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Anxiety and depression in children and adolescents warrant special attention as a

public health concern given their devastating and long-term effects on

development and mental health. Multiple factors, ranging from genetic

vulnerabilities to environmental stressors, influence the risk for the disorders.

This study aimed to understand how environmental factors and genomics affect

children and adolescents anxiety and depression across three cohorts:

Adolescent Brain and Cognitive Development Study (US, age of 9-10;

N=11,875), Consortium on Vulnerability to Externalizing Disorders and

Addictions (INDIA, age of 6-17; N=4,326) and IMAGEN (EUROPE, age of 14;

N=1888). We performed data harmonization and identified the environmental

impact on anxiety/depression using a linear mixed-effect model, recursive

feature elimination regression, and the LASSO regression model. Subsequently,

genome-wide association analyses with consideration of significant

environmental factors were performed for all three cohorts by mega-analysis

and meta-analysis, followed by functional annotations. The results showed that

multiple environmental factors contributed to the risk of anxiety and depression

during development, where early life stress and school support index had the

most significant and consistent impact across all three cohorts. In both meta, and

mega-analysis, SNP rs79878474 in chr11p15 emerged as a particularly promising

candidate associated with anxiety and depression, despite not reaching genomic

significance. Gene set analysis on the common genes mapped from top

promising SNPs of both meta and mega analyses found significant enrichment

in regions of chr11p15 and chr3q26, in the function of potassium channels and

insulin secretion, in particular Kv3, Kir-6.2, SUR potassium channels encoded by

the KCNC1, KCNJ11, and ABCCC8 genes respectively, in chr11p15. Tissue

enrichment analysis showed significant enrichment in the small intestine, and a
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trend of enrichment in the cerebellum. Our findings provide evidences of

consistent environmental impact from early life stress and school support

index on anxiety and depression during development and also highlight the

genetic association between mutations in potassium channels, which support

the stress-depression connection via hypothalamic-pituitary-adrenal axis, along

with the potential modulating role of potassium channels.
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1 Introduction

Anxiety and depression are now considered to be two of the

most frequent mental disorders that affect children and adolescents

(1). The occurrence of anxiety and depression in children and

adolescents, as well as other related mental disorders, is currently a

worldwide pressing problem. According to the United States

Centers of Disease Control National Survey of Children’s Health,

7.1% of children aged 3-17 years (about 4.4 million) have been

diagnosed with anxiety, 3.2% have been diagnosed with depression

(roughly 1.9 million) (2), and this percentage increased to 11.7% for

adolescents. The WHO has reported that one in every four children

in India aged 13 to 15 suffers from depression. United Nations

International Children’s Emergency Fund has reported that nine

million adolescents in Europe (aged 10 to 19) are living with mental

disorders, with anxiety and depression accounting for more than

half of all cases (https://www.unicef.org/eu/stories/mental-health-

burden-affecting-europes-children). Studies on the brain and its

functioning are a significant area of interest across imaging genetics

(1–4). In particular, a vast body of research from epidemiological

surveys has shown a strong link between depression anxiety with

other mental disorders, particularly substance use disorders (5, 6).

According to a major US survey, 14% of respondents with major

depression reported an alcohol use problem in the previous 12

months, and 4.6% had a drug use disorder (5). A Norwegian study

also found that higher levels of depression symptoms were

associated with earlier onset of alcohol use, more frequent

consumption and intoxication (6).

The causal mechanism reflecting gene and environment

interplay for anxiety and depression are not fully delineated yet;

however, the environmental risk factors, as highlighted in previous

studies, are multifaceted. Poverty (7, 8), dysfunctional family

relationships and parental divorce (9, 10), child abuse (11, 12),

and other stressful life events (13, 14) are well-known

environmental risk factors for anxiety and depression.

Furthermore, it has been discovered that teenagers who live in an

area surrounded by trees and other green vegetation (i.e., green

space) had a lower risk of severe depressive symptoms (15). The

impact of various levels of environmental factors from the

individual micro level, to neighborhood middle and regional

macro levels collectively in a broader setting across continents,

has yet to be investigated to test the generalizability and specificity

of environmental effects.

The largest genome-wide association study (GWAS) ever

conducted for anxiety found substantial connections between self-

reported anxiety and specific single nucleotide polymorphisms

(SNPs) in a total of 200,000 participants (16). Most of the

identified risk SNPs are situated in non-coding areas, implying

that these genetic variants may transmit the risk of anxiety disorders

or traits by regulating gene expression (16–19). Depression has a

genetic component as well, with heritability estimated 31% to 42%

in twin studies of children and adolescents (20). Several large

GWAS on depression have been recently conducted providing

top-risk SNPs in general (21, 22). Additionally, substantial genetic

correlations were observed between panic disorder and MDD,

depressive symptoms, and neuroticism in a recent GWAS meta-

analysis in European countries (Denmark, Estonia, Germany, and

Sweden) (23). However, there has not been a huge success in

explicitly identifying the sensitive genes or genetic risks on

adolescent depression and anxiety (24), likely due to complicated

genetic-environmental-developmental interactions. The current

study is focused on understanding the genetic and environmental

influence on anxiety and depression during development on a large

geographic scale, with the hope to more clearly delineate the

consistent, as well as unique genes and environmental effects

across continents.

We have recently published a study (25) using Adolescent Brain

and Cognitive Development Study (ABCD) data to identify

environmental and genetic risk factors for anxiety and depression

in children. One overall score to represent combined anxiety and

depression severity was chosen due to the highly common

occurrence: about 3 in 4 children with depression also had

anxiety (2). The findings support that environmental factors from

the personal level (early life stress, household income), to

neighborhood level (school support index, area crime), and to the

large scale of population density, all contribute to anxiety and

depression in children. Together they could explain 6.2% of severity

variance. Genetic variants also contribute to anxiety and depression,
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which could explain 10-15% of the severity variance measured by

SNP heritability (25). With global mental health being a

tremendous issue, we aim to study the effect of genetic and

environmental factors across the US, India, and Europe and

explore the general and specific effects. To our best knowledge,

this is the first study that considered different levels of

environmental factors when performing the GWAS of anxiety/

depression in children and adolescents across three cohorts of very

diverse backgrounds. Specifically, in the current study we

characterize the impact of environmental factors on anxiety and

depression in children and adolescents and then perform GWAS to

examine the influence of genetics with proper consideration of

environmental factors. Both mega-analysis and meta-analysis are

performed to integrate results from three cohorts, and followed by

functional annotations for resultant SNPs, genes, and gene sets.

2 Methods

2.1 Data and participants

In this study, we analyzed data from three big cohorts: ABCD

from US, IMAGEN from Europe, and the Consortium on

Vulnerability to Externalizing Disorders and Addictions (c-

VEDA) from India. Participants from each cohort all signed the

consent form for the original studies, and the original studies were

approved by local ethic committees.

2.1.1 The ABCD dataset
ABCD is one of the largest ongoing studies following youths

recruited at age 9-10 into late adolescence (26)to broaden our

understanding of emotional, genetic, neurological, and behavioral

factors that are responsible to increase the risk of physical and mental

health problems in youth. It is designed to run for at least 10 years

and recruit participants from 21 sites across the United States. The

recruitment catchment areas are believed to encompass over 20% of

the entire 9-10-year-old population in the US on several key

demographic variables, including gender, race/ethnicity, household

income, parental education, and marital status. Further information

on recruitment sites, study design, investigators, and partners can be

obtained at http://abcdstudy.org. We used the data from ABCD Data

Release 3.0, which is available on the NIMH Data Archive (https://

nda.nih.gov/abcd). Assessments we analyzed include Parent-reported

Child Behavior Checklist (CBCL), School Support Index and

Protective Factors Survey, Youth Family Environment Scale-Family

Conflict, Longitudinal Parent Demographics Survey, Parent

Neighborhood Safety/Crime Survey, Sum Scores Culture &

Environment Youth, Residential History Derived Scores, and Youth

Neighborhood Safety/Crime Survey. From a total of 11,875 samples

at baseline (ages 9- 10 years old), we removed samples with any

missing values, resulting in 8,513 samples for further analyses.

2.1.2 The cVEDA dataset
The c-VEDA is a cooperative initiative by the Medical Research

Council, UK (MRC) and the Indian Council for Medical Research

(ICMR) on the etiology and life-course of substance addiction and

its link with mental illness (ICMR) (27). The coordinating centers in

India and the United Kingdom are the National Institute of Mental

Health and Neurosciences in Bangalore (NIMHANS) and King’s

College London (KCL), respectively. cVEDA has recruited

participants with specific age ranges of 6-11, 12-17 and 18-23

years from seven centers of five geographical regions of India:

Punjab and adjoining states (PGIMER), Eastern Coalfields

(KOLKATA), Northeast India (IMPHAL), Bengaluru and Mysuru

(MYSORE, NIMHANS, SJRI) and Chittoor (RISHIVALLEY). We

analyzed data from the Mini-International Neuropsychiatric

Interview - KID (MINI-KID), Environmental Exposures

Questionnaire, Adverse Childhood Experiences International

Questionnaire, Indian Family Violence, and Control Scale

Questionnaire, Socioeconomic Status Questionnaire, and the

School Experience Questionnaire to characterize environmental

factors and anxiety/depression rate. Further information about

the questionnaires can be found in the Supplementary Files. We

studied the data involving children (aged 6-11) and adolescents

(aged 12-17). After removing the missing values, we had data from

4,326 samples.

2.1.3 The IMAGEN dataset

The IMAGEN database contains data collected and processed

by the IMAGEN consortium from over 2000 adolescents and their

parents (28). It includes demographics, neuropsychological

assessments, medical questionnaires, MR neuroimaging and

genomics. Data have been collected over a period of 10 years in

eight recruitment centers and over four successive time points:

baseline at age 14, follow-up 1 at age 16, follow-up 2 at age 19, and

follow-up 3 at age 23. Life Events Questionnaire, Bully

Questionnaire, and the Development and Well-Being Assessment

Interview Questionnaire (DAWBA) were used from the IMAGEN

cohort to identify the effect of anxiety/depression along with all

other environmental factors. Further information about the

questionnaires can be found in the Supplementary Files. We used

the baseline data at age 14, and with preprocessing by removing the

missing values, the total number of samples was 1,888.

2.2 Defining environmental factors

Based on the availability of variables, we extracted

environmental factors for all three datasets (ABCD, cVEDA and

IMAGEN). We have used eight environmental factors [air

pollution, population density, area crime, neighborhood safety,

school support index, household income, family conflict, early life

stress (ELS)] for the ABCD Cohort, five factors (air pollution,

school support index, household income, family conflicts, ELS)

for the cVEDA, and three factors (ELS, school support index, family

conflicts) for the IMAGEN cohort. Each factor is derived from

multiple variables assessing related issues. Specifically, related

variables were summed together to get a more general measure

for that particular environmental factor. All the details of the
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variables used and questions for each variable can be found in the

Supplementary Files.

2.3 Defining the anxiety/depression score

In the ABCD study, the parent-reported CBCL is used to

determine the prevalence of depression/anxiety in children. CBCL

is a component of the Achenbach System of Empirically Based

Assessment, which is designed to detect emotional and behavioral

problems in children and adolescents. The behaviors of the child

across the past six months were reported by the parent through 113

questions. We selected 13 variables from the CBCL to capture

aspects of anxiety and depression. In cVEDA study, we used five

variables in MINI-KID to identify the prevalence of Anxiety/

Depression. In IMAGEN cohort, 62 variables in DAWBA were

used to measure anxiety/depression scores. Finally, for all three

cohorts, the sum of these variables was used to measure the overall

score of anxiety and depression. See the exact questions used in the

Supplementary File.

2.4 Genomic data preprocessing

Genomic data were quality controlled to prevent spurious

association detection. As ABCD provided imputed whole genome

data in release 3.0, we used the data provided by the consortium

where imputation was performed using the TOPMed imputation

server following the pre-imputation steps as instructed at (https://

topmedimpute.readthedocs.io/en/latest/prepare-your-data/). With

same steps we performed the imputation for IMAGEN genomic

data using the TOPMed Imputation Server (29). Imputation of

cVEDA genomic data was using the Michigan imputation server

(30) and the South Asian Ancestry (SAS) reference panel. LiftOver

was performed to represent SNPs in HG38 coordinates using

LiftOver in UCSC Genome Browser (31). The results of

imputation from both cVEDA and IMAGEN were thresholded

with imputation R2>0.3. After imputation, further filtering steps

were applied to SNPs including genotyping rate (missing rate per

SNP) of 0.05, a minor allele frequency of 0.01, and a Hardy-

Weinberg equilibrium threshold of 1e-06. Furthermore, the

individuals with more than 3 standard deviations away from the

samples’ heterozygosity rate mean were removed. Finally, we had

10908 subjects and 8812066 SNPs for ABCD, 1014 subjects and

4475075 SNPs for cVEDA, and 1831 subjects and 8785037 SNPs for

IMAGEN respectively.

2.5 Data analyses

2.5.1 Data harmonization with reference to
ABCD cohort

The current study intends to assess the general effect of each

environmental factor on anxiety and depression in children and

adolescents, across three cohorts. In order to achieve this, data

harmonization had to be performed. Data harmonization can

generate comparable datasets from heterogeneous sources.

Specifically, we compared the cumulative distribution function

(CDF) of each factor. The CDF of random variable X is defined

as , for all x ∈ R, where P(X ≤ x) represents the probability that the

random variable X takes on a value less than or equal to x. After

scaling each factor into 0-1 range, we applied gamma

transformation on cVEDA and IMAGEN factors using ABCD

factors as references . Gamma transformation (power

transformation) defined as is a monotonic transformation where g

is chosen so that the values of CDF at 90% of cVEDA and IMAGEN

factors match that of ABCD factors. With this, we assume that each

factor in the three cohorts has its own distribution (PDF), but 90%

of samples fall into similar range. The selection of 90% is an

empirical choice, subject to change for different problems. The

data harmonization was applied to anxiety/depression scores

(cVEDA), ELS scores (cVEDA and IMAGEN), school support

index scores(IMAGEN), air pollution scores(cVEDA), family

conflict scores(cVEDA), and household income scores(cVEDA).

2.5.2 Analyzing effects of environmental factors
using linear models

The impact of environmental factors on anxiety/depression in

each cohort was analyzed using different methods including Linear

Mixed models (LMMs) for each factor, and Recursive Feature

Elimination (RFE) with linear regression as well as Least Absolute

Shrinkage Selector Operator (LASSO) regression for the

combination of factors.

In the case of LMMs, each of the individual environment factors

was tested separately for all three cohorts. For the ABCD cohort, we

tested the LMMs with sex as fixed effects, and family and site were

considered as nested random effects. For LMMs implementation on

cVEDA and IMAGEN cohorts, sex was considered a fixed effect,

however, only site was considered a random effect because we had

independent samples for both cohorts. For all tests, Bonferroni

multiple comparison corrections were applied.

We also used RFE with linear regression to find the important

environmental factors for the prediction of the anxiety/depression

score for all three cohorts. In RFE, the importance of each feature in

the model is calculated and ranked in order, and the feature with the

least importance is removed iteratively based on evaluation metrics

such as root mean squared error, accuracy, etc. In our case, the

anxiety/depression score was used as the dependent variable for all

three cohorts. The independent variables were nine environmental

factors (including sex) for ABCD, six environmental factors

(including sex) for cVEDA, and four environmental factors

(including sex) for IMAGEN. For all three cohorts, the data were

standardized and divided into training and testing sets (70/30), and

10-fold internal cross-validation was performed on the training data

to find the best features. Using the best features from the internal

cross-validation, the final model was trained using all training data

and tested on the remaining 30% of testing data, and the explained

variance (R2) was estimated and reported.

Along with RFE, we further validated the effect of the

environmental factors on anxiety/depression using LASSO

Regression. LASSO regression is a very popular regularization-
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based feature selection method in which the less important features

are penalized by making the respective coefficients zero, and

thereby eliminating them completely. The cost function for Lasso

regression is represented as:

cost(w) =
1

2*n
o
i=n

i=1

(yi − ŷ )2 + lo

j=D

j=1

Wj

�

�

�

�

Here, l is a parameter chosen by the internal cross-validation to

decide how aggressive the regularization is performed (how sparse

the feature space is). In this way, lasso regression removes the

insignificant variables from the model. The independent variables

used for LASSO models for the three cohorts were exactly the same

to those in RFE models. So is the training and testing strategies with

70/30 splits and a 10-fold cross-validation on the training data to

determine the regularization parameter (l). The maximum

explained variance was estimated on the test data.

2.5.3 Genome wide association study for
each cohort

A univariate LMM was used to test the genome-wide

association through the software package: genome-wide efficient

mixed-model association algorithm (GEMMA) (8). We estimated

the relatedness matrix based on SNPs using GEMMA to account for

the relatedness between samples for all three cohorts. The anxiety/

depression score was used as the phenotype. For ABCD, covariates

used were the significant environmental factors identified in the

previous LMM test along with the 10 eigenvectors of genomic SNP

data that represent the population stratification on ABCD data and

the relatedness matrix of ABCD samples (random effect). Similarly,

for cVEDA, covariates used were the significant environmental

factors along with the 10 eigenvectors that represent the population

stratification on cVEDA, age, and relatedness matrix of cVEDA

samples (random effect). Finally, for IMAGEN covariates used were

the significant environmental factors, 10 eigenvectors, and the

relatedness matrix of IMAGEN samples (random effect). Merging

the subjects with both the genetic data and the environmental

factors available resulted in 7598 subjects and 8,367,466 SNPs for

ABCD, 585 subjects and 4,472,935 SNPs for cVEDA, and 1580

subjects and 8,775,504 SNPs for IMAGEN respectively. As

the phenotype(anxiety/depression score) for all three cohorts was

not normally distributed, the rank-based inverse normal

transformation was used to transform the dependent variable

before testing for association using linear mixed models

using GEMMA.

2.5.4 Meta-analysis and mega-analysis
Both meta- and mega-analyses on genetic associations were

performed to test the consistency of risk variants. We found

3,333,270 SNPs to be common across all three cohorts. For the

meta-analysis, we applied the random effects model (RE2) (32)

fromMETASOFT on the results of individual GWAS performed for

the three cohorts. RE2 model assumes different effect sizes across

cohorts which are against a consist zero mean distribution under

the null hypothesis.

Mega-analysis was performed by combining all three cohorts’

data together and performing a genome-wide association analysis

using GEMMA. The covariates included the relatedness matrix and

the 10 eigenvectors computed from the combined genomic data, the

common environmental factors that had consistent, significant

effects across all three cohorts, as well as age and cohorts. Age

was coded as two groups (1 for 6-11 age range, 2 for 12-17 age

range), since the ABCD cohort has an age range of 9-10, cVEDA

cohort has an age range of 6-11, and 12-17, and IMAGEN has 14.

The cohort was coded as two dummy variables.

2.5.5 Genomic risk loci and gene mapping
Functional annotation was performed on SNP results from

meta and mega-analyses results with FUMA (33), an online

platform for the functional mapping of genetic variants. We first

defined ‘independent significant SNPs’ as those surpassing a

predefined suggestive threshold p-value (5E-06) Asif et al. (34)

He et al. (35) Singh et al. (36) and showing moderate to low linkage

disequilibrium (r2 < 0.6). We further defined ‘lead SNPs’ as the

subset of independent SNPs (r2 < 0.1). Genomic risk loci were

identified by merging LD blocks of independent significant SNPs

that have close physical positions (< 250 kb). All LD information

was calculated from the 1000G phase3 ALL population. More

details about LD clump can be found in FUMA website (https://

fuma.ctglab.nl/tutorial). Genes involved in each genomic risk loci

were mapped from SNPs using three strategies in FUMA. First,

position mapping was based on the physical distances (within a 10

kb window) from SNPs to known protein-coding genes in the

human reference assembly (GRCh38). The second strategy,

expression quantitative trait loci (eQTL) mapping, used

BrainEAC (37) (11 brain tissues) and GTEx v8 Brain (201, 38)

(13 tissues) eQTLs information to map SNPs to genes (i.e., where

the expression of the gene is associated with allelic variation at the

SNP, and the association survives false discovery rate (FDR) of

0.05). The third strategy, chromatin interaction mapping, mapped

SNPs to the promoter regions of genes based on significant

chromatin interactions. This type of mapping was a 3D DNA

interaction between the SNP region and a gene region, without a

distance boundary. FUMA currently contains Hi-C data for 21

tissue/cell types (39). More details can be found in FUMA (33).

2.5.6 Gene set and tissue specificity
enrichment analyses

To explore if anxiety/depression associated mutations were

enriched in specific human tissues, we performed tissue

enrichment analysis for both meta-analysis and mega-analysis

results by using MAGMA functions implemented in FUMA

software. Briefly, gene expression data of different human tissues

(RNA sequencing data from the GTEx consortium) were used to

identify the genes that were differentially expressed in a specific

tissue. Based on the individual SNPs association values, MAGMA

quantifies the degree of association between a gene and anxiety/

depression (i.e., obtain a gene-level p-value) by using a multiple

linear principal component regression models. MAGMA then tests

if genes’ associated with anxiety/depression were enriched in the
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specifically expressed genes in a specific tissue. More detailed

information about tissue enrichment analysis can be found on

FUMA website (https://fuma.ctglab.nl/).

The common genes mapped from both meta-analysis and

mega-analysis were selected to further investigate functional

annotation using the GENE2FUNC procedure in FUMA. This

procedure provides hypergeometric tests of enrichment in

MSigDB gene sets (40), including BioCarta, KEGG, Reactome,

and Gene Oncology (GO). The p-value for gene set enrichment

analyses were adjusted by the Benjamini–Hochberg method. The

threshold of the adjusted p-value was 0.05. The minimum number

of input genes overlapping with a tested gene set to be reported as

significant was two. Furthermore, the common mapped genes were

also tested for enrichment in specific human tissues by performing

tissue enrichment analysis in FUMA, where RNA sequencing data

from the GTEx v8: 54 tissue types and GTEX v8: 30 general tissue

types (41) were used.

2.5.7 Determining the significance of Polygenic
Risk Score

We calculated the overall genetic impact using Polygenic Risk

Scores (PRS) with the PRS-CS software. This tool combines the

effects of many genetic variations to give a single measure of genetic

influence on the observed traits. PRS-CS uses the Bayesian

regression framework that infers posterior SNP effect sizes under

continuous shrinkage (CS) priors based on GWAS summary

statistics and an external LD reference panel. Three LD reference

panels were used: AMR(American) reference for ABCD, EUR

(European) reference for IMAGEN and SAS(South Asian)

reference for the cVEDA cohort. For GWAS summary statistics,

we compared our own GWAS results with those from recently

reported large sample GWAS on depression. Specifically, the

summary statistics of GWAS for MDD from a large study

conducted in 2019 with 246,363 cases and 561,190 controls from

Europe and the United States (22) were applied to the ABCD and

IMAGEN cohorts, compared with our own GWAS summary

statistics (IMAGEN GWAS used for ABCD PRS calculation, and

ABCD GWAS used for IMAGEN PRS calculation). For cVEDA

cohort, we downloaded a large-scale GWAS for MDD performed

on East Asian ancestry individuals (42) with 15,771 cases and

178,777 controls. When using our own GWAS results and

avoiding bias, we used IMAGEN GWAS results for ABCD cohort

and ABCD GWAS results for IMAGEN and cVEDA cohorts. The

significance of the generated PRS for each cohort was determined

using a linear mixed-effect regression model to predict the anxiety

and depression scores. For ABCD cohort, the model also included

sex as a fixed effect covariate, and site and family as nested random

effect covariates. For cVEDA cohort, the model also included sex

and age as fixed effect covariates and site as a random effect

covariate. For the IMAGEN cohort, only sex was included as a

fixed effect and site as a random effect. Furthermore, we also tested

the change in total variation explained by adding the PRS score as

an additional fixed effect on the linear models that we used to

analyze the effects of environmental factors for each cohort.

3 Results

3.1 Significant effect of environmental
factors on the anxiety/depression score

The data harmonization was performed by comparing the CDF

and performing gamma transformation on the anxiety/depression

scores and some environmental factors of cVEDA and IMAGEN to

match data from ABCD. As an illustration, Figure 1 shows the CDF

of the anxiety/depression scores and ELS scores of the three cohorts

before and after data harmonization. Other environmental factors’

CDF plots and parameters of gamma transformation can be found

in Supplementary Files.

With harmonized data and using three linear types of models

(LMM, RFE and LASSO), we identified seven factors

(environmental factors and sex) in ABCD cohort, four factors

A B

DC

FIGURE 1

Data harmonization. (A) Anxiety/depression scores of ABCD, cVEDA and IMAGEN before applying gamma transformation. (B) Anxiety/depression

scores of ABCD, cVEDA and IMAGEN after applying gamma transformation (gamma=1.75x for cVEDA). No transformation needed for IMAGEN. (C)

ELS scores of ABCD, cVEDA and IMAGEN before applying gamma transformation. (D) ELS scores of ABCD, cVEDA and IMAGEN after applying

gamma transformation (gamma=1.75x for cVEDA, 3.5x for IMAGEN).
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(including sex) in cVEDA, and three factors (including sex) in the

IMAGEN cohort that were significantly related and contribute to

the anxiety/depression score. The results of LMM for each cohort

are presented in Table 1. ELS has the most significant effect across

all three cohorts with effect sizes from a beta value of 0.304 to 0.424,

where increasing ELS scores are associated with increasing anxiety/

depression scores. Since we have harmonized data, the beta values

in LMM models can be directly compared. The next significant and

TABLE 1 Output of RFE and LASSO models along with the individual environmental factors effect using Linear Mixed Models (LMMs).

ABCD Cohort

Linear Mixed Models effect RFE Model

Environmental

Factors

Effect

Size(beta)

p-

value Selected Factors

Variance explained

on training

Variance explained

on testing

Early Life

Stress (ELS) 0.355

1.31e-

63

ELS, Household Income, Population Density, Area Crime, Neighborhood

safety, School Support Index, Sex 0.043 0.061

School

Support Index -0.079

8.71e-

26 LASSO Model

Family

Conflicts 0.046

1.50e-

22 Selected Factors

Variance explained

on training

Variance explained

on test

Neighborhood

Safety -0.086

1.09e-

17

ELS, Household Income, Population Density, Area Crime, Neighborhood

Safety, School Support Index, Sex 0.039 0.061

Area Crime -0.022

2.43e-

06

Household

Income -0.059

6.65e-

06

Air Pollution -0.043 0.023

Population

Density -0.027 0.031

cVEDA Cohort

Linear Mixed Models effect RFE Model

Environmental

Factors

Effect

Size(beta)

p-

value Selected Factors

Variance explained

on training

Variance explained

on testing

Early Life

Stress (ELS) 0.424

1.62e-

93 ELS, Household Income School Risk, Sex 0.067 0.091

School

Support Index -0.081

6.02e-

06

LASSO Model

Family

Conflicts 0.063

1.40e-

10 Selected Factors

Variance explained

on training

Variance explained

on testing

Household

Income -0.022 0.02

ELS. Household Income School Risk, Sex 0.063 0.099Air Pollution 0.015 0.22

IMAGEN Cohort

Linear Mixed Models effect RFE Model

Environmental

Factors

Effect

Size(beta)

p-

value Selected Factors

Variance explained

on training

Variance explained

on testing

Early Life

Stress (ELS) 0.304

2.80e-

24 ELS, School Support Index, Sex 0.142 0.157

School

Support Index -0.182

1.73e-

37 LASSO Model

Family

Conflicts 0.022 0.16 Selected Factors

Variance explained

on training

Variance explained

on testing

ELS, School Support Index, Sex 0.147 0.150
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consistent factor is school support index with p-values ranging from

6.02e-06 to 1.73e-37, and effects ranging from -0.081 to -0.182,

indicating a better school environment leading to decrease anxiety/

depression scores. Family conflict was found significantly affecting

anxiety/depression in ABCD and cVEDA cohorts, but not in the

IMAGEN cohort.

RFE and LASSOmodels selected the optimal number of features

which was seven for ABCD, four for IMAGEN and three on

IMAGEN. In RFE models the maximum explained variance on

the remaining 30% of the test data was 6.1% for ABCD, 9.1% for

cVEDA, and 15.7% for IMAGEN. In the LASSO regression model,

the regularization parameter(lambda) estimated using the 10-fold

cross-validation was 0.006 for ABCD, 0.021 for cVEDA, and 0.006

for IMAGEN (Figures in Supplementary Files). The maximum

variance explained by LASSO on 30% of the test data was 6.1%

for ABCD, 9.9% for cVEDA, and 15% for IMAGEN.

For ABCD cohort, both RFE and LASSO models selected sex

and six environmental factors (ELS, household income, population

density, area crime, neighborhood safety, and school support

index), and ignored the two factors (air pollution and family

conflicts) considering their contribution not significant. For the

cVEDA cohort, sex and three environmental factors (ELS,

household income and school support index) were selected, and

two factors (air pollution and family conflicts) were considered not

contributing. Finally, for IMAGEN cohort, sex and two

environmental factors (ELS, School Support Index) were

considered to have a significant contributions, whereas family

conflicts factor was not considered contributing. Thus, these

selected factors were used as covariates in the following GWAS

analyses for each cohort, and mega-analysis of GWAS used

common significant contributors including ELS, school support

index, and sex, in addition to age and cohort.

3.2 Result of mega-analysis and meta-
analysis on SNPs and genes

The genomic inflation factor (l) in the QQ Plot for mega- and

meta- analyses was 1.012 and 1.003 respectively, indicating no

systemic bias in the analyses. Although, mega-analysis and meta-

analysis did not find any SNPs to be significantly associated (p<5e-

08) with anxiety/depression score, we found many promising SNPs

with p-value less than p<5e-06. The MEGA analysis found 16 SNPs

(Supplementary Table 5) to be promising with the most promising

SNP as rs79878474, with p= 4.03e-07. The META analysis found 11

SNPs (Supplementary Table 4) to be promising with the same most

promising SNP being rs79878474 (p=1.13E-06). In fact, the top

three promising SNPs from mega-analysis (rs79878474,

rs67861307, and rs6771812) were the same ones from meta-

analysis. The complete set of results of mega-analysis and meta-

analysis as well as each individual cohort’s analyses, and the

corresponding Manhattan and QQ Plots can be found in

Supplementary Files.

We further used FUMA to identify independent risk loci in the

promising SNPs from meta-analysis and mega-analysis respectively.

7 independent risk loci were identified from mega-analysis (Table 2),

mapped to 7 lead SNPs, 182 candidate SNPs, and 44 genes. Similarly,

7 independent risk loci were identified from the meta-analysis

(Table 3), mapped to 7 lead SNPs, 82 candidate SNPs, and 58

genes. There are three common independent risk loci between

meta- and mega- analyses: chr11:17545726, chr3:171071949,

and chr6:38960253.

3.3 Results of gene set and tissue
enrichment analyses

For the gene set enrichment analyses, we selected 20 common

genes (Supplementary Table 13) from meta-analysis mapped genes

and mega-analysis mapped genes. Among a total of 10,678 gene

sets, 49 gene sets were considered to be statistically significant

(Supplementary Table 10). They are grouped into three categories

(positional, functional, and GWAS Catalog) and consolidated with

shared overlapped genes as listed in Table 4. The positional gene

sets chr11p15 (p=8.35E-14) and chr3q36 (p=3.33E-07) had the

lowest p-value. The GO biological processes gene sets with the

lowest p-value include regulation of insulin/hormone/peptide

secretion, and regulation of potassium channel. The GO cellular

component gene sets with the lowest p-value include potassium

channel complex, synapse, and axolemma. Three significant gene

sets from the GWAS catalog were systolic blood pressure x alcohol

consumption interaction, body mass index, and night sleep

phenotypes. Reactome and KEGG databases identified similar

related gene sets (Supplementary Table 10).

TABLE 2 Identification of independent loci from mega-analysis GWAS using FUMA.

chr LeadSNPPos p start end LeadSNPs

11 17545726 4.03E-07 17545726 17545726 rs79878474

3 171071949 1.03E-06 171066815 171073235 rs6771812

1 98433535 1.35E-06 98327133 98556159 rs11165937

12 131751769 1.82E-06 131729967 131775076 rs10744505

12 58377286 2.69E-06 58323136 58377286 rs11835606

3 5840111 2.99E-06 5831955 5849677 rs2437221

6 38960253 4.40E-06 38960253 38964657 rs6933332
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For the tissue enrichment analysis, when tested individually for

meta- and mega-analysis results using MAGMA, both meta-and

mega analyses results showed an elevated enrichment in the brain

cerebellum with uncorrected p-value of 0.007 and 0.003, respectively,

tested for 53 tissue types (Supplementary Tables 14, 15), although not

passing multiple comparison correction. In contrast, when

performing the tissue enrichment test for 20 common genes using

GENE2FUNC in FUMA, tissues in the small intestine showed

significant enrichment with an adjusted p-value of 0.04 tested for

53 tissue types. See Supplementary Files for detailed results on tissue

expression analysis using FUMA.

3.4 Significance of PRS

Analyses of the PRS on the anxiety/depression for the three

cohorts showed that the PRS score was only statistically significantly

associated with the anxiety/depression in ABCD cohort, and not

significant in cVEDA and IMAGEN cohorts. In ABCD cohort, both

PRS scores computed using either our own GWAS summary

statistics of IMAGEN cohort or recently reported large scale

GWAS statistics showed significant p-value (p < 6.23e-03 and p <

4.56e-14 respectively). However, the percentage of variation

explained were small, i.e., the total variance explained remained

approximately unchanged after the addition of PRS as an

independent variable along with significant environmental factors.

4 Discussion and limitations

In this study we investigated how various environmental factors

and genetic variants affect anxiety and depression among children

and adolescents across three distinct cohorts, each situated in

unique environmental backgrounds. Our hypothesis posited that

despite the broad differences in environmental backgrounds across

continents, individual environmental factors might consistently

influence anxiety and depression, albeit to varying degrees.

Similarly, genetic variants affecting specific gene functions would

affect anxiety and depression across these diverse cohorts. While the

cohorts used different environmental and anxiety/depression

measures, we implemented data harmonization to facilitate

comparison, meta-analysis, and mega-analysis of the results.

Essentially, post-harmonization each dataset adhered to the same

scale but with its own distribution characteristics to ensure

comparability of results.

The maximum variance explained by the environmental factors

was in the range of 6.1% to 15%. Note that ELS and school support

index were consistently selected by RFE and LASSO, with the

explained variance being largely comparable across the three

cohorts, lending support for the effectiveness of data

harmonization. It is interesting to note that school support index

had a significant consistent effect in addition to ELS. This implies

that the way children are treated and behaved in school will have a

significant impact on their mental health, and a better environment

in school might help to reduce anxiety/depression. Meanwhile,

family conflicts is highly correlated to ELS, such that this factor

was eliminated by RFE and LASSO due to not providing additional

information (25). It is noted that family conflicts were not

significant in the IMAGEN cohort even when tested individually.

Looking at the original data distribution before harmonization,

family conflicts from IMAGEN presented very different CDF as

compared to other cohorts (ABCD and cVEDA). In the case of

IMAGEN, where family conflicts score was reported by parents, half

of the population reported an incidence of family conflicts below

0.65, while half of the ABCD subjects reported an incidence below

0.20 in a scale of 0 to 1. It is important to note that IMAGEN being a

Europe-based study, there may be cultural factors at play that

influence the reporting of family conflicts compared to cVEDA. It

is possible that participants in the IMAGEN cohort may have been

more willing to report family conflicts due to cultural differences in

attitudes towards disclosure and communication which might

contribute to inconsistent effects.

Although mega- and meta- analyses both incorporate effects

from three cohorts, mega-analysis assumes one homogeneous effect

size from all three cohorts, while random-effect meta-analysis we

implemented (32) allows different effect size across cohorts. Thus,

we expect some level of consistence and differences between meta-

and mega- analyses results. Both analyses identified the same three

top risk SNPs with the most promising SNP as rs79878474 with p-

value of 4.03E-7 (mega-analyses). This SNP is located in USH1C

gene which is highly expressed in the brain, particularly in the

spinal cord, following small intestine based on GTEx V8 (https://

gtexportal.org/home/). Functionally, gene USH1C encodes a

scaffold protein that functions in the assembly of Usher protein

TABLE 3 Identification of independent loci from meta-analysis GWAS using FUMA.

chr LeadSNPPos p start end LeadSNPs

11 17545726 1.13E-06 17545726 17545726 rs79878474

3 171071949 1.24E-06 171066876 171073235 rs6771812

2 38034558 1.25E-06 38031918 38034558 rs6755353

6 38960253 2.86E-06 38960253 38964657 rs6933332

3 80388728 3.49E-06 80388728 80493313 rs6764488

7 95705989 3.75E-06 95705989 95711226 rs756859

10 115522548 4.44E-06 115522548 115522548 rs2900993
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TABLE 4 Identification of gene and gene sets associated with anxiety/depression using FUMA.

Significant Gene Sets Adjusted
p-value

Overlapped Genes

Positional

Gene Sets

chr11p15 8.35E-14 CALCA : INSC : SOX6:PLEKHA7:NCR3LG1

:KCNJ11:ABCC8:USH1C:MYOD1:KCNC1:SERGEF

chr3q26 3.33E-07 EIF5A2:SLC2A2:TNIK : PLD1:GHSR

Functional

Gene Sets

GO_AOLEMMA 8.59E-05 KCNJ11:KCNC1

GO_POSITIVE_REGULATION_OF_CATION_CHANNEL_ACTIVITY

/GO_POTASSIUM_CHANNEL_COMPLEX

/REACTOME_POTASSIUM_CHANNELS

0.014 0.032

0.044 KCNJ11:ABCC8:KCNC1

KEGG_TYPE_II_DIABETES_MELLITUS

/REACTOME_INTEGRATION_OF_ENERGY_METABOLISM

/GO_REGULATION_OF_INSULIN_SECRETION

/GO_REGULATION_OF_PEPTIDE_HORMONE_SECRETION

0.002 0.002

0.002

0.002

KCNJ11:ABCC8:SLC2A2/KCNJ11:ABCC8:SLC2A2:GLP1R

/KCNJ11:ABCC8:SLC2A2:GHSR : GLP1R/KCNJ11:ABCC8

:SERGEF : SLC2A2:GHSR : GLP1R

GO_NEGATIVE_REGULATION_OF_PEPTIDE_SECRETION/

GO_REGULATION_OF_PEPTIDE_SECRETION

0.004

2.73E-06

KCNJ11:ABCC8:SERGEF : GHSR

/KCNJ11:ABCC8:SERGEF : SLC2A2:GHSR : GLP1R

GO_SYNAPSE 0.032 CALCA : ABCC8:USH1C:KCNC1:TNIK : PLD1:GHSR

GO_REGULATION_OF_SYSTEM_PROCESS

/GO_RESPONSE_TO_ENDOGENOUS_STIMULUS

0.038 0.018 CALCA : KCNJ11:ABCC8:GHSR : GLP1R

/CALCA : KCNJ11:ABCC8:GHSR : GLP1R:SOX6:MYOD1:KCNC

GWASCatalog

Gene Sets

Body mass index 0.009 PLEKHA7:NCR3LG1:KCNJ11:ABCC8:USH1C:MYOD1:KCNC1:SERGEF

Night sleep phenotypes 0.015 USH1C:MYOD1:KCNC1:SLC2A2:TNIK

Systolic blood pressure x alcohol consumption interaction (2df test) 0.034 SOX6:PLEKHA7:KCNJ11
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complexes and mutation of USH1C is known to be involved Usher

syndrome type 1C and sensorineural deafness (43). The other two

top SNPs are in the TNIK gene (TRAF2 and NCK interacting

kinase), which is also highly expressed in brain and has been shown

to regulate neurite development (44), and mutations involved with

an autosomal recessive form of cognitive disability (45). But how

these SNPs and genes related to anxiety/depression during

development warrants further investigation. In general, mega-

analysis is preferred compared to meta-analysis under the same

homogeneous condition as showed by a recent empirical

comparison where under the same condition the mega-analysis

produces lower standard errors and narrower confidence intervals

than the meta-analysis (46). Nevertheless, the mega-analysis

requires high agreement on the variables collected from different

sites; the same variables and the same assessments are used from all

sites. As in our study, after data harmonization to make the mega-

analysis possible as the variables were measured differently in each

site, mega-analysis only considered three common contributing

factors (ELS, school support index, and sex), while random-effect

meta-analysis was able to control for specific environmental factors’

effect for each cohort separately, and allows cohort-specific genetic

effect size. It is not surprising to see some differences in the results of

meta- and meta-analyses. Given both meta- and mega-analyses

have strengths and limitations, our study focuses on common

independent risk loci and commonly indicated genes from

both analyses.

FUMA identified three common independent risk loci with lead

SNPs as rs79878474, rs6771812, rs6933332, and 20 common

mapped genes between meta- and mega-analyses. The subsequent

gene set analysis found 49 statistically significant gene sets with the

most significant being chr11p15 and chr3q26 positional gene sets.

Enriched gene sets from GO, KEGG, and Reactome databases are

categorized based on similar overlapping genes, including functions

related to potassium channels, insulin/energy metabolism/peptide

secretion, and synapse and system process. We want to highlight

potassium channel regulation here with genes KCNJ11, KCNC1

and ABCC8. Potassium (K+) channels are located in cell

membranes and control the transportation of K+ ions efflux from

and the influx into cells. This superfamily can be divided into many

structural classes and located in different tissue types (47), but most

classes are prominent in ventricular tissue to regulate cardiac

function, and in the brain (neurons, soma, dendrites, and axons,

in particular, axolemma, the outer membrane of axons) to influence

neural activities (48). KCNC1 is highly and almost exclusively

expressed in the cerebellum based on GTEx, and encodes

member 1, subfamily C of integral membrane proteins that is the

key to K+ voltage-dependent channel Kv3.1 (48, 49), mediating the

voltage-dependent potassium ion permeability of excitable

membranes such as axolemma Kv3.1 channels regulate

neurotransmitter release (50), particularly affecting the high-

frequency firing of neurons (51) including cerebellar granule cells,

and circadian rhythms in the suprachiasmatic nucleus of the

hypothalamus (52). Kv3.1 channels along the membranes of

axons, axolemma, in combination with Na+ channels, regulate

the action potential and transmission of neural signals, thus

integral to axonal function and synaptic transmission Kaczmarek

and Zhang (51). Dysregulation of Kv3.1 channel properties could

disrupt axolemma dynamics, affecting neural signaling and

potentially causing severe neurological disorders like epilepsy and

broad phenotypic spectrum including developmental delay (53),

schizophrenia (54), and depression (55). Recent animal and cell line

studies have strengthened the connection between the Kv3 channel

and depression. Mice with a reduced level of Kv3.1 presented

vulnerability to depressive behavior, whereas up-regulation of

Kv3.1 or acute activation of Kv3.1 induced resilience to

depression (56). A commonly used antidepressant drug,

Fluoxetine, acts on Kv3 channels to affect Kv3.1b expression and

serotonin secretion in a serotonergic cell line (57), and another

similar drug Vortioxetine inhibits delayed-rectifier K+ current

caused by Kv3 channels activity in pituitary GH3 cells (58).

KCNJ11 is highly expressed in the cerebellum (the second highest

besides muscle) and encodes an integral membrane protein that is

the key to an inward-rectifier potassium channel, the Kir6.2 subunit

of ATP- sensitive potassium channel. Kir6.2 channel is known to

play an important role in modulating insulin secretion (48), and

also plays a role in stress adaptation (59, 60), as well as possibly part

of the mechanism for anti-depression effect (60, 61). ABCC8 is

expressed mainly in cerebellum followed by the frontal cortex

pituitary, and pancreas. Functionally it modulates the SUR

subunit of ATP-sensitive potassium channel which plays a key

role in mediating glucose-stimulated insulin secretion. Recently

new studies have linked insulin resistance with risk for depression

and anxiety (62–64). Our findings further strength this association

by discovery of both potassium channel gene sets and insulin

secretion gene sets in association of depression and anxiety

score. Our findings suggest that the Kv3, Kir 6.2,and SUR subunit

of potassium channels may be important targets for anti-

depression treatment.

The identified environmental and genetic contributors to

anxiety/depression consistently prompt intriguing discussions

about the involvement of hypothalamic-pituitary-adrenal (HPA)

axis. It is not a surprise that ELS and school support index relate to

children’s anxiety and depression, as the connection between stress

and anxiety/depression has been well recognized (65, 66), and the

dysregulation of the HPA axis, the most important stress system,

has played a key part in the mechanism of the pathology of mood

disorders (66). It is unexpected to us that GWAS analyses identified

genetic variants in potassium channels, in particular, ATP-sensitive

(Kir6.2 and SUR subunits) potassium channels. Studies have just

shown modulation of ATP-sensitive potassium channels could alter

HPA axis activity and depressive behavior (67, 68). ATP-sensitive

potassium (KATP) channels play a crucial role in modulating the

activity of the hypothalamic-pituitary-adrenal (HPA) axis, a key

neuroendocrine system involved in the body’s stress response.

KATP channels have been found in many regions, including high

prevalence in the hypothalamus, and the key role of the

Paraventricular Nucleus (PVN) in regulation of hormones such as

corticotropin-releasing hormone (CRH) posits KATP as a target for

understanding HPA functions (69), with inhibitors or openers of

KATP channels in animal studies (68). For instance, the opener, IPI,

reinstated the stressed-induced depressive behavior in mice and

normalized the hormones, inflammation, and oxidation levels in
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PVN, validated by mRNA (67). Alterations in KATP channel

activity can disrupt the balance of HPA axis activity, leading to

dysregulated cortisol production and aberrant stress responses.

Thus, KATP channels serve as important regulators of the HPA

axis, contributing to the body’s ability to cope with stress and

maintain homeostasis. These evidence posit a likely mechanism for

depressive or anxious behaviors as outcomes of HPA axis

dysfunction (70) that potassium channels might have an impact.

The tissue enrichment analysis using MAGMA for either meta-

or mega- analysis results showed an elevated expression enrichment

in the brain, more specifically, in the cerebellum region of the brain.

The importance of cerebellum is supported by expression of key

genes in the potassium channels as discussed above. Common genes

between meta- and mega-analyses showed significant tissue

enrichment in the small intestine. Gene USH1C has the highest

expression in small intestine as well as the spinal cord and other

areas of the brain, while genes INSC, SOX6, PLEKHA7, SLC2A2,

and TNIK are expressed in small intestine. The relation between

small intestine and depression/anxiety has long been hinted to form

the brain-gut connections (71, 72). The small intestine, a crucial site

for nutrient absorption, interaction with gut microbiota, production

of neurotransmitters, has been implicated in influencing mood and

mental well-being through bidirectional communication of the

brain-gut axis (73) (74). The brain-gut axis is not one single unit

but a network linking enteric and central nervous systems, HPA,

metabolic pathways, and immune pathways (75). Our results that

emphasized both the small intestine and cerebellum at the

molecular level and implicated HPA role at the behavioral level

are quite intriguing in the context of completing the pathogenesis of

depression and anxiety and particularly warrant further in-depth

investigation on the role of the cerebellum.

The significant association between the PRS and anxiety/

depression score was only observed in the ABCD cohort, not in

IMAGEN and cVEDA cohorts.We believe that the most likely reason

is small sizes and small effect size, as in the ABCD cohort even though

the variance explained by PRS is not big but with large sample sizes

we could detect a significant PRS contribution. Interestingly, both

PRS scores computed using our own GWAS or the downloaded large

sample GWAS summary statistics showed significant contribution to

anxiety/depression in the ABCD cohort, lending support to the

validity of our GWAS analyses using relatively small samples but

with careful controlling for the environmental factors.

To summarize, our findings show that there is a consistent

environmental influence, particularly ELS and school support

index, on anxiety and depression in children and adolescents

across continents. Further research into the genetic susceptibility

from meta- and mega-analyses highlights mutations and gene sets

in chromosome 11 p15 region (chr11p15), and gene sets in

potassium channels (Kv3, Kir 6.2, and SUR subunit) which are

highly, if not exclusively, expressed in the brain cerebellum, were

enriched for association with anxiety and depression. These

findings, in line with literature about the potassium channel’s

involvement in (anti)depression, and insulin secretion association

with depression, motivate further investigation on how Kv3, Kir 6.2,

SUR potassium channels in the cerebellum regulate anxiety and

depression. For future work, we will incorporate the brain imaging

data of subjects used in this study, focusing on the cerebellum

region, and test brain structural and functional associations with

anxiety and depression, and the effects of environmental and

genetic influence on the brain to further validate the current

results. It’s also important to contextualize the impactful

discoveries of this study within the framework of its inherent

limitations. Despite meticulous environmental and behavioral

assessments across three distinct cohorts and rigorous data

harmonization procedures, acknowledging the necessity for

independent data verification is crucial for ensuring the broader

applicability of the findings.
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