

Iber, C., Ancoli-Israel, S., Chesson, A. L., and Quan, S. F. (2007). The AASM Manual
for Scoring of Sleep and Associated Events: Rules, Terminology, and Technical
Specifications. Westchester, IL: American Academy of Sleep Medicine.

Ince, N., Goksu, F., Pellizzer, G., Tewfik, A., and Stephane, M. (2008). “Selection of
spectro-temporal patterns in multichannel MEG with support vector machines
for schizophrenia classification,” in Proceedings of the 30th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, (Vancouver:
IEEE), 3554-3557. doi: 10.1109/TEMBS.2008.4649973

Khalighi, S., Sousa, T., Santos, J. M., and Nunes, U. (2016). ISRUC-Sleep: a
comprehensive public dataset for sleep researchers. Comput. Methods Progr.
Biomed. 124, 180-192. doi: 10.1016/j.cmpb.2015.10.013

Kwon, Y. H,, Shin, S. B., and Kim, S. D. (2018). Electroencephalography based
fusion two-dimensional (2D)-convolution neural networks (CNN) model for
emotion recognition system. Sensors 18:1383. doi: 10.3390/s18051383

Lawhern, V. J,, Solon, A. J., Waytowich, N. R, Gordon, S. M., Hung, C. P, and
Lance, B.]. (2018). EEGNet: a compact convolutional neural network for EEG-
based brain-computer interfaces. J. Neural Eng. 15:056013 doi: 10.1088/1741-
2552/aace8¢c

Michielli, N., Acharya, U. R, and Molinari, F. (2019). Cascaded LSTM recurrent
neural network for automated sleep stage classification using single-channel
EEG signals. Comput. Biol. Med. 106, 71-81. doi: 10.1016/j.compbiomed.2019.
01.013

Nahmias, D. O., and Kontson, K. L. (2020). “Easy Perturbation EEG Algorithm
for Spectral Importance (easyPEASI): A Simple Method to Identify Important
Spectral Features of EEG in Deep Learning Models,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, (New York: ACM), 2398-2406. doi: 10.1145/3394486.3403289

Pathak, S., Lu, C., Nagaraj, S. B., van Putten, M., and Seifert, C. S. T. Q. S. (2021).
Interpretable multi-modal Spatial-Temporal-seQuential model for automatic
Sleep scoring. Artif. Intell. Med. 114:102038. doi: 10.1016/j.artmed.2021.102038

Pedregosa, F., Weiss, R, and Brucher, M. (2011). Scikit-learn: machine Learning
in Python. J. Mach. Learn. Res. 12, 2825-2830. doi: 10.1080/13696998.2019.
1666854

PhysioNet (2002). The Sleep-EDF database [Expanded]. New York: IEEE.

Porumb, M., Stranges, S., Pescape, A., and Pecchia, L. (2020). Precision Medicine
and Artificial Intelligence: a Pilot Study on Deep Learning for Hypoglycemic
Events Detection based on ECG. Sci. Rep. 10, 1-16. doi: 10.1038/541598-019-
56927-5

Quan, S. F., Howard, B. V., Iber, C,, Kiley, J. P., Nieto, F. J., O’Connor, G. T,, et al.
(1997). The Sleep Heart Health Study: design, rationale, and methods. Sleep 20,
1077-1085.

Ruffini, G., Ibafiez, D., Castellano, M., Dubreuil-Vall, L., Soria-Frisch, A., Postuma,
R, et al. (2019). Deep Learning With EEG Spectrograms in Rapid Eye
Movement Behavior Disorder. Front. Neurol. 10:806. doi: 10.3389/fneur.2019.
00806

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M.,
Eggensperger, K., Tangermann, M., et al. (2017). Deep learning with
convolutional neural networks for EEG decoding and visualization. Hum. Brain
Mapp. 38, 5391-5420. doi: 10.1002/hbm.23730

Selvaraju, R. R, Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D.
(2020). Grad-CAM: visual Explanations from Deep Networks via Gradient-
Based Localization. Int. . Comput. Vis. 128, 336-359.

Simonyan, K. Vedaldi, A., and Zisserman, A. (2013). Deep Inside
Convolutional ~ Networks:  visualising Image Classification ~Models
and  Saliency Maps. arXiv [preprint]. doi: 10.48550/arXiv.1312.

6034

Sturm, L., Lapuschkin, S., Samek, W., and Miiller, K. R. (2016). Interpretable deep
neural networks for single-trial EEG classification. J. Neurosci. Methods 274,
141-145. doi: 10.1016/j.jneumeth.2016.10.008

Supratak, A., Dong, H., Wu, C., and Guo, Y. (2017). DeepSleepNet: a model for
automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans.
Neural Syst. Rehabil. Eng. 25, 1998-2008. doi: 10.1109/TNSRE.2017.2721116

Tsinalis, O., Matthews, P. M., and Guo, Y. (2016a). Automatic Sleep Stage
Scoring Using Time-Frequency Analysis and Stacked Sparse Autoencoders.
Ann. Biomed. Eng. 44, 1587-1597. doi: 10.1007/s10439-015-1444-y

Tsinalis, O., Matthews, P. M., Guo, Y., and Zafeiriou, S. (2016b). Automatic Sleep
Stage Scoring with Single-Channel EEG Using Convolutional Neural Networks.
arXiv [preprint]. doi: 10.48550/arXiv.1610.01683

Vijayan, S., Lepage, K. Q., Kopell, N. J., and Cash, S. S. (2017). Frontal beta-theta
network during REM sleep. Elife 6:¢18894. doi: 10.7554/eLife.18894

Yoshimura, N., Maekawa, T., and Hara, T. (2019). Preliminary Investigation of
Visualizing Human Activity Recognition Neural Network. 2019 12th Int Conf
Mob Comput Ubiquitous Network. ICMU 2019, 4-5.

Yoshimura, N., Maekawa, T., and Hara, T. (2021). “Toward Understanding
Acceleration-based Activity Recognition Neural Networks with Activation
Maximization,” in 2021 International Joint Conference on Neural Networks,
(New York: IEEE).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Ellis, Miller and Calhoun. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org

May 2022 | Volume 16 | Article 872035



	A Systematic Approach for Explaining Time and Frequency Features Extracted by Convolutional Neural Networks From Raw Electroencephalography Data
	Introduction
	Materials and Methods
	Dataset and Data Preprocessing
	Model Development
	Architecture
	Cross-Validation and Training Approach
	Performance Evaluation

	Explainability – Identifying Clusters of Filters
	Explainability – Examining Importance of Each Cluster of Filters
	Explainability – Examining Why Filter Clusters Are Important Spectrally
	Explainability – Examining Why Clusters Are Important Temporally
	Results
	Model Performance
	Results for Clustering Spectra
	Results for Cluster Importance
	Results for Cluster-Specific Spectral Perturbation
	Results for Temporal Filter Ablation

	Discussion
	Developing a High Performing Classifier
	Identifying Filter Clusters With Distinct Spectral Features and Quantifying Their Relative Importance
	Confirming Spectral Importance of Clusters
	Examining Importance of Extracted Waveforms
	Limitations and Next Steps

	Data Availability Statement

	Author Contributions
	Funding
	Acknowledgments
	References


