

Modeling the evolution of *Schizosaccharomyces pombe* populations with multiple killer meiotic drivers

José Fabricio López Hernández, ^{1,4} Boris Y. Rubinstein, ¹ Robert L. Unckless (D, ² Sarah E. Zanders (D) ^{1,3,*}

Meiotic drivers are selfish genetic loci that can be transmitted to more than half of the viable gametes produced by a heterozygote. This biased transmission gives meiotic drivers an evolutionary advantage that can allow them to spread over generations until all members of a population carry the driver. This evolutionary power can also be exploited to modify natural populations using synthetic drivers known as "gene drives." Recently, it has become clear that natural drivers can spread within genomes to birth multicopy gene families. To understand intragenomic spread of drivers, we model the evolution of 2 or more distinct meiotic drivers in a population. We employ the wtf killer meiotic drivers from Schizosaccharomyces pombe, which are multicopy in all sequenced isolates, as models. We find that a duplicate wtf driver identical to the parent gene can spread in a population unless, or until, the original driver is fixed. When the duplicate driver diverges to be distinct from the parent gene, we find that both drivers spread to fixation under most conditions, but both drivers can be lost under some conditions. Finally, we show that stronger drivers make weaker drivers go extinct in most, but not all, polymorphic populations with absolutely linked drivers. These results reveal the strong potential for natural meiotic drive loci to duplicate and diverge within genomes. Our findings also highlight duplication potential as a factor to consider in the design of synthetic gene drives.

Keywords: meiotic driver; gamete killers; gene drive; 2-locus evolution

Introduction

Most alleles are Mendelian in that they are transmitted to half of the offspring of a given individual. Meiotic drive alleles, in contrast, can be passed on to more than half, even all offspring. Meiotic drive is a powerful evolutionary force as the transmission bias allows a meiotic driver to spread in a population (Sandler and Novitski 1957). Understanding the spread of meiotic drivers within populations is critical for deciphering the evolution of natural populations and may guide design of synthetic gene drives that aim to control natural populations (Lindholm et al. 2016; Zanders and Unckless 2019; Price et al. 2020).

The evolution of single drive loci in populations has been extensively modeled (Hartl 1970; Crow 1991; Fishman and Kelly 2015; Bull 2016; Hall and Dawe 2018; Dyer and Hall 2019; Manser et al. 2020; López Hernández et al. 2021; Martinossi-Allibert et al. 2021). However, some species carry multiple, unrelated meiotic drivers (Voelker and Kojima 1971; Cazemajor et al. 2000; Dalstra et al. 2003; Lyon 2003; Tao et al. 2007; Long et al. 2008; Yang et al. 2012; Didion et al. 2015; Yu et al. 2018; Akera et al. 2019; Vogan et al. 2019; Bravo Núñez, Sabbarini, Eickbush, et al. 2020). Additionally, some drive genes are members of multigene families (Hu et al. 2017; Nuckolls et al. 2017; Dawe et al. 2018; Vogan et al 2019; Muirhead and Presgraves 2021; Vedanayagam et al. 2021). One potential evolutionary implication of species carrying

multiple distinct allelic drivers, namely, selection for reduced fidelity of meiosis, has recently been explored using evolutionary modeling (Bravo Núñez, Sabbarini, Eide, et al. 2020). However, the evolution of populations polymorphic for multiple drivers born from gene duplication has not been formally considered.

The wtf killer meiotic drivers found in fission yeasts (Schizosaccharomycetes) have undergone many gene duplication events over the past ~119 million years (Fig. 1a; De Carvalho et al. 2022). In Schizosaccharomyces pombe, distinct isolates encode between 4 and 14 genes that appear to be intact drivers (Hu et al. 2017; Eickbush et al. 2019). Each wtf driver encodes a poison and an antidote protein from separate, but largely overlapping, transcripts of the same gene. All 4 developing meiotic products (spores) are exposed to the poison, while only those that inherit the driving wtf gene acquire enough antidote to neutralize the poison (Fig. 1b; Hu et al. 2017; Nuckolls et al. 2017; Nuckolls et al. 2022). Importantly, the antidotes encoded by a given wtf driver generally provide no protection against the poisons of distinct drivers with different sequences (Hu et al. 2017; Bravo Núñez, Sabbarini, Eide, et al. 2020).

Most of the characterized wtf drive genes show strong transmission (>80%) from heterozygotes, particularly in S. pombe, the species where the genes have been studied the most (Hu et al. 2017; Bravo Núñez, Sabbarini, Eickbush, et al. 2020). In addition, the wtf drivers also often act unopposed by suppressors, although

¹Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA

²Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA

³Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA

⁴Present address: Department of Ecology and Evolution, The University of Chicago, 929 E 57th St (W504), Chicago, IL 60637, USA

^{*}Corresponding author: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA. Email: sez@stowers.org

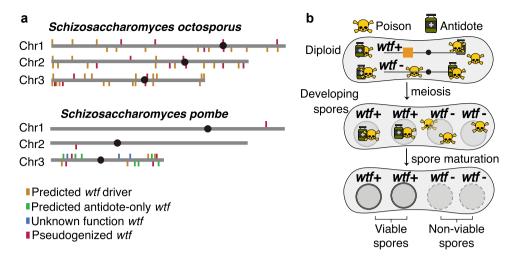


Fig. 1. Poison-antidote wtf meiotic drivers in Schizosaccharomyces. a) Genomic loci that contain members of the wtf gene family in Schizosaccharomyces octosporus and S. pombe reference genomes (Eickbush et al. 2019; De Carvalho et al. 2022). Each marked locus contains at least one of the indicated wtf genes. b) In S. pombe, a wtf meiotic driver produces both a poison and an antidote that are expressed in diploids induced to undergo meiosis. After meiosis, the antidote is enriched only in the spores that inherit the driver. The antidote rescues only the cells that inherit the driver, while the rest of the spores are susceptible to the poison.

suppressors do exist (Bravo Núñez et al. 2018). From a classic population genetics viewpoint, these factors suggest that the wtf drivers would rapidly spread to fixation a population. This rapid fixation is observed for single drivers in laboratory populations, but surprisingly, this prediction of driver fixation is not borne out by allele frequencies observed in S. pombe (Eickbush et al. 2019; López Hernández et al. 2021).

Instead of sharing fixed drivers, the wtf genes in S. pombe are strikingly polymorphic. Distinct isolates of S. pombe have different numbers of wtf drivers, ranging from 4 to 14 and, none of them are fixed in the species. At a given locus, 2 S. pombe isolates may both encode a wtf diver, but the sequences tend to be different and can thus be potentially distinct (mutually killing) due to extremely rapid evolution (Eickbush et al. 2019). For example, 2 of the most intensively studied S. pombe isolates both encode a driver at the wtf4 locus, but they are mutually killing (Bravo Núñez, Sabbarini, Eide, et al. 2020). Moreover, the patterns of rapid wtf gene evolution found in S. pombe are shared with other fission yeast species. This suggests an ongoing cycle of driver birth, rapid divergence, and potentially sustained polymorphism over the past ~119 million years (De Carvalho et al. 2022).

To better understand the evolution of the wtf drivers, and perhaps other drive gene families, we reasoned models must consider more than 1 segregating drive loci. As a first step toward achieving this goal, we modeled the evolution of 2 wtf meiotic drive loci. We found that both wtf drivers are likely to spread in a population under many conditions, particularly when the genes diverge to become distinct drivers. Overall, our results help explain both the duplication wtf drivers into a gene family and the selective incentive for wtf gene divergence after duplication, even in the absence of suppressors.

Materials and methods

Model for identical wtf drivers

S. pombe cells generally grow asexually as haploids when resources are abundant. This means populations can be founded by 1 or more haploid genotypes that can clonally expand without sexual reproduction. When starved, haploid S. pombe cells can mate to form a diploid that undergoes meiosis to produce 4 haploid progenies, known as spores (Forsburg and Rhind 2006). While the relative time spent in the haploid phase is different

Table 1. Parameters and variables used in the modeling of 2 drivers in a fission yeast population.

Parameters/ variables	Description	Parameter range
Х1	Frequency of genotype wtfA+ wtfB+	0–1
X ₂	Frequency of genotype wtfA+ wtfB-	0-1
X ₃	Frequency of genotype wtfA- wtfB+	0-1
X ₄	Frequency of genotype wtfA- wtfB-	0-1
t	Transmission advantage	0-1
r	Recombination frequency between wtf loci	0–0.5

from diploid eukaryotes, the same types of equations can be used to model allele frequency changes over generations of sexual reproduction (Crow 1991; López Hernández et al. 2021).

We initially modeled the evolution of a pair of identical wtf driver duplicates, wtfA and wtfB, at distinct loci over successive rounds of sexual reproduction. Our equations are extensions of those presented in Crow (1991). Each driver has only 1 alternate allele that does not drive (e.g. wtfA-). A total of 4 distinct haploid genotypes are therefore possible: wtfA+ wtfB+, wtfA+ wtfB-, wtfA- wtfB+, and wtfA-wtfB-. Those genotypes are found with frequencies x_1 , x_2 , x_3 , and x_4 , respectively (Table 1). We assume an infinitely large population, equal fitness of all haploid genotypes during clonal growth, and random mating. While some of the genotype compositions we model would be atypical for unlinked genes in exclusively sexually reproducing organisms at Hardy-Weinberg equilibrium, they are reasonable for organisms like S. pombe that do both asexual and sexual reproductions (López Hernández et al. 2021). For example, one could have an S. pombe population that has equal numbers of wtfA+ wtfB+ and wtfA- wtfB- individuals at the time of sexual reproduction, even if wtfA and wtfB loci are unlinked.

As the drivers are identical, drive (spore killing) will only affect spores that inherit no wtf+ alleles from a diploid carrying 1 or more wtf+ alleles (Fig. 2a). The parameter "t" is the fraction of spores not inheriting the drivers that are killed, so it thus represents the strength of drive (Table 1). Spores that inherit neither wtfA+ or wtfB+ from a diploid cell heterozygous for both are susceptible to killing by both drivers (i.e. a fraction represented

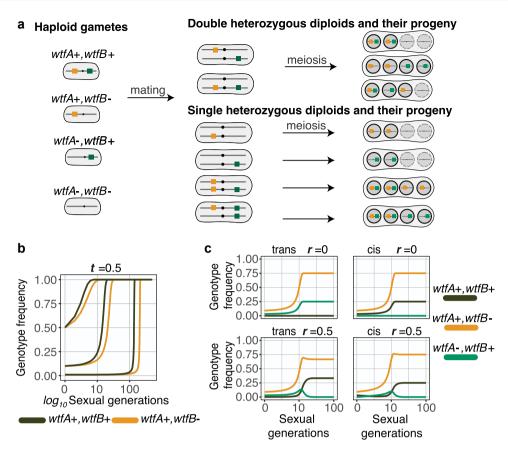


Fig. 2. Evolution of 2 identical drivers after gene duplication. a) Four distinct genotypes are possible in the population after a wtf driver (wtfA+) duplicates: wtfA+ wtfB+, wtfA+ wtfB+, wtfA- wtfB+, and wtfA- wtfB-. Those haploids can mate to form diploids with a variety of genotypes. Drive will occur if diploids are heterozygous for 1 or 2 drivers. Spores that do not inherit one of the drivers from a heterozygote are susceptible to killing. Live spores are shown within a solid black circle whereas spores susceptible to killing by drive are shown within a dotted circle. b) Simulations of genotypes with 1 driver (wtfA+ wtfB-, orange) or 2 drivers absolutely linked in cis (wtfA+ wtfB+, black) spreading in a population where the alternate genotype lacks drivers (wtfA- wtfB-). The initial frequencies of the wtfA+ wtfB- and wtfA+ wtfB+ genotypes shown are 0.01, 0.1, and 0.5. The transmission advantage (t) for each driver is 0.5. c) Four distinct simulations in which a driver (wtfA+) makes an identical duplicate (wtfB+) in trans (on the homologous chromosome, left) or in cis (on the same chromosome, right). The transmission advantage (t) for each driver is 1. Simulations where the duplicate gene is absolutely linked (r = 0, top) and unlinked (r = 0.5, bottom) from the parent gene are shown. The starting frequency of the ancestral genotype (wtfA+ wtfB-, orange) is 0.1. The starting frequency of genotypes with a duplicated driver in cis (wtfA+ wtfB+, black) or in trans (wtfA- wtfB+, green) is 0.03. The remainder of each population is comprised of the wtfA- wtfB- genotype.

by $2t - t^2$ are killed and $(1 - t)^2$ survive since $t_A = t_b = t$). We assign no additional fitness costs to any genotypes, beyond the costs caused by the driver due to spore killing.

The frequency at which recombinant genotypes form in the spore of double heterozygotes (e.g. wtfA+ wtfB+/wtfA- wtfB-) diploids is determined by "r" (Table 1). To simplify calculating genotype frequency changes due to recombination during gametogenesis, we use the parameter "E" where $E = r(x_1x_4 - x_2x_3)$ (equal to "D" in Crow 1991). The frequency of each genotype in subsequent generations of a given starting population can be calculated using Equations 1.1-1.4. Each equation includes a parameter for mean population fitness (\bar{w}), which is defined in Equation 1.5. To calculate the frequency of wtfA+ wtfB+ spores in the next generation (x'_1) , we considered all possible diploid genotypes that can generate wtfA+ wtfB+ spores:

$$x_1'=\frac{1}{\bar{w}}(x_1^2+x_1x_2+x_1x_3+x_1x_4-E).$$
 After considering that $x_1+x_2+x_3+x_4=1,$ we can further simplify

to

$$x_1' = \frac{1}{\bar{W}}(x_1 - E). \tag{1.1}$$

To calculate the frequency of the wtfA+ wtfB- and wtfA- wtfB+ genotypes in the next generation (x'_2 and x'_3 , respectively), we can use very similar equations as that used to calculate x'_1 ; however, we use "+E" to reflect the change in the 2 genotypes due to recombination as follows:

$$x_2' = \frac{1}{IJ}(x_2 + E)$$
 and (1.2)

$$x_3' = \frac{1}{\bar{W}}(x_3 + E). \tag{1.3}$$

To calculate the frequency of spores with the wtfA- wtfB- genotype in the next generation (x'_4) , we must consider that those spores are susceptible to killing. When wtfA- wtfB- spores are generated by a single heterozygote, (1 - t) spores survive, whereas $(1-t)^2$ wtfA- wtfB- spores survive when they are generated by a diploid heterozygous for both drivers. Considering the fitness of each diploid, we can calculate x_4 with the equation below.

$$x_4' = \frac{1}{\overline{w}}(x_4^2 + x_2x_4(1-t) + x_3x_4(1-t) + (x_1x_4 - E)(1-t)^2),$$

and given that $x_1 + x_2 + x_3 + x_4 = 1$, the equation can be simplified to:

$$x_{4}' = \frac{1}{\overline{m}}(x_{4}(1 - t(2x_{1} + x_{2} + x_{3}) + t^{2}x_{1}) - E(1 - t)^{2}). \tag{1.4}$$

To calculate the mean population fitness (\bar{w}), we used the surviving spores produced by all genotypes and their frequencies. The fitness of the x_1 , x_2 , and x_3 genotypes is 1. For x_4 , a fraction of spores are destroyed by drive. The derivation of the fitness of x_4 spores is taken from Equation 1.4.

$$\bar{w} = x_1 - E + x_2 + E + x_3 + E + x_4(1 - t(2x_1 + x_2 + x_3) + t^2x_1) - E(1 - t)^2$$
.

Given that $x_1 + x_2 + x_3 + x_4 = 1$, the equation can be simplified to:

$$\bar{w} = 1 + x_4 t(-(2x_1 + x_2 + x_3) + tx_1) + 2Et(1 - t).$$
 (1.5)

Model for distinct wtf drivers

The model for 2 distinct wtf drivers (again represented by wtfA+ and wtfB+) uses the same parameters and is similar to the model for identical wtf drivers (described above) with 1 important difference. Namely, spores that inherit wtfA+ are not protected from killing by wtfB+ and vice versa. Thus, if a diploid is heterozygous for both drivers, a spore must inherit both to be resistant to killing. Because of this, the fitness components of the equations to calculate x'_2 through x'_4 change is described below.

To calculate the frequency of wtfA+ wtfB- spores in the next generation (x_2) , we calculated that the wtfB+ driver will kill a fraction of wtfA+ wtfB- spores (described by t_B) generated by diploids heterozygous for wtfB as shown below.

$$x_2' = \frac{1}{\overline{n_1}}(x_2^2 + x_1x_2(1 - t_B) + x_2x_4 + (x_2x_3 + E)(1 - t_B)). \tag{2.1}$$

This can be simplified to:

$$x_2' = \frac{1}{\overline{D}}(x_2(1 - t_B(x_1 + x_3)) + E(1 - t_B)).$$
 (2.2)

The equation for calculating the frequency of wtfA-wtfB+ spores in the next generation (x_3') , must be similarly amended to include that the wtfA+ driver will kill a fraction of wtfA- wtfB+ spores (described by t_A) generated by diploids heterozygous for wtfA as shown below.

$$x_3' = \frac{1}{\frac{1}{11}}(x_3^2 + x_1x_3(1 - t_A) + x_3x_4 + (x_2x_3 + E)(1 - t_A)).$$

This can be simplified to:

$$x_3' = \frac{1}{T}(x_3(1 - t_A(x_1 + x_2)) + E(1 - t_A)). \tag{2.3}$$

To calculate the frequency of wtfA- wtfB- spores in the next generation (x'_4) , we modified the equation to reflect that these spores are sensitive to being killed by wtfA+ in wtfA+ wtfB-/wtfA- wtfBdiploids, by wtfB+ in wtfA- wtfB-/wtfA- wtfB+ diploids, and by both drivers in diploids heterozygous for both drivers as shown below.

$$x_{4}' = \frac{1}{\overline{n_{1}}}(x_{4}^{2} + x_{2}x_{4}(1 - t_{A}) + x_{3}x_{4}(1 - t_{B}) + (x_{1}x_{4} - E)(1 - t_{A})(1 - t_{B})).$$

This can be simplified to:

$$x_{4}' = \frac{1}{\bar{w}} (x_{4}(1 - t_{A}(x_{1} + x_{2}) - t_{B}(x_{1} + x_{3}) + x_{1}t_{A}t_{B}) - E(1 - t_{A})(1 - t_{B})). \tag{2.4}$$

The mean population fitness is again calculated by considering the fitness of all genotypes in the population as follows:

$$\begin{split} \bar{w} &= x_1 - E + x_2 (1 - t_B (x_1 + x_3)) + E (1 - t_B) + x_3 (1 - t_A (x_1 + x_2)) \\ &+ E (1 - t_A) + x_4 (1 - t_A (x_1 + x_2) - t_B (x_1 + x_3) + x_1 t_A t_B) \\ &- E (1 - t_A) (1 - t_B). \end{split}$$

This can be simplified to:

$$\bar{w} = 1 - (x_2 + x_4)(x_1 + x_3)t_B - (x_3 + x_4)(x_1 + x_2)t_A + (x_1x_4 - E)t_At_B. \tag{2.5}$$

Model for 2 distinct drivers on competing haplotypes

To model the evolution of 2 distinct driver alleles at a single locus, we assumed no recombination between drivers (r = 0). We designated 2 possible driver alleles: wtfA¹ and wtfA², with the relative frequencies x'_{A^1} and x'_{A^2} , respectively. The spore killing caused by each driver is defined by the tvalue for that driver. Drive will occur in heterozygotes such that each spore is susceptible to being killed by the driver it does not inherit. Drive does not, however, occur in homozygotes.

The frequency of each allele in subsequent generations can be calculated as follows:

$$x'_{A^{1}} = \frac{1}{\sqrt{n}} (x_{A^{1}} (1 - x_{A^{2}} t_{A^{2}})), \tag{3.1}$$

$$x'_{A^2} = \frac{1}{12} (x_{A^2} (1 - x_{A^1} t_{A^1})), \tag{3.2}$$

where mean population fitness was

$$\bar{w} = 1 - x_{A^1} x_{A^2} (t_{A^1} + t_{A^2}).$$
 (3.3)

Steady-state solutions and stability analysis

We determined possible genotype frequency steady-state solutions using Mathematica (Wolfram Research 2021). We defined the steady state of the recurrence equations by identifying that the equations follow the form: $x_i \bar{w} = f(x_i)$. Here, x_i' is the frequency of each genotype "i" to the next generation which depends on the mean population fitness \bar{w} and a function of the absolute frequency of each genotype $f(x_i)$. The steady state is determined by the condition in which the change of all genotypes to the next generation equals 0: $x_i \bar{w} - f(x_i) = 0$.

Steady-state solutions were determined by simplifying the system of equations to $x_4 = 1 - x_1 - x_2 - x_3$. Solutions were found for the cases r = 0 or $t_A = t_B$ including a particular case where $t_A = t_B = 1$. When 2 competing haplotype drivers are present, $x_{A^2} = 1 - x_{A^1}.$

To determine the mathematical stability of the solutions to small perturbations, we used the eigenvalues of the Jacobian matrix for all 4 recurrence equations (Otto and Day 2007). A solution is stable only when the leading eigenvalue is less than 1 and unstable when it is

Class				
	r	t	Genotype frequencies	Stability
I	0 ≤ r ≤ 0.5	$0 < t_A, t_B < 1$	$x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$ $x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0,$ $x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0,$ $x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1.$	Stable Unstable
II	$0 < r \le 0.5$	t = 1	$x_1 = \frac{r}{1+r}$, $x_2 = 0$, $x_3 = 0$, $x_4 = \frac{1}{1+r}$	Unstable
III	r = 0	$0 < t_{A^1} \le 1$, $0 < t_{A^2} \le 1$	$X_{A^1} = \frac{t_{A^2}}{t_{A^1} + t_{A^2}}, \ X_{A^2} = \frac{t_{A^1}}{t_{A^1} + t_{A^2}}$	Unstable

Table 2. The solutions and stability associated to leading eigenvalues for 2 distinct drivers (see Supplementary material for complete description).

greater than 1. In cases where the associated eigenvalues are exactly 1, the solution stability cannot be defined by the Jacobian matrix alone. The solution when the wtfA+ wtfB+ genotype is fixed is not defined by the Jacobian except upon perturbation of the genotype frequencies (Table 2; see Supplementary material for mathematical proof).

Simulations, data analysis, and visualization

We carried out deterministic forward simulations, using a range of starting genotype frequencies, to describe the evolution of genotypes that lead to the found steady-state solutions. For all simulations, we assumed an infinitely large population and simulated 10,000 generations or until a steady state with a genotype frequency change less than 1*10⁻¹⁵ occurred. For each generation, we tracked and updated the genotype frequencies and mean population fitness. To determine the fate of each genotype, all frequencies close to 1 or 0 were rounded with tolerance of $1*10^{-13}$, lower than the inverse reported effective population size 1*10⁵– 1*109 (Farlow et al. 2015; Tusso et al. 2019). A genotype was considered fixed when it equaled 1 and extinct when it equaled 0.

All simulations were coded in and performed using R (Team 2019. Version 4.2.3) with the packages ggplot (Wickham 2016), ggtern (Hamilton and Ferry 2018), and viridis (Garnier et al. 2024). The code is available at https://github.com/Zanders-Lab/ Modeling_the_evolution_of_populations_with_multiple_killer_ meiotic drivers.

Results

Evolution of 2 identical wtf paralogs

Initially after a gene duplication, the 2 meiotic driver paralogs are likely to be identical. We thus first considered the evolution of 2 identical drivers: wtfA and its paralog wtfB. We considered gene duplication events that were absolutely linked in cis (e.g. a tandem duplication) and absolutely linked in trans (e.g. a duplication to the competing haplotype, which could occur in the diploid phase). We also considered duplications to a locus unlinked to wtfA.

Briefly, our model considers an infinitely large population, random mating, and no fitness costs beyond the fraction of spores destroyed by drive. There are 4 haploid genotypes possible: wtfA+ wtfB+, wtfA+ wtfB-, wtfA- wtfB+, and wtfA- wtfB-. Because wtfA and wtfB are identical, drive will occur in diploids that are (1) heterozygous for both drivers and (2) in diploids heterozygous for 1 driver and lacking the second driver. In both cases, only spores that that do not inherit either driver (wtfA- wtfB-) can be destroyed by drive (Fig. 2a). We use the term "t" to reflect the transmission advantage of each driver in heterozygotes. For example, at t = 1, all wtfA- wtfB- spores produced by diploids heterozygous for both drivers would be destroyed. At t = 0.5, 75% (2t – t^2) of the wtfA- wtfB- spores from diploids heterozygous for both drivers are destroyed. We used the parameter "r" to reflect recombination frequencies. We modeled populations with varying starting frequencies of the 4 haploid genotypes.

With a tandem identical wtf gene duplicate (i.e. wtfA+ wtfB+ absolutely linked in cis; r = 0), we found that the wtfA+ wtfB+ could spread in a population of wtfA- wtfB- cells faster than a haplotype containing a single driver locus (wtfA+ wtfB-) when t < 1(Fig. 2b). The rate of spread of a single drive gene asymptotically approaches the rate of spread of 2 identical tandem drivers as t approaches 1. If a driver with the strongest possible transmission advantage (t = 1) makes a tandem duplicate, the dynamics of driver spread are the same as if the duplicate did not occur. After fixation of wtfA+, drive no longer occurs and allele frequencies remain constant due to the "immunity" gained by the presence of wtfA+ (Fig. 2c).

In the less likely, but possible, scenario that the identical wtfB duplicate gene is absolutely linked to the parent gene in trans, the wtfA+ wtfB+ genotype does not form. In this case, both the wtfA+ wtfB- and wtfA- wtfB+ genotypes independently spread in the population until the wtfA- wtfB- genotype is extinct (Fig. 2c).

If wtfA+ and wtfB+ are unlinked, the 2 drive genes can both spread until the driver with the highest initial frequency (i.e. the parent gene wtfA+) reaches fixation (Fig. 2c). The frequencies of the 2 genotypes with wtfA+(wtfA+ wtfB+ and wtfA+ wtfB-) when fixation of wtfA+ occurs varies depending on the starting allele frequencies and whether the wtfB+ duplicate occurs "in cis" (i.e. wtfA+ wtfB+ is the first haploid genotype with wtfB+) or "in trans" (wtfA- wtfB+ is the first haploid genotype with wtfB+; Fig. 2c).

Evolution of 2 distinct wtf genes

We next considered the evolution of a pair of distinct wtf genes (wtfA+ and wtfB+) that are mutually killing. These 2 drivers could be products of a recent imperfect gene duplication, but they could also result from differential divergence of genes within a gene family in distinct lineages. Because the drivers are distinct, drive will occur in diploids heterozygous for 1 or both drivers (Fig. 3a). The wtfA+ and wtfB+ drivers will destroy a fraction of spores that do not inherit them from heterozygotes determined by the parameters " t_A " and " t_B ", respectively. When a single driver is heterozygous, the fraction of dead spores is determined by only 1 t parameter. When both drivers are heterozygous, the fraction of spores not inheriting both drivers that survive will be determined by both t_A and $t_B:(1-t_A)(1-t_B)$. If

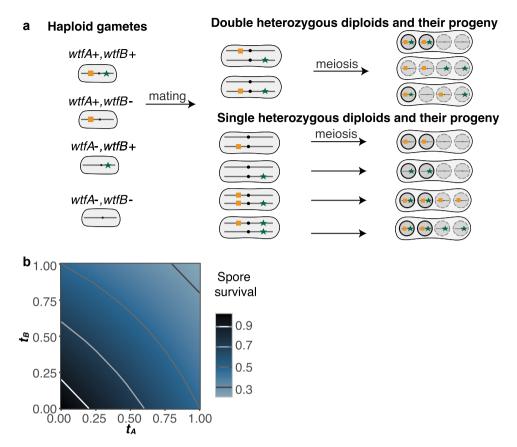


Fig. 3. Spore survival with 2 distinct wtf meiotic drivers in a population. a) Cartoon of the 4 possible genotypes that carry 1 (wtfA+ wtfB- and wtfA- wtfB+), 2 (wtfA+ wtfB+), or no (wtfA- wtfB-) meiotic drivers. Haploids can mate to form diploids of a variety of genotypes, including heterozygotes which are illustrated. Drive will occur in the diploids shown as spores are susceptible to being killed by each driver they do not inherit from a heterozygote. Live spores are shown within a solid black circle whereas spores susceptible to killing by drive are shown within a dotted circle. b) The fraction of spores produced by diploids heterozygous for 2 unlinked drivers expected to survive when considering varying drive strength.

 $t_A = t_B = 1$, only wtfA+ wtfB+ spores produced by double heterozygotes would survive. This genotype would be 25% of the total spores produced by such a diploid if the 2 genes were unlinked (Fig. 3b).

We considered populations with the 2 drivers absolutely linked (r = 0) in cis on the same chromosome and with drivers on distinct haplotypes absolutely linked in trans. We initially assumed that the 2 drivers were of equal strength ($t_A = t_B = t$). Under these conditions, we proved analytically that, if present, the wtfA+ wtfB+ genotype will spread to fixation regardless of drive strength and competing allele frequencies. (Table 2; see proof in the Supplementary material). As expected, the fixation of wtfA+ wtfB+ genotype occurred faster when the drivers were stronger (Fig. 4).

We next considered the evolution of drivers of equal strength $(t_A = t_B)$ in the presence of recombination, r > 0. We again found that in almost all cases, both drivers spread to fixation. As before, stronger drivers reach fixation faster (Fig. 5a-f). Interestingly, in some cases, the frequency of the double driver genotype (wtfA+ wtfB+) initially decreases prior to increasing to spread to fixation (Fig. 5b and e). This occurs when the frequency of the wtfA- wtfB- is relatively high and the wtfA+ wtfB+ frequency is relatively low, following the condition $x_1 < \frac{E}{1-\bar{w}}$. In such cases, double heterozygotes are formed, and the newly created recombinant spores that inherit a single driver are thus destroyed by the opposite driver. Strikingly this effect can even lead to loss of the double driver

genotype when drive is strong (t = 1), no single driver genotype is present (when $x_1 + x_2 = 1$), and the double driver genotype has a low initial frequency ($x_1 < \frac{r}{1+r}$; Fig. 5f; Table 2).

We also considered the evolution of 2 drivers of differing strength both in the presence and absence of recombination. Similar to our results with drivers of equal strength, we proved mathematically that the wtfA+ wtfB+ genotype will become fixed. Unlike the drivers of equal strength, however, there were no exceptional cases in which the wtfA+ wtfB+ genotype is not fixed when the 2 loci recombine (Table 2; see Supplementary material for mathematical proof). The wtfA+ wtfB+ fixation rate was not dramatically affected by recombination rate (Fig. 6a), and the stronger driver of the pair generally fixes faster (Fig. 6b).

Evolution of 2 competing driving haplotypes

The wtf genes diverge so rapidly that different natural isolates of S. pombe can encode distinct drivers at a given locus (Eickbush et al. 2019). We therefore wanted to explore the evolution of 2 distinct wtf drivers found at a single locus (Eq. 3 where $x_{A^1} + x_{A^2} = 1$ and r = 0). The steady states in which the population remains polymorphic are unstable (Fig. 7; Table 2). We found that the stronger driver generally spreads at the expense of the weaker driver, even if it is initially present at lower frequency (Fig. 7). However, a weaker driver can drive a stronger driver to extinction if the starting

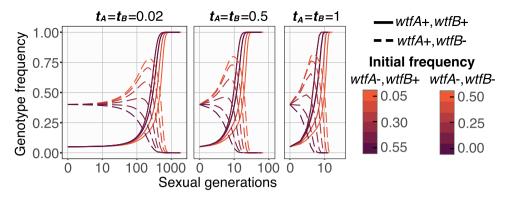


Fig. 4. The evolution of populations with 2 drivers of equal strength in the absence of recombination. Change in driver genotype frequencies over time. The genotype frequencies of wtfA+ wtfB+ (solid, 0.05 initial frequency) and wtfA+ wtfB- (dashed, 0.40 initial frequency) with varying wtfA- wtfB- initial frequencies with 0.1 steps. The remainder of each population is comprised of the wtfA- wtfB+ genotype. The genotype wtfA+ wtfB+ goes to fixation (See Supplementary material) when present. Strong drivers (t = 1, right) spread to fixation faster than weak drivers (t = 0.2, left).

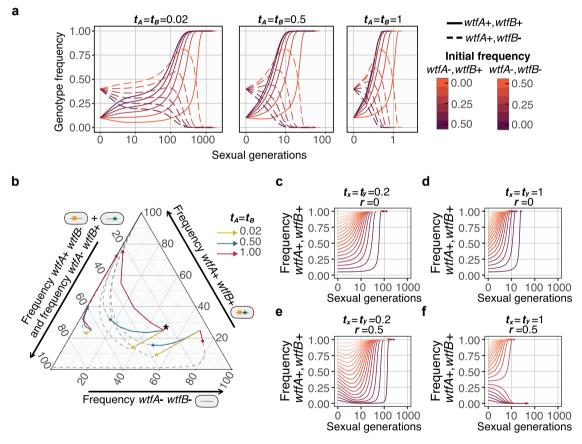


Fig. 5. The evolution of populations with 2 drivers of equal strength in the presence of recombination. a) Changes in driver genotypes over time in the presence of recombination (r = 0.5). The genotype frequencies of wtfA+wtfB+ (solid, 0.1 initial frequency) and wtfA+wtfB- (dashed, 0.40 initial frequency) with varying wtfA – wtfB – initial frequencies with 0.1 steps. The remainder in each population is comprised of genotype wtfA – wtfB+. Strong drivers (t = 1, right) spread to fixation faster than weak drivers (t = 0.2, left). b) The evolution of populations that initially lack the wtfA - wtfB + genotype. The frequency of each genotype is shown on the 3 axes. The wtfA- wtfB+ genotype can be later generated by recombination. To read the frequency of the wtfA+ wtfB+ genotype, follow a horizontal line to the right axis. To read the frequency of the wtfA- wtfB- genotype, follow the diagonal down and to the left to the bottom axis. To read the combined frequency of the wtfA+ wtfB- and wtfA- wtfB+ genotypes, follow the diagonal up and to the left to the left axis. The 2 unlinked drivers have equal strength and 3 driver strengths (indicated by the different arrow colors as shown in the key) were considered. The point marked with an asterisk (*) represents the following frequencies: wtfA- wtfB- of 0.50, wtfA+ wtfB+ of 0.25, and wtfA+ wtfB- plus wtfA- wtfB+ of 0.25. The arrows depict allele frequency changes over 4 generations from that starting point and the dotted lines show subsequent frequency changes. Although the frequency of the wtfA+ wtfB+ genotype can initially decline (downward arrows), that genotype eventually spreads to fixation under all conditions illustrated. c-f) Four simulated populations initially carry only 2 genotypes (wtfA+ wtfB+) and (wtfA- wtfB-). The initial frequencies for the genotype wtfA + wtfB+ range from 0.05 to 0.95 with a 0.05 frequency step. Each simulation represents a population of 2 drivers that are absolutely linked (r = 0, c and d) or unlinked (r = 0.5, e and f) and have a low (t = 0.2, c and e) or high transmission bias (t = 1, d and f). The spread of 2 drivers is delayed by recombination as the gametes carrying 1 driver can be destroyed by the alternate driver. Strong drivers can go extinct in the presence of recombination, particularly when the starting frequency of the wtfA+ wtfB+ genotype is low (f; Table 2).

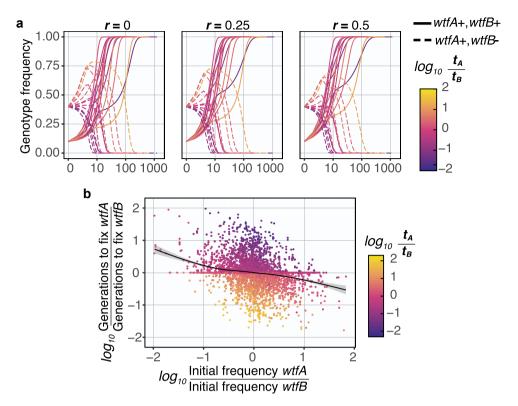


Fig. 6. Drivers with larger transmission advantage tend to fix faster in a population. a) Simulations with varying transmission advantages t_A and t_B for absolutely linked (r = 0), mildly linked (r = 0.25) or unlinked (r = 0.5) loci. The genotype frequencies of wtfA + wtfB + (solid, 0.1) and wtfA + wtfB - (dashed, 0.1)0.40) with a wtfA- wtfB+ and wtfA- wtfB- initial frequencies with 0.2 and 0.3, respectively. The genotype wtfA+ wtfB+ goes to fixation when present (see Supplementary material for mathematical proof). The frequency of the double driver genotype can decrease in the presence of recombination, but it eventually spreads to fixation when present (see Supplementary material for mathematical proof). b) Ten thousand initial populations were simulated with multiple recombination frequencies (r=0, 0.1, 0.2, 0.3, 0.4, and 0.5). The number of generations to fix a driver allele (i.e. wtfA) was compared to generations required to fix a second driver allele (i.e. wtfB). The stronger driver (larger t) tends to fix faster than a weaker driver, except in some cases when the weaker driver is initially more prevalent in a population. The black line is a local regression between X and Y axes. The shaded area is the standard error in the regression.

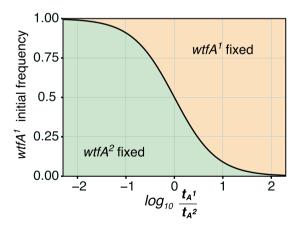


Fig. 7. Evolution of populations with 2 allelic or absolutely linked wtf variants. Populations with only wtfA1 and wtfA2 drivers are considered to represent 2 alternate driving alleles of varying relative strengths. The plotted line (black) represents a steady state where the driver frequencies remain constant. At points above the line, the wtfA1 spreads to fixation. At points below the line, the wtfA² driver spreads. The weaker driver can spread to fixation if the weaker driver starts in excess.

frequency of the weaker driver is sufficiently high (Fig. 7; Table 2). Specifically, the weaker driver (e.g. wtfA2) will fix if:

$$x_{A^1} < \frac{1}{1 + \frac{t_{A^1}}{t_{A^2}}}$$

where the ratio between drive strengths and the frequency of each driver determine the outcome.

Discussion

One route to accumulate drivers within a genome could be to fix them sequentially over time. If the drivers are independent, the evolutionary dynamics of this process would be no different than single driver evolution scenarios (López Hernández et al. 2021). However, in some species, drivers are polymorphic (Hall and Dawe 2018; Eickbush et al. 2019; Vogan et al. 2019; Muirhead and Presgraves 2021). To better understand the evolution of such duplicates, we modeled the evolution of duplicate killer mei-

Our goal was to better understand the dynamics of meiotic driver duplicates in general. We used the wtf drivers of S. pombe as a model. This was a strength in that the parameters describing the behavior of wtf drivers in the lab are known and previous modeling matched well to laboratory experimental evolution analyses (López Hernández et al. 2021 Wolfram Research 2021). Our study is, however, limited because we assumed an infinitely large, randomly mating population. These parameters do not describe all populations. For example, S. pombe grows clonally, and cells are only passively mobile, both of which disfavor outcrossing. In addition, some isolates of S. pombe inbreed, even in the presence of potential outcrossing partners (López Hernández et al. 2021). We anticipate that inbreeding would slow, but not prevent, the fixation of 2 drivers (López Hernández et al. 2021). Drift, however, would likely significantly diminish the number of conditions under which the 2 drivers fix with high probability as the double driver genotype could be lost to drift (López Hernández et al. 2021).

Our results have implications for understanding the evolution of natural drive systems, particularly poison-antidote killer meiotic drivers. Specifically, duplicates of such drive loci can be maintained or spread in a population under a broad range of conditions. This helps explain how the wtf genes have expanded in Schizosaccharomyces species. Similarly, isolates of Podospora anserina contain between 0 and 3 distinct Spok drivers (Vogan et al. 2019). Like the wtf drivers, the Spok drivers are encoded in a single gene, which likely facilitates their establishment after being duplicated (Vogan et al 2021). Partial duplication of poisonantidote drive systems in the form of antidote duplications has also been observed. For example, the first identified drive locus in the model plant Arabidopsis thaliana contains multiple copies of the APOK3 gene, which encodes an antidote to an unidentified poison (Simon et al. 2022). Although the impact of APOK3 duplications is unknown, such antidote duplications could potentially make a driver more efficient by ensuring extra protection for meiotic products that inherit the drive locus.

The duplication of drivers that do not use a poison-antidote mechanism may be relatively more constrained. For example, chromosome "knobs" in maize drive by preferential segregation into the egg cell during female meiosis (Sandler and Novitski 1957; Dawe et al. 2018). Drive of knobs is affected by chromosomal position, which likely constrains the evolution of duplicated knob sequences (Swentowsky et al. 2020). Knobs are also quite large, which may also limit their duplication potential. Despite these factors, multiple knobs are found on most maize chromosomes (Hufford et al. 2021).

Similarly, killer-target drive systems are also likely more constrained in their duplication. These drivers use a killer element to destroy the meiotic products that inherit a target locus that is found on the competing haplotype but is not found on the driving haplotype. Duplications of a killer to a location not linked in cis to the parent locus would likely be lost as the duplicate would not benefit from drive and would sometimes be destroyed by drive. However, duplications of the killer element linked in cis to the original drive locus could be favored if duplications strengthened the drive of the haplotype (Crow 1991). For example, an X chromosome-linked killer that targeted gametes inheriting the Y chromosome could duplicate on the X chromosome to enhance drive of the X. Although the mechanisms of drive are not yet known, X-linked expansions of drive genes have been observed (Kruger et al. 2019; Muirhead and Presgraves 2021; Vedanayagam et al. 2021).

Finally, this work has implications that could be considered in the design of synthetic gene drives to spread desirable traits in a population (Burt and Crisanti 2018). Single-gene poison-antidote meiotic drivers, like the wtf drivers, are an attractive candidate component for such synthetic gene drives. Their strong drive, small size, autonomy, and inability for the critical drive components to be uncoupled by recombination are all ideal for promoting the spread of a desired locus or chromosome in a population. Unfortunately, those same features also increase the possibility that a gene drive could spread within a genome. Such duplication could lead to less predictable control and other undesirable outcomes. As discussed above, killer-target meiotic driver systems have less duplication potential and thus may be better guides for engineering gene drives to spread desirable traits in a population, but not within genomes.

Data availability

Original data underlying this manuscript can be accessed from the Stowers Original Data Repository at http://www.stowers.org/ research/publications/libpb-2470 or by Figshare at https://doi. org/10.6084/m9.figshare.25998292.v1.

Supplemental material available at G3 online.

Acknowledgments

We thank members of the Zanders Lab and anonymous peer reviewers for their helpful comments on a previous version of the paper. This work was performed to fulfill, in part, requirements for J.F.L.H.'s thesis research in the Graduate School of the Stowers Institute for Medical Research.

Funding

This work was supported by the Stowers Institute for Medical Research (S.E.Z.) and the National Institutes of Health DP2GM132936 and R35GM151982 (S.E.Z.). The funders had no role in the study design, data collection and analysis, or manuscript preparation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders.

Conflicts of interest

S.E.Z. is an inventor on patent application 834 serial 62/491,107 based on wtf killers.

Literature cited

Akera T, Trimm E, Lampson MA. 2019. Molecular strategies of meiotic cheating by selfish centromeres. Cell. 178(5):1132-1144.e1110. doi:10.1016/j.cell.2019.07.001.

Bravo Núñez MA, Lange JJ, Zanders SE. 2018. A suppressor of a wtf poison-antidote meiotic driver acts via mimicry of the driver's antidote. PLoS Genet. 14(11):e1007836. doi:10.1371/journal.pgen. 1007836.

Bravo Núñez MA, Sabbarini IM, Eickbush MT, Liang Y, Lange JJ, Kent AM, Zanders SE. 2020. Dramatically diverse Schizosaccharomyces pombe wtf meiotic drivers all display high gamete-killing efficiency. PLoS Genet. 16(2):e1008350. doi:10.1371/journal.pgen. 1008350.

Bravo Núñez MA, Sabbarini IM, Eide LE, Unckless RL, Zanders SE. 2020. Atypical meiosis can be adaptive in outcrossed Schizosaccharomyces pombe due to wtf meiotic drivers. Elife. 9: e57936. doi:10.7554/eLife.57936.

Bull JJ. 2016. Lethal gene drive selects inbreeding. Evol Med Public Health. 2017(1):1-16. doi:10.1093/emph/eow030.

Burt A, Crisanti A. 2018. Gene drive: evolved and synthetic. ACS Chem Biol. 13(2):343-346. doi:10.1021/acschembio.7b01031.

Cazemajor M, Joly D, Montchamp-Moreau C. 2000. Sex-ratio meiotic drive in Drosophila simulans is related to equational nondisjunction of the Y chromosome. Genetics. 154(1):229-236. doi:10.1093/ genetics/154.1.229.

Crow JF. 1991. Why is Mendelian segregation so exact? Bioessays. 13(6):305-312. doi:10.1002/bies.950130609.

Dalstra HJP, Swart K, Debets AJM, Saupe SJ, Hoekstra RF. 2003. Sexual transmission of the [het-s] prion leads to meiotic drive in Podospora anserina. Proc Natl Acad Sci U S A. 100(11):6616–6621. doi:10.1073/pnas.1030058100.

- Dawe RK, Lowry EG, Gent JI, Stitzer MC, Swentowsky KW, Higgins DM, Ross-Ibarra J, Wallace JG, Kanizay LB, Alabady M, et al. 2018. A kinesin-14 motor activates neocentromeres to promote meiotic drive in maize. Cell. 173:839-850.e818. doi:10.1016/j.cell.
- De Carvalho M, Jia GS, Nidamangala Srinivasa A, Billmyre RB, Xu YH, Lange JJ, Sabbarini IM, Du LL, Zanders SE. 2022. The wtf meiotic driver gene family has unexpectedly persisted for over 100 million years. Elife. 11:e81149. doi:10.7554/eLife.81149.
- Didion JP, Morgan AP, Clayshulte AM, Mcmullan RC, Yadgary L, Petkov PM, Bell TA, Gatti DM, Crowley JJ, Hua K, et al. 2015. A multi-megabase copy number gain causes maternal transmission ratio distortion on mouse chromosome 2. PLoS Genet. 11(2):e1004850. doi:10.1371/journal.pgen.1004850.
- Dyer KA, Hall DW. 2019. Fitness consequences of a non-recombining sex-ratio drive chromosome can explain its prevalence in the wild. Proc Biol Sci. 286(1917):20192529. doi:10.1098/rspb.2019.2529.
- Eickbush MT, Young JM, Zanders SE. 2019. Killer meiotic drive and dynamic evolution of the wtf gene family. Mol Biol Evol. 36(6): 1201-1214. doi:10.1093/molbev/msz052.
- Farlow A, Long H, Arnoux S, Sung W, Doak TG, Nordborg M, Lynch M. 2015. The spontaneous mutation rate in the fission yeast Schizosaccharomyces pombe. Genetics. 201(2):737-744. doi:10.1534/ genetics.115.177329.
- Fishman L, Kelly JK. 2015. Centromere-associated meiotic drive and female fitness variation in mimulus. Evolution. 69(5):1208-1218. doi:10.1111/evo.12661.
- Forsburg SL, Rhind N. 2006. Basic methods for fission yeast. Yeast. 23(3):173-183. doi:10.1002/yea.1347.
- Garnier S, Ross N, Rudis R, Camargo AP, Sciaini M, Scherer C. 2024. viridis(Lite) - Colorblind-Friendly Color Maps for R. viridisLite package version 0.4.2. https://sjmgarnier.github.io/viridis/.
- Hall DW, Dawe RK. 2018. Modeling the evolution of female meiotic drive in maize. G3 (Bethesda). 8(1):123-130. doi:10.1534/g3.117.
- Hamilton NE, Ferry M. 2018. Ggtern: ternary diagrams using ggplot2. J Stat Softw. 87(Code Snippet 3):1-17. doi:10.18637/jss.v087.c03.
- Hartl DL. 1970. Analysis of a general population genetic model of meiotic drive. Evolution. 24(3):538-545. doi:10.2307/2406834.
- Hu W, Jiang ZD, Suo F, Zheng JX, He WZ, Du LL. 2017. A large gene family in fission yeast encodes spore killers that subvert Mendel's law. Elife. 6:e26057. doi:10.7554/eLife.26057.
- Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, Liu J, Ricci WA, Guo T, Olson A, Qiu Y, et al. 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science. 373(6555):655–662. doi:10.1126/science.abg5289.
- Kruger AN, Brogley MA, Huizinga JL, Kidd JM, de Rooij DG, Hu YC, Mueller JL. 2019. A neofunctionalized x-linked ampliconic gene family is essential for male fertility and equal sex ratio in mice. Curr Biol. 29(21):3699-3706.e3695. doi:10.1016/j.cub.2019.08.057.
- Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, Johannesson H, Knief U, Kokko H, Larracuente AM, et al. 2016. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol Evol. 31(4):315-326. doi:10.1016/j.tree.2016.
- Long Y, Zhao L, Niu B, Su J, Wu H, Chen Y, Zhang Q, Guo J, Zhuang C, Mei M, et al. 2008. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci U S A. 105(48):18871-18876. doi:10.1073/pnas.0810108105.
- López Hernández JF, Helston RM, Lange JJ, Billmyre RB, Schaffner SH, Eickbush MT, McCroskey S, Zanders SE. 2021. Diverse mating phenotypes impact the spread of wtf meiotic drivers in Schizosaccharomyces pombe. Elife. 10:e70812. doi:10.7554/eLife.70812.

- Lyon MF. 2003. Transmission ratio distortion in mice. Annu Rev Genet. 37(1):393-408. doi:10.1146/annurev.genet.37.110801.143030.
- Manser A, Konig B, Lindholm AK. 2020. Polyandry blocks gene drive in a wild house mouse population. Nat Commun. 11(1):5590. doi:10.1038/s41467-020-18967-8.
- Martinossi-Allibert I, Veller C, Ament-Velasquez SL, Vogan AA, Rueffler C, Johannesson H. 2021. Invasion and maintenance of meiotic drivers in populations of ascomycete fungi. Evolution. 75(5):1150-1169. doi:10.1111/evo.14214.
- Muirhead CA, Presgraves DC. 2021. Satellite DNA-mediated diversification of a sex-ratio meiotic drive gene family in Drosophila. Nat Ecol Evol. 5(12):1604-1612. doi:10.1038/ s41559-021-01543-8.
- Nuckolls NL, Bravo Núñez MA, Eickbush MT, Young JM, Lange JJ, Yu JS, Smith GR, Jaspersen SL, Malik HS, Zanders SE. 2017. Wtf genes are prolific dual poison-antidote meiotic drivers. Elife. 6:e26033. doi:10.7554/eLife.26033.
- Nuckolls NL, Nidamangala Srinivasa A, Mok AC, Helston RM, Bravo Núñez MA, Lange JJ, Gallagher TJ, Seidel CW, Zanders SE. 2022. S. pombe wtf drivers use dual transcriptional regulation and selective protein exclusion from spores to cause meiotic drive. PLoS Genet. 18(12):e1009847. doi:10.1371/journal.pgen.1009847.
- Otto SP, Day T. 2007. A Biologist's Guide to Mathematical Modeling in Ecology and Evolution. Princeton (NJ): Princeton University Press.
- Price TAR, Windbichler N, Unckless RL, Sutter A, Runge JN, Ross PA, Pomiankowski A, Nuckolls NL, Montchamp-Moreau C, Mideo N, et al. 2020. Resistance to natural and synthetic gene drive systems. J Evol Biol. 33(10):1345-1360. doi:10.1111/jeb.
- Sandler L, Novitski E. 1957. Meiotic drive as an evolutionary force. Am Soc Nat. 91(857):105-110. doi:10.1086/281969.
- Simon M, Durand S, Ricou A, Vrielynck N, Mayjonade B, Gouzy J, Boyer R, Roux F, Camilleri C, Budar F. 2022. Apok3, a pollen killer antidote in Arabidopsis thaliana. Genetics. 221(4):iyac089. doi:10. 1093/genetics/iyac089.
- Swentowsky KW, Gent JI, Lowry EG, Schubert V, Ran X, Tseng KF, Harkess AE, Qiu W, Dawe RK. 2020. Distinct kinesin motors drive two types of maize neocentromeres. Genes Dev. 34(17-18): 1239-1251. doi:10.1101/gad.340679.120.
- Tao Y, Araripe L, Kingan SB, Ke Y, Xiao H, Hartl DL. 2007. A sex-ratio meiotic drive system in Drosophila simulans. Ii: an X-linked distorter. PLoS Biol. 5(11):e293. doi:10.1371/journal.pbio.0050293.
- Tusso S, Nieuwenhuis BPS, Sedlazeck FJ, Davey JW, Jeffares DC, Wolf JBW. 2019. Ancestral admixture is the main determinant of global biodiversity in fission yeast. Mol Biol Evol. 36(9):1975-1989. doi:10. 1093/molbev/msz126.
- Vedanayagam J, Lin CJ, Lai EC. 2021. Rapid evolutionary dynamics of an expanding family of meiotic drive factors and their hprna suppressors. Nat Ecol Evol. 5(12):1613-1623. doi:10.1038/s41559-021-
- Voelker RA, Kojima KI. 1971. Fertility and fitness of XO males in Drosophila I. Qualitative study. Evolution. 25(1):119-128. doi:10. 2307/2406505.
- Vogan AA, Ament-Velásquez SL, Bastiaans E, Wallerman O, Saupe SJ, Suh A, Johannesson H. 2021. The enterprise, a massive transposon carrying Spok meiotic drive genes. Genome Res. 31(5): 789-798. doi:10.1101/gr.267609.120.
- Vogan AA, Ament-Velásquez SL, Granger-Farbos A, Svedberg J, Bastiaans E, Debets AJ, Coustou V, Yvanne H, Clavé C, Saupe SJ, et al. 2019. Combinations of spok genes create multiple meiotic drivers in Podospora. Elife. 8:e46454. doi:10.7554/eLife.46454.
- Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.

Wolfram Research, Inc. 2021. Wolfram Programming Lab. Version 12.2. Champaign (IL): Wolfram Research, Inc. https://www.wolfram.com/programming-lab.

Yang J, Zhao X, Cheng K, Du H, Ouyang Y, Chen J, Qiu S, Huang J, Jiang Y, Jiang L, et al. 2012. A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science. 337:1336-1340. doi:doi:10.1126/science. 1223702.

Yu X, Zhao Z, Zheng X, Zhou J, Kong W, Wang P, Bai W, Zheng H, Zhang H, Li J, et al. 2018. A selfish genetic element confers non-Mendelian inheritance in rice. Science. 360(6393):1130–1132. doi:10.1126/science.aar4279.

Zanders SE, Unckless RL. 2019. Fertility costs of meiotic drivers. Curr Biol. 29(11):R512-R520. doi:10.1016/j.cub.2019.03.046.

Editor: L. McIntyre