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Anxiety and depression in children and adolescents warrant special attention as a
public health concern given their devastating and long-term effects on
development and mental health. Multiple factors, ranging from genetic
vulnerabilities to environmental stressors, influence the risk for the disorders.
This study aimed to understand how environmental factors and genomics affect
children and adolescents anxiety and depression across three cohorts:
Adolescent Brain and Cognitive Development Study (US, age of 9-10;
N=11,875), Consortium on Vulnerability to Externalizing Disorders and
Addictions (INDIA, age of 6-17; N=4,326) and IMAGEN (EUROPE, age of 14;
N=1888). We performed data harmonization and identified the environmental
impact on anxiety/depression using a linear mixed-effect model, recursive
feature elimination regression, and the LASSO regression model. Subsequently,
genome-wide association analyses with consideration of significant
environmental factors were performed for all three cohorts by mega-analysis
and meta-analysis, followed by functional annotations. The results showed that
multiple environmental factors contributed to the risk of anxiety and depression
during development, where early life stress and school support index had the
most significant and consistent impact across all three cohorts. In both meta, and
mega-analysis, SNP rs79878474 in chrllpl5 emerged as a particularly promising
candidate associated with anxiety and depression, despite not reaching genomic
significance. Gene set analysis on the common genes mapped from top
promising SNPs of both meta and mega analyses found significant enrichment
in regions of chrllpl5 and chr3g26, in the function of potassium channels and
insulin secretion, in particular Kv3, Kir-6.2, SUR potassium channels encoded by
the KCNC1, KCNJ11, and ABCCCS8 genes respectively, in chrllpl5. Tissue
enrichment analysis showed significant enrichment in the small intestine, and a
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trend of enrichment in the cerebellum. Our findings provide evidences of
consistent environmental impact from early life stress and school support
index on anxiety and depression during development and also highlight the
genetic association between mutations in potassium channels, which support
the stress-depression connection via hypothalamic-pituitary-adrenal axis, along
with the potential modulating role of potassium channels.
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1 Introduction

Anxiety and depression are now considered to be two of the
most frequent mental disorders that affect children and adolescents
(1). The occurrence of anxiety and depression in children and
adolescents, as well as other related mental disorders, is currently a
worldwide pressing problem. According to the United States
Centers of Disease Control National Survey of Children’s Health,
7.1% of children aged 3-17 years (about 4.4 million) have been
diagnosed with anxiety, 3.2% have been diagnosed with depression
(roughly 1.9 million) (2), and this percentage increased to 11.7% for
adolescents. The WHO has reported that one in every four children
in India aged 13 to 15 suffers from depression. United Nations
International Children’s Emergency Fund has reported that nine
million adolescents in Europe (aged 10 to 19) are living with mental
disorders, with anxiety and depression accounting for more than
half of all cases (https://www.unicef.org/eu/stories/mental-health-
burden-affecting-europes-children). Studies on the brain and its
functioning are a significant area of interest across imaging genetics
(1-4). In particular, a vast body of research from epidemiological
surveys has shown a strong link between depression anxiety with
other mental disorders, particularly substance use disorders (5, 6).
According to a major US survey, 14% of respondents with major
depression reported an alcohol use problem in the previous 12
months, and 4.6% had a drug use disorder (5). A Norwegian study
also found that higher levels of depression symptoms were
associated with earlier onset of alcohol use, more frequent
consumption and intoxication (6).

The causal mechanism reflecting gene and environment
interplay for anxiety and depression are not fully delineated yet;
however, the environmental risk factors, as highlighted in previous
studies, are multifaceted. Poverty (7, 8), dysfunctional family
relationships and parental divorce (9, 10), child abuse (11, 12),
and other stressful life events (13, 14) are well-known
environmental risk factors for anxiety and depression.
Furthermore, it has been discovered that teenagers who live in an
area surrounded by trees and other green vegetation (i.e., green
space) had a lower risk of severe depressive symptoms (15). The
impact of various levels of environmental factors from the
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individual micro level, to neighborhood middle and regional
macro levels collectively in a broader setting across continents,
has yet to be investigated to test the generalizability and specificity
of environmental effects.

The largest genome-wide association study (GWAS) ever
conducted for anxiety found substantial connections between self-
reported anxiety and specific single nucleotide polymorphisms
(SNPs) in a total of 200,000 participants (16). Most of the
identified risk SNPs are situated in non-coding areas, implying
that these genetic variants may transmit the risk of anxiety disorders
or traits by regulating gene expression (16-19). Depression has a
genetic component as well, with heritability estimated 31% to 42%
in twin studies of children and adolescents (20). Several large
GWAS on depression have been recently conducted providing
top-risk SNPs in general (21, 22). Additionally, substantial genetic
correlations were observed between panic disorder and MDD,
depressive symptoms, and neuroticism in a recent GWAS meta-
analysis in European countries (Denmark, Estonia, Germany, and
Sweden) (23). However, there has not been a huge success in
explicitly identifying the sensitive genes or genetic risks on
adolescent depression and anxiety (24), likely due to complicated
genetic-environmental-developmental interactions. The current
study is focused on understanding the genetic and environmental
influence on anxiety and depression during development on a large
geographic scale, with the hope to more clearly delineate the
consistent, as well as unique genes and environmental effects
across continents.

We have recently published a study (25) using Adolescent Brain
and Cognitive Development Study (ABCD) data to identify
environmental and genetic risk factors for anxiety and depression
in children. One overall score to represent combined anxiety and
depression severity was chosen due to the highly common
occurrence: about 3 in 4 children with depression also had
anxiety (2). The findings support that environmental factors from
the personal level (early life stress, household income), to
neighborhood level (school support index, area crime), and to the
large scale of population density, all contribute to anxiety and
depression in children. Together they could explain 6.2% of severity
variance. Genetic variants also contribute to anxiety and depression,
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which could explain 10-15% of the severity variance measured by
SNP heritability (25). With global mental health being a
tremendous issue, we aim to study the effect of genetic and
environmental factors across the US, India, and Europe and
explore the general and specific effects. To our best knowledge,
this is the first study that considered different levels of
environmental factors when performing the GWAS of anxiety/
depression in children and adolescents across three cohorts of very
diverse backgrounds. Specifically, in the current study we
characterize the impact of environmental factors on anxiety and
depression in children and adolescents and then perform GWAS to
examine the influence of genetics with proper consideration of
environmental factors. Both mega-analysis and meta-analysis are
performed to integrate results from three cohorts, and followed by
functional annotations for resultant SNPs, genes, and gene sets.

2 Methods
2.1 Data and participants

In this study, we analyzed data from three big cohorts: ABCD
from US, IMAGEN from Europe, and the Consortium on
Vulnerability to Externalizing Disorders and Addictions (c-
VEDA) from India. Participants from each cohort all signed the
consent form for the original studies, and the original studies were
approved by local ethic committees.

2.1.1 The ABCD dataset

ABCD is one of the largest ongoing studies following youths
recruited at age 9-10 into late adolescence (26)to broaden our
understanding of emotional, genetic, neurological, and behavioral
factors that are responsible to increase the risk of physical and mental
health problems in youth. It is designed to run for at least 10 years
and recruit participants from 21 sites across the United States. The
recruitment catchment areas are believed to encompass over 20% of
the entire 9-10-year-old population in the US on several key
demographic variables, including gender, race/ethnicity, household
income, parental education, and marital status. Further information
on recruitment sites, study design, investigators, and partners can be
obtained at http://abcdstudy.org. We used the data from ABCD Data
Release 3.0, which is available on the NIMH Data Archive (https://
nda.nih.gov/abed). Assessments we analyzed include Parent-reported
Child Behavior Checklist (CBCL), School Support Index and
Protective Factors Survey, Youth Family Environment Scale-Family
Conflict, Longitudinal Parent Demographics Survey, Parent
Neighborhood Safety/Crime Survey, Sum Scores Culture &
Environment Youth, Residential History Derived Scores, and Youth
Neighborhood Safety/Crime Survey. From a total of 11,875 samples
at baseline (ages 9- 10 years old), we removed samples with any
missing values, resulting in 8,513 samples for further analyses.

2.1.2 The cVEDA dataset
The c-VEDA is a cooperative initiative by the Medical Research
Council, UK (MRC) and the Indian Council for Medical Research
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(ICMR) on the etiology and life-course of substance addiction and
its link with mental illness (ICMR) (27). The coordinating centers in
India and the United Kingdom are the National Institute of Mental
Health and Neurosciences in Bangalore (NIMHANS) and King’s
College London (KCL), respectively. cVEDA has recruited
participants with specific age ranges of 6-11, 12-17 and 18-23
years from seven centers of five geographical regions of India:
Punjab and adjoining states (PGIMER), Eastern Coalfields
(KOLKATA), Northeast India (IMPHAL), Bengaluru and Mysuru
(MYSORE, NIMHANS, SJRI) and Chittoor (RISHIVALLEY). We
analyzed data from the Mini-International Neuropsychiatric
Interview - KID (MINI-KID), Environmental Exposures
Questionnaire, Adverse Childhood Experiences International
Questionnaire, Indian Family Violence, and Control Scale
Questionnaire, Socioeconomic Status Questionnaire, and the
School Experience Questionnaire to characterize environmental
factors and anxiety/depression rate. Further information about
the questionnaires can be found in the Supplementary Files. We
studied the data involving children (aged 6-11) and adolescents
(aged 12-17). After removing the missing values, we had data from
4,326 samples.

2.1.3 The IMAGEN dataset

The IMAGEN database contains data collected and processed
by the IMAGEN consortium from over 2000 adolescents and their
parents (28). It includes demographics, neuropsychological
assessments, medical questionnaires, MR neuroimaging and
genomics. Data have been collected over a period of 10 years in
eight recruitment centers and over four successive time points:
baseline at age 14, follow-up 1 at age 16, follow-up 2 at age 19, and
follow-up 3 at age 23. Life Events Questionnaire, Bully
Questionnaire, and the Development and Well-Being Assessment
Interview Questionnaire (DAWBA) were used from the IMAGEN
cohort to identify the effect of anxiety/depression along with all
other environmental factors. Further information about the
questionnaires can be found in the Supplementary Files. We used
the baseline data at age 14, and with preprocessing by removing the
missing values, the total number of samples was 1,888.

2.2 Defining environmental factors

Based on the availability of variables, we extracted
environmental factors for all three datasets (ABCD, cVEDA and
IMAGEN). We have used eight environmental factors [air
pollution, population density, area crime, neighborhood safety,
school support index, household income, family conflict, early life
stress (ELS)] for the ABCD Cohort, five factors (air pollution,
school support index, household income, family conflicts, ELS)
for the cVEDA, and three factors (ELS, school support index, family
conflicts) for the IMAGEN cohort. Each factor is derived from
multiple variables assessing related issues. Specifically, related
variables were summed together to get a more general measure
for that particular environmental factor. All the details of the
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variables used and questions for each variable can be found in the
Supplementary Files.

2.3 Defining the anxiety/depression score

In the ABCD study, the parent-reported CBCL is used to
determine the prevalence of depression/anxiety in children. CBCL
is a component of the Achenbach System of Empirically Based
Assessment, which is designed to detect emotional and behavioral
problems in children and adolescents. The behaviors of the child
across the past six months were reported by the parent through 113
questions. We selected 13 variables from the CBCL to capture
aspects of anxiety and depression. In cVEDA study, we used five
variables in MINI-KID to identify the prevalence of Anxiety/
Depression. In IMAGEN cohort, 62 variables in DAWBA were
used to measure anxiety/depression scores. Finally, for all three
cohorts, the sum of these variables was used to measure the overall
score of anxiety and depression. See the exact questions used in the
Supplementary File.

2.4 Genomic data preprocessing

Genomic data were quality controlled to prevent spurious
association detection. As ABCD provided imputed whole genome
data in release 3.0, we used the data provided by the consortium
where imputation was performed using the TOPMed imputation
server following the pre-imputation steps as instructed at (https://
topmedimpute.readthedocs.io/en/latest/prepare-your-data/). With
same steps we performed the imputation for IMAGEN genomic
data using the TOPMed Imputation Server (29). Imputation of
cVEDA genomic data was using the Michigan imputation server
(30) and the South Asian Ancestry (SAS) reference panel. LiftOver
was performed to represent SNPs in HG38 coordinates using
LiftOver in UCSC Genome Browser (31). The results of
imputation from both ¢VEDA and IMAGEN were thresholded
with imputation R*>0.3. After imputation, further filtering steps
were applied to SNPs including genotyping rate (missing rate per
SNP) of 0.05, a minor allele frequency of 0.01, and a Hardy-
Weinberg equilibrium threshold of le-06. Furthermore, the
individuals with more than 3 standard deviations away from the
samples’ heterozygosity rate mean were removed. Finally, we had
10908 subjects and 8812066 SNPs for ABCD, 1014 subjects and
4475075 SNPs for cVEDA, and 1831 subjects and 8785037 SNPs for
IMAGEN respectively.

2.5 Data analyses

2.5.1 Data harmonization with reference to
ABCD cohort

The current study intends to assess the general effect of each
environmental factor on anxiety and depression in children and
adolescents, across three cohorts. In order to achieve this, data
harmonization had to be performed. Data harmonization can
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generate comparable datasets from heterogeneous sources.
Specifically, we compared the cumulative distribution function
(CDF) of each factor. The CDF of random variable X is defined
as, for all x € R, where P(X < x) represents the probability that the
random variable X takes on a value less than or equal to x. After
scaling each factor into 0-1 range, we applied gamma
transformation on cVEDA and IMAGEN factors using ABCD
factors as references. Gamma transformation (power
transformation) defined as is a monotonic transformation where ¥
is chosen so that the values of CDF at 90% of cVEDA and IMAGEN
factors match that of ABCD factors. With this, we assume that each
factor in the three cohorts has its own distribution (PDF), but 90%
of samples fall into similar range. The selection of 90% is an
empirical choice, subject to change for different problems. The
data harmonization was applied to anxiety/depression scores
(cVEDA), ELS scores (cVEDA and IMAGEN), school support
index scores(IMAGEN), air pollution scores(cVEDA), family
conflict scores(cVEDA), and household income scores(cVEDA).

2.5.2 Analyzing effects of environmental factors
using linear models

The impact of environmental factors on anxiety/depression in
each cohort was analyzed using different methods including Linear
Mixed models (LMMs) for each factor, and Recursive Feature
Elimination (RFE) with linear regression as well as Least Absolute
Shrinkage Selector Operator (LASSO) regression for the
combination of factors.

In the case of LMMs, each of the individual environment factors
was tested separately for all three cohorts. For the ABCD cohort, we
tested the LMMs with sex as fixed effects, and family and site were
considered as nested random effects. For LMMs implementation on
cVEDA and IMAGEN cohorts, sex was considered a fixed effect,
however, only site was considered a random effect because we had
independent samples for both cohorts. For all tests, Bonferroni
multiple comparison corrections were applied.

We also used RFE with linear regression to find the important
environmental factors for the prediction of the anxiety/depression
score for all three cohorts. In RFE, the importance of each feature in
the model is calculated and ranked in order, and the feature with the
least importance is removed iteratively based on evaluation metrics
such as root mean squared error, accuracy, etc. In our case, the
anxiety/depression score was used as the dependent variable for all
three cohorts. The independent variables were nine environmental
factors (including sex) for ABCD, six environmental factors
(including sex) for ¢VEDA, and four environmental factors
(including sex) for IMAGEN. For all three cohorts, the data were
standardized and divided into training and testing sets (70/30), and
10-fold internal cross-validation was performed on the training data
to find the best features. Using the best features from the internal
cross-validation, the final model was trained using all training data
and tested on the remaining 30% of testing data, and the explained
variance (R?) was estimated and reported.

Along with RFE, we further validated the effect of the
environmental factors on anxiety/depression using LASSO
Regression. LASSO regression is a very popular regularization-
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based feature selection method in which the less important features
are penalized by making the respective coefficients zero, and
thereby eliminating them completely. The cost function for Lasso
regression is represented as:

1 i=n . j=b
cost(w) = ﬁz(}/i -y + 2’2“/\/]’
i=1 j=1

Here, A is a parameter chosen by the internal cross-validation to
decide how aggressive the regularization is performed (how sparse
the feature space is). In this way, lasso regression removes the
insignificant variables from the model. The independent variables
used for LASSO models for the three cohorts were exactly the same
to those in RFE models. So is the training and testing strategies with
70/30 splits and a 10-fold cross-validation on the training data to
determine the regularization parameter (1). The maximum
explained variance was estimated on the test data.

2.5.3 Genome wide association study for
each cohort

A univariate LMM was used to test the genome-wide
association through the software package: genome-wide efficient
mixed-model association algorithm (GEMMA) (8). We estimated
the relatedness matrix based on SNPs using GEMMA to account for
the relatedness between samples for all three cohorts. The anxiety/
depression score was used as the phenotype. For ABCD, covariates
used were the significant environmental factors identified in the
previous LMM test along with the 10 eigenvectors of genomic SNP
data that represent the population stratification on ABCD data and
the relatedness matrix of ABCD samples (random effect). Similarly,
for ¢VEDA, covariates used were the significant environmental
factors along with the 10 eigenvectors that represent the population
stratification on cVEDA, age, and relatedness matrix of cVEDA
samples (random effect). Finally, for IMAGEN covariates used were
the significant environmental factors, 10 eigenvectors, and the
relatedness matrix of IMAGEN samples (random effect). Merging
the subjects with both the genetic data and the environmental
factors available resulted in 7598 subjects and 8,367,466 SNPs for
ABCD, 585 subjects and 4,472,935 SNPs for cVEDA, and 1580
subjects and 8,775,504 SNPs for IMAGEN respectively. As
the phenotype(anxiety/depression score) for all three cohorts was
not normally distributed, the rank-based inverse normal
transformation was used to transform the dependent variable
before testing for association using linear mixed models
using GEMMA.

2.5.4 Meta-analysis and mega-analysis

Both meta- and mega-analyses on genetic associations were
performed to test the consistency of risk variants. We found
3,333,270 SNPs to be common across all three cohorts. For the
meta-analysis, we applied the random effects model (RE2) (32)
from METASOFT on the results of individual GWAS performed for
the three cohorts. RE2 model assumes different effect sizes across
cohorts which are against a consist zero mean distribution under
the null hypothesis.
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Mega-analysis was performed by combining all three cohorts’
data together and performing a genome-wide association analysis
using GEMMA. The covariates included the relatedness matrix and
the 10 eigenvectors computed from the combined genomic data, the
common environmental factors that had consistent, significant
effects across all three cohorts, as well as age and cohorts. Age
was coded as two groups (1 for 6-11 age range, 2 for 12-17 age
range), since the ABCD cohort has an age range of 9-10, cVEDA
cohort has an age range of 6-11, and 12-17, and IMAGEN has 14.
The cohort was coded as two dummy variables.

2.5.5 Genomic risk loci and gene mapping
Functional annotation was performed on SNP results from
meta and mega-analyses results with FUMA (33), an online
platform for the functional mapping of genetic variants. We first
defined ‘independent significant SNPs’ as those surpassing a
predefined suggestive threshold p-value (5E-06) Asif et al. (34)
He et al. (35) Singh et al. (36) and showing moderate to low linkage
disequilibrium (r2 < 0.6). We further defined lead SNPs’ as the
subset of independent SNPs (r2 < 0.1). Genomic risk loci were
identified by merging LD blocks of independent significant SNPs
that have close physical positions (< 250 kb). All LD information
was calculated from the 1000G phase3 ALL population. More
details about LD clump can be found in FUMA website (https://
fuma.ctglab.nl/tutorial). Genes involved in each genomic risk loci
were mapped from SNPs using three strategies in FUMA. First,
position mapping was based on the physical distances (within a 10
kb window) from SNPs to known protein-coding genes in the
human reference assembly (GRCh38). The second strategy,
expression quantitative trait loci (eQTL) mapping, used
BrainEAC (37) (11 brain tissues) and GTEx v8 Brain (201, 38)
(13 tissues) eQTLs information to map SNPs to genes (i.e., where
the expression of the gene is associated with allelic variation at the
SNP, and the association survives false discovery rate (FDR) of
0.05). The third strategy, chromatin interaction mapping, mapped
SNPs to the promoter regions of genes based on significant
chromatin interactions. This type of mapping was a 3D DNA
interaction between the SNP region and a gene region, without a
distance boundary. FUMA currently contains Hi-C data for 21
tissue/cell types (39). More details can be found in FUMA (33).

2.5.6 Gene set and tissue specificity
enrichment analyses

To explore if anxiety/depression associated mutations were
enriched in specific human tissues, we performed tissue
enrichment analysis for both meta-analysis and mega-analysis
results by using MAGMA functions implemented in FUMA
software. Briefly, gene expression data of different human tissues
(RNA sequencing data from the GTEx consortium) were used to
identify the genes that were differentially expressed in a specific
tissue. Based on the individual SNPs association values, MAGMA
quantifies the degree of association between a gene and anxiety/
depression (i.e., obtain a gene-level p-value) by using a multiple
linear principal component regression models. MAGMA then tests
if genes’ associated with anxiety/depression were enriched in the
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specifically expressed genes in a specific tissue. More detailed
information about tissue enrichment analysis can be found on
FUMA website (https://fuma.ctglab.nl/).

The common genes mapped from both meta-analysis and
mega-analysis were selected to further investigate functional
annotation using the GENE2FUNC procedure in FUMA. This
procedure provides hypergeometric tests of enrichment in
MSigDB gene sets (40), including BioCarta, KEGG, Reactome,
and Gene Oncology (GO). The p-value for gene set enrichment
analyses were adjusted by the Benjamini-Hochberg method. The
threshold of the adjusted p-value was 0.05. The minimum number
of input genes overlapping with a tested gene set to be reported as
significant was two. Furthermore, the common mapped genes were
also tested for enrichment in specific human tissues by performing
tissue enrichment analysis in FUMA, where RNA sequencing data
from the GTEx v8: 54 tissue types and GTEX v8: 30 general tissue
types (41) were used.

2.5.7 Determining the significance of Polygenic
Risk Score

We calculated the overall genetic impact using Polygenic Risk
Scores (PRS) with the PRS-CS software. This tool combines the
effects of many genetic variations to give a single measure of genetic
influence on the observed traits. PRS-CS uses the Bayesian
regression framework that infers posterior SNP effect sizes under
continuous shrinkage (CS) priors based on GWAS summary
statistics and an external LD reference panel. Three LD reference
panels were used: AMR(American) reference for ABCD, EUR
(European) reference for IMAGEN and SAS(South Asian)
reference for the cVEDA cohort. For GWAS summary statistics,
we compared our own GWAS results with those from recently
reported large sample GWAS on depression. Specifically, the
summary statistics of GWAS for MDD from a large study
conducted in 2019 with 246,363 cases and 561,190 controls from
Europe and the United States (22) were applied to the ABCD and
IMAGEN cohorts, compared with our own GWAS summary

10.3389/fpsyt.2024.1384298

statistics (IMAGEN GWAS used for ABCD PRS calculation, and
ABCD GWAS used for IMAGEN PRS calculation). For cVEDA
cohort, we downloaded a large-scale GWAS for MDD performed
on East Asian ancestry individuals (42) with 15,771 cases and
178,777 controls. When using our own GWAS results and
avoiding bias, we used IMAGEN GWAS results for ABCD cohort
and ABCD GWAS results for IMAGEN and cVEDA cohorts. The
significance of the generated PRS for each cohort was determined
using a linear mixed-effect regression model to predict the anxiety
and depression scores. For ABCD cohort, the model also included
sex as a fixed effect covariate, and site and family as nested random
effect covariates. For cVEDA cohort, the model also included sex
and age as fixed effect covariates and site as a random effect
covariate. For the IMAGEN cohort, only sex was included as a
fixed effect and site as a random effect. Furthermore, we also tested
the change in total variation explained by adding the PRS score as
an additional fixed effect on the linear models that we used to
analyze the effects of environmental factors for each cohort.

3 Results

3.1 Significant effect of environmental
factors on the anxiety/depression score

The data harmonization was performed by comparing the CDF
and performing gamma transformation on the anxiety/depression
scores and some environmental factors of cVEDA and IMAGEN to
match data from ABCD. As an illustration, Figure 1 shows the CDF
of the anxiety/depression scores and ELS scores of the three cohorts
before and after data harmonization. Other environmental factors’
CDF plots and parameters of gamma transformation can be found
in Supplementary Files.

With harmonized data and using three linear types of models
(LMM, RFE and LASSO), we identified seven factors
(environmental factors and sex) in ABCD cohort, four factors

Anxiety/Depression scores before harmonization. Anxiety/Depression scores after harmonization.
1.0 10
0.9 0.9
0.8 08
0.7 0.7
0.6 0.6
0.5 —— CDF-ABCD 05 —— CDF-ABCD
—— CDF-CVEDA (before) —— CDF-cVEDA(after)
0.4 —— CDF-IMAGEN 0.4 —— CDF-IMAGEN
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
c ELS scores before harmonization. D ELS scores after harmonization.
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FIGURE 1

Data harmonization. (A) Anxiety/depression scores of ABCD, cVEDA and IMAGEN before applying gamma transformation. (B) Anxiety/depression
scores of ABCD, cVEDA and IMAGEN after applying gamma transformation (gamma=1.75x for cVEDA). No transformation needed for IMAGEN. (C)
ELS scores of ABCD, cVEDA and IMAGEN before applying gamma transformation. (D) ELS scores of ABCD, cVEDA and IMAGEN after applying

gamma transformation (gamma=1.75x for cVEDA, 3.5x for IMAGEN).
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(including sex) in cVEDA, and three factors (including sex) in the
IMAGEN cohort that were significantly related and contribute to
the anxiety/depression score. The results of LMM for each cohort
are presented in Table 1. ELS has the most significant effect across

10.3389/fpsyt.2024.1384298

all three cohorts with effect sizes from a beta value of 0.304 to 0.424,
where increasing ELS scores are associated with increasing anxiety/
depression scores. Since we have harmonized data, the beta values
in LMM models can be directly compared. The next significant and

TABLE 1 Output of RFE and LASSO models along with the individual environmental factors effect using Linear Mixed Models (LMMs).

Linear Mixed Models effect

ABCD Cohort

RFE Model

Environmental Effect p- Variance explained Variance explained
Factors Size(beta) value Selected Factors on training on testing
Early Life 1.31e-  ELS, Household Income, Population Density, Area Crime, Neighborhood
Stress (ELS) 0.355 63  safety, School Support Index, Sex 0.043 0.061
School 8.71e-
Support Index -0.079 26 LASSO Model
Family 1.50e- Variance explained Variance explained
Contflicts 0.046 22 Selected Factors on training on test
Neighborhood 1.09¢-
Safety -0.086 17
2.43e-
Area Crime -0.022 06
Household 6.65e-
Income -0.059 06
Air Pollution -0.043 0.023
Population ELS, Household Income, Population Density, Area Crime, Neighborhood
Density -0.027 0.031 Safety, School Support Index, Sex 0.039 0.061

cVEDA Cohort

Linear Mixed Models effect

RFE Model

Environmental Effect p- Variance explained Variance explained
Factors Size(beta) value Selected Factors on training on testing

Early Life 1.62e-

Stress (ELS) 0.424 93 ELS, Household Income School Risk, Sex 0.067 0.091

School 6.02e- LASSO Model

Support Index -0.081 06

Family 1.40e- Variance explained Variance explained
Contflicts 0.063 10 Selected Factors on training on testing
Household

Income -0.022 0.02

Air Pollution 0.015 0.22 ELS. Household Income School Risk, Sex 0.063 0.099

Linear Mixed Models effect

IMAGEN Cohort

RFE Model

Environmental Effect p- Variance explained Variance explained
Factors Size(beta) value  Selected Factors on training on testing
Early Life 2.80e-
Stress (ELS) 0.304 24 ELS, School Support Index, Sex 0.142 0.157
School 1.73e-
Support Index -0.182 37 LASSO Model
Family Variance explained Variance explained
Conflicts 0.022 0.16 Selected Factors on training on testing
ELS, School Support Index, Sex 0.147 0.150
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consistent factor is school support index with p-values ranging from
6.02e-06 to 1.73e-37, and effects ranging from -0.081 to -0.182,
indicating a better school environment leading to decrease anxiety/
depression scores. Family conflict was found significantly affecting
anxiety/depression in ABCD and cVEDA cohorts, but not in the
IMAGEN cohort.

RFE and LASSO models selected the optimal number of features
which was seven for ABCD, four for IMAGEN and three on
IMAGEN. In RFE models the maximum explained variance on
the remaining 30% of the test data was 6.1% for ABCD, 9.1% for
cVEDA, and 15.7% for IMAGEN. In the LASSO regression model,
the regularization parameter(lambda) estimated using the 10-fold
cross-validation was 0.006 for ABCD, 0.021 for cVEDA, and 0.006
for IMAGEN (Figures in Supplementary Files). The maximum
variance explained by LASSO on 30% of the test data was 6.1%
for ABCD, 9.9% for cVEDA, and 15% for IMAGEN.

For ABCD cohort, both RFE and LASSO models selected sex
and six environmental factors (ELS, household income, population
density, area crime, neighborhood safety, and school support
index), and ignored the two factors (air pollution and family
conflicts) considering their contribution not significant. For the
cVEDA cohort, sex and three environmental factors (ELS,
household income and school support index) were selected, and
two factors (air pollution and family conflicts) were considered not
contributing. Finally, for IMAGEN cohort, sex and two
environmental factors (ELS, School Support Index) were
considered to have a significant contributions, whereas family
conflicts factor was not considered contributing. Thus, these
selected factors were used as covariates in the following GWAS
analyses for each cohort, and mega-analysis of GWAS used
common significant contributors including ELS, school support
index, and sex, in addition to age and cohort.

3.2 Result of mega-analysis and meta-
analysis on SNPs and genes

The genomic inflation factor (4) in the QQ Plot for mega- and
meta- analyses was 1.012 and 1.003 respectively, indicating no
systemic bias in the analyses. Although, mega-analysis and meta-
analysis did not find any SNPs to be significantly associated (p<5e-
08) with anxiety/depression score, we found many promising SNPs

10.3389/fpsyt.2024.1384298

with p-value less than p<5e-06. The MEGA analysis found 16 SNPs
(Supplementary Table 5) to be promising with the most promising
SNP as rs79878474, with p=4.03e-07. The META analysis found 11
SNPs (Supplementary Table 4) to be promising with the same most
promising SNP being rs79878474 (p=1.13E-06). In fact, the top
three promising SNPs from mega-analysis (rs79878474,
rs67861307, and rs6771812) were the same ones from meta-
analysis. The complete set of results of mega-analysis and meta-
analysis as well as each individual cohort’s analyses, and the
corresponding Manhattan and QQ Plots can be found in
Supplementary Files.

We further used FUMA to identify independent risk loci in the
promising SNPs from meta-analysis and mega-analysis respectively.
7 independent risk loci were identified from mega-analysis (Table 2),
mapped to 7 lead SNPs, 182 candidate SNPs, and 44 genes. Similarly,
7 independent risk loci were identified from the meta-analysis
(Table 3), mapped to 7 lead SNPs, 82 candidate SNPs, and 58
genes. There are three common independent risk loci between
meta- and mega- analyses: chr11:17545726, chr3:171071949,
and chr6:38960253.

3.3 Results of gene set and tissue
enrichment analyses

For the gene set enrichment analyses, we selected 20 common
genes (Supplementary Table 13) from meta-analysis mapped genes
and mega-analysis mapped genes. Among a total of 10,678 gene
sets, 49 gene sets were considered to be statistically significant
(Supplementary Table 10). They are grouped into three categories
(positional, functional, and GWAS Catalog) and consolidated with
shared overlapped genes as listed in Table 4. The positional gene
sets chrllpl5 (p=8.35E-14) and chr3q36 (p=3.33E-07) had the
lowest p-value. The GO biological processes gene sets with the
lowest p-value include regulation of insulin/hormone/peptide
secretion, and regulation of potassium channel. The GO cellular
component gene sets with the lowest p-value include potassium
channel complex, synapse, and axolemma. Three significant gene
sets from the GWAS catalog were systolic blood pressure x alcohol
consumption interaction, body mass index, and night sleep
phenotypes. Reactome and KEGG databases identified similar
related gene sets (Supplementary Table 10).

TABLE 2 Identification of independent loci from mega-analysis GWAS using FUMA.

chr LeadSNPPos p start end (=ETe N[
11 17545726 4.03E-07 17545726 17545726 1579878474

3 171071949 1.03E-06 171066815 171073235 156771812

1 98433535 1.35E-06 98327133 98556159 rs11165937
12 131751769 1.82E-06 131729967 131775076 1510744505
12 58377286 2.69E-06 58323136 58377286 1511835606

3 5840111 2.99E-06 5831955 5849677 152437221

6 38960253 4.40E-06 38960253 38964657 156933332
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TABLE 3 Identification of independent loci from meta-analysis GWAS using FUMA.

chr LeadSNPPos p start end LeadSNPs
11 17545726 1.13E-06 17545726 17545726 1579878474

3 171071949 1.24E-06 171066876 171073235 rs6771812

2 38034558 1.25E-06 38031918 38034558 1s6755353

6 38960253 2.86E-06 38960253 38964657 156933332

3 80388728 3.49E-06 80388728 80493313 156764488

7 95705989 3.75E-06 95705989 95711226 15756859

10 115522548 4.44E-06 115522548 115522548 152900993

For the tissue enrichment analysis, when tested individually for
meta- and mega-analysis results using MAGMA, both meta-and
mega analyses results showed an elevated enrichment in the brain
cerebellum with uncorrected p-value of 0.007 and 0.003, respectively,
tested for 53 tissue types (Supplementary Tables 14, 15), although not
passing multiple comparison correction. In contrast, when
performing the tissue enrichment test for 20 common genes using
GENE2FUNC in FUMA, tissues in the small intestine showed
significant enrichment with an adjusted p-value of 0.04 tested for
53 tissue types. See Supplementary Files for detailed results on tissue
expression analysis using FUMA.

3.4 Significance of PRS

Analyses of the PRS on the anxiety/depression for the three
cohorts showed that the PRS score was only statistically significantly
associated with the anxiety/depression in ABCD cohort, and not
significant in cVEDA and IMAGEN cohorts. In ABCD cohort, both
PRS scores computed using either our own GWAS summary
statistics of IMAGEN cohort or recently reported large scale
GWAS statistics showed significant p-value (p < 6.23e-03 and p <
4.56e-14 respectively). However, the percentage of variation
explained were small, i.e., the total variance explained remained
approximately unchanged after the addition of PRS as an
independent variable along with significant environmental factors.

4 Discussion and limitations

In this study we investigated how various environmental factors
and genetic variants affect anxiety and depression among children
and adolescents across three distinct cohorts, each situated in
unique environmental backgrounds. Our hypothesis posited that
despite the broad differences in environmental backgrounds across
continents, individual environmental factors might consistently
influence anxiety and depression, albeit to varying degrees.
Similarly, genetic variants affecting specific gene functions would
affect anxiety and depression across these diverse cohorts. While the
cohorts used different environmental and anxiety/depression
measures, we implemented data harmonization to facilitate
comparison, meta-analysis, and mega-analysis of the results.

Frontiers in Psychiatry

Essentially, post-harmonization each dataset adhered to the same
scale but with its own distribution characteristics to ensure
comparability of results.

The maximum variance explained by the environmental factors
was in the range of 6.1% to 15%. Note that ELS and school support
index were consistently selected by RFE and LASSO, with the
explained variance being largely comparable across the three
cohorts, lending support for the effectiveness of data
harmonization. It is interesting to note that school support index
had a significant consistent effect in addition to ELS. This implies
that the way children are treated and behaved in school will have a
significant impact on their mental health, and a better environment
in school might help to reduce anxiety/depression. Meanwhile,
family conflicts is highly correlated to ELS, such that this factor
was eliminated by RFE and LASSO due to not providing additional
information (25). It is noted that family conflicts were not
significant in the IMAGEN cohort even when tested individually.
Looking at the original data distribution before harmonization,
family conflicts from IMAGEN presented very different CDF as
compared to other cohorts (ABCD and cVEDA). In the case of
IMAGEN, where family conflicts score was reported by parents, half
of the population reported an incidence of family conflicts below
0.65, while half of the ABCD subjects reported an incidence below
0.20 in a scale of 0 to 1. It is important to note that IMAGEN being a
Europe-based study, there may be cultural factors at play that
influence the reporting of family conflicts compared to cVEDA. It
is possible that participants in the IMAGEN cohort may have been
more willing to report family conflicts due to cultural differences in
attitudes towards disclosure and communication which might
contribute to inconsistent effects.

Although mega- and meta- analyses both incorporate effects
from three cohorts, mega-analysis assumes one homogeneous effect
size from all three cohorts, while random-effect meta-analysis we
implemented (32) allows different effect size across cohorts. Thus,
we expect some level of consistence and differences between meta-
and mega- analyses results. Both analyses identified the same three
top risk SNPs with the most promising SNP as rs79878474 with p-
value of 4.03E-7 (mega-analyses). This SNP is located in USHIC
gene which is highly expressed in the brain, particularly in the
spinal cord, following small intestine based on GTEx V8 (https://
gtexportal.org/home/). Functionally, gene USH1C encodes a
scaffold protein that functions in the assembly of Usher protein
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TABLE 4 Identification of gene and gene sets associated with anxiety/depression using FUMA.

Significant Gene Sets

Adjusted

p-value

Overlapped Genes

chrl1pl5 8.35E-14 CALCA : INSC : SOX6:PLEKHA7:NCR3LG1

Positional :KCNJ11:ABCC8:USH1C:MYOD1:KCNCI1:SERGEF

Gene Sets
chr3q26 3.33E-07 EIF5A2:SLC2A2:TNIK : PLD1:GHSR

Functional GO_AOLEMMA 8.59E-05 KCNJ11:KCNC1

Gene Sets
GO_POSITIVE_REGULATION_OF_CATION_CHANNEL_ACTIVITY 0.014 0.032
/GO_POTASSIUM_CHANNEL_COMPLEX 0.044 KCNJ11:ABCC8:KCNC1
/REACTOME_POTASSIUM_CHANNELS
KEGG_TYPE_II_DIABETES_MELLITUS 0.002 0.002 KCNJ11:ABCC8:SLC2A2/KCNJ11:ABCC8:SLC2A2:GLPIR
/REACTOME_INTEGRATION_OF_ENERGY_METABOLISM 0.002 /KCNJ11:ABCC8:SLC2A2:GHSR : GLP1R/KCNJ11:ABCC8
/GO_REGULATION_OF_INSULIN_SECRETION 0.002 :SERGEF : SLC2A2:GHSR : GLP1R
/GO_REGULATION_OF_PEPTIDE_HORMONE_SECRETION
GO_NEGATIVE_REGULATION_OF_PEPTIDE_SECRETION/ 0.004 KCNJ11:ABCC8:SERGEF : GHSR
GO_REGULATION_OF_PEPTIDE_SECRETION 2.73E-06 /KCNJ11:ABCC8:SERGEF : SLC2A2:GHSR : GLP1R
GO_SYNAPSE 0.032 CALCA : ABCC8:USH1C:KCNCI1:TNIK : PLD1:GHSR
GO_REGULATION_OF_SYSTEM_PROCESS 0.038 0.018 CALCA : KCNJ11:ABCC8:GHSR : GLP1R
/GO_RESPONSE_TO_ENDOGENOUS_STIMULUS /CALCA : KCNJ11:ABCC8:GHSR : GLP1R:SOX6:MYOD1:KCNC
Body mass index 0.009 PLEKHA7:NCR3LG1:KCNJ11:ABCC8:USH1C:MYOD1:KCNCI1:SERGEF

GWASCatalog Night sleep phenotypes 0.015 USHIC:MYOD1:KCNCI:SLC2A2:TNIK
Gene Sets

Systolic blood pressure x alcohol consumption interaction (2df test) 0.034 SOX6:PLEKHA7:KCNJ11
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complexes and mutation of USHI1C is known to be involved Usher
syndrome type 1C and sensorineural deafness (43). The other two
top SNPs are in the TNIK gene (TRAF2 and NCK interacting
kinase), which is also highly expressed in brain and has been shown
to regulate neurite development (44), and mutations involved with
an autosomal recessive form of cognitive disability (45). But how
these SNPs and genes related to anxiety/depression during
development warrants further investigation. In general, mega-
analysis is preferred compared to meta-analysis under the same
homogeneous condition as showed by a recent empirical
comparison where under the same condition the mega-analysis
produces lower standard errors and narrower confidence intervals
than the meta-analysis (46). Nevertheless, the mega-analysis
requires high agreement on the variables collected from different
sites; the same variables and the same assessments are used from all
sites. As in our study, after data harmonization to make the mega-
analysis possible as the variables were measured differently in each
site, mega-analysis only considered three common contributing
factors (ELS, school support index, and sex), while random-effect
meta-analysis was able to control for specific environmental factors’
effect for each cohort separately, and allows cohort-specific genetic
effect size. It is not surprising to see some differences in the results of
meta- and meta-analyses. Given both meta- and mega-analyses
have strengths and limitations, our study focuses on common
independent risk loci and commonly indicated genes from
both analyses.

FUMA identified three common independent risk loci with lead
SNPs as rs79878474, rs6771812, rs6933332, and 20 common
mapped genes between meta- and mega-analyses. The subsequent
gene set analysis found 49 statistically significant gene sets with the
most significant being chr11pl5 and chr3q26 positional gene sets.
Enriched gene sets from GO, KEGG, and Reactome databases are
categorized based on similar overlapping genes, including functions
related to potassium channels, insulin/energy metabolism/peptide
secretion, and synapse and system process. We want to highlight
potassium channel regulation here with genes KCNJ11, KCNC1
and ABCCS8. Potassium (K+) channels are located in cell
membranes and control the transportation of K+ ions efflux from
and the influx into cells. This superfamily can be divided into many
structural classes and located in different tissue types (47), but most
classes are prominent in ventricular tissue to regulate cardiac
function, and in the brain (neurons, soma, dendrites, and axons,
in particular, axolemma, the outer membrane of axons) to influence
neural activities (48). KCNC1 is highly and almost exclusively
expressed in the cerebellum based on GTEx, and encodes
member 1, subfamily C of integral membrane proteins that is the
key to K+ voltage-dependent channel Kv3.1 (48, 49), mediating the
voltage-dependent potassium ion permeability of excitable
membranes such as axolemma Kv3.1 channels regulate
neurotransmitter release (50), particularly affecting the high-
frequency firing of neurons (51) including cerebellar granule cells,
and circadian rhythms in the suprachiasmatic nucleus of the
hypothalamus (52). Kv3.1 channels along the membranes of
axons, axolemma, in combination with Na+ channels, regulate
the action potential and transmission of neural signals, thus
integral to axonal function and synaptic transmission Kaczmarek
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and Zhang (51). Dysregulation of Kv3.1 channel properties could
disrupt axolemma dynamics, affecting neural signaling and
potentially causing severe neurological disorders like epilepsy and
broad phenotypic spectrum including developmental delay (53),
schizophrenia (54), and depression (55). Recent animal and cell line
studies have strengthened the connection between the Kv3 channel
and depression. Mice with a reduced level of Kv3.1 presented
vulnerability to depressive behavior, whereas up-regulation of
Kv3.1 or acute activation of Kv3.1 induced resilience to
depression (56). A commonly used antidepressant drug,
Fluoxetine, acts on Kv3 channels to affect Kv3.1b expression and
serotonin secretion in a serotonergic cell line (57), and another
similar drug Vortioxetine inhibits delayed-rectifier K+ current
caused by Kv3 channels activity in pituitary GH3 cells (58).
KCNJ11 is highly expressed in the cerebellum (the second highest
besides muscle) and encodes an integral membrane protein that is
the key to an inward-rectifier potassium channel, the Kir6.2 subunit
of ATP- sensitive potassium channel. Kir6.2 channel is known to
play an important role in modulating insulin secretion (48), and
also plays a role in stress adaptation (59, 60), as well as possibly part
of the mechanism for anti-depression effect (60, 61). ABCC8 is
expressed mainly in cerebellum followed by the frontal cortex
pituitary, and pancreas. Functionally it modulates the SUR
subunit of ATP-sensitive potassium channel which plays a key
role in mediating glucose-stimulated insulin secretion. Recently
new studies have linked insulin resistance with risk for depression
and anxiety (62-64). Our findings further strength this association
by discovery of both potassium channel gene sets and insulin
secretion gene sets in association of depression and anxiety
score. Our findings suggest that the Kv3, Kir 6.2,and SUR subunit
of potassium channels may be important targets for anti-
depression treatment.

The identified environmental and genetic contributors to
anxiety/depression consistently prompt intriguing discussions
about the involvement of hypothalamic-pituitary-adrenal (HPA)
axis. It is not a surprise that ELS and school support index relate to
children’s anxiety and depression, as the connection between stress
and anxiety/depression has been well recognized (65, 66), and the
dysregulation of the HPA axis, the most important stress system,
has played a key part in the mechanism of the pathology of mood
disorders (66). It is unexpected to us that GWAS analyses identified
genetic variants in potassium channels, in particular, ATP-sensitive
(Kir6.2 and SUR subunits) potassium channels. Studies have just
shown modulation of ATP-sensitive potassium channels could alter
HPA axis activity and depressive behavior (67, 68). ATP-sensitive
potassium (KATP) channels play a crucial role in modulating the
activity of the hypothalamic-pituitary-adrenal (HPA) axis, a key
neuroendocrine system involved in the body’s stress response.
KATP channels have been found in many regions, including high
prevalence in the hypothalamus, and the key role of the
Paraventricular Nucleus (PVN) in regulation of hormones such as
corticotropin-releasing hormone (CRH) posits KATP as a target for
understanding HPA functions (69), with inhibitors or openers of
KATP channels in animal studies (68). For instance, the opener, IPI,
reinstated the stressed-induced depressive behavior in mice and
normalized the hormones, inflammation, and oxidation levels in
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PVN, validated by mRNA (67). Alterations in KATP channel
activity can disrupt the balance of HPA axis activity, leading to
dysregulated cortisol production and aberrant stress responses.
Thus, KATP channels serve as important regulators of the HPA
axis, contributing to the body’s ability to cope with stress and
maintain homeostasis. These evidence posit a likely mechanism for
depressive or anxious behaviors as outcomes of HPA axis
dysfunction (70) that potassium channels might have an impact.

The tissue enrichment analysis using MAGMA for either meta-
or mega- analysis results showed an elevated expression enrichment
in the brain, more specifically, in the cerebellum region of the brain.
The importance of cerebellum is supported by expression of key
genes in the potassium channels as discussed above. Common genes
between meta- and mega-analyses showed significant tissue
enrichment in the small intestine. Gene USHIC has the highest
expression in small intestine as well as the spinal cord and other
areas of the brain, while genes INSC, SOX6, PLEKHA7, SLC2A2,
and TNIK are expressed in small intestine. The relation between
small intestine and depression/anxiety has long been hinted to form
the brain-gut connections (71, 72). The small intestine, a crucial site
for nutrient absorption, interaction with gut microbiota, production
of neurotransmitters, has been implicated in influencing mood and
mental well-being through bidirectional communication of the
brain-gut axis (73) (74). The brain-gut axis is not one single unit
but a network linking enteric and central nervous systems, HPA,
metabolic pathways, and immune pathways (75). Our results that
emphasized both the small intestine and cerebellum at the
molecular level and implicated HPA role at the behavioral level
are quite intriguing in the context of completing the pathogenesis of
depression and anxiety and particularly warrant further in-depth
investigation on the role of the cerebellum.

The significant association between the PRS and anxiety/
depression score was only observed in the ABCD cohort, not in
IMAGEN and cVEDA cohorts. We believe that the most likely reason
is small sizes and small effect size, as in the ABCD cohort even though
the variance explained by PRS is not big but with large sample sizes
we could detect a significant PRS contribution. Interestingly, both
PRS scores computed using our own GWAS or the downloaded large
sample GWAS summary statistics showed significant contribution to
anxiety/depression in the ABCD cohort, lending support to the
validity of our GWAS analyses using relatively small samples but
with careful controlling for the environmental factors.

To summarize, our findings show that there is a consistent
environmental influence, particularly ELS and school support
index, on anxiety and depression in children and adolescents
across continents. Further research into the genetic susceptibility
from meta- and mega-analyses highlights mutations and gene sets
in chromosome 11 pl5 region (chrllpl5), and gene sets in
potassium channels (Kv3, Kir 6.2, and SUR subunit) which are
highly, if not exclusively, expressed in the brain cerebellum, were
enriched for association with anxiety and depression. These
findings, in line with literature about the potassium channel’s
involvement in (anti)depression, and insulin secretion association
with depression, motivate further investigation on how Kv3, Kir 6.2,
SUR potassium channels in the cerebellum regulate anxiety and
depression. For future work, we will incorporate the brain imaging

Frontiers in Psychiatry

12

10.3389/fpsyt.2024.1384298

data of subjects used in this study, focusing on the cerebellum
region, and test brain structural and functional associations with
anxiety and depression, and the effects of environmental and
genetic influence on the brain to further validate the current
results. It’s also important to contextualize the impactful
discoveries of this study within the framework of its inherent
limitations. Despite meticulous environmental and behavioral
assessments across three distinct cohorts and rigorous data
harmonization procedures, acknowledging the necessity for
independent data verification is crucial for ensuring the broader
applicability of the findings.
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