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Human adolescence marks a crucial phase of extensive brain development,
highly susceptible to environmental influences. Employing brain age estimation
to assess individual brain aging, we categorized individuals (N = 7,435, aged 9-
10 years old) from the Adolescent Brain and Cognitive Development (ABCD)
cohort into groups exhibiting either accelerated or delayed brain maturation,
where the accelerated group also displayed increased cognitive performance
compared to their delayed counterparts. A 4-way multi-set canonical correlation
analysis integrating three modalities of brain metrics (gray matter density,
brain morphological measures, and functional network connectivity) with
nine environmental factors unveiled a significant 4-way canonical correlation
between linked patterns of neural features, air pollution, area crime, and
population density. Correlations among the three brain modalities were notably
strong (ranging from 0.65 to 0.77), linking reduced gray matter density in
the middle temporal gyrus and precuneus to decreased volumes in the left
medial orbitofrontal cortex paired with increased cortical thickness in the right
supramarginal and bilateral occipital regions, as well as increased functional
connectivity in occipital sub-regions. These specific brain characteristics were
significantly more pronounced in the accelerated brain aging group compared
to the delayed group. Additionally, these brain regions exhibited significant
associations with air pollution, area crime, and population density, where lower
air pollution and higher area crime and population density were correlated to
brain variations more prominently in the accelerated brain aging group.

KEYWORDS

adolescence, brain development, multivariate, multi-set canonical correlation analysis,
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1 Introduction

During adolescence, the brain experiences rapid development, second only to infancy
(Arain et al, 2013). Studies of brain structure using MRI have shown that gray
matter exhibits a pre-adolescence increase, followed by a steady decrease into adulthood
(Blakemore and Choudhury, 2006). In contrast, white matter density increases roughly
linearly until young adulthood (Paus et al., 1999). This general pattern varies across brain
regions in terms of rate and time (Giedd et al., 1999; Sowell et al., 2001; Gogtay et al.,
2004), and is accompanied by synaptic pruning (Huttenlocher and Dabholkar, 1997), and
prolonged increases in myelination (Miller et al., 2012). Functional brain imaging studies
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also demonstrated that brain responses to stimuli such as sensory
inputs, affection, rewards, or demands, change during adolescence
(Casey et al., 2005; Laruelle et al., 2002; Kwon et al., 2002; Rubia
et al, 2000). Such multidimensional changes in the brain also
provide the biological foundation for the maturation of adolescent
cognitive ability, which is why cognitive performance is often
thought to reflect brain maturation (Dosenbach et al., 2010).

This period of rapid brain maturation has been shown
to also be a period of vulnerability to environmental factors
(Green et al., 2010). The complex relationship between the brain,
behavior, and environmental factors has been well-established
(Modabbernia et al., 2021; Xu et al., 2023). Much of the latest
research has used the Adolescent Brain and Cognitive Development
Study (ABCD) to investigate the effects of environment on
brain development. Consistently, researchers using this large
adolescent cohort (N = 11 k), have found that environmental
measures such as neighborhood disadvantage, school environment,
and socioeconomic disadvantage are associated with increased
functional connectivity (Rakesh et al., 2021, 2023) and reductions in
global cortical thickness (Rakesh et al., 2022; Hackman et al., 2021;
Taylor et al., 2020). A longitudinal study of the same cohort, looking
at these relationships at baseline and year two, found similar
associations between changes in brain connectivity and negative
environmental factors, suggesting that accelerated maturation of
the brain may be an adaptive response to adversity (Brieant et al.,
2021).

Beyond the ABCD cohort, other studies have established
the relationship between multiple environmental factors, on a
variety of scales, with brain maturation, health, and cognitive
development. The factors include air pollution (Cipriani et al.,
2018), urbanization (Lederbogen et al, 2013; Sampson et al,
2020), negative and unstable family relationships (Bush et al.,
2020), and stressful life events (Gapp et al., 2014; Herzberg and
Gunnar, 2020). Specifically, on a macro scale, higher air pollution
has been associated with a thinner cortex in the precuneus and
rostral middle frontal regions, with partially mediating effects
on impaired inhibitory control (Guxens et al., 2018), as well as
lower functional integration and segregation in key brain networks
in school-age children (Pujol et al., 2016). Population density,
closely related to urbanicity, has been consistently associated with
affective symptoms, including elevated depression (Sampson et al.,
2020). Urbanicity is positively correlated with cerebellar volume
and negatively correlated with medial prefrontal cortex volume in
young people (Xu et al., 2022). Recent research shows that people
living in areas with higher ratios of green space exhibit stronger
parietal and insular activation during stress, whereas exposure to
more air pollution leads to weaker activation in the same brain
areas (Dimitrov-Discher et al., 2022). Meso-scale environmental
factors like deprived neighborhoods, often characterized by area
deprivation, area crime rates, or limited access to school education,
are known to have negative effects on young people. These include
increased chronic stress (Jorgensen et al., 2023), increased risk
of childhood mental health problems, (Baranyi et al.,, 2021; Sui
et al., 2022; Alderton et al., 2019), anxiety, depression (Barnett
et al, 2018; Thapaliya et al, 2024), and increased suicidal
tendencies (Cairns et al., 2017). Moreover, previous studies on
micro-scale environmental factors have established strong links,
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such as smaller gray matter volume in focal regions resulting
from socioeconomic status deprivation (Jeong et al., 2023) and
neighborhood disadvantage being associated with lower cortical
thickness in brain regions like the cuneus and lateral occipital
cortex (Rakesh et al, 2022). A good school environment was
also associated with decreased connectivity between the cingulo-
opercular network and the default mode network (Rakesh et al.,
2023). At the same time, various types of early life adversity
were linked to noticeable effects on the brain, including extended
activation of prefrontal-hippocampal-amygdala circuits (Smith
and Pollak, 2020; Herzberg and Gunnar, 2020).

Despite the depth of our understanding regarding these
relationships between environmental factors and specific brain
regional alterations, there has been very little research on how they
might be related to brain maturation in a holistic way. To estimate
the relative brain maturation, neuronal features derived from MRI
have been used to create an objective, biological measure, referred
to as brain age estimation (Franke and Gaser, 2019; Franke et al.,
2010). The gap between estimated brain age and chronological
age, referred to as delta age, is commonly used to indicate an
individual’s brain aging process. Both accelerated and delayed brain
aging have been associated with various symptoms of mental illness
as well as health conditions (Baecker et al., 2021; Ramduny et al.,
2022; Dunlop et al,, 2021; Casanova et al., 2022; Phillips et al,
2023). Hereafter, we will refer to the positive/negative gaps between
estimated brain age and chronological age as accelerated/delayed
brain aging (Peng et al., 2021), indicating the individual differences
in brain aging/maturation when compared to the estimated norm
of the same age subjects. The validity of brain age estimation
has been verified in various cohorts (Baecker et al., 2021) where
the brain age gap has been shown to be a reliable biomarker for
abnormal brain development, resilient aging process, or risk of
mental illness (Franke and Gaser, 2019; Kaufmann et al., 2017;
Konrad et al., 2013). In particular, children and adolescent studies,
including ours (Ray et al., 2021), have demonstrated that estimated
brain age not only reflects age-related changes but is also indicative
of cognitive maturation (Ray et al, 2021; Basodi et al., 2021,
2022; Liem et al., 2017; Dosenbach et al., 2010). Accelerated
brain age (brain age older than chronological age) is significantly
associated with faster information processing speeds and higher
verbal comprehension compared to the delayed brain age group
(Ray et al., 2023).

Brain age estimation models are effective at selecting brain
features that contribute to the accurate estimation of brain age,
but they cannot provide coherent information regarding whole
brain development patterns. For instance, interrelated bilateral gray
matter density in the frontal cortex may both show similar growth
patterns, but only one might be selected for the estimation of
brain age (Ray et al, 2021). In our previous work, we built a
reliable brain age estimation model that identified adolescents in
the ABCD Study who were experiencing accelerated or delayed
brain maturation (Ray et al., 2023). To fully understand the whole
brain patterns related to accelerated vs. delayed brain maturation,
as well as investigate the influence of environmental factors, in this
study we have applied a multi-set canonical correlation analysis
(mCCA) (Li et al, 2009; Zhuang et al., 2020) to overcome the
limitations associated with brain age estimation models. Our
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study is focused on: (i) identifying whole-brain patterns linked
to accelerated or delayed brain aging, (ii) exploring the impact
of various environmental factors on these brain patterns, (iii)
and providing an understanding of how environmental factors
may contribute to brain maturation. We seek to reveal, at least
partially, the complex interplay between the brain and multi-scale
environmental factors, providing further understanding of how
brain maturation may be influenced by environments.

2 Data and method
2.1 Participants

We analyzed the data collected from the ABCD study https://
abcdstudy.org (Hagler et al., 2019), which is a 10-year-long study
on participants initially recruited at the age of nine to ten from 21
sites across the United States. Along with multisession structural
and functional brain MRI scans, the ABCD study also includes key
demographic information, including gender, race, socio-economic
background, cognitive development, and a mental and physical
health assessment of the subjects. Written informed consent from
the parents and assent from the child were obtained for each
participant, with approval from the Institutional Review Board
(IRB). The ABCD dataset is provided by the National Institute of
Mental Health Data Archive (NDA) https://nda.nih.gov/. The NDA
shares the ABCD data as an open-source dataset, collected from a
wide range of research projects across various scientific domains,
to enable collaborative science and discovery. In this study, we used
data from the ABCD baseline, which contains 11,875 participants,
to select a subpopulation with accelerated or delayed brain age.

In our prior study, we developed a refined brain age
model to robustly and accurately estimate the brain age of
ABCD participants within a narrow age range (9-10 years) (Ray
et al, 2024, 2023). The refined model was constructed with
two modules. The first module is the brain age model pre-
trained with 1,417 subjects aged 8-22 years from the Philadelphia
Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2016),
which leveraged the wider age range of PNC data to ensure broader
prediction power. After pre-training the first module, the second
module was trained by utilizing the ABCD baseline data with a
narrow age range (9-10 years) to account for unexplained residual
variation (the difference between the prediction of the first module
and actual age). The refined brain age estimation was finally
obtained by subtracting the estimated residuals from the broader
predicted age, thereby improving model accuracy. The final refined
model showed the best performance on both ABCD baseline and
year-two data with a mean absolute error of 0.49 and 0.48 years,
respectively. Furthermore, the brain age gap yielded by the refined
model demonstrated significant associations with participants’
information processing speed and verbal comprehension ability on
the baseline data. In this study, we have applied the model to ABCD
full baseline data to estimate participants’ brain age. The brain
age gaps (estimated brain age—chronological age) were computed
(see Supplementary Figure 1) and were found to roughly follow a
normal distribution. We identified 7,435 participants whose brain
age gap was 0.41 standard deviation away from the mean after
z transformation, partitioned into accelerated brain age group
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TABLE 1 Demography table.

Demographics Accelerated Delayed
(N =2,149) (N =2,115)
Mean age 9.94 4+ 0.63 9.93 +0.63
Gender 1,158 male/991 female 1,012 male/1,103
female
1,714 white/412 black 1,678 white/334 black
Race

92 other/34 missing

Mean total composite 87.94 £8.71 86.94 + 8.65
score
Mean fluid composite 93.32+0.29 92.13 +10.08
score
Mean crystallized 87.48 +6.79 87.02 + 6.84

composite score

(z > 041:N = 3,755) and delayed brain age group (z <
—0.41:N = 3,680). The threshold of 0.41 was chosen to include
roughly the bottom and top third of the cohort. In our analysis, we
specifically targeted these two subgroups to identify brain patterns
with significant differences between the two groups and linked to
environmental factors. We did not use all participants to emphasize
the factors contributing most to the variations between accelerated
and delayed brain age. In the data quality control steps, we removed
samples following the inclusion recommendation of ABCD release
version 5 for T1 weighted sMRI and rs-fMRI and removed samples
with missing values in the environmental factors. Finally, we have
4,264 samples (Accelerated group: N = 2,149, Delayed group: N =
2,115) for our analysis. The two groups listed in Table I had no
significant differences in age, gender, and race.

2.2 sMRI data preprocessing and feature
generation

We extracted three types of brain features: (i) gray matter
density of 100 independent components derived from independent
component analysis (ICA) (Xu et al., 2009) of gray matter images,
(ii) 152 brain morphological features derived from FreeSurfer
version v5.3 (Khan et al., 2008), and (iii) 1,378 static functional
network connectivity (sSFNC) values (Saha et al., 2022) derived from
resting state functional MRIL.

Gray matter (GM)
preprocessing the T1-weighted sMRI images using the Statistical
Parametric Mapping 12 (SPM12) (Ashburner et al., 2014) software
toolbox. Six types of tissue maps (gray matter, white matter,

density maps were generated by

CSE, bone, soft tissue, and others) were created in Montreal
Neuroimaging Institute (MNI) space after jointly segmenting
and spatially normalizing the T1-weighted sMRI images using
SPMI12 default tissue probability maps. The gray matter maps
were then smoothed using a 6 mm> Gaussian kernel. Finally, we
applied quality control on the individual gray matter maps and
selected those correlated to the group mean gray matter map at
correlation > 0.9. After quality control, the gray matter maps were
then masked to only include voxels with a gray matter density
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value >0.2. We then applied independent component analysis
(ICA) (Bell and Sejnowski, 1995; Amari, 1998) to extract 100
brain components. ICA decomposes the gray matter data into
a linear combination of maximally independent components,
called source-based morphometry (SBM) (Xu et al., 2009). Each
component as a brain network identifies a network of voxels
with covarying gray matter patterns and often these components
resemble those in resting fMRI data (Luo et al., 2020). The ICA
loadings reflect how these brain networks are expressed across
subjects, which are used as one type of brain feature in this
study, referred to as gray matter density of 100 independent
components. In addition, the brain morphological measures
derived by FreeSurfer version v5.3 (Khan et al., 2008) are provided
by the ABCD study (data release version 5). We selected 152
measures as the second type of brain features, which included the
estimated total intracranial volume, cortical thickness and cortical
volume, and subcortical volume of the human brain based on the
Desikan atlas (Desikan et al., 2006).

2.3 fMRI data preprocessing and functional
network connectivity (sFNC) features

We conducted preprocessing on the raw resting-state fMRI
data using a combination of the FMRIB Software Library (FSL) v6.0
(Jenkinson et al., 2012; Smith et al., 2004; Woolrich et al., 2009)
toolbox and the Statistical Parametric Mapping (SPM) 12 toolbox
within the MATLAB 2020b environment. The preprocessing steps
involved: (i) correcting for rigid body motion; (ii) addressing
distortion; (iii) eliminating dummy scans; (iv) normalizing the
data to standard Montreal Neurological Institute space; and (v)
applying smoothing with a 6 mm Gaussian kernel. We conducted
data quality control on the preprocessed fMRI data using the
Neuromark framework (Fu et al., 2023). The FSL MCFLIRT tool
was employed to rectify any rigid body motion observed in the
subject’s head during the fMRI scanning. After correcting head
motion, distortion correction in the fMRI images was performed
using field map files. These files were obtained by acquiring
phase encoding in both the anterior-posterior (AP) and posterior-
anterior (PA) directions with the FSL tool topup. The distortion
present in the fMRI volume was then addressed by applying
the output field map coefficients using the FSL tool applytopup.
After distortion correction, 10 initial scans with significant signal
changes were discarded to help the tissue gain a steady state of
radiofrequency excitation. Then wrapping and smoothening of the
fMRI data were done with MNI space 3 x 3 x 3 mm?> spatial
resolution and a Gaussian kernel with a full width at half maximum
(FWHM) of 6 mm. We employed the Neuromark_fMRI_1.0 (Du
et al., 2020) network templates to extract intrinsic connectivity
networks (ICNs) and corresponding time courses (TCs) through
an entirely automated spatially restricted ICA method. These
templates were obtained based on replicated networks estimated
from two healthy control datasets, the human connectome
project (Van Essen et al., 2012) and the genomics super struct
project (Holmes et al., 2015). More details of the Neuromark
framework and templates can be found in the GIFT toolbox http://
trendscenter.org/software/gift and at http://trendscenter.org/data
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(Correa et al., 2005). These spatial priors have been established to
be highly consistent between pipelines and across various datasets
and populations. We obtained 53 intrinsic connectivity networks
for each subject by implementing this approach. To address any
confounding effects, such as the greater degree of head motion
present in pediatric images, we included four additional post-
processing steps to regulate the remaining noise in the TCs of ICNs.
These steps involved detrending linear, quadratic, and cubic trends,
eliminating detected outliers, implementing multiple regression on
the head motion parameters, and bandpass filtering. After the post-
processing phase, Pearson correlation coefficients between post-
processed TCs were calculated to measure the static functional
network connectivity (sFNC) among 53 ICNs. The 53 x 53
symmetric SFNC matrix was then flattened, and 1,378 correlation
values from off-diagonal elements were extracted. These form the
third type of brain features of this study.

2.4 Environmental factors

In our study, we utilized a total of nine environmental factors
spanning macro, meso, and micro scales (Thapaliya et al., 2021,
2023) from the ABCD Cohort, both because of their established
relevance in the literature and our own group’s previous work
(Thapaliya et al., 2021, 2024) with these factors elucidating the
complex relationship between the brain and the environment. We
are aware that more environmental variables are now available,
which are unexplored in our current research and can be utilized in
future studies. The factors we included are air pollution, population
density, area crime, neighborhood safety, school safety, household
income, family conflict, early life stress (ELS), and area deprivation.
Each factor was derived by aggregating multiple related variables
to construct a comprehensive measure through summation, with
variables reversed, if necessary, to maintain consistency in the
direction of the effect. A higher value in air pollution, population
density, area crime, family conflict, ELS, and area deprivation
implies a negative or unfavorable direction. Conversely, higher
values in neighborhood safety, school safety, and household
income indicate a positive or desirable direction, such as a safe
neighborhood and school environment and better socio-economic
status. A detailed explanation of the relevant variables of each
environmental factor is presented in Supplementary material.

2.5 Cognitive measures

In this study, we utilized three cognitive composite scores
from the NIH Toolbox Cognition Battery (Akshoomoff et al,
2013) for our analysis. The three main cognitive summary scores
are: (i) crystallized cognition composite score (combination of
picture vocabulary and oral reading recognition tests), which
reflects crystallized cognition based on past learning experiences.
(ii) fluid cognition composite score (includes tests that evaluate
fluid abilities like executive function, working memory, attention,
and processing speed), which demonstrates the ability for new
learning and information processing in unexplored situations.
(iil) total cognitive function composite score, which provides a
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comprehensive measure of general cognitive abilities by combining
both the crystallized and fluid cognition composite scores.

2.6 Statistical analysis

We utilized multi-set canonical correlation analysis to identify
the distinct multivariate patterns of different brain feature sets,
as well as environmental factors, for the accelerated and delayed
subpopulation. Canonical correlation analysis (CCA) is a statistical
approach, first proposed by Hotelling (Hardoon et al., 2004)
in 1936, which tries to find pairs of linear projections for
different views in such a way that the correlation between them
is maximized.

If we have two data matrices X = [x1,Xp,...,X,] € Rxxn
and Y = [y1,y2, . ,y,,] € R%*" where n denotes the
number of samples and d,, dy indicate feature dimensions for data
matrices X and Y, respectively. CCA will find m pairs of linear
.,wx,m] e R%&>*m and w, =
represent the canonical weight

projections. W, = [wx,l,wx,z, ..
[wy,l,wy,z, o ,wy,m] e RéGyxm
matrices for two data matrices X and Y. The correlation between
a'™ pair of canonical projections w};aX and w;) .Y are maximized as
in Equation 1. Equation 1 can be simplified as Equation 2.

T T
meY Wya

\/(W)EQXXTWW) (w){a YYTWM)

P (XTWx,a» YTWy,a) = (1)

max w};’ XY Twy)a
Wx,aWy,a

stowl XXTwy, =1, w}:aYYTwy,a =1,
(orthogonality constraint)

w};aXXwa,b =0, w;uYYTwyyh =0 Va#b:abe{l,2,...,m}
)
The mCCA approach basically extends the concept of the
general form of CCA in order to find correlated patterns among
more than two views. Multi-view CCA aims to maximize the sum
of pairwise canonical correlations via optimizing canonical vectors
of all views. ¢; is the regularization parameter to be defined.

Wopt = argmax Z Z wg aX,-T XjWja
" e
T T T
st (L —ci)w; . X; Xiwig + ciw; ,Wig = 1, ©)
(orthogonality constraint)

wl X Xiw;y =0 ViVa#b:abe(l,2,...,m)

In Equations 2, 3, the orthogonality constraint ensures that
every pair of canonical variables is orthogonal/uncorrelated with
another pair of canonical variables.

To investigate the covariation patterns of the brain and the
environment in this subpopulation, we conducted a 4-way mCCA
analysis using the environmental factors and three types of brain
features. Specifically, mCCA was applied to the subject gray matter
loadings of 100 independent components, 152 morphological
measures, 1,378 sFNC values, and nine environmental factors.
The data were split as follows: 80% for training and 20% for
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testing, with a stratified 3-fold cross-validation in the training
set to select the ¢; parameter and avoid overfitting issues. We
used the CCA-Zoo (Chapman and Wang, 2021) package for our
analysis. To be conservative, we selected the number of canonical
variable sets based on the smallest dataset. Since the top four
principal components explained nearly 90% of the variance in
the smallest input data matrix of nine environmental factors, we
applied mCCA with four sets of canonical variables in the training
data to derive correlated brain and environmental variables. Thus,
only those brain patterns potentially associated with environmental
factors were extracted. The derived latent variables were directly
projected into the testing data to verify their associations. In order
to test for significant mean differences between the accelerated
and delayed groups, we applied the analysis of variance (ANOVA)
method on latent variables. To help further understanding of our
findings, we examined the canonical weight and shared variance
percentage of each original feature to identify its contribution to the
canonical latent variables. Canonical weights are the values in the
canonical vectors W in Equation 3. The shared variance percentage
is calculated as the square of the correlation between an original
observed feature and its corresponding canonical variable (r2).

To test the stability and robustness of the mCCA results, we
applied the mCCA analysis 100 times, each time randomly splitting
the data into an 80/20 split for training and hold-out test data. The
mCCA model was trained on the training data and tested on the
hold-out data. We then reported the average canonical weights,
the variance explained, and the frequency of a given feature that
was among the “Top 57 list across the 100 mCCA models on the
hold-out test data. For illustration purposes, related brain areas
for the top five (arbitrary selection) features based on the shared
variance percentage from the three brain datasets (ICA, FreeSurfer,
and sFNC) are plotted using Talairach Daemon software from the
GIFT toolbox and the Desikan atlas and displayed in the results
section (Rachakonda et al., 2007).

To test the associations with cognition and brain maturation
group, we implemented linear mixed-effects regression models
using cognitive measures (NIH Toolbox Fluid Cognition
Composite Score, Crystallized Cognition Composite Score, and
Total Cognition Composite Score) as the dependent variable,
with age, gender (Male = 0, Female = 1), and brain maturation
group (Accelerated = 3, Delayed = 2) as fixed-effect independent
variables. ABCD Family ID nested within ABCD site information
was included as random-effect variables. We included each subject’s
actual age and gender as predictors, along with the developmental
group, to control for the known effects of age and gender on
cognition during development. Additionally, we conducted linear
mixed-effects regression analyses on our 20% test data to examine
associations with cognitive measures and brain-related canonical
variables, using the cognitive score as the dependent variable and
age, gender, and brain-related canonical variables as fixed-effect
independent variables, while ABCD Family ID nested within
ABCD site information were included as random effect variables.

3 Results

In our 4-way mCCA analysis, four sets of canonical variables
were extracted during the training, while each set comprised of
four canonical latent variables: three latent brain variables and
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TABLE 2 Pairwise correlation of four sets of canonical variables (results from the 20% testing data).

Ca ical variables
SET 2 (r, p) SET3r, p

Pairwise correlation

SET 1 (r, p)

ICA GM-FreeSurfer

r=0.88,p < le-16

r=0.77,p < le-16

r=0.84,p < le-16

r=0.80, p < le-16

ICA GM-sFNC

r=0.64,p < le-16

r=0.65p < le-16

r=0.64,p < le-16

r=0.63,p < le-16

ICA GM-environment

r=0.37,p < le-16

r=0.15p < le-16

r=0.17,p < le-16

r=0.11,p=9-4

FreeSurfer-sFNC

r=0.64,p < le-16

r=0.68,p < le-16

r=0.55p < le-16

r=0.60,p < le-16

FreeSurfer-environment

r=0.36,p < le-16

r=0.18,p < le-16

r=0.14,p=1le-4

r=0.09,p=12e-2

sFNC-environment

r=0.34,p < le-16

r=0.16,p < le-16

r=0.20,p < le-16

r=0.12,p=4e-4

TABLE 3 Group difference of four sets of canonical variables on the 20% testing data.

Canonical variables

Group differences of canonical variables

SET 2 SET 3
(F. p) (F, p)

ICA GM F=12.67,p=3.92e-4 F=17.57,p=3.1e-5 Not significant Not significant
FreeSurfer Not significant F=2293,p=2e-6 F=10.70,p=11.11e-3 Not significant
sENC Not significant F=18.67,p=17e-5 Not significant Not significant
Environment Not significant Not significant Not signifi cant Not significant

one latent environmental variable. All four canonical variables
within each set were significantly correlated (p-values that survived
FDR correction) during the training phase. The direct projection
of derived latent variables into the 20% hold-out testing data
revealed that all four sets of canonical latent variables were
significantly cross-correlated within each set in the testing data
as well (see Table 2). Since results from the testing data are more
impartial, hereafter we present only those results. The correlations
between canonical variables of the brain features were high with
r-values ranging from 0.88 to 0.55. In contrast, the correlations of
environmental factors with brain features were low, but statistically
significant, with r-values ranging between 0.37 and 0.09.

A detailed report of the brain regions and associated
environmental variables is presented in Supplementary Tables 1-8.
The 1st derived environmental variable highlights the positive
effect of household income (shared variance percentage of
71.95%, canonical weight of 0.16) and the negative effect
of area deprivation (shared variance percentage of 68.56%,
canonical weight of —0.14) (see Supplementary Table 2). The 2nd
environmental variable highlights air pollution and area crime
(see Supplementary Table 4). The 3rd environmental variable
emphasizes area deprivation (shared variance percentage of
77.11%, canonical weight of 0.12) in contrast to household income
(shared variance percentage of 44.15%, canonical weight of —0.02)
and neighborhood safety (shared variance percentage of 44.95%,
canonical weight of —0.04) (see Supplementary Table 6). The
4th environmental variable highlights relatively small effects
of negative household income (shared variance percentage of
64.16%, canonical weight of —0.10) and positive area deprivation
(shared variance percentage of 49.04%, canonical weight of
0.06) (see Supplementary Table 8). All four environmental
variables are associated with specific brain features (see
Supplementary Tables 1-8).
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We further examined whether the derived canonical variables
had differences between the accelerated and delayed brain age
groups. The 2nd set of canonical variables showed consistently
significant differences in the three brain-related canonical latent
variables, where the accelerated group had higher values than the
delayed group. The environmental canonical latent variable did
not show group differences in all four sets. We presented the
results of the testing data in Table 3. Given our interest is in
identifying brain patterns related to brain development, the 2nd set
of canonical variables became our focus hereafter. We presented
their four-way associations on testing data in Figure 1. The figure
displays the pairwise canonical correlation coefficients among the
four canonical latent variables, as well as the top three features
contributing to each of the canonical variables for illustration
purposes. Based on the percentage of shared variance calculated
using the testing data, we have identified the top five contributing
features for each canonical variable. Table 4 provides feature names,
canonical weights, and shared variance percentages. The resulting
brain areas corresponding to these top five features are depicted
collectively in Figure 2, with green indicating gray matter ICA
components, red representing FreeSurfer morphological features,
and blue denoting sFNC.

We performed linear mixed-effect regression model analyses on
the accelerated and delayed brain age group to test the associations
with cognitive measures and the brain maturation group. The
results showed a t —value : 4.24,p < le—16 for the Total composite
score, t — value:4.19,p < le — 16 for the Fluid composite score,
and t = 2.63,p = 0.009 for the Crystallized composite score,
suggesting the accelerated age group showed significantly higher
performance on cognitive tests, consistent with accelerated brain
maturation. Moreover, the association analyses between cognitive
scores and brain-related canonical variables showed that the st
set of brain canonical variables were all significantly associated
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FIGURE 1
The association among the 2nd set of canonical variables from 20% testing data.

with all three cognitive composite scores, passing FDR correction.
Sets 2, 3, and 4 brain canonical variables were not associated with
cognitive measures. The detailed association results are listed in
Supplementary Table 9.

4 Discussion and conclusion

Our study aims to explore the multifaceted brain features
that are associated with brain maturation and their relationship
with environmental factors. From the ABCD cohort, we have
identified a subpopulation of participants with either accelerated
or delayed brain age using the brain age estimation model from
our prior study. These two groups showed significant differences
in cognitive measures, with the accelerated brain age group
performing higher than the delayed group on cognitive measures,
even after adjusting for biological age. To study environmental
effects on multimodal brain features, we performed a 4-way mCCA
analysis on regional gray matter density, morphometric measures,
resting-state functional network connectivity, and environmental
factors from nine domains. The 4-way mCCA analysis revealed
highly related patterns between the three types of brain measures
and their relationship with the environment.

Four sets of 4-way canonical variable correlations were verified
(all four latent variables were significantly correlated in the testing
data), and each set highlights a different environmental association
with brain patterns. While the 1st, 3rd, and 4th sets present
mainly effects from household income, area deprivation, and
neighborhood, the 2nd set presents effects of air pollution and
area crime at large. The 2nd set of brain canonical variables also
demonstrates significant mean differences between the accelerated
and delayed groups. The 1st set of brain canonical variables
are also positively associated with all three cognitive scores
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(see Supplementary Table 9). Given they relate significantly to
household income, which is one of the most studied environmental
factors with abundant evidence for associations with brain and
cognition (Tomasi and Volkow, 2021, 2023), we are not surprised
to observe this particular set of brain canonical variables associated
with overall cognition. The lack of cognitive association of other
sets of brain variables warrants further investigation on more
specific cognitive ability, such as processing speed, inhibition, etc.,
in addition to over composite scores. Though all four sets of
brain-environmental associations are valid and important, given
our research interest, we focus our discussion on the associations
among brain and environmental latent variables from the 2nd set
of canonical variables.

To improve the interpretation of how the original observed
features contribute to the latent variables, we presented the
canonical weights assigned to each variable and the percentage
of variance explained. The magnitude of the weight indicates the
degree of contribution of the feature to the latent variable. Features
with positive weights contribute to the canonical variable positively,
while features with negative weights contribute inversely. However,
interpreting the importance of a feature based on its canonical
weight is subject to the limitation of the beta weights in
regression analyses. Small weight can either suggest that the
corresponding feature is nonessential, or its contribution has been
partially explained by other features due to high multicollinearity.
This limitation applies only to the interpretation of the CCA
components, not to their extraction since multicollinearity is not
a concern for extracting CCA components. CCA is designed to
extract multivariate linearly related patterns within each dataset,
ensuring that these linear patterns are correlated across datasets.
To address the limitation inherent in canonical weights, we also
examined the percentage of variance shared which represents the
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TABLE 4 The top five contributing features of the 2nd set of canonical variables, along with their canonical weights and shared variance percentages in
the testing data, are presented.

Canonical
VEEIGS

Top 5
contributing
features

Canonical
weights

Shared
variance
percentages
(r2%)

Stability test results (mCCA 100 iterations)

Canonical
weights
mean (95%
Cl)

Shared
variance
percentages
mean (95% Cl)

Frequency
within the

top 5 list

ICAGM Sub-gyral 1 0.15 40.58 0.15 (0.126, 0.165) 40.47 (39.95, 40.99) 100%
Middle temporal —0.06 38.15 —0.05 (—0.055, 38.25(37.69, 38.80) 100%
gyrus 1 —0.038)
Precuneus —0.01 33.26 —0.01 (—0.007, 33.12(32.54, 33.71) 100%

—0.005)

Middle temporal —0.07 27.36 —0.06 (—0.068, 26.54 (25.98,27.11) 85%
gyrus 2 —0.049)
Superior temporal 0.03 26.69 0.03 (0.024, 0.029) 25.63 (25.04, 26.23) 72%
gyrus

FreeSurfer Left medial —0.10 32.33 —0.08 (—0.096, 32.76 (32.21, 33.31) 100%
Orbitofrontal —0.067)
Volume
Right 0.05 24.30 0.06 (0.051, 0.075) 23.89 (23.33, 24.46) 98%
supramarginal
thickness
Left lateral occipital 0.09 23.64 0.08 (0.066, 0.088) 23.70 (23.23, 24.16) 100%
thickness
Right lateral 0.07 22.73 0.06 (0.047, 0.067) 21.42 (20.87,21.97) 86%
occipital thickness
Right lateral —0.08 20.78 —0.07 (—0.076, 20.56 (20.03, 21.10) 96%
orbitofrontal —0.059)
volume

sFNC Lingual gyrus, 0.02 15.23 0.02 (0.015, 0.021) 14.91 (14.53, 15.29) 100%
precuneus
Middle temporal —0.02 13.10 —0.02 (—0.019, 12.86 (12.51, 13.21) 98%
gyrus, right —0.013)
Inferior frontal
gyrus
Cuneus, 0.02 12.84 0.02 (0.012, 0.019) 13.02 (12.64, 13.41) 93%
hippocampus
Cuneus, precuneus 0.003 12.25 0.005 (0.004, 0.006) 11.95 (11.62,12.27) 87%
Lingual gyrus, 0.009 12.25 0.01 (0.007, 0.009) 12.39 (12.02, 12.76) 82%
hippocampus

Environmental Air pollution —0.26 84.59 —0.25 (—0.280, 85.04 (84.41, 85.66) 100%

factors —0.216)
Area crime 0.06 16.29 0.05 (0.039, 0.055) 16.59 (15.71, 17.47) 100%
Population density 0.01 8.50 0.01 (0.004, 0.008) 8.45 (7.94, 8.96) 100%
Family conflicts 0.04 1.92 0.03 (0.025, 0.036) 2.23(1.90, 2.57) 89%
Neighborhood 0.01 1.01 0.01 (0.005, 0.009) 1.19 (0.90, 1.48) 77%
safety

The stability test results show the mean and 95% confidence intervals for the canonical weights and shared variance percentages of the top features, as well as their frequency within the top five

list of features across 100 iterations of mCCA on hold-out test data.

degree to which the observed feature shares variance with the
canonical variable.

The accelerated brain age group displayed higher values across
all three canonical variables of brain measures compared to the
delayed group. First, the ICA gray matter density of the top
regions contributed highly to the ICA latent variable. Notably,
the first and last contributing regions exhibited positive canonical
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weights, while the remaining three areas had negative canonical

weights (refer to Table 4). Positive weights indicated increased gray

08

matter density in sub-gyral and superior temporal gyrus regions,
whereas negative weights indicated reduced gray matter density
in middle temporal gyrus and precuneus regions, resulting in
higher values of the canonical variable. The sub-gyral region stood
out as the most prominent contributor, accounting for 40.58%
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FIGURE 2

The brain regions associated with the top five contributing features of the 2nd set of brain canonical variables (ICA GM in green, FreeSurfer in red,

SFNC in blue).

of the shared variance, followed by the middle temporal gyrus
with 38.15%. Therefore, reduced gray matter density in the middle
temporal gyrus and precuneus, along with increased density in the
superior temporal region, albeit to a lesser extent, contributed to
elevated values in the latent gray matter variable. The accelerated
group exhibited higher values than the delayed group, implying
potentially greater reductions in gray matter density overall,
consistent with advanced brain maturation observed during this
stage of adolescence (Arain et al., 2013; Giedd et al., 1999; Gogtay
and Thompson, 2010; Paus, 2005; Whitford et al., 2007).

Typically, maturation of gray matter volume appears first as
linear loss in the dorsal parietal cortices, frontal and occipital poles,
then progresses rostrally through the frontal cortex as quadratic
and cubic gray matter volume loss (Gogtay et al., 2004). This
reduction in gray matter volume is accompanied by increases
in cortical thickness in the frontal and parieto-occipital regions
as the brain matures (Sowell et al., 2004). Our results are in
alignment with the current understanding of the maturation of gray
matter volume and cortical thickness. The top five features that
contributed to the latent morphological variable were decreases
in gray matter volume in the orbitofrontal regions (left medial,
and right lateral) and increases in cortical thickness in the
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right supramarginal region and bilateral occipital regions. The
accelerated maturation group demonstrated higher values in this
latent variable, confirming that reduction in gray matter volume in
the orbitofrontal cortex, alongside increases in cortical thickness in
the supramarginal and lateral occipital cortex are associated with
the accelerated brain age.

Maturation of functional connectivity during adolescence is
marked by increased segregation between short-range connectivity
as well as increased integration of long-range connectivity (Fair
et al., 2007). This is seen in decreases in connectivity between
the anterior PFC, dorsolateral PFC, and the frontoparietal control
network in conjunction with increases in connectivity between the
dorsal ACC, the medial superior frontal cortex, and the cingula-
opercular control network (Stevens et al., 2009). Consistent with
this understanding of adolescent maturation, our study showed
positive contributions to the latent variable from the functional
connectivity of the occipital regions (cuneus, precuneus, and
lingual gyrus), while connectivity between the middle temporal
gyrus and right inferior frontal gyrus contributed negatively.
The accelerated maturation group again had higher values with
regard to the latent variable, confirming that they are experiencing
accelerated brain maturation.
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All three latent brain variables in our study were highly
correlated, confirming our expectation that changes in gray matter
density, cortical thickness, and functional connectivity are tightly
coupled and covary during brain development. Figure2 also
illustrates anatomical regions from the three latent variables that
are concentrated in the posterior part of the brain (occipital,
temporal, and parietal cortices), accompanied by the inferior orbital
part of the frontal cortex. Our results suggest the accelerated brain
age group may be experiencing accelerated gray matter density
reduction in the middle temporal gyrus and precuneus, volume
reduction in the orbitofrontal cortex, as well as increased thickness
in the supramarginal region, and increased functional connectivity
across cortical-subcortical regions.

The environmental variable linked with the second set of
brain patterns reveals that air pollution has the highest shared
variance percentage at 84.59% and a canonical weight of —0.26,
positioning it as the primary contributing feature (see Table 4).
Following air pollution, area crime, and population density emerge
as significant contributors to the environmental canonical variable,
with canonical weights of 0.06 and 0.01, and shared variance
percentages of 16.29 and 8.50%, respectively. Low levels of
air pollution coupled with higher area crime and population
density result in a heightened latent variable that exhibits positive
associations with all three latent brain variables. Although there are
no discernible group differences in the environmental variable, its
positive correlations with brain variables suggest that exposure to
an environment characterized by low air pollution and elevated
area crime and population density is associated with patterns of
brain regions that include reductions in gray matter and enhanced
functional connectivity, regions which are more prominent in the
accelerated brain aging group. It seems counterintuitive that lower
air pollution, a desirable environmental factor, would be coupled
with unfavorable or harsh neighborhood conditions like higher
crime rate and population density. However, in terms of brain
development/maturation both favorable and unfavorable factors
can work in the same direction. Prior research has suggested
that individuals may mature faster when exposed to harsh social
environmental conditions (Hedderich et al, 2021), and brain
development trajectory may be altered by air pollution in a time-
sensitive manner (Herting et al., 2024). The lack of group difference
in environmental variables could be interpreted in two ways.
One is that environmental variables stimulate brain development
in specific patterns but with small effect sizes, so large samples
are needed to verify environmental effects. The other is that
environmental variables are only associated with the part of the
variance in the brain patterns not showing brain development
differences, and the part showing brain development difference is
contributed by something else, such that more investigations on
other environmental factors are warranted. In the literature air
pollution (specifically fine particulate PM2.5) has been reported to
have a positive correlation with gray matter volumetric changes
across various brain regions, such as the medial orbitofrontal
cortex, while a negative association between air pollution and gray
matter volume is observed in regions like the superior temporal
gyrus (Miller et al., 2022). Our result showed that a low level
of ambient air pollution is linked to a reduction of gray matter
density in the middle temporal gyrus and the precuneus, as well as
a reduction of gray matter volume in the left medial orbitofrontal
cortex and the right lateral orbitofrontal cortex. Moreover, low air
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pollution is associated with increased gray matter density in the
sub-gyral, superior temporal gyrus, and increased cortical thickness
in the right supramarginal, bilateral occipital brain regions.

The limitations of our study are also opportunities for future
research. Even though our study shows significant associations
between environmental factors and brain maturation, we note
that these results are only observational. These findings could
be affected by potential confounders such as genetics, culture,
or other unexplored demographic elements. The mCCA method
assumes a linear relationship between observed features and the
latent variables, as well as a linear correlation between different
datasets. The method will fail to capture hidden relationships if
they are complex nonlinear interactions. All our findings are based
on ABCD baseline data with a cross-sectional analytical design. A
longitudinal analysis of the ABCD cohort that tracks the changes
in the multivariate relationships between brain-environment will
paint a more complete and likely more complex picture.

In sum, our research leveraged brain age estimation in a
large developmental cohort and revealed neuronal structural and
functional variations associated with accelerated vs. delayed brain
maturation. Furthermore, we provided evidence of associations
between environmental factors and brain maturation, suggesting
that such factors may modulate neuronal variations. However,
the influence of other confounders should be considered. Future
longitudinal studies on brain development could further unveil the
dynamic trajectory of environmental factors.
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