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ABSTRACT

Discovering components that are shared in multiple datasets, next
to dataset-specific features, has great potential for studying the re-
lationships between different subjects or tasks in functional Mag-
netic Resonance Imaging (fMRI) data. Coupled matrix and tensor
factorization approaches have been useful for flexible data fusion,
or decomposition to extract features that can be used in multiple
ways. However, existing methods do not directly recover shared and
dataset-specific components, which requires post-processing steps
involving additional hyperparameter selection. In this paper, we pro-
pose a tensor-based framework for multi-task fMRI data fusion, us-
ing a partially constrained canonical polyadic (CP) decomposition
model. Differently from previous approaches, the proposed method
directly recovers shared and dataset-specific components, leading to
results that are directly interpretable. A strategy to select a highly re-
producible solution to the decomposition is also proposed. We eval-
uate the proposed methodology on real fMRI data of three tasks, and
show that the proposed method finds meaningful components that
clearly identify group differences between patients with schizophre-
nia and healthy controls.

Index Terms— Tensor decomposition, multi-task fMRI, data
fusion, coupled factorization.

1. INTRODUCTION

Discovering common and distinct features across multiple datasets
is a fundamental problem in various disciplines, including the anal-
ysis of multi-task/multi-subject fMRI data [1] or multimodal image
fusion [2]. The distinct features in each dataset may be generated by
variability caused by uncontrolled acquisition conditions [3], or by
features unique to each dataset in, e.g., medical data [4]. Accounting
for such flexible scenarios is a subject of high interest in data fusion.

Tensor decomposition is of particular interest for data fusion
due to its interpretability and strong theoretical foundation. Multiple
datasets, in many cases, can naturally be represented in the form of
high-order tensors, which allow one to take advantage of high-order
decomposition models, such as the CP or the PARAFAC2 decom-
position [5]. Coupled tensor decompositions perform data fusion by
linking factors among different datasets, benefiting from the com-
plementary information across modalities [6]. Although initial work
imposed “hard couplings” between multiple modalities [7], recent
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work introduced more flexibility by, e.g., weighting the contribution
of the coupled components to each dataset [8], un-coupling a subset
of the columns of one of the factor matrices [9, 10], or by coupling
the factors by constraining them to belong to a Euclidean ball [11].
However, existing coupled decomposition approaches do not con-
sider distinct components (i.e., components that only contribute to
a single dataset). This makes them unable to effectively decom-
pose heterogeneous data, in which some components are not shared
among the datasets. In this paper, we will address this limitation
by proposing a new partially constrained coupled CP decomposition
model that directly recovers shared and dataset-specific components.

In neuroimaging, fusing data from multiple subjects or tasks
help elucidate differences in populations and identify putative
biomarkers of multiple disorders of the brain, and to understand
the brain function in general. Previous work investigated the fusion
of multisubject data to identify brain patterns common and dis-
tinct to different subgroups of subjects for understanding disorders
such as schizophrenia [12]. This has been performed in [13] using
independent vector analysis (IVA) [14], a multiset extension of inde-
pendent component analysis (ICA), where the relationship between
the different groups of subjects is revealed by the covariance matrix
of their cross subject components. Both IVA and the PARAFAC2
tensor decomposition have also been recently applied to the analy-
sis of multisubject multi-task fMRI data to reveal components that
show differences between patients with schizophrenia and healthy
controls, as well as the relationship across multiple tasks [15]. In [1],
IVA was used to first estimate the common and distinct subspaces
in multi-task fMRI data, and in a second step, the distinct subspaces
were analyzed separately using another decomposition, e.g., joint
ICA and individual ICA. In [16], dictionary learning was introduced
to recover common and distinct components.

In this paper, we propose a tensor-based framework for decom-
posing multi-task fMRI data into sets of shared and task-specific
components. The proposed method integrates the higher-order struc-
ture of the data due to the relationship of multiple contrasts used to
represent each task with an explicit decoupling between the shared
and task-specific components. Each set of fMRI feature maps corre-
sponding to a single task is ordered in the form of an order-3 tensor,
which is assumed to follow a low-rank CP model. An optimization
algorithm is proposed to compute the decomposition. We also pro-
pose a new strategy for selecting a highly reproducible result and re-
ducing the dependency of the solution on the initialization of the al-
gorithm [17]. Differently from data fusion frameworks that use IVA,
which requires post-processing steps following an IVA decomposi-
tion involving additional hyperparameter selection to recover shared
and distinct components [18], the proposed method yields common
and shared interpretable components in a single step. The proposed
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methodology is evaluated by decomposing real fMRI data of three
different tasks: the Auditory Oddball (AOD), and the Encoding (E)
and Probe (P) phases of the Sternberg Item Recognition Paradigm
(SIRP) [19].1 It is shown that the proposed method finds compo-
nents that are interpretable, in the sense that the shared and distinct
components correspond to activated brain areas in the regions that
are expected to be common and distinct across tasks. This included,
for instance, high activations in auditory regions only being present
in the AOD task. On the other hand, activations in the default mode
network (DMN) region were found to be common among all tasks.
Moreover, various subject factors showed clear group differences be-
tween patients with schizophrenia and healthy controls, along with
spatial maps that are meaningful for the associated tasks.

2. BACKGROUND AND RELATED WORK

Notation: In this work we follow the same general notation and
definitions as in [5]. Scalars are denoted by lowercase (x) or upper-
case (X) plain font, and vectors, matrices and tensors by lowercase
(x), uppercase (X) and calligraphic (X ) bold font, respectively. An
order-3 tensor X P R

IˆJˆK is an I ˆJ ˆK array, whose pi, j, kq-
th element is indexed by rX si,j,k. The k-th frontal slice of a ten-
sor X is a matrix whose elements are obtained by fixing its third
mode at index k, and is denoted by rX s:,:,k. The subset of columns
of matrix X indexed between i and j is denoted by rXs:,i:j . The
CP decomposition (CPD) of a tensor X with factor matrices A <
ra1, . . . ,aRs, B < rb1, . . . , bRs and C < rc1, . . . , cRs is denoted

by X < vA,B,Cw <
řR

r“1
ar ˝br ˝cr , where ˝ is the outer prod-

uct and R is the rank of the CP model. }.}F is the Frobenius norm.

Tensor methods applied to fMRI: In [20], the authors consider
blind source separation of fMRI data by using an extension of the
block term tensor decomposition, where the spatial, temporal, and
subject dimensions of the fMRI data are considered as modes of the
tensor. However, this uses the raw temporal data and does not benefit
from the knowledge of the time regressors, which can be exploited
in task-related fMRI data.

Multi-task fMRI data has been analyzed in [15] using both
IVA and the PARAFAC2 tensor decomposition, both of which were
shown to be useful for identifying subgroups of subjects and rela-
tionships between different tasks. Although PARAFAC2 does not
make statistical assumptions on the latent components, in contrast
to IVA, it imposes additional algebraic conditions on the factors of
the mixing model and has different uniqueness conditions.

In [21], matrix and tensor decompositions were coupled in the
subject mode to fuse EEG, fMRI and sMRI data, where a sparsity
regularization in the coefficients modulated the strength of the cou-
pling between different modalities to provide robustness in the pres-
ence of modality-specific components. Coupled formulations allow
matrix-based approaches to benefit from milder uniqueness condi-
tions of tensor decompositions, providing more interpretable solu-
tions [6, 8]. The uniqueness of coupled matrix decomposition with
shared and distinct components was recently studied in [9].

3. PROPOSED METHOD

In this section, we describe the proposed tensor-based strategy for
shared and distinct multitask fMRI data decomposition. We con-
sider K different tasks (e.g., AOD, SIRP, etc.), performed by S sub-
jects. For each task and subject, fMRI data (with V voxels) is ac-

1In the rest of the paper, we refer to the E and P phases of SIRP as different
tasks since they involve significant differences in data collection.

quired in Tk different ways. Each one-dimensional feature map is
extracted via voxel-wise linear regression of the time-series fMRI
data, as in [22]. Because the data of the Tk feature maps for the
k-th task is expected to contain activations of functional networks
in similar brain regions, it is stored in one tensor, or task dataset,
Yk P R

SˆV ˆTk , for k < 1, . . . ,K.
Model: Our objective is to decompose the fMRI feature maps in
Yk into a set of shared and distinct factors, according to the model

Yk < Pk ` Dk , (1)

where tensor Pk P R
SˆV ˆTk denotes a component that is partially

shared across all task datasets, while Dk denotes a distinct, task-
specific component. Each of these tensors is supposed to follow a
CP model, where each partially shared component Pk has rank R,
and the distinct components Dk have rank Lk, for k < 1, . . . ,K.
This allows us to write:

Pk <
0

S
p
,V

p
,T

p

k

8

, Dk <
0

S
d
k,V

d
k,T

d
k

8

, (2)

where S
p P R

SˆR and V
p P R

V ˆR are the factor matrices of
Pk related to the subjects and the voxels (spatial maps), which are
shared among all K task datasets, while T

p

k P R
TkˆR are factor ma-

trices related to the acquisitions of each task, and are thus not shared
as the different tasks do not have a direct correspondence. The factor
matrices S

d
k P R

SˆLk , V d
k P R

V ˆLk , T d
k P R

TkˆLk are specific
for each task. The CP model has strong uniqueness properties, which
make the factor matrices directly interpretable.

The model proposed in (1) and (2) contains several constraints,
which, despite reducing flexibility, aid in the interpretation of the
results. First, there is an explicit separation of partially shared and
distinct components across different tensors (datasets): the factors
in the first and second mode of Pk are shared among all K task
datasets, and the third factor T

p

k shows the contribution of the shared
components to the k-th task dataset. Second, for all Tk fMRI feature
maps in the k-th task dataset, both the shared and distinct compo-
nent tensors Pk and Dk share the same spatial maps (V p and V

d
k)

and the same subject factors (Sp and S
d
k), and only their contri-

bution to each fMRI acquisition in the k-th task dataset (rYks:,:,i,
i < 1, . . . , Tk) is modulated by the elements of the third-mode fac-
tors T

p

k and T
d
k. Thus, Yk can be written as the following CP model:

Yk <
0

Sk,V k,T k

8

, (3)

where Sk, V k and T k are related to the factors in (2) through:

Sk <
<

S
p
, S

d
k

‰

, V k <
<

V
p
, V

d
k

‰

, T k <
<

T
p

k, T
d
k

‰

. (4)

Note that, assuming Tk ď S ď V , the CP model (3) is generically
unique if R ` Lk ď pTk ` 1qpS ` 1q{16 [23].
Decomposition algorithm: Our aim is to recover the shared and
distinct factors corresponding to the subject, voxel and task dimen-
sions, given the multi-task datasets tYkuKk“1. To this end, we for-
mulate the flexible coupled tensor decomposition as the following
optimization problem:

min
Θ

JpΘq subject to (4) , (5)

where the parameter space is given by Θ <
␣

Sk,V k,T k : 1 ď

k ď K
(

, the constraint (4) ensured the first R columns of Sk (resp.
V k) are the shared for all k, and the cost function JpΘq is given by

JpΘq <
K
ÿ

k“1

:

:

:
Yk ´

0

Sk,V k,T k

8

:

:

:

2

F
` λ

:

:V
J
kV k ´ I

:

:

2

F
.

The first term of JpΘq consists of a data fitting term, while the sec-



ond term consists of a regularization that penalizes the coherence
between spatial maps within a task dataset to prevent degenerate so-
lutions containing highly dependent spatial maps, which is a known
problem in unconstrained real-valued tensor decomposition [5].

To solve problem (5), we consider a block coordinate descent

approach, in which the cost function is iteratively minimized with
respect to one group of variables at a time (Sk,V k and T k, @k),
while keeping the remaining ones fixed with the values from the pre-
vious iterations. The optimization w.r.t. Sk and T k consists of con-
strained least squares problems, which can be solved efficiently. The
optimization w.r.t. V k, on the other hand, is a fourth-order problem;
thus, we find a local solution using a quasi-Newton method.

Best run selection: Since problem (5) is non-convex, the solution
to the block coordinate descent optimization strategy will depend on
the initialization of the algorithm. This makes it more challenging
to guarantee that the results are reproducible, that is, given the same
data and code, we should be able to obtain consistent results [17].
Reproducibility of the results is very important for their adequate in-
terpretability, particularly in medical imaging. In this work, inspired
by [17], we consider a heuristic strategy to select the “most repro-
ducible” run from a set of solutions to problem (5) obtained from dif-
ferent random, independent initializations. First, we solve (5) using
N random initializations, and store each solution in a set Ω. Then,
we compute a similarity (a pseudo-metric) between each pair of so-
lutions tSk,V k,T ku and tS1

k,V
1
k,T

1
ku in Ω as:

pdistance “ ´
K
ÿ

k“1

min
σPΣR`Lk

"R`Lk
ÿ

r“1

ˆ

rSksJ
:,rrS1

ks:,σprq

}Sk}}S1
k

}

`
rV ksJ

:,rrV 1
ks:,σprq

}V k}}V 1
k

}
`

rT ksJ
:,rrT 1

ks:,σprq

}T k}}T 1
k

}

˙*

, (6)

where ΣR`Lk
is the set of all permutations of t1, . . . , R ` Lku.

The minimization is performed as a linear assignment problem [24].
Finally, we select the most reproducible solution as the one that is the
most similar to every other solution in Ω, according to the similarity
criterion defined in (6). The procedure is described in Algorithm 1.

4. EXPERIMENTS

Dataset: We considered two fMRI datasets from the MCIC collec-
tion [19], which are collected from 271 subjects (121 being patients
suffering from schizophrenia (SZ) and 150 being healthy controls
(HC)) that perform an AOD and SIRP tasks. From AOD and SIRP
datasets, three task datasets were generated as follows. For each
subject and task, lower-dimensional features were extracted from the
raw fMRI data by using regressors obtained by convolving the hemo-
dynamic response function (HRF) in the SPM toolbox [25] with the
desired predictors, as in [22]. The Tk regression coefficient maps for
the k-th task were then ordered as tensor Yk, containing S < 271

subjects, V < 48546 voxels and Tk feature maps. In the AOD task,
each subject listened to three different types of stimuli (standard,
novel and target), which were randomly ordered, and was required
to press a button when the “target” stimulus occurred. Three fMRI
feature maps were extracted for this task by using regressors corre-
sponding to the target [T], novel [N], and target with the standard
[TS] stimuli, resulting in the frontal slices of Y1 P R

271ˆ48546ˆ3

(T1 < 3). The SIRP task was divided into two different task datasets,
corresponding to the Encode (SIRP-E) and to the Probe (SIRP-P)
phases of the experiment, respectively. In the encoding phase, sub-
jects needed to memorize a set of integer digits between 0 to 9, and
in the probe phase, the subjects were shown a sequence of digits and
were asked to press a button when a digit belonged to the memorized

Algorithm 1: Coupled CP-based fMRI fusion

Input : tYkuK
k“1

, ranks R, tLkuK
k“1

, λ, Ω “ ∅, N .

1 for n “ 1, 2, . . . , N do

2 Initialize S
p0q
k

, V
p0q
k

, T
p0q
k

randomly, set i “ 0 ;

3 while Stopping criterion is not satisfied do

4 i Ð i ` 1 ;

5 S
piq
k

Ð Minimize JpΘq s.t. (4) w.r.t. tSkuK
k“1

, with

V k “ V
pi´1q
k

and T k “ T
pi´1q
k

;

6 V
piq
k

Ð Minimize JpΘq s.t. (4) w.r.t. tV kuK
k“1

, with

Sk “ S
piq
k

and T k “ T
pi´1q
k

;

7 T
piq
k

Ð Minimize JpΘq w.r.t. tT kuK
k“1

, with

Sk “ S
piq
k

and V k “ V
piq
k

;

8 end

9 Ω Ð Ω
Ť

␣

S
piq
k

,V
piq
k

,T
piq
k

(

;

10 end

11 Sk,V k,T k Ð Pick the most reproducible run in Ω according to (6);
Return: Sk,V k,T k , k “ 1, . . . ,K.

set. This experiment was performed with 1, 3 and 5 digits in the set,
resulting in three distinct fMRI feature maps for each phase, which
are ordered as the frontal slices of Y2 P R

271ˆ48546ˆ3 (for SIRP-E,
with T2 < 3) and Y3 P R

271ˆ48546ˆ3 (for SIRP-P, with T3 < 3).

Method setup: We selected the ranks of the decomposition so as
to obtain the best reproducibility according to the criterion (6). This
resulted in R < 2 for the shared component, and L1 < 5 (AOD),
L2 < 4 (SIRP-E) and L3 < 4 (SIRP-P) for the distinct components.
The regularization parameter was selected similarly as λ < 10

6. Al-
gorithm 1 was implemented in MatlabTM and executed in a computer
with four 3.2Ghz cores and 24Gb RAM. N < 200 reproducibility
runs were used. Before applying Algorithm 1, the subject and voxel
modes of tensors Yk are compressed to a dimension of 30 using the
SVD in order to reduce its complexity [26]. The total execution time
for all experiments was 157.5 seconds.

Results: The components (normalized to unit variance and thresh-
olded at |z| < 2.7) obtained by fusing the three task datasets are
shown in Fig. 1, and the results of only fusing AOD and SIRP-P,
or SIRP-E and SIRP-P, are shown in Figs. 2 and 3, respectively. A
two sample t-test on the subject factors was used to evaluate whether
significant (p ă 0.05) group differences between HCs and SZs are
present. Red/yellow voxels indicate a higher activation in controls
than in patients (determined according to the result of the t-test),
while blue voxels mean the opposite.

AOD, SIRP-E and SIRP-P (Fig. 1): Shared component #1 con-
tains activations in the DMN, motor and frontoparietal (FP) regions,
which shows highly significant differences between SZs and HCs.
Shared component #2 contains activations in the visual region with-
out a significant difference between SZs and HCs. The distinct com-
ponents for AOD are significant, and contain activations in auditory
(#1), motor (#2), and visual (#3) regions. The components #1 and #2
of SIRP-E contain high activations in the visual regions. While com-
ponent #1 of SIRP-P also contains visual activations, component #2
of SIRP-P contains high FP, motor and DMN activations that do not
appear as strongly in the components of SIRP-E.

AOD and SIRP-P (Fig. 2): Shared component #1 is significant
and contains high activations in the motor area, whereas shared com-
ponent #2 contains high activations in the DMN and the FP regions
but does not show a significant difference between SZs and HCs.
The distinct components of both AOD and SIRP-P are similar to
those obtained with all three datasets with differences in p-values.

SIRP-E and SIRP-P (Fig. 3): Shared component #1 contains



Fig. 1. Estimated shared and distinct components resulting from the fusion of the AOD, SIRP-E and SIRP-P task datasets. The shared
components show high activations in the DMN, visual, motor and frontoparietal regions. In the distinct components corresponding to the
three task datasets, we observe: i) high auditory and visual activations in the AOD task; ii) high visual activations in the SIRP-E task; iii) high
visual, frontoparietal, motor and DMN activations in the SIRP-P task.

Fig. 2. Estimated shared and distinct components resulting from the fusion of the AOD and SIRP-P task datasets. The shared components
show high activations in the motor, DMN and frontoparietal regions. In the distinct components corresponding to the two task datasets, we
observe: i) high auditory and visual activations in the AOD task; ii) high visual, frontoparietal, motor and DMN activations in the SIRP-P task.

Fig. 3. Estimated shared and distinct components resulting from the fusion of the SIRP-E and SIRP-P task datasets. The shared components
show high activations in the DMN, angular gyrus and frontoparietal regions. In the distinct components corresponding to the two task datasets,
we observe: i) high visual activations in the SIRP-E task; ii) high visual and motor activations in the SIRP-P task.

activations in the DMN and angular gyrus (AG) regions, and is not
significant. Shared component #2 is highly significant, with a high
activation in the FP region. The distinct components of SIRP-E have
high activation in the visual region, but only component #2 shows
a significant difference between SZs and HCs. Both components of
SIRP-P are significant, with components #1 and #2 containing high
activations in the visual and motor regions, respectively.

5. DISCUSSION

The shared components obtained by the proposed method contain
high activations in the DMN, FP and AG regions. These activa-
tions are highly similar across the shared components obtained from
the three sets of fusion results. Motor responses appear in a shared
component when both AOD and SIRP-P are among the tasks being
fused, and in a distinct component when only SIRP-E and SIRP-P
are fused. This is a nice confirmation for the methodology because
the AOD and SIRP-P tasks contain a motor component, which is
not present in SIRP-E. From Figs. 1, 2 and 3, the motor compo-
nent shows significant group difference (p ă 0.05) between HCs
and SZ patients. However, when the motor component is estimated
as shared (Fig. 2), it shows a more significant difference between
HCs and SZs. This indicates that, when fused, the datasets with mo-
tor movements (AOD and SIRP-P) influence each other to estimate
a motor component with higher group difference level, compared to
when they are fused with a dataset that does not contain motor move-
ments (SIRP-E). This shows the advantage of fusing datasets which
are more similar. Moreover, the p-values of the motor components

easily stay significant even after conservative corrections for multi-
ple comparisons, like the Bonferroni method. Auditory components
are only present in the distinct components of AOD, and are highly
significant. AOD is frequently used to differentiate between HCs and
SZs, and here it also provides the lowest p-values and most discrim-
inative components, with differences between subjects and patients
in the areas that are expected. Visual activations are observed in dis-
tinct components for all task datasets, which is reasonable since the
subjects performed the tasks with their eyes open.

The activations in various distinct components in Fig. 1 (#1 and
#2 for AOD, #2 for SIRP-P), are similar to those obtained by fu-
sion of the same dataset using IVA and PARAFAC2 reported in [15],
although their p-values are slightly lower than those of the com-
ponents that were recovered by IVA. Hence, even with differences
in modeling assumptions the main conclusions in such decomposi-
tions agree. This suggests that matrix and tensor decompositions
with minimal assumptions on the relationship among the datasets
yield useful and directly interpretable results. In our case, we pro-
vide components that also report on shared and distinct aspects of
the multiple datasets without having to determine additional steps
to identify these. This is in contrast to IVA, where deciding which
components are shared and which are distinct has to be performed
as a post-processing step, which also involves additional hyperpa-
rameter selection [18]. Note, however, that comparing the results of
different decomposition methods is very challenging, since they of-
ten need vastly different orders to produce meaningful components.
Nonetheless, such comparisons are important for providing guidance
on the selection of best method for a given dataset.
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