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Abstract— Large amounts of neuroimaging and omics data
have been generated for studies of mental health. Collaborations
among research groups that share data have shown increased
power for new discoveries of brain abnormalities, genetic
mutations, and associations among genetics, neuroimaging
and behavior. However, sharing raw data can be challenging
for various reasons. A federated data analysis allowing for
collaboration without exposing the raw dataset of each site
becomes ideal. Following this strategy, a decentralized parallel
independent component analysis (dpICA) is proposed in this
study which is an extension of the state-of-art Parallel ICA
(pICA). pICA is an effective method to analyze two data
modalities simultaneously by jointly extracting independent
components of each modality and maximizing connections
between modalities. We evaluated the dpICA algorithm using
neuroimage and genetic data from patients with schizophrenia
and health controls, and compared its performances under
various conditions with the centralized pICA. The results showed
dpICA is robust to sample distribution across sites as long as
numbers of samples in each site are sufficient. It can produce the
same imaging and genetic components and the same connections
between those components as the centralized pICA. Thus our
study supports dpICA is an accurate and effective decentralized
algorithm to extract connections from two data modalities.

I. INTRODUCTION

Large amounts of neuroimaging and omics data have
been shared for research on psychological well-being [1].
Neuroimaging is a brain imaging technique widely used to
study human brain structure and function, while genomics is
analyzed to understand how mutations in genetic sequence
affect pathology of human diseases. One commonly studied
variation is single nucleotide polymorphisms (SNP). To
understand mental illness, data from neuroimaging, multi-
omics, cognitive function, behavioral assessment, and other
modalities are often collected and tested. Deficits in cognitive
function can be a sign of various neurological or psychological
disorders [2] along with abnormal behavior associated with
various mental disorders. Finding these multidimensional
connections is crucial for mental disorder research.

One of the algorithms to analyze interactions between mul-
tiple modalities is parallel independent component analysis
(pICA) [2]. pICA is an effective method to analyze two data
modalities simultaneously by jointly extracting independent
components of each modality and maximizing connections be-
tween modalities. Compared to other multimodal algorithms,
such as canonical correlation analysis, partial least squares,
and reduced rank regression [3], pICA allows researchers to
select a specific number of components for each modality
and balance the independence and connections to prevent

overfitting. The current version of pICA, however, only works
on centralized data where all the data are located at one site.

It is well-established that shared data analysis by collabo-
ration can improve the power of statistical tests, allowing for
larger and more diverse populations than centralized studies
can offer [4], [5]. This is also the case in Neuroimaging due
to the cost of collecting scans related to particular questions.
In Neuroimaging and other fields with complex, privacy-
sensitive data, it is often not feasible for a collaborative
research study to pool raw data from individual participating
sites into a centralized location. Thus, decentralized pICA
(dpICA) is proposed here to accommodate such a situation by
allowing research sites to perform dpICA without transferring
full samples between sites, thus preserving patient privacy
while still increasing the population of data available.

One application of pICA from Liu et al. [2] is to identify
interactions between brain function and genetic information
by analyzing functional magnetic resonance imaging (fMRI)
and SNPs and find the related pairs of fMRI/SNP component.
Similarly Chen et al. [6] applied the pICA method on
structural MRI and SNPs and identified the gray matter
volume (GMYV) in patients with schizophrenia is reduced
in the temporal and parietal junction area [7] where 39 SNPs
are associated with. In this paper, we replicated the study
of Chen et al. [6] using the proposed dpICA method, and
evaluated the validity and reliability of the dpICA method
under various setting.

II. THEORY AND ALGORITHM
A. Independent Component Analysis - ICA

The goal of ICA is to identify independent component
matrices (S) embedded in the data from one modality using
a linear decomposition, where each component is maximally
independent. Equation (1) shows the general formula of ICA.
X is the data € RV < where N is the number of subjects, and
d is the size of the variable. S is the independent component
€ R"*4 where 7 is the number of components. A is the
loading parameter matrix € RV*" | W is the unmixing matrix
€ R™¥, While there are many algorithms to implement ICA,
we used Infomax [8] as shown in (2) where fy(Y) is the
probability density function of Y. E is the expected value.
H is the entropy function. Maximization of entropy H is
used to maximize the independence among the components
contained in S.
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B. Parallel ICA

The purpose of pICA is to identify independent components
of two modalities and additionally to enhance the relation
of the two modalities. When applying pICA, principal
component analysis (PCA) is first performed to reduce data
dimension. As in Equation (3), X is the data € RY *% where
N is the number of subjects, and d, is the number of variables.
Y1 - VI is the projection matrix with whitening in the
dimension of number of component (r,,)-by-number of subject
(V). We denote this matrix as Whitening matrix for simplicity.
Vi - ¥ is the inverse projection matrix with de-whitening,
noted as DeWhitening matrix. Similarly, Equation (4) is PCA
on the other modality Y, where Y € RN and d, is the
number of variables. £, - VI is the Whitening matrix for
data Y, in the dimension of number of component (r,)-by-
number of subject (V). V,, - 3, is the DeWhitening matrix
for data Y. The top principle components U, € R™>*% and
U, € R™*% are input data of ICA.

X=V, %, U=3"V.X=U, 3)

“

Equation (5) shows that ICA is performed onto two modalities
by inputting both U, and U, into computation and the output
are the mixing matrices A, and A,. S, and S, are indepen-
dent components. Equation (6) shows the cost function of
pICA algorithm which maximizes two entropy terms (H(Z)
and H(Z,)) and one correlation term (Corr(A,, A,)?). The
entropy terms are used to maximize the independence of
components within each dataset, and the correlation term is
used to maximize the connection between components across
datasets. The balance between entropy and correlation is
dynamically adjusted to prioritize independence, as described
in [2].

Y=Vy- 5, -U,=%"VY=U,

Up=Ay-Sp; U,=A4,-85, (5)

max {H (Zy) + H (Z,) + Corr (A,, Ay)Q}
COV (A,”, ij)2

—E[Inf. (Z:)] - E[ln f. (Z,)] +

var (Ag;) - var (Ay;)

1
Zazzia Ky, =W, U, Ww;szw_l
1+ e K + Wao ®
1 _
Zy =R Ky =Wy -Uy+ Wy, Ay =W, "
(6)
C. Decentralized parallel ICA (dpICA)

The goal of dpICA is to achieve the same objectives of
pICA under a decentralized environment where raw data
are distributed across many sites. dpICA consists of local
processing in each local site and the global processing at one
site. Local processing involves analyzing raw data, and the
global processing analyzes the intermediate results.

}

The flow of dpICA algorithm is generally based on pICA
algorithm and divides PCA into local PCA and global
PCA prior performing pICA. While assuming there are two
sites as shown in Fig. 1 , each local site performs local
PCAs without whitening for datasets X and Y separately.
As noted in X; and Y; indicate datasets from site I, the
output top principal components are X;localU, Y;localU
with dimension of component number r-by-variable d, the
projection matrices are V, and Vy,. X;localU, Y;localU along
with their projection matrices from each site are passed to the
global site. It is important to note that these U matrices are
computed based on a selected number of components from
X, Y, so that the original data could not be back-computed.

The global site performs global PCA on the
vertically concatenated Uxgiobe: from all sites as
[X1localUT, ..., X localUT]T and vertically concatenated
Uy Giobar from all sites as [YilocalU”, ..., YilocalUT|T
separately, where Uxgiobar and Uy Giobal € Rs7%4_ Each
site can have its own specific number of principle components
(PCs). Here for illustration purposes, we simplified the
formula to set r number of PCs for every site. After
individual modalities perform global PCA and whitening,
the output of each modality are global principal components
UcGiobatpca € R™4 | Whiteninggiopar € R7*%tocal | and
DeW hiteninggiopa; € R eeat ¥ matrices.

The next step of the global site as shown in Fig. 1 is
to extract components which maximize the cost function in
(6) on global PCA’s outputs. This process needs to analyze
both modalities in parallel as indicted by the name of the
algorithm. Every learning iteration consists of two modules.
One is to maximize entropy with respect to W and the
other is to maximize correlation with respect to W. The
innovation of dpICA is to find local A matrices of all
sites to update W in the second module. Finding local A
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Fig. 1: dpICA algorithm flow.
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matrix process is performed on each modality separately.
Local A matrices are retrieved based on Equations 7 and
8, which compute the global A matrix (Ag = W1, from
the global ICA procedure in the equation 7), and multiply
global DeWhitening matrix with global A matrix, followed
by multiplication of transposed projection matrices of local
sites as in Equation (8). Specifically, horizontally stacked
transposed local projection matrices are multiplied in a site-
by-site fashion, denoted by ®, with the product of global
DeWhitening and global A matrix. The correlation between
Aj; matrices of two modalities are then computed and
maximized as in the pICA algorithm. Once both local Ay,
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matrices are updated, the updates need to be propagated into
W matrices. This is done by updating global A matrix and
then using the inverse of Ag to update W matrix separately
for each modality. As shown in Equation (9), a new global A
matrix is computed by multiplication of global Whitening
matrix with the concatenated products of local projection
matrix and the sub-matrix of Aj; corresponding to each
site. The local projection matrices are multiplied with sub-
matrices of Ay, in a site-by-site fashion, and then concatenated
vertically.

Uclobalpca = Ag - S (7N
[projection] | projection ,-- -, projection®’] ®
@ {DeWhiteninga - Ac} = AL
projectiony - Ay
WhiteningG - project?‘?v.zg AL =4c O

projections - Aps
III. MATERIALS AND APPLICATIONS

In this section we describe the imaging and genetic data
used to test dpICA, including participant information and
data preparation, followed by experiments to assess the
performance of dpICA.

A. Participants

Our data coming from Chen et al. [6] consists of MRI
imaging and generics from 355 schizophrenia patients and
422 controls. Details about participants can be seen on
Demographic Information table in Chen et al. [6].

B. sMRI and Genetic Data

sMRI T1-weighted images were collected
from 1.5T/3T scanners, preprocessed by SPMI12
(http://www.fil.ion.ucl.ac.uk/spm) to derive 429,655

voxels. Genetic DNA samples are collected from either
blood or saliva, genotyped and imputed. 977,242 SNPs were
retained after linkage disequilibrium pruning. 1,402 SZ
risk SNPs were selected. The details of data preparation is
described in Chen et al. [6].

C. Decentralization Parallel ICA application on sMRI and
genetic

In the study done by Chen et al. [6] the pICA analysis
extracted 65 components for GMV and 29 for SNP, and
identified one SNP component associated with one SZ
GMYV component. Here, we extended Chen et al’s study
into decentralized space to identify the same number of
components. First we validated dpICA algorithm under one
site condition, which is equivalent to the centralized pICA, and
then evaluated dpICA performance with multiple experiments
under various settings.

The 1%¢ dpICA experiment is to analyze the impact of
local PCA component number. We performed dpICA with five
different settings of local PCA component number using three
distributed sites, each site with fixed sample size of 258,259
and 260 respectively. The 2"¢ experiment is to analyze the
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Fig. 2: Comparison top-pair component between pICA (green)
and dpICA (red) of SNP (2a) and sMRI (2b).

impact of multi-site condition. We performed dpICA with
site numbers of one to five when dividing samples equally
across sites. The 3" experiment is to analyze the impact of
local sample sizes. We performed dpICA with 14 variations
of local sample sizes under 3 site setting. Note each test is
conducted for 10 runs and estimated the stable output by
ICASSO method [9].

IV. RESULTS

To validate pICA vs. dpICA similarity, we computed corre-
lation coefficient of A and .S matrices between algorithms, and
compared the the top-pair components and their correlation.
As shown in Table I, the comparison of S and A matrices
found that the correlation coefficients were high for both
modalities. Both pICA and dpICA found the same paired
components as illustrated in Fig. 2 and their correlations are
also similar. Fig. 2a shows the comparison of pICA (green)
and dpICA (red) identified SNP components in chromosome
6. Fig. 2b shows the regions threshold at |z| > 2 of the
top-paired GMV component of pICA (green) and dpICA
(red) plotted by MRIcroGL [10], yellow highlighting the
overlapping regions.

Experiment 1: Table II shows that overall top-pair matching
is increasing with higher local PCA component numbers. We
found that dpICA algorithm performed more stably when the
local PCA component number is three times or higher than
the global PCA component number. It is indicated by the
percent number of matched top-pair component from 10 runs
reached to 100%. We call the 3-times rule.

Experiment 2: As demonstrated in Table III , all various
multisite settings show the “precent number of matched top-
pair component from 10 runs” at 100% and “maximum
correlation” at expected range. We found that dpICA al-
gorithm supported multisite when we applied 3-times rule as
Experiment 1.

Experiment 3: Table IV ’s depiction of the effects of local
sample size shows that when 3-times rule is applied, the

“percent number of matched top-pair component from 10

2

runs” is at expected 70%-100% and “maximum correlation
at expected range. This shows that dpICA algorithm supports
different local sample size with “3-times rule” condition.
Note: The local PCA component number could be set as high
as the sample-size number minus one.
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V. DISCUSSION

The findings of our study suggest that dpICA exhibits
comparable performance to centralized pICA in facilitating
multisite and multimodal data analysis. Notably, we demon-
strate that the efficacy of dpICA is contingent upon the
condition that the number of local PCA components must be
at least three times the number of global PCA components
for the optimal performance. This constraint influences both
the number of sites and the local sample size. This study
utilizes a predetermined number of global PCA components
for the purpose of comparison with the previous research. It
is worth noting that the optimal number of components can
be estimated using information theory based methods, such
as the Akaike information criterion or Minimum Description
Length.

VI. CONCLUSIONS

This study shows that pICA can be decentralized with the
proposed dpICA algorithm, based on our experiment with
sMRI and SNP datasets, which generates outcomes similar
to centralized pICA in terms of the maximum correlation
between two modalities and the similarity of the independent
components and loading matrices of each modality. Under the
correct setting of PCA component number, dpICA supports
multimodal and multisite analysis. The dpICA algorithm is
published on COINSTAC [11].
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TABLE I: COMPARISON RESULT BETWEEN PICA AND
DPICA

Validations o Ci:lgorlthgl;lc x
1.Maximum correlation 0.16 0.1645
2.Maximum correlated components Matched | Matched
3.Similarities of product Modalities
between pICA and dpICA sMRI SNPs
3a.Independent component matrices > 0.93 > 0.96
3b.Loading matrices of one site > 0.93 > 0.96

TABLE II: IMPACT RESULT OF LOCAL PCA COMPO-
NENT NUMBER IN DPICA ALGORITHM.

% of
Component | Average |matched [Ratio of]
No. of [Sample size] numbers |Maximum comp. in |AB vs.
site per site | A/B/C/D' (Correlation | 10 runs | CD
3 258,259,260 |65/29/65/29 0.1398 90 1
3 258,259,260 |130/58/65/29 0.1827 70 2
3 258,259,260 (195/87/65/29 0.1866 100 3
3 258,259,260 [257/116/65/29) 0.1832 100 4
3 258,259,260 [257/145/65/29]  0.1812 100 5

1 [A/B/C/D]; when A is local sMRI, B is local SNP, C is global sMRI, D
is global SNP.

TABLE III: IMPACT RESULT OF N-SITE IN DPICA
ALGORITHM.

% of
Component | Average |matched
No. of |  Sample size numbers |Maximum {comp. in
site per site A/B/C/D' |Correlation | 10 runs
1 777 257/116/65/29) 0.2556 100
2 388,389 257/116/65/29, 0.1711 100
3 258,259,260 257/116/65/29) 0.1756 100
4 |194,194,194,195 193/116/65/29)  0.1701 100
5 |155,155,155,155,157154/145/65/29]  0.1775 100

TABLE IV: IMPACT RESULT OF LOCAL SAMPLE SIZE
IN DPICA ALGORITHM.

% of

Component | Average |matched | Sample
No. of [Sample size numbers |Maximum [comp. in distribution|

site per site | A/B/C/D! (Correlation | 10 runs | method
3 196,196,385 [195/87/65/29 0.2443 80 Not Equally
3 385,196,196 |195/87/65/29 0.1854 100  |Not Equally
3 196,385,196 (195/87/65/29 0.26 100 |Not Equally
3 196,260,321 [195/87/65/29 0.1858 80 Not Equally
3 260,196,321 |195/87/65/29 0.1827 100 |Not Equally
3 196,321,260 (195/87/65/29 0.1798 80 Not Equally
3 260,321,196 (195/87/65/29 0.1808 90 Not Equally
3 321,196,260 |195/87/65/29 0.1738 100 |Not Equally
3 321,260,196 (195/87/65/29 0.1763 100 |Not Equally
3 260,260,257 (195/87/65/29 0.182 70 Not Equally
3 260,257,260 |195/87/65/29 0.2468 80 Not Equally
3 257,261,259 (195/87/65/29 0.1843 70 Not Equally

3 258,259,260 [257/116/65/29)  0.1799 100 Equally

3 258,259,260 [257/145/65/29)  0.1764 100 Equally
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