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Abstract— Large amounts of neuroimaging and omics data
have been generated for studies of mental health. Collaborations
among research groups that share data have shown increased
power for new discoveries of brain abnormalities, genetic
mutations, and associations among genetics, neuroimaging
and behavior. However, sharing raw data can be challenging
for various reasons. A federated data analysis allowing for
collaboration without exposing the raw dataset of each site
becomes ideal. Following this strategy, a decentralized parallel
independent component analysis (dpICA) is proposed in this
study which is an extension of the state-of-art Parallel ICA
(pICA). pICA is an effective method to analyze two data
modalities simultaneously by jointly extracting independent
components of each modality and maximizing connections
between modalities. We evaluated the dpICA algorithm using
neuroimage and genetic data from patients with schizophrenia
and health controls, and compared its performances under
various conditions with the centralized pICA. The results showed
dpICA is robust to sample distribution across sites as long as
numbers of samples in each site are sufficient. It can produce the
same imaging and genetic components and the same connections
between those components as the centralized pICA. Thus our
study supports dpICA is an accurate and effective decentralized
algorithm to extract connections from two data modalities.

I. INTRODUCTION

Large amounts of neuroimaging and omics data have

been shared for research on psychological well-being [1].

Neuroimaging is a brain imaging technique widely used to

study human brain structure and function, while genomics is

analyzed to understand how mutations in genetic sequence

affect pathology of human diseases. One commonly studied

variation is single nucleotide polymorphisms (SNP). To

understand mental illness, data from neuroimaging, multi-

omics, cognitive function, behavioral assessment, and other

modalities are often collected and tested. Deficits in cognitive

function can be a sign of various neurological or psychological

disorders [2] along with abnormal behavior associated with

various mental disorders. Finding these multidimensional

connections is crucial for mental disorder research.

One of the algorithms to analyze interactions between mul-

tiple modalities is parallel independent component analysis

(pICA) [2]. pICA is an effective method to analyze two data

modalities simultaneously by jointly extracting independent

components of each modality and maximizing connections be-

tween modalities. Compared to other multimodal algorithms,

such as canonical correlation analysis, partial least squares,

and reduced rank regression [3], pICA allows researchers to

select a specific number of components for each modality

and balance the independence and connections to prevent

overfitting. The current version of pICA, however, only works

on centralized data where all the data are located at one site.

It is well-established that shared data analysis by collabo-

ration can improve the power of statistical tests, allowing for

larger and more diverse populations than centralized studies

can offer [4], [5]. This is also the case in Neuroimaging due

to the cost of collecting scans related to particular questions.

In Neuroimaging and other fields with complex, privacy-

sensitive data, it is often not feasible for a collaborative

research study to pool raw data from individual participating

sites into a centralized location. Thus, decentralized pICA

(dpICA) is proposed here to accommodate such a situation by

allowing research sites to perform dpICA without transferring

full samples between sites, thus preserving patient privacy

while still increasing the population of data available.

One application of pICA from Liu et al. [2] is to identify

interactions between brain function and genetic information

by analyzing functional magnetic resonance imaging (fMRI)

and SNPs and find the related pairs of fMRI/SNP component.

Similarly Chen et al. [6] applied the pICA method on

structural MRI and SNPs and identified the gray matter

volume (GMV) in patients with schizophrenia is reduced

in the temporal and parietal junction area [7] where 39 SNPs

are associated with. In this paper, we replicated the study

of Chen et al. [6] using the proposed dpICA method, and

evaluated the validity and reliability of the dpICA method

under various setting.

II. THEORY AND ALGORITHM

A. Independent Component Analysis - ICA

The goal of ICA is to identify independent component

matrices (S) embedded in the data from one modality using

a linear decomposition, where each component is maximally

independent. Equation (1) shows the general formula of ICA.

X is the data ∈ R
N×d where N is the number of subjects, and

d is the size of the variable. S is the independent component

∈ R
r×d where r is the number of components. A is the

loading parameter matrix ∈ R
N×r . W is the unmixing matrix

∈ R
r×N . While there are many algorithms to implement ICA,

we used Infomax [8] as shown in (2) where fy(Y ) is the

probability density function of Y . E is the expected value.

H is the entropy function. Maximization of entropy H is

used to maximize the independence among the components

contained in S.

X = A · S; S = W ·X; A = W−1 (1)
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max{H(Y )} = −E [ln fy(Y )] ;

Y =
1

1 + e−U
, U = W ·X +W0

(2)

B. Parallel ICA

The purpose of pICA is to identify independent components

of two modalities and additionally to enhance the relation

of the two modalities. When applying pICA, principal

component analysis (PCA) is first performed to reduce data

dimension. As in Equation (3), X is the data ∈ R
N×dx where

N is the number of subjects, and dx is the number of variables.

Σ−1
x · V T

x is the projection matrix with whitening in the

dimension of number of component (rx)-by-number of subject

(N ). We denote this matrix as Whitening matrix for simplicity.

Vx · Σx is the inverse projection matrix with de-whitening,

noted as DeWhitening matrix. Similarly, Equation (4) is PCA

on the other modality Y , where Y ∈ R
N×dy , and dy is the

number of variables. Σ−1
y · V T

y is the Whitening matrix for

data Y , in the dimension of number of component (ry)-by-

number of subject (N ). Vy · Σy is the DeWhitening matrix

for data Y . The top principle components Ux ∈ R
rx×dx and

Uy ∈ R
ry×dy are input data of ICA.

X = Vx · Σx · Ux ⇒ Σ−1
x · V T

x ·X = Ux (3)

Y = Vy · Σy · Uy ⇒ Σ−1
y · V T

y · Y = Uy (4)

Equation (5) shows that ICA is performed onto two modalities

by inputting both Ux and Uy into computation and the output

are the mixing matrices Ax and Ay . Sx and Sy are indepen-

dent components. Equation (6) shows the cost function of

pICA algorithm which maximizes two entropy terms (H(Zx)
and H(Zy)) and one correlation term (Corr(Ax, Ay)

2). The

entropy terms are used to maximize the independence of

components within each dataset, and the correlation term is

used to maximize the connection between components across

datasets. The balance between entropy and correlation is

dynamically adjusted to prioritize independence, as described

in [2].

Ux = Ax · Sx; Uy = Ay · Sy (5)

max
{

H (Zx) +H (Zy) + Corr (Ax, Ay)
2
}

=

{

−E [ln fz (Zx)]− E [ln fz (Zy)] +
Cov (Axi, Ayj)

2

var (Axi) · var (Ayj)

}

Zx =
1

1 + e−Kx
, Kx = Wx · Ux +Wx0, Ax = W−1

x

Zy =
1

1 + e−Ky
, Ky = Wy · Uy +Wy0, Ay = W−1

y

(6)

C. Decentralized parallel ICA (dpICA)

The goal of dpICA is to achieve the same objectives of

pICA under a decentralized environment where raw data

are distributed across many sites. dpICA consists of local

processing in each local site and the global processing at one

site. Local processing involves analyzing raw data, and the

global processing analyzes the intermediate results.

The flow of dpICA algorithm is generally based on pICA

algorithm and divides PCA into local PCA and global

PCA prior performing pICA. While assuming there are two

sites as shown in Fig. 1 , each local site performs local

PCAs without whitening for datasets X and Y separately.

As noted in Xi and Yi indicate datasets from site I, the

output top principal components are XilocalU , YilocalU

with dimension of component number r-by-variable d, the

projection matrices are Vx and Vy . XilocalU , YilocalU along

with their projection matrices from each site are passed to the

global site. It is important to note that these U matrices are

computed based on a selected number of components from

X, Y, so that the original data could not be back-computed.

The global site performs global PCA on the

vertically concatenated UXGlobal from all sites as

[X1localU
T , ..., XslocalU

T ]T and vertically concatenated

UY Global from all sites as [Y1localU
T , ..., YslocalU

T ]T

separately, where UXGlobal and UY Global ∈ R
s·r×d. Each

site can have its own specific number of principle components

(PCs). Here for illustration purposes, we simplified the

formula to set r number of PCs for every site. After

individual modalities perform global PCA and whitening,

the output of each modality are global principal components

UGlobalPCA ∈ R
r×d , WhiteningGlobal ∈ R

r×s·rlocal , and

DeWhiteningGlobal ∈ R
s·rlocal×r matrices.

The next step of the global site as shown in Fig. 1 is

to extract components which maximize the cost function in

(6) on global PCA’s outputs. This process needs to analyze

both modalities in parallel as indicted by the name of the

algorithm. Every learning iteration consists of two modules.

One is to maximize entropy with respect to W and the

other is to maximize correlation with respect to W. The

innovation of dpICA is to find local A matrices of all

sites to update W in the second module. Finding local A

Fig. 1: dpICA algorithm flow.

matrix process is performed on each modality separately.

Local A matrices are retrieved based on Equations 7 and

8, which compute the global A matrix (AG = W−1, from

the global ICA procedure in the equation 7), and multiply

global DeWhitening matrix with global A matrix, followed

by multiplication of transposed projection matrices of local

sites as in Equation (8). Specifically, horizontally stacked

transposed local projection matrices are multiplied in a site-

by-site fashion, denoted by ⊗, with the product of global

DeWhitening and global A matrix. The correlation between

AL matrices of two modalities are then computed and

maximized as in the pICA algorithm. Once both local AL
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matrices are updated, the updates need to be propagated into

W matrices. This is done by updating global AG matrix and

then using the inverse of AG to update W matrix separately

for each modality. As shown in Equation (9), a new global AG

matrix is computed by multiplication of global Whitening

matrix with the concatenated products of local projection

matrix and the sub-matrix of AL corresponding to each

site. The local projection matrices are multiplied with sub-

matrices of AL in a site-by-site fashion, and then concatenated

vertically.

UGlobalPCA = AG · S (7)

[projectionT
1 , projection

T
2 , · · · , projection

T
s , ]

⊗{DeWhiteningG ·AG} = AL

(8)

WhiteningG ·






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


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

projection1 ·AL1

projection2 ·AL2

· · ·
projections ·ALs


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












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= AG (9)

III. MATERIALS AND APPLICATIONS

In this section we describe the imaging and genetic data

used to test dpICA, including participant information and

data preparation, followed by experiments to assess the

performance of dpICA.

A. Participants

Our data coming from Chen et al. [6] consists of MRI

imaging and generics from 355 schizophrenia patients and

422 controls. Details about participants can be seen on

Demographic Information table in Chen et al. [6].

B. sMRI and Genetic Data

sMRI T1-weighted images were collected

from 1.5T/3T scanners, preprocessed by SPM12

(http://www.fil.ion.ucl.ac.uk/spm) to derive 429,655

voxels. Genetic DNA samples are collected from either

blood or saliva, genotyped and imputed. 977,242 SNPs were

retained after linkage disequilibrium pruning. 1,402 SZ

risk SNPs were selected. The details of data preparation is

described in Chen et al. [6].

C. Decentralization Parallel ICA application on sMRI and

genetic

In the study done by Chen et al. [6] the pICA analysis

extracted 65 components for GMV and 29 for SNP, and

identified one SNP component associated with one SZ

GMV component. Here, we extended Chen et al’s study

into decentralized space to identify the same number of

components. First we validated dpICA algorithm under one

site condition, which is equivalent to the centralized pICA, and

then evaluated dpICA performance with multiple experiments

under various settings.

The 1st dpICA experiment is to analyze the impact of

local PCA component number. We performed dpICA with five

different settings of local PCA component number using three

distributed sites, each site with fixed sample size of 258,259

and 260 respectively. The 2nd experiment is to analyze the

(a) (b)

Fig. 2: Comparison top-pair component between pICA (green)

and dpICA (red) of SNP (2a) and sMRI (2b).

impact of multi-site condition. We performed dpICA with

site numbers of one to five when dividing samples equally

across sites. The 3rd experiment is to analyze the impact of

local sample sizes. We performed dpICA with 14 variations

of local sample sizes under 3 site setting. Note each test is

conducted for 10 runs and estimated the stable output by

ICASSO method [9].

IV. RESULTS

To validate pICA vs. dpICA similarity, we computed corre-

lation coefficient of A and S matrices between algorithms, and

compared the the top-pair components and their correlation.

As shown in Table I, the comparison of S and A matrices

found that the correlation coefficients were high for both

modalities. Both pICA and dpICA found the same paired

components as illustrated in Fig. 2 and their correlations are

also similar. Fig. 2a shows the comparison of pICA (green)

and dpICA (red) identified SNP components in chromosome

6. Fig. 2b shows the regions threshold at |z| > 2 of the

top-paired GMV component of pICA (green) and dpICA

(red) plotted by MRIcroGL [10], yellow highlighting the

overlapping regions.

Experiment 1: Table II shows that overall top-pair matching

is increasing with higher local PCA component numbers. We

found that dpICA algorithm performed more stably when the

local PCA component number is three times or higher than

the global PCA component number. It is indicated by the

percent number of matched top-pair component from 10 runs

reached to 100%. We call the 3-times rule.

Experiment 2: As demonstrated in Table III , all various

multisite settings show the “precent number of matched top-

pair component from 10 runs” at 100% and “maximum

correlation” at expected range. We found that dpICA al-

gorithm supported multisite when we applied 3-times rule as

Experiment 1.

Experiment 3: Table IV ’s depiction of the effects of local

sample size shows that when 3-times rule is applied, the

“percent number of matched top-pair component from 10

runs” is at expected 70%-100% and “maximum correlation”

at expected range. This shows that dpICA algorithm supports

different local sample size with “3-times rule” condition.

Note: The local PCA component number could be set as high

as the sample-size number minus one.

Authorized licensed use limited to: Georgia State University. Downloaded on January 31,2025 at 22:54:28 UTC from IEEE Xplore.  Restrictions apply. 



V. DISCUSSION

The findings of our study suggest that dpICA exhibits

comparable performance to centralized pICA in facilitating

multisite and multimodal data analysis. Notably, we demon-

strate that the efficacy of dpICA is contingent upon the

condition that the number of local PCA components must be

at least three times the number of global PCA components

for the optimal performance. This constraint influences both

the number of sites and the local sample size. This study

utilizes a predetermined number of global PCA components

for the purpose of comparison with the previous research. It

is worth noting that the optimal number of components can

be estimated using information theory based methods, such

as the Akaike information criterion or Minimum Description

Length.

VI. CONCLUSIONS

This study shows that pICA can be decentralized with the

proposed dpICA algorithm, based on our experiment with

sMRI and SNP datasets, which generates outcomes similar

to centralized pICA in terms of the maximum correlation

between two modalities and the similarity of the independent

components and loading matrices of each modality. Under the

correct setting of PCA component number, dpICA supports

multimodal and multisite analysis. The dpICA algorithm is

published on COINSTAC [11].
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TABLE I: COMPARISON RESULT BETWEEN PICA AND

DPICA

Validations
Algorithms

piCA dpICA

1.Maximum correlation 0.16 0.1645

2.Maximum correlated components Matched Matched

3.Similarities of product
between pICA and dpICA

Modalities
sMRI SNPs

3a.Independent component matrices > 0.93 > 0.96

3b.Loading matrices of one site > 0.93 > 0.96

TABLE II: IMPACT RESULT OF LOCAL PCA COMPO-

NENT NUMBER IN DPICA ALGORITHM.

No. of
site

Sample size
per site

Component
numbers

A/B/C/D1

Average
Maximum
Correlation

% of
matched
comp. in
10 runs

Ratio of
AB vs.

CD

3 258,259,260 65/29/65/29 0.1398 90 1
3 258,259,260 130/58/65/29 0.1827 70 2
3 258,259,260 195/87/65/29 0.1866 100 3

3 258,259,260 257/116/65/29 0.1832 100 4

3 258,259,260 257/145/65/29 0.1812 100 5

1 [A/B/C/D]; when A is local sMRI, B is local SNP, C is global sMRI, D
is global SNP.

TABLE III: IMPACT RESULT OF N-SITE IN DPICA

ALGORITHM.

No. of
site

Sample size
per site

Component
numbers

A/B/C/D1

Average
Maximum
Correlation

% of
matched
comp. in
10 runs

1 777 257/116/65/29 0.2556 100

2 388,389 257/116/65/29 0.1711 100

3 258,259,260 257/116/65/29 0.1756 100

4 194,194,194,195 193/116/65/29 0.1701 100

5 155,155,155,155,157154/145/65/29 0.1775 100

TABLE IV: IMPACT RESULT OF LOCAL SAMPLE SIZE

IN DPICA ALGORITHM.

No. of
site

Sample size
per site

Component
numbers

A/B/C/D1

Average
Maximum
Correlation

% of
matched
comp. in
10 runs

Sample
distribution

method

3 196,196,385 195/87/65/29 0.2443 80 Not Equally
3 385,196,196 195/87/65/29 0.1854 100 Not Equally
3 196,385,196 195/87/65/29 0.26 100 Not Equally
3 196,260,321 195/87/65/29 0.1858 80 Not Equally
3 260,196,321 195/87/65/29 0.1827 100 Not Equally
3 196,321,260 195/87/65/29 0.1798 80 Not Equally
3 260,321,196 195/87/65/29 0.1808 90 Not Equally
3 321,196,260 195/87/65/29 0.1738 100 Not Equally
3 321,260,196 195/87/65/29 0.1763 100 Not Equally
3 260,260,257 195/87/65/29 0.182 70 Not Equally
3 260,257,260 195/87/65/29 0.2468 80 Not Equally
3 257,261,259 195/87/65/29 0.1843 70 Not Equally
3 258,259,260 257/116/65/29 0.1799 100 Equally
3 258,259,260 257/145/65/29 0.1764 100 Equally
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