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Introduction: Typical adolescent neurodevelopment is marked by decreases in

grey matter (GM) volume, increases in myelination, measured by fractional

anisotropy (FA), and improvement in cognitive performance.

Methods: To understand how epigenetic changes, methylation (DNAm) in

particular, may be involved during this phase of development, we studied

cognitive assessments, DNAm from saliva, and neuroimaging data from a

longitudinal cohort of normally developing adolescents, aged nine to

fourteen. We extracted networks of methylation with patterns of correlated

change using a weighted gene correlation network analysis (WCGNA).

Modules from these analyses, consisting of co-methylation networks, were

then used in multivariate analyses with GM, FA, and cognitive measures to

assess the nature of their relationships with cognitive improvement and brain

development in adolescence.

Results: This longitudinal exploration of co-methylated networks revealed an

increase in correlated epigenetic changes as subjects progressed into

adolescence. Co-methylation networks enriched for pathways involved in

neuronal systems, potassium channels, neurexins and neuroligins were both

conserved across time as well as associated with maturation patterns in GM, FA,

and cognition.

Discussion:Our research shows that correlated changes in the DNAmof genes in

neuronal processes involved in adolescent brain development that were both

conserved across time and related to typical cognitive and brain maturation,

revealing possible epigenetic mechanisms driving this stage of development.
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1 Introduction

Considered the second-most critical phase of neurodevelopment

in humans, adolescence is marked by improved cognitive

performance driven by widespread reorganization of the brain

(Steinberg, 2005). Animal studies have shown that there are

large-scale epigenomic changes happening during this phase of

heightened synaptogenesis (Mychasiuk and Metz, 2016), but we

are still just beginning to understand what role epigenetics plays in

the development of the adolescent human brain as well as the

associated cognitive improvements (Wheater et al., 2020). Until

recently, the bulk of this research in humans had been restricted to

fetal brain development, limited by the need to directly analyze brain

tissue (Schneider et al., 2016). Advancements in analysis tools have

made it possible to study the epigenetic mechanisms, such as DNA

methylation (DNAm), of neural development using peripheral

tissue samples such as blood or saliva (Walton et al., 2016; Lin

et al., 2018; Proskovec et al., 2020). Methylation of DNA occurs

when a methyl group attaches to a cytosine pyrimidine (CpG) ring

(Mangiavacchi et al., 2023; Moore et al., 2013; Perri et al., 2017). This

acts as one mechanism of gene expression regulation, for example,

when DNAm at a promoter region reduces overall transcription of a

downstream gene, decreasing its expression or causing alternative

splicing (Dupont et al., 2009).

Biomarkers of DNAm in peripheral tissue such as saliva and blood

have been directly associated with DNAm in brain tissues (Braun et al.,

2019a; Han et al., 2019). These peripheral tissue measures have been

associated with both structural and functional aspects of the brain

(Walton et al., 2016; Lin et al., 2018; Proskovec et al., 2020; Braun et al.,

2019a). Researchers using resected brain tissue from 27 subjects, as well

as their saliva, blood, and buccal samples, established that individual

CpG sites had high correspondence across tissue-types as well as an

epigenome-wide correlation between tissues as high as 0.90 (Braun

et al., 2019a). With this advancement, research into the epigenomic

mechanisms of adolescent development have expanded. A 2019 study

found significant change in the DNAm of 15k CpGs pre- and post-

adolescence from blood samples taken from a population spanning

10–18 years of age (Han et al., 2019). A study published in 2021 found

that measures of DNAm from blood samples significantly mediated the

relationship between childhood adversity and symptoms of depression

across adolescence (Smith et al., 2021). Investigation of correspondence

of DNAm in surrogate tissues (blood and saliva) as biomarkers for

DNAm in other places in the body extends beyond the brain. Research

published in 2020 has found that DNAm in blood reliably corresponds

to DNAm in bone tissues (Ebrahimi et al., 2020), which like the brain,

requires invasive procedures to ascertain directly. In 2024, a group of

researchers has also found strong associations between DNAm in blood

and DNAm regulation of genes involved in the brain associated with

Alzheimer’s disease (Mendonça et al., 2024). They also found

differential DNAm change in the blood of patients with Parkinson’s

that were strongly related to DNAm changes on genes mechanistically

related to Parkinson’s, demonstrating that DNAm changes in

peripheral tissue can be related to different disease states, suggesting

that this correspondence between tissues is not coincidental (Mendonça

et al., 2024).

Our own previous research, using DNAmmeasures from saliva,

found that DNAm changes at seven CpGs located on genes involved

with excitatory and inhibitory mechanisms (GRIN2D, GABRB3,

KCNC1, SLC12A9, CHD5, STXBP5, and NFASC) were

significantly associated with grey and white matter maturation, as

well as with cognitive development during adolescence (Jensen et al.,

2023a; Jensen et al., 2023b). Those only included a small selection of

CpGs, so to further expand our understanding of epigenetic

influences on normal cognitive and brain development during

adolescence, our current study uses a weighted gene correlation

network analysis (WGCNA) (Langfelder and Horvath, 2008) to

explore the epigenome-wide mechanisms. The modules created

using this WGCNA highlight interconnected genomic regions

based on correlated methylation levels, which are clustered into

biologically relevant networks (Langfelder and Horvath, 2008).

Neural and cognitive development in adolescence is fairly well

documented. Multiple longitudinal MRI studies have shown that

grey matter volume (GM), as measured by structural MRI (sMRI)

decreases non-linearly (Gogtay et al., 2004) from the onset of

adolescence, followed by a slightly delayed increased in

myelination, which is reflected as an increase in fractional

anisotropy (FA), measured using diffusion MRI (dMRI) (Bava

et al., 2010). This structural and functional reorganization of the

brain is accompanied by improvement across a broad spectrum of

cognitive measures that include attention, memory and processing

speed (Shaw et al., 2006).

To explore how these correlated networks of DNAm might be

related to adolescent maturation, we used data collected from the

Developmental Chronnecto-Genomics (Dev-CoG): A Next-

Generation Framework for Quantifying Brain Dynamics and

Related Genetic Factors in Childhood, which is a longitudinal

cohort of roughly 200 typically developing subjects aged 9–14

(Stephen et al., 2021). This project collected brain imaging,

cognitive assessments, and saliva for DNAm analysis over three

time points, with roughly 1 year between each collection (Stephen

et al., 2021). Using this data in a previous study, we identified a small

subset of CpGs strongly related to cognitive development, grey and

white matter maturation (Jensen et al., 2023a; Jensen et al., 2023b).

The purpose of this study is to further expand on this initial

exploration by quantifying the relationships between co-

methylation networks, identified using a weighted correlation

network analysis, and neural and cognitive development in

adolescence. These co-methylation networks, representing clusters

of CpGs interconnected based on the changes in their methylation

across time, will be included in a multivariate analysis of covariance

to investigate the relationships between these networks of correlated

DNAm change, networks of GM volume and FA changes, and the

improvements on cognitive tests. We hypothesize that we will

identify modules of correlated DNAm changes at CpGs on genes

that will highlight biologically relevant pathways significantly related

the maturation of grey matter, white matter, and cognition.

2 Materials and methods

2.1 Cohort

The same cohort of subjects from our previous work (Jensen

et al., 2023a) was used in this analysis, recruited at the Mind

Research Network (MRN) and the University of Nebraska

Medical Center (UNMC) as part of the Dev-CoG study (Stephen
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et al., 2021), approved by the relevant institutional review board at

each data collection site (Advarrra IRB–MRN and UNMC

IRB–Nebraska). Data sharing was written into the consent forms

and the study protocols (Stephen et al., 2021). The inclusion criteria

for the study were: English speaking, age 9–14 years at enrollment

and both child and parent were able and willing to assent/consent to

the study. The exclusion criteria for the study were: current

pregnancy, unable to consent/assent, history of developmental

delays or disorders (or an individual education plan indicative of

a developmental delay/disorder), history of epilepsy or other

neurological disorders, parental history of major psychiatric or

neurological disorder, self-reported prenatal exposure to alcohol

or drugs, medication use, contraindication to MRI (MRI screening

form was reviewed), or metal orthodontia (e.g., braces or spacers)

(Stephen et al., 2021). Images, saliva samples, and cognitive tests

were collected from 200 participants over three time points, roughly

a year apart. See Table 1 for demographic information. Due to

participant dropout during longitudinal data collection, our

deltaT1 and deltaT2 analyses have different sample sizes. The

multivariate analyses of differences between time points included

145 subjects (mean baseline age 11.71 years old, 75 females,

70 males) for deltaT1, and 81 subjects (37 females, 44 males) for

deltaT2. To account for possible bias introduced by the attrition, a

chi-square test was performed between deltaT1 and deltaT2 biased

the groups with regards to gender—there was no significant

difference in the ratio of genders between the deltaT1 and

deltaT2. Similar tests were performed for SES and race, with no

significant differences found between groups. A t-test also

established that there were no significant differences in the

distribution of the baseline ages between groups.

2.2 DNA methylation preprocessing

The preprocessing largely followed the ENIGMA epigenetics

protocol and was used in our previous studies (Jensen et al., 2023a;

Jensen et al., 2023b). DNAm from saliva was assessed for each

subject using the Illumina HumanMethylation850 (850k)

microarray, which measures CpG methylation across

~850,000 probes covering 99% of gene promoters. Standardized

quality control procedures and quantile normalization was

performed using the minfi Bioconductor package in R (version

3.6.2) (Aryee et al., 2014). Red and green channel intensities were

mapped to the methylated and unmethylated status, samples were

checked against the mean intensity to identify low quality. Beta

values, calculated for each CpG, for each subject, reflect the degree of

methylation using a range of zero, meaning no methylation, to one,

meaning completely methylated. To identify outliers, a principal

component analysis (PCA) was performed on the beta values. Any

sample with values more than three standard deviations away from

the median on any of the first four components was removed, as

were samples where the genetically determined sex differed from

self-report. 20 duplicate DNA samples were included in each batch

and checked to ensure measurement reliability. Samples processed

in different batches were merged at this stage. Stratified quantile

normalization was then applied across samples, using the minfi

PreprocessQuantile function. The cell proportions for each DNAm

sample were calculated by implementing the estimateCellCounts

function in minfi, using our modified reference panel of five types of

blood cells (B cells, CD8T and CD4T cells, NK-LGL cells,

monocytes, and granulocytes) and epithelial cells (GSE46573)

(Zheng et al., 2018). The proportion of total blood cells and

epithelial cells was strongly in alignment with EpiDISH (Zheng

et al., 2018) estimated immune cells and epithelial cells

(correlation >0.98). The cell type effect was regressed out from

all the samples to account for the change of cell proportion over

time. Batch effects were then corrected using the R package Combat,

which assumes normalized data and equalizes the mean from all

batches, making negative values possible (Johnson et al., 2007).

2.3 Weighted gene correlation
network analysis

After preprocessing, approximately 750K CpG sites were

retained. We kept only CpG sites with a standard deviation of

0.1 or higher at the first time point to ensure that methylation

variability across subjects exceeded measurement variability (Duan

et al., 2021). This resulted in 2,414 CpGs for this analysis. To

calculate the rate and amount of change, time point 1 (TP1) was

subtracted from time point 2 (TP2) to create the deltaT1 difference

map for each individual, and TP2 was subtracted from time point 3

(TP3) to create the deltaT2 difference map. To identify correlation

patterns within themethylation data,WGCNAwas performed using

the R package of the same name (WGCNA v. 3.3.3) (Langfelder and

Horvath, 2008). The WGCNA pipeline is as follows: (1) to down-

weight weaker correlations between CpGs, a soft threshold is chosen

appropriate to the scale-free topology of the data, which is based on

TABLE 1 General demographic information.

Demographics MRN (101) UNMC (102)

Mean age at enrollment (range) 11.3 (9–14) 11.2 (9–14)

Gender (M/F) 51M/50F 51M/51F

Race (Caucasian/BIPOC) 86/15 87/15

Ethnicity (% Hispanic) 41.6% 7.8%

Mean WASI-II IQ (Range) 108.6 (72–139) 112.1 (68–148)

Mean SES (Range) 42.6 (17–66) 48.2 (15–65)

MRN, Mind Research Network; UNMC, University of Nebraska Medical College; BIPOC, Black, Indigenous, and People of Color; WASI-II IQ,Wechsler Abbreviated Scale of Intelligence; SES,

Socioeconomic Score.
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the r̂2 as well as the mean connectivity (Langfelder and Horvath,

2008). For our analysis, a soft threshold of 10 fit both criteria. (2)

Adjacency matrices were computed, representing pairwise

correlation coefficients (Pearson’s r) transformed by the

aforementioned β to ensure a scale-free correlation structure.

These were unsigned matrices, transforming the absolute values

of the coefficients in order to preserve both positive and negative co-

methylation relationships. (3) Using the adjacency matrices,

topological overlap matrices (TOMs) were computed,

representing the interconnectedness between pairs of CpGs, both

directly and indirectly, with connection strengths mediated by

shared CpG neighbors that are one-step away (Langfelder and

Horvath, 2008). The values from the TOMs were used to

calculate a dissimilarity distance measure, DistTOM, effectively 1-

TOM. (4) Dendrograms were constructed for the 2,414 CpGs based

on hierarchical clustering of DistTOM scores using hclust in R.

Modules of co-methylated CpGs were then determined using

adaptive branch pruning based on minimum cluster size of

12 CpGs and a branch cut height of 0.75. (5) Module eigengenes

(ME) were computed, representing the first principal component of

methylation at CpGs assigned to a particular module (Langfelder

and Horvath, 2007). Linear models were used to check for sex, age,

and race effects. The subject loadings for each module were used in

our subsequent multivariate analyses. For interpretation of the

modules, gene set enrichment was done using Reactome

(Gillespie et al., 2022). Reactome is a peer-reviewed, open-source

and open access pathway database of metabolic and signaling

molecules and their biological processes and pathways, cross

referenced to more than 100 online bioinformatic resources that

include NCBI Gene, Ensembl, UniProt, UCSC Geneome Browser,

and the ChEBI small molecule databases (Gillespie et al., 2022).

Genes associated with the CpGs identified in each module (as

annotated by the Illumina MethylationEPIC) were entered into

the Reactome web-interface. A functional gene network analysis

was performed using GeneMANIA (www.genemania.org), a web-

based Cytoscape tool developed by Donnelly Centre for Cellular and

Biomolecular Research at the University of Toronto (Warde-Farley

et al., 2010). To further solidify our interpretation of the results, we

conducted a post hoc investigation of the cross-tissue

correspondence for the CpGs included in the gene enrichment

for neuronal pathways using the IMAGE-CpG database (Braun

et al., 2019b), which includes saliva-to-brain correspondence.

2.4 Structural imaging data

T1-weighted structural MRI (sMRI) images were collected at the

MRN site on a Siemens 3T TrioTim scanner, and at UNMC site on a

Siemens 3T Magnetom Skyra and Prisma scanners, all with a 32-

channel radio frequency coil. Scanning parameters were equilibrated

as much as possible. The sMRI images were reoriented and

registered to a cohort specific template, created using the ANTS

multivariate template generator, and resampled to 2 mm × 2 mm ×

2 mm (Andersson et al., 2007a; Andersson et al., 2007b; Sanchez

et al., 2012; Avants et al., 2008). Using FAST in FSL, a high-

dimensional normalization pipeline, the non-brain tissues were

removed, and the grey matter, white matter, and cerebral spinal

fluid segmented, leaving normalized, modulated, Jacobian-scaled

grey matter images (Zhang et al., 2001) that were smoothed by a

4 mm × 4 mm × 4 mm full width at half maximum Gaussian kernel

(Smith and Brady, 1997). The resultant grey matter images then had

scanner differences regressed out using a simple linear regression

with age and sex as covariates. Two subjects were removed due to

movement (framewise displacement from rs-fMRI) above

3 standard deviations from the mean of the group. To calculate

the rate and direction of change across time points, grey matter

volumes from TP1 were subtracted from TP2 to create the

deltaT1 difference map for each individual, and TP2 was

subtracted from TP3 to create the deltaT2 difference map. An

independent component analysis (ICA) performed via the GIFT

toolbox (SBM v1.0b; http://trendscenter.org/software/gift) (Xu et al.,

2009) was then applied to the difference maps to extract

components/brain networks, where distributed brain regions

showed covarying patterns of GM volume changes. The

components’ associated loadings reflect these brain regions

variation across subjects. Using the minimum description length

(MDL) criterion (Calhoun and Adali, 2009), seven components were

extracted from the GM volume changes of deltaT1, identifying our

brain networks of interest for this study. The direction of the ICA

loadings were confirmed through a voxel-based morphometry

(VBM) analysis in FSL (Smith et al., 2004), where positive

loadings indicate increases in GM volume and negative loadings

indicate decreases in GM volume. The spatial maps of these seven

components were projected onto the subjects’ deltaT2 GM images to

ensure uniformity of comparison. ICA component maps were

projected into MNI space for anatomical atlas region

identification. Refer to Supplementary Figure 1A to see the

complete ICA results for GM, and Supplementary Table 2 for a

detailed listing of the brain regions. These regions were identified

using the Harvard-Oxford cortical and subcortical structural atlases

(Makris et al., 2006; Frazier et al., 2005; Desikan et al., 2006;

Goldstein et al., 2007) and the probabilistic cerebellar atlas

(Diedrichsen et al., 2009). As shown in our previous study

(Jensen et al., 2023a), GM volume decreased across parietal

regions and increased in the cerebellum and ventral pre-

frontal cortex.

2.5 Diffusion imaging data

Diffusion MRI (dMRI) was collected with phase reversed blips.

b-null volumes were extracted and used to estimate off resonance

fields using FSL (v6.0.3) tool topup (Andersson et al., 2003; Smith

et al., 2004). These were used to correct the dMRI volumes for head

movement, EPI distortions, and eddy current-induced distortions

using FSL tool eddy (Andersson and Sotiropoulos, 2016). Advance

motion correction was also performed in eddy to detect motion-

induced signal dropout and intra-volume (slice-to-volume)

movement (Andersson et al., 2017). Using the AFNI (v.19.1.00)

tool 3dDWItoDT, fractional anisotropy (FA) maps were

constructed (Le Bihan et al., 2001). The dMRI derivative images

were reoriented and registered to a cohort specific template,

created using the ANTS multivariate template generator

(Andersson et al., 2007a; Andersson et al., 2007b; Sanchez et al.,

2012; Avants et al., 2008). The resultant FA values then had the

scanner differences regressed out using a simple linear regression
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that included age and sex as covariates. To calculate the rate and

direction of change over time, the FA values from TP1 were

subtracted from TP2 to create the deltaT1 difference map, and

TP2 was subtracted from TP3 to create the deltaT2 difference

map. An independent component analysis (ICA) built in the GIFT

toolbox (SBM v1.0b) (Xu et al., 2009) was then applied to the

difference maps to extract components/brain networks, where

distributed brain regions showed covarying patterns of

longitudinal FA changes. Using the minimum description

length (MDL) criterion (Calhoun and Adali, 2009), four

components were extracted from the FA changes in deltaT1,

identifying our brain networks of interest. The components’

associated loadings reflect the variation of FA change networks

across subjects. The direction of the ICA loadings was confirmed

using the FSLmeants function to extract the average FA within the

component networks, where positive loadings indicated increases

in FA and negative loadings indicated decreases in FA. The spatial

maps of these four components were projected onto the subjects’

deltaT2 FA images to ensure uniformity of comparison. ICA

component maps were projected into MNI space for anatomical

atlas region identification. Refer to Supplementary Figure 1B to see

the complete ICA results for FA, and Supplementary Table 3 for a

detailed listing of the brain regions. These regions were identified

using the JHU DTI-based white-matter atlas (Mori et al., 2005;

Wakana et al., 2007; Hua et al., 2008) as well as the Harvard-

Oxford cortical and subcortical structural atlases (Makris et al.,

2006; Frazier et al., 2005; Desikan et al., 2006; Goldstein et al.,

2007) and the probabilistic cerebellar atlas (Diedrichsen et al.,

2009). Our previous research (Jensen et al., 2023b) showed that FA

increased across networks of white matter tracts that include the

corpus callosum, parietal, and temporal regions.

2.6 Cognitive data

The age-uncorrected standard scores from the following NIH

cognitive toolbox tests (Denboer et al., 2014) were collected from

each subject: the Picture Sequence Memory (TBPSM) test for 8+

(episodic memory), the Pattern Comparison Processing Speed

(PCPS) test for 7+ (processing speed), the Flanker Inhibitory

Control and Attention (TBFICA) test for 8+ (executive function),

the Dimensional Change Card Sort (TBDCCS) for 8+ (executive

function). The Cognition Total Composite Score (COGTC), the

Cognition Fluid Composite Score (COGFC) reflecting capacity

for new learning, and the Cognition Crystallized Composite

Score (COGCC) reflecting past learning were computed. Age-

uncorrected scores were used to preserve the sensitivity to

differences in age. Scores were corrected for site differences

using a linear regression with age and sex as covariates. To

calculate the rate of change across time points, scores from

TP1 were subtracted from TP2 to create the deltaT1 difference

map, and TP2 was subtracted from TP3 to create the

deltaT2 difference map. As shown in our previous study

(Jensen et al., 2023a), linear mixed-effects repeated measures

models confirmed the expected significant improvements in

cognitive performance over time (Jensen et al., 2023b).

Supplementary Figure 1C highlights the cohort’s improvement

in Total cognition across all three time points.

2.7 Statistical tests

Amultivariate analysis of covariance (MANCOVA) was conducted

to explore the relationship between the co-methylation modules and

brain maturation. This was performed on data from deltaT1 and

deltaT2 separately using the jmv package in R (version 4.1.2) (R:

MANCOVA), the subjects’ loadings from seven GM and four FA

networks as the dependent variables, the subjects’ loadings for the

eigenmodules from the co-methylation analysis as the independent

variables, and sex and baseline age as the covariates. MANCOVA

results were further tested with linear regression tests for each GM and

FA network for potential interactions with sex using the emmeans

package in R (version 4.1.2) (RDocumentation, 2024).

Similarly, a multivariate analysis was used to explore the

relationship between the cognitive measures and the co-

methylation modules. The MANCOVA analysis was performed

on data from deltaT1 and deltaT2 separately, where the subjects’

cognitive scores were the dependent variables and the subjects’

loadings for the eigenmodules were the independent variables,

with sex and baseline age as covariates.

3 Results

3.1 Diversity of co-methylation patterns
increases over time

From the 2,414 CpGs used in the co-expression analysis, there were

six modules of co-methylation identified in deltaT1 and 16 modules of

co-methylation in deltaT2 (each deltaT has a grey module, which is the

module for non-correlated genes). Figures 1A, B highlight the cluster

dendrogram from each deltaT, while Figures 1C, D display the

respective module sizes. There were no effects for sex, age, or race

in any of the modules from either deltaT. The gene enrichment analysis

showed significant results for one module in deltaT1, Blue, where

correlated patterns of co-methylation were found enriched in gene

transcription, neuronal systems, sodium/proton exchangers, NOTCH

signaling, and circadian clock pathways. There were eightmodules from

deltaT2with significant gene enrichment results: Blue, Turquoise, Cyan,

Brown, MidnightBlue, Tan, Red and Pink. Some pathways with

correlated patterns of co-methylation included neuronal systems,

gene transcription, immune systems, signal transduction, axon

guidance, and NOTCH signaling. For a more extensive list of the

gene enrichment analysis for each module, see Supplementary Table 1.

No significant results were found for race or social-economic status in

any of the modules.

3.2 Co-methylation module enriched for
neuronal systems conserved across time

To explore the possibility of conserved epigenetic change across

time, a post hoc comparison between the significantly enriched Blue

module in deltaT1 and significantly enriched modules in

deltaT2 was done. We found 96% overlap between the Blue

module in deltaT1 and the Brown module in deltaT2, with 69 of

the 72 CpGs in the Blue module also included in the 270 CpGs in the

Brown module. The gene enrichment analysis of these 69 CpGs
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revealed the conserved pathways were FBXW7 mutants, tyrosine

kinase signaling in B-cells, neuronal system, voltage-gated

potassium channels, neurexins and neuroligins. See Table 2 for

details of the gene enrichment results of the conserved co-

methylation module. Figure 2A highlights the functional gene

network analysis of the conserved genes and their relationship to

the gene enrichment analysis (Figure 2B) from GeneMANIA.

Table 3 contains the results of the post hoc investigation of the

CpGs involved in the neuronal-related gene enrichment pathways.

3.3 Conserved co-methylation module
associated with brain maturation

The relationships between the co-methylation networks, GM

volume, FA, and cognition were investigated using a MANCOVA

analysis. Over the first change in time, deltaT1, the Blue module was

significantly related (multivariate: F = 6.55, p < 1.4e-6) to three

networks of GM volume change: Comp3 (univariate: F = 9.50, p <

0.002), Comp4 (univariate: F = 26.43, p < 1.0e-6), and Comp6

(univariate: F = 19.83, p < 1.8e-5). During deltaT2, the Brown

module was significantly related (multivariate: F = 3.92, p < 0.009) to

one network of FA increases, Comp3 (univariate: F = 12.91, p < 8.6e-

4). Figure 3 highlights these networks of brain maturation and the

conserved genetic pathways.

3.4 Unique module related to cognitive
maturation

One unique module in deltaT2, the MidnightBlue module,

significantly enriched for calcium-gated potassium channels, was

FIGURE 1

Weighted co-methylation network analysis—(A, B) Dendrograms of the WGCNA module assignment for deltaT1 (six modules) and deltaT2

(16modules) respectively. Each leaf (short vertical lines) in the dendrogram corresponds to a CpG. The branches are modules of highly correlated groups

of CpGs with a color (below the dendrogram) to indicate its module assignment. (C, D) Graphs of the modules by color, indicating the number of CpGs

per module for the WGCNA analysis for deltaT1 and deltaT2 respectively.

TABLE 2 Gene enrichment results for conserved co-methylation module.

Pathway name Found Ratio FDR p-value

Loss of function of FBXW7 in cancer and NOTCH1 signaling 2/6 3.88̂-4 0.02

FBXW7 mutants and NOTCH1 in cancer 2/6 3.88̂-4 0.02

RUNX1 regulates transcription of genes in BCR signaling 2/7 4.52̂-4 0.02

Neuronal system 8/490 0.03 0.02

Voltage-gated potassium channels 3/44 0.003 0.02

Neurexins and Neuoligins 3/60 0.004 0.05
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related (multivariate: F = 2.66, p < 0.041) to the increase in the

cognitive measure for processing speed, PCPS (univariate: F = 5.04,

p < 0.028). Figure 4 highlights this relationship as well as the gene

enrichment result.

4 Discussion

While the reorganization of the brain and the concurrent

improvements in cognitive function that occur during

adolescence have been thoroughly researched (Steinberg, 2005),

little is known about the underlying epigenetic mechanisms that

may be driving this phase of diverse and profound

neurodevelopment. Our investigation of the co-methylation

patterns across time and their relationships to brain maturation

and cognitive development offers insights into possible molecular

underpinnings of adolescent development. The weighted correlation

analysis of the changes in DNAm showed an increase in the number

of networks of co-methylation as this cohort aged. This paralleled

our earlier research, in which we found dramatic decreases in

methylation occurring between time points 2 and 3 for small

subset of genes from this cohort undergoing changes in DNAm

(Jensen et al., 2023a; Jensen et al., 2023b). To better understand the

possible cause, as well as rule out that these changes might be caused

by a batch effect within the DNAm data, subsamples of subjects with

data from all three time points within the same batch were analyzed.

The same precipitous drop in methylation between the last two time

points was observed. This, coupled with an increase in the diversity

of co-methylation networks in deltaT2 found in this study, suggests

a biological mechanism, possibly related to pubertal status, worthy

of future research. The gene enrichment analysis of the modules

reflected a myriad of biological systems undergoing developmental

plasticity during adolescence that include neuronal, microbiome,

endocrine, immune, and cellular signaling (Gillespie et al., 2022).

Despite the increase in diversity between the timepoints, 96% of the

CpGs identified in the Blue module in deltaT1 were conserved

within the Brown module in deltaT2. This further suggests a

progression of developmental epigenetic changes, particularly

FIGURE 2

Functional Gene Network Analysis of Conserved Network—(A) this network shows the genes whose co-methylation patterns were conserved

module across time. Different color links indicate different functional links: purple links indicate genes found in co-expression networks, red indicates

protein-to-protein interactions, green indicated gene-gene interactions, orange indicates predicted protein interactions and gray indicates pathway

relationships. (B) highlights the Reactome pathway relationships within this functional gene network analysis, consistent with the gene enrichment

analysis that was performed separately.

TABLE 3 IMAGE-CpG cross-tissue correspondence results.

CpG Gene IMAGE-CpG average correlation

cg20227471 ADCY3 0.926187

cg14859324 GABRB3 0.8638013

cg21734356 DLGAP1 0.6796473

cg01483824 GRIN2D 0.953338

cg26703758 KCNC1 0.9468902

cg23167863 EPB41L5 0.9515299

cg22500730 KCNG3 0.9780846

cg14467816 ROBO1 0.9505681
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FIGURE 3

Co-methylation and brain results—(A) The Reactome gene enrichment results for deltaT1 Blue module and deltaT2 Brown module. The neuronal

systems gene enrichment (p < 0.02, fdr corrected) includes pathways for chemical and electrical synapses at both pre- and postsynaptic junctions,

metabolic and inotropic receptors, as well as protein-protein interactions at the synapses. See Supplementary Table 1 for a complete list of significant

gene enrichment for each module. (B) Three components of GM maturation were significantly related in deltaT1 to the Blue module (multivariate:

F = 6.55, p < 1.4e-6). These were components 3 (univariate: F = 9.50, p < 0.002), 4 (univariate: F = 26.43, p < 1.0e-6), and 6 (univariate: F = 19.83, p < 1.8e-

5). (C) FA maturation highlighted in component 3 that was significantly related during deltaT2 to the Brown module multivariate: F = 3.92, p < 0.009,

(univariate: F = 12.91, p < 8.6e-4) Both GM and FA components are thresholded from −7 < z < −3 (blue to green) and from 3 < z < 7 (red to yellow).

Blue—green are areas of GMor FA decrease over time, red—yellow are areas of GMor FA increase. See Supplementary Tables 2, 3 for a comprehensive list

of regions. (D) The Reactome gene enrichment results for deltaT1 Blue module and deltaT2 Brown module. The potassium channels included in the

voltage-gated potassium channel gene enrichment pathway (p < 0.03, fdr corrected). See Supplementary Table 1 for a complete list of significant gene

enrichment for each module.

FIGURE 4

Co-methylation and cognition results: (A) The Reactome gene enrichment results for the Midnight Bluemodule from deltaT2, significantly enriched

for calcium-gated potassium channels (p < 0.007, fdr corrected). (B) The relationship between increases in processing speed (PCPS) and the

deltaT2Midnight Bluemodule (multivariate: F = 2.66, p < 0.041, univariate: F = 5.04, p <0.028). See Supplementary Table 1 for a complete list of significant

gene enrichment for each module.
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since the majority of the conserved co-methylation pathways were

ones associated with well-established patterns of brain and cognitive

maturation.

The conserved epigenetic co-methylation patterns between the

Blue and Brown modules were enriched in pathways for neuronal

systems, voltage-gated potassium channels, as well as neurexins and

neuroligins (Supplementary Table 1; Figure 3A). Neuronal systems

within the Reactome (Gillespie et al., 2022) pathway analysis refers

to gene enrichment for chemical and electrical synapses at both pre-

and postsynaptic junctions, metabolic and ionotropic receptors, as

well as protein-protein interactions at the synapses (Fitzpatrick et al.,

2001). Potassium channels are responsible for regulating the

excitability of neurons, and are expressed throughout the brain,

particularly in the axon, axon nodes, axon terminals, and

somatodendritic sites (McKeown et al., 2008). Neurexins and

neuroligins are synaptic cell-adhesion molecules that mediate

trans-synaptic signaling in excitatory glutamatergic as well as

inhibitory GABAergic synapses (Craig and Kang, 2007). The

functional gene network analysis also confirmed the Reactome

results, showing similar significant neuronal pathways. Our post

hoc cross-tissue analysis, using the IMAGE-CpG data set, also

confirmed that the DNAm of the CpGs from saliva highlighted

in these modules and significantly enriched for genes involved in

neuronal process correspond strongly to the DNAm of these same

CpGs in the brain. The networks of GM volume change and FA

increases found in the neuroimaging analyses of this cohort are

aligned with our current understanding of adolescent brain

maturation (Gogtay et al., 2004; Bava et al., 2010; Tiemeier et al.,

2010). The brain networks significantly related to the Blue module

included GM volume increases in the cerebellum and prefrontal

cortex covarying with maturation-related GM volume decreases in

the frontal and occipital poles, as well as dorsal parietal cortices. One

year later (deltaT2), FA increases in the middle cerebellar peduncle,

the posterior limb of the internal capsule, the splenium of the corpus

callosum, and the superior corona radiata, were significantly

associated with the Brown module. Recent research suggests that

GM volume loss measured in healthy adolescents is actually cortical

thinning due to increases in axon myelination (Natu et al., 2019),

possibly explaining why GM volume changes in our cohort are

related to epigenetic changes in neuronal pathways in the earlier

time point, followed by associations between the same epigenetic

changes and FA increases later. Our previous research, focused on a

small subsample of seven CpGs located on genes expressed highly in

the brain, also found these same components of GM volume change

and FA increases were significantly related to changes in DNAm of

genes for myelination, voltage-gated potassium channels, and solute

channels (Jensen et al., 2023a; Jensen et al., 2023b).

DeltaT2 also saw a significant relationship between the increase

in subjects’ processing speed and the Midnight Blue module.

Commonly defined as the time it takes for an individual to

perceive, process, and respond to a stimulus, processing speed

generally increases throughout childhood and adolescence,

peaking around 15 years of age (Coyle et al., 2011). The

Midnight Blue module of co-methylation patterns from

deltaT2 contained enrichment for genes involved in calcium-

activated potassium channels that are expressed in neurons. This

distinct subfamily of potassium channel is fundamental to the

regulation of neuronal excitability, being both sensitive to voltage

as well as modulated by calcium (Alam et al., 2023).

One of the hallmarks of adolescent brain maturation is the

change/refinement of the ratio of excitatory versus inhibitory (E/I)

inputs throughout the brain (Caballero et al., 2021). This occurs

through the adolescent maturation of GABAergic signaling,

particularly parvabelbumin (PV)-positive interneurons, reducing

the E/I ratio through an increase in inhibitory synapses (Larsen

et al., 2022). Increased inhibition creates a stronger signal-to-noise

ratio through suppression of spontaneous activation in local

neuronal circuitry (Craig and Kang, 2007). Imbalances in either

direction lead to serious neural dysfunction in the form of either

hyper- or hypoexcitibilty or seizures, impairing information

processing (Craig and Kang, 2007). Several of the genes and

pathways experiencing changes in DNAm that were highlighted

in this study may be contributing to this process. For example, the

possible changes in expression of receptor subunits of GRIN2D and

GABRB3 due to the changes in their DNAm may be involved, but

synergies between other genes could also be at play. Neurexins and

neuroligins regulate GABAergic synaptogenesis, shape synaptic

plasticity and efficacy in both excitatory and inhibitory synapses

(Südhof, 2008; Boxer and Aoto, 2022). Changes in the DNAm of

genes involved in neurexins and neuroligins, as one example, may be

part of the complex orchestration of adolescent brain maturation.

While more research remains to be done to directly connect the

changes in DΝAm of the genes found in these co-methylation

modules related to brain and cognitive development in

adolescence, the changes occurring in the associated neural

systems are well understood. Synaptic pruning, increased

myelination, and the shifts in connectivity that result in a more

dynamic and efficient brain (Spear, 2013) would seem to require

changes in gene expression in the pathways found in our analysis.

Studies in mammalian neuronal development also highlight an

interconnectedness between myelination and potassium channels

(Zhou et al., 1998), with clustering of the potassium channels

determined by the extent of myelination present, both

contributing synergistically to the excitability of the neuron

(Rasband and Peles, 2016). The role calcium-activated potassium

channels play in synaptic plasticity as part of a calcium modulation

feedback loop (Kim and Hoffman, 2008) could explain why DNAm

changes in this gene enrichment pathway were related to

improvements in cognitive performance in our study.

5 Limitations

Stage of puberty could not be included in this study because

there was no measure of hormonal change available. Future

researchers should include this essential marker of adolescent

development to ensure the completeness of the model. The

imbalance in subjects between deltaT1 and deltaT2 was due to

attrition, which is not an uncommon problem in longitudinal

studies. Although our results are still informative despite this,

replication with more subjects would be important going

forward. Also, our understanding of what effect these changes in

methylation will have on downstream gene expression is still limited

(Mangiavacchi et al., 2023), but this study offers many targets for
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future research into the epigenetic drivers of adolescent

development.

6 Conclusion

Understanding how changes in DNAm might be driving the

changes in adolescent neural development is still a fairly unexplored

field. Our research, while exploratory, indicates that there are

dynamic relationships between correlated networks of

methylation change and adolescent brain and cognitive

development. These relationships between DNAm changes in

pathways enriched for neuronal systems, potassium channels,

neurexins and neuroligins and patterns of grey and white matter

maturation, as well as improvements in subjects’ processing speed

performance across time provide a first look at epigenetic drivers of

neuronal and cognitive development in adolescence.
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