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Efficient federated learning for
distributed neuroimaging data
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Recent advancements in neuroimaging have led to greater data sharing among
the scientific community. However, institutions frequently maintain control over
their data, citing concerns related to research culture, privacy, and accountability.
This creates a demand for innovative tools capable of analyzing amalgamated
datasets without the need to transfer actual data between entities. To address
this challenge, we propose a decentralized sparse federated learning (FL)
strategy. This approach emphasizes local training of sparse models to facilitate
efficient communication within such frameworks. By capitalizing on model
sparsity and selectively sharing parameters between client sites during the
training phase, our method significantly lowers communication overheads.
This advantage becomes increasingly pronounced when dealing with larger
models and accommodating the diverse resource capabilities of various sites.
We demonstrate the effectiveness of our approach through the application to
the Adolescent Brain Cognitive Development (ABCD) dataset.
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1 Introduction

Deep learning has transformed fields like computer vision, natural language
processing, and is also starting to transform the field of neuroimaging. As deep learning
models grow, distributed and collaborative training becomes essential, especially when
sensitive data is spread across distant sites. Collaborative MRI data analysis offers profound
insights, allowing researchers to utilize data beyond a study’s original scope. As MRI scans
are often preserved, vast amounts of data accumulate across decentralized research sites.
Training models on more data, while preserving data privacy is thus crucial. Aggregating
data from different sources to a central server for training can however expose this sensitive
information, raising ethical concerns. Federated Learning (FL), an emerging paradigm
in machine learning aims to leverage this distributed data while maintaining privacy. It
achieves this by enabling devices or organizations to train models locally and share only
aggregated training updates instead of raw data.

In FL, a central server coordinates training, and client sites communicate only
model parameters, keeping local data private. In the decentralized setting, the server
usually doesn’t exist and clients train a model collaboratively among themselves.
However, challenges arise due to data’s statistical heterogeneity, limited communication
bandwidth, and computational costs. Various methods have been proposed to address
the high communication and computational costs of federated learning. Inspired
by the findings from the lottery ticket hypothesis (Frankle and Carbin, 2019)
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which discovered that there exists sub-networks (a subset of
network parameters within the larger complete neural network)
which can be trained in isolation to almost full accuracy,
many methods were proposed to train and update only a
sub-network in the client sites (Dai et al, 2022; Huang H.
et al, 2022). However, finding these sub-networks in the
traditional method (Frankle and Carbin, 2019) is extremely
computationally intensive and thus FL methods that rely on them
(Huang H. et al., 2022) also share the same issues. Although
initiating the federated training process from a random sub-
network and updating the network in later work (Dai et al,
2022) brought about the benefits of both computational and
communication efficiency, it came at the cost of performance
due to starting the FL training process with random sub-
networks. In this work we aim to solve this issue of starting from
random sub-networks for the sparse FL process, targeted toward
neuroimaging data.

We introduce Sparse Federated Learning for Neurolmaging or
NeuroSFL a communication efficient federated learning method
that identifies salient sub-networks at each client sites and
trains sparse local models, greatly reducing the communication
bandwidth. A notable difference of our method in contrast
to competiting methods such as DisPFL (Dai et al, 2022)
is that, NeuroSFL enjoys the benefits of sparse models at
local cites such as faster inference (Dey et al, 2019) on
top of the communication efficiency of sparse communications
methods (Vahidian et al., 2021; Dai et al., 2022; Isik et al,
2022).

1.1 Contributions

NeuroSFL is a sparse federated learning method that
data
distributed across local sites and trains sparse local models

discovers a common sub-network from the available

leveraging the distributed data. Our key contributions are
as follows:

1. We introduce NeuroSFL, a communication efficient federated
learning approach geared toward training on distributed
neuroimaging data in different client sites.

. Our method identifies a global common sub-network at
initialization and keeps this sub-network static throughout the
federated learning process. Consequently, it only needs to share
the sub-network masks only once before training begins, and
never again, significantly reducing the communication overhead
during training.

. NeuroSFL does not need to share dense model parameters
or masks during the training phase as it starts with a
common initialization and only transmit sparse parameters each
communication round depending on the chosen sparsity level.

. We validate our method in a neuroimaging task and
demonstrate its efficacy compared to competing methods.

. Finally, unlike most competiting methods, to test the
effectiveness of NeuroSFL, we also deploy and evaluate it
in a real-world federated learning framework called COINSTAC
(Plis et al.,, 2016) that trains neuroimaging models and report
wall-clock time speed up.
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2 Backgrounds and related works

In this section, we provide the necessary background for this
work by introducing the federated learning problem in Section 2.1.
We then discuss the related works in Section 2.3.

2.1 Federated learning

Federated Learning (FL) (McMahan et al., 2017) represents a
novel approach in machine learning, facilitating model training
across numerous decentralized devices or servers that hold local
data samples without needing to exchange them. This contrasts
sharply with traditional distributed learning methods, which
centralize data and distribute computations. FL prioritizes privacy
preservation, efficient communication, and resilience in diverse,
heterogeneous environments. It diverges from conventional
distributed learning paradigms, due to its distinct characteristics,
some of which we detail below:

1. Non-IID data: the training data across different clients are
not identically distributed, which means that the data at each
local site may not accurately represent the overall population
distribution.

. Unbalanced data: the amount of data varies significantly across
clients, leading to imbalances in data representation.

. Massive distribution: often, the number of clients exceeds the
average number of samples per client, illustrating the scale of
distribution.

. Limited communication: communication is infrequent, either
among clients in a decentralized setting or between clients and
the server in a centralized setting, due to slow and expensive
connections.

. Heterogeneous devices: clients in FL may have diverse
computational capabilities, ranging from powerful servers to
resource-constrained mobile devices.

. Privacy preservation: FL is designed to ensure that raw data
never leaves the clients’ devices, preserving user privacy. Instead
of sharing data, only model updates are shared. Although more
sophisticated techniques have been proposed to both break the
privacy guaranteed by vanilla FL (Geiping et al, 2020) and
preserve the privacy (Zhang et al., 2023).

. Local training: each client performs local training on its own
data and only shares updates (e.g., weights or gradients) with the
central server, which then aggregates these updates to improve
the global model.

. Client availability: clients may be intermittently available due
to power constraints, connectivity issues, or user activities,
requiring the system to be robust to varying participation.

. Scalability: FL frameworks are designed to handle a large
number of clients, scaling from hundreds to potentially millions
of devices.

One of the main focuses of this work is to reduce the
communication costs between the server and clients in a centralized
setting or among clients in a decentralized setting when dealing
with non-IID and unbalanced data. This is achieved by identifying
a sub-network based on the data distributions at each local site
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and transmitting only the parameters of this sub-network in each
communication round r. In each round, a fixed set of K clients is
sampled from all K clients, and federated training continues on
the selected sub-network of those clients. The general federated
optimization problem encountered is detailed next.

2.2 Federated optimization problem

In the general federated learning (FL) setting, a central
server tries to find a global statistical model by periodically
communicating with a set of clients. The federated averaging
algorithm proposed by Konecny et al. (2016), McMahan et al.
(2017), and Bonawitz et al. (2019) is applicable to any finite sum
objective of the form

;lé]i@f(e), where f(w)=:l§ﬁ(e). (1)

In a typical machine learning problem, the objective function
fi(6) = €(xi,yi; 0) is encountered, where the ih term in the sum
is the loss of the network prediction on a sample (x;, y;) made by
a model with parameter 6. We assume that the data is partitioned
over a total of K clients, with P denoting the set of indices of the
samples on client k, and n; = |Pk|. The total number of samples n
is given by n = Y"K_ ;. Thus, the objective in Equation 1 can be
re-written as follows in Equation 2

K

1
=3 %Fk(e), where Fi(6) = - Y 6. @

k=1 i€Py

In the typical distributed optimization setting, the IID
assumption is made, which says the following: if the partition Py
was created by distributing the training data over the set of clients
uniformly at random, then we would have Ep, [Fx(0)] = f(6),
where the expectation is over the set of examples assigned to a fixed
client k. In this work, we consider the non-IID setting where this
does not hold and F. could be an arbitrarily bad approximation to f.

When designing an FL training paradigm, a set of core
considerations have to be made to maintain data privacy and
address statistical or objective heterogeneity due to the differences
in client data and resource constraints at the client sites. A range
of work tries to address the issue of heterogeneous non-IID data
(McMahan et al.,, 2016; Kulkarni et al., 2020), however, some
research also suggests that deterioration in accuracy in the FL
non-IID setting is almost inevitable (Zhao et al., 2018).

2.3 Related works

In this section, we discuss the relevant literature in relation to
NeuroSFL. First, in Section 2.3.1, we describe the role of federated
learning in neuroimaging and discuss the relevant literature.
Second, in Section 2.3.2, we introduce key works on model pruning
and sparsity in deep learning, findings from which we leverage
for formulating NeuroSFL. Third, in Section 2.3.3, we describe
applications of model pruning and sparsity in the FL setting for
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efficient FL. Finally, in Section 2.3.4, we briefly discuss privacy in
the FL setting.

2.3.1 Federated learning in neuroimaging

Over the past decade, the field of neuroimaging has strongly
embraced data sharing, open-source software, and collaboration
across multiple sites. This shift is largely driven by the need to offset
the high costs and time demands associated with neuroimaging
data collection (Landis et al., 2016; Rootes-Murdy et al., 2022).
By pooling data from different sources, researchers can explore
findings that extend beyond the initial scope of individual studies
(Poldrack et al,, 2013). The practice of sharing data enhances
the robustness of research through larger sample sizes and the
replication of results, offering significant benefits for neuroimaging
studies. Even though data pooling and sharing data is embraced,
there are significant challenges related to data privacy, security,
and governance that limit the extent to which data can be shared.
This is where FL becomes crucial as it enables collaborative model
training across multiple institutions without the need to directly
share sensitive data. Moreover, with FL collaborative training,
sample size also plays a crucial role, where increasing the sample
size not only makes predictions more reliable but also ensures
the reliability and validity of research findings, thereby preventing
data manipulation and fabrication (Tenopir et al., 2011; Ming
et al., 2017). Furthermore, aggregating data can lead to a more
diverse sample by combining otherwise similar datasets, thus
reflecting a broader range of social health determinants for more
comprehensive results (Laird, 2021). Additionally, reusing data can
significantly reduce research costs (Milham et al., 2018).

FL is increasingly recognized as a transformative approach in
healthcare and neuroimaging. In the realm of biomedical imaging,
FL has been applied to a variety of tasks. These include whole-brain
segmentation from MRI T1 scans (Roy et al., 2019), segmentation
of brain tumors (Li et al., 2019; Sheller et al., 2019), multi-site fMRI
classification, and the identification of disease biomarkers (Li X.
et al,, 2020). COINSTAC (Plis et al., 2016) offers a privacy-focused
distributed data processing framework specifically designed for
brain imaging showcasing FLs role in enhancing privacy and
efficiency in healthcare data analysis. Additionally, it has been
utilized in discovering brain structural relationships across various
diseases and clinical cohorts through federated dimensionality
reduction from shape features (Silva et al., 2019).

2.3.2 Role of model pruning in reducing
computational demands

The primary objective of model pruning is to identify sub-
networks within larger architectures by selectively removing
connections. This technique holds considerable appeal for various
reasons, particularly for real-time applications on resource-
constrained edge devices, which are prevalent in federated learning
(FL) and collaborative learning scenarios. Pruning large networks
can significantly alleviate the computational demands of inference
(Elsen et al., 2020) or hardware tailored to exploit sparsity
(Cerebras, 2019; Pool et al., 2021). More recently, the lottery ticket
hypothesis has emerged (Frankle and Carbin, 2019), suggesting
the existence of sub-networks within densely connected networks.
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These sub-networks, when trained independently from scratch,
can attain comparable accuracy to fully trained dense networks
(Frankle and Carbin, 2019), revitalizing the field of sparse deep
learning (Chen et al., 2020; Renda et al., 2020). This resurgence of
interest has also extended into sparse reinforcement learning (RL)
(Arnob et al., 2021; Sokar et al., 2021). Pruning techniques in deep
learning can broadly be categorized into three groups: methods
that induce sparsity before training and during initialization (Lee
etal., 2018; Tanaka et al., 2020; Wang et al., 2020; Ohib et al., 2023),
during training (Zhu and Gupta, 2018; Ma et al., 2019; Yang et al,,
2019; Ohib et al., 2022), and post-training (Han et al., 2015; Frankle
et al., 2021). In this work, we leverage findings from methods
that induce sparsity at initialization, specifically parameter saliency
metrics, to formulate NeuroSFL.

2.3.3 Efficiency in federated learning

For pruning in the FL setting, using a Lottery Ticket like
approach would result in immense inefficiency in communication.
Such methods (Frankle and Carbin, 2019; Bibikar et al., 2022)
usually require costly pruning and retraining cycles, often training
and pruning multiple times to achieve the desired accuracy vs
sparsity trade-off. Relatively few research have leveraged pruning
in the FL paradigm (Li A. et al,, 2020, 2021; Jiang et al., 2022). In
particular, with LotteryFL (Li A. et al.,, 2020) and PruneFL (Jiang
et al,, 2022), clients need to send the full model to the server
regularly resulting in higher bandwidth usage. Moreover, in Li A.
et al. (2020), each client trains a personalized mask to maximize
the performance only on the local data. A few recent works (Li
A. et al, 2020; Bibikar et al., 2022; Huang T. et al.,, 2022; Qiu
et al,, 2022) also attempted to leverage sparse training within the
FL setting as well. In particular, Li A. et al. (2020) implemented
randomly initialized sparse mask, FedDST (Bibikar et al., 2022)
built on the idea of RigL (Evci et al., 2020) which is a prune and re-
grow technique, and mostly focussed on magnitude pruning on the
server-side resulting in similar constraints and (Ohib et al., 2023)
uses sparse gradients to efficiently train in a federated learning
setting. In this work, we try to alleviate these limitations which we
discuss in the following section.

2.3.4 Privacy in federated learning

Even without sharing raw data, FL can still be vulnerable
to privacy attacks such as gradient inversion attacks (Geiping
etal., 2020), which can sometimes compromise privacy. Traditional
FL algorithms, like federated stochastic gradient descent, are
particularly susceptible to these attacks, although methods like
Federated Averaging (FedAvg) (McMahan et al., 2017) mitigate this
vulnerability to some extent (Geiping et al., 2020; Dimitrov et al.,
2022).

Recent research has explored various privacy-preserving
techniques in FL. Differential privacy has been proposed to
add noise to the model updates to provide strong privacy
guarantees (Abadi et al, 2016). Secure aggregation methods
ensure that aggregated updates are protected against eavesdropping
and manipulation during transmission (Bonawitz et al., 2017).
Furthermore, advancements in cryptographic techniques, such
as homomorphic encryption and secure multiparty computation,
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offer promising solutions for preserving privacy in FL settings
(Mohassel and Zhang, 2017; Juvekar et al., 2018).

These approaches aim to enhance the robustness of Federated
Learning against privacy threats while enabling collaborative model
training across distributed data sources. In this work, we primarily
focus on improving communication efficiency in FL systems.
Although we do not explicitly address privacy, our method can be
used in conjunction with other privacy-preservation techniques.

3 Method description

In this section we present our proposed method. We first
describe the process of discovering a sub-network f(6 © m) within
the full network f(@), where 6, the maskm € R4, with lmll, <
d. To discover a performant sub-network an importance scoring
metric is required, which we describe in Section 3.1.1. Finally, we
delineate our proposed method in Section 3.2.

3.1 Sub-network discovery

Given a dataset D = {(x;y;)}iL, at a site k, the training of
a neural network f parameterized by 6 € RY can be written as
minimizing the following empirical risk as in Equation 3:

1
argmin — D L(O:x), ) st.0eMH (3)
6 i

where 8 € R and £ and H are the loss function and the constraint
set respectively.

In general, in unconstrained (standard) training the set of
possible hypotheses is considered to be H = R where d is the
model dimension. The objective is to minimize the empirical risk £
given a training set {(x;, y;)}i_; ~ D at the local client site k. Given
access to the gradients of the empirical risk on a batch-wise basis,
an optimization algorithm such as Stochastic Gradient Descent
(SGD) is typically employed to achieve the specified objective.
This process generates a series of parameter estimates, {9,-}1-T: 0
where 0 represents the initial parameters and 07 the final optimal
parameters. A sub-network within this network is defined as a
sparse version of this network with a mask m € {0, 1391 that results
in a masked network f (@ ©m; x;). When aiming for a target sparsity
level where k < d, the parameter pruning challenge entails ensuring
that the final optimal parameters, 67, have at most k non-zero
elements, as denoted by the constraint |67 o < k. In many works,
this sparsity constraint applies only to the final parameters and
not to any intermediate parameter estimates. However, in this
work we maintain this sparsity constraint throughout the entire
training phase, that is throughout the entire evolution of # from
6 tofr.

The goal of discovering sub-networks at initialization
introduces additional constraints to the previously described
framework by requiring that all parameter iterations fall within a
predetermined subspace of H. Specifically, the constraints seek to
identify an initial set of parameters, 0y, that has no more than k;
non-zero elements ([|6|ly < ki), and ensure that all intermediate
parameter sets, 6;, belong to a subspace H C H for al iin
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{1,..., T}, where H is the subspace of R4 spanned by the natural
basis vectors {ej}icsupp(9,)- Here, supp(6) represents the support of
0o, or the set of indices corresponding to its non-zero entries. This
approach not only specifies a sub-network at initialization with k
parameters but also maintains its structure consistently throughout
the training.

3.1.1 Connection importance criterion

Lee et al. (2018) introduced a technique for estimating the
importance of a connection in a deep learning network inspired by
the saliency criterion originally proposed by Mozer and Smolensky
(1988). They contributed an important insight, demonstrating that
this criterion is remarkably effective in predicting the significance
of each connection in a neural network at the initialization phase.
The core concept revolves around retaining those parameters that,
when altered, would have the most substantial effect on the loss
function. This is operationalized by considering a binary vector ¢ €
{0, 1}’ and utilizing the Hadamard product ©. Consequently, SNIP
calculates the sensitivity of connections based on this approach
as following:

(0:D): :BC(gCQ [9) _ 9L(0)

20 ©0 (4)

c=1

After determining s(@), the parameters associated with the
highest k magnitudes of |s(@; D);| are retained, where i corresponds
to the indices of the selected parameters. Essentially, SNIP
calculates the importance score of each parameter as its product
with the incoming gradient. It prioritizes weights that, regardless
of their direction, are distant from the origin and yield large
gradient values. It's noteworthy that the objective of SNIP can be
reformulated as noted by De Jorge et al. (2020) and Frankle et al.
(2021):

max S(f,c): = E |0;VL(@);| st ce{0,1}" cllo =g
c
iesupp(c)

(5)

where S is defined to be the saliency scores. It is trivial to note
that the optimal solution to the above problem can be obtained
by selecting the indices corresponding to the top-q values of
si =10; VLO);].

3.1.2 lterative connection importance criterion

In this section, we test the effectiveness of iterative-SNIP
(De Jorge et al, 2020), which is an iterative version of the
application of saliency criterion in Equation 4. We briefly describe
the iterative-SNIP next. We assume g to be the number of
parameters to be preserved post pruning. Given that we have
some pruning schedule (similar to learning rate schedule: linear,
exponential etc.) to divide g into a set of natural numbers {k;}L_,
such that ¢; > q;41 and qr = g. Now, given the binary masking
variable ¢; corresponding to g;, the formulation of pruning from ¢,
to q¢+1 can be made using the connection sensitivity (4) similar to
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De Jorge et al. (2020) as:
Cr4] = argmax S@,¢) st cef{0, 11" lello = kgr1, cO e =c¢,
B,

(6)

where @ = 0 © ¢;. The constraint ¢ © ¢; = ¢ is added to ensure that
no previously pruning parameter is re-activated. Assuming that the
pruning schedule ensures a smooth transition from one topology

to another (|l¢;]lg ~ llci+1llp) such that the gradient approximation
ILO |  ILO)
0 Ct 30 Ct+1

as solving Equation 5 at . In the scenario where the schedule

is valid, Equation 6 can be approximated

parameter is set to T = 1, the original SNIP saliency method is
recovered. This is basically employing a gradient approximation
1 and the
resulting mask c. We conduct experiments with IterativeSNIP in

approach between the initial dense network ¢y =

the federated neuroimaging setting and present our findings in
Section 5.2.

3.2 Proposed method

We propose a novel method for efficient distributed sub-network
discovery for distributed neuroimaging and propose a method for
training such sparse models or subnetworks in a communication
efficient manner called Sparse Federated Learning for NeuroImaging
or NeuroSFL with the goal of tackling communication inefficiency
during decentralized federated learning with non-IID data
distribution in the context of distributed neuroimaging data. The
proposed method initiates with the common initialization 6 at all
the local client models. Next, importance scores sj are calculated
for each model parameter in the network based on the information
from the imaging data available across all the client sites. At this
stage, each client has a unique set of importance scores for their
parameters in the local network f based on the local data available
at that site similar to Lee et al. (2018) and De Jorge et al. (2020).
As shown in Equation 7, all the clients transmit these scores to each
other and a mask m is created corresponding to the top-q % of the
aggregated saliency scores:

K-1
m= T‘Z(Z Sk) (7)
k=0

where the T, is the top-q operator that retains the top g percentage
of the si values by magnitude and sets the rest to zero. This mask is
then used to train the model f; (6 © m; x) at site k on their local data
(x,9) ~ Dx.

For the federated training among a total of K clients, the clients
are trained locally, and at the end of local training they share
their trained parameters which are then averaged; we call this a
communication round. At the start of this local training, each site
k starts with the same initial model weights 6y which at each site k
is denoted as 6 at training step ¢ = 0 which are then masked with
the generated saliency mask m to produce the common masked
initialization 6} as follows:

9,210 = (9](,0 @m
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Next these models at each site k are trained on their local dataset
(x,y) ~ Dy.

The masked models f (6; o ©m) across all the sites are trained for
a total of T communication rounds to arrive at the final weights 0y 1
at each local site. In each communication round ¢, only a random
subset 7' = {f1, f2, ... fr} of K’ clients where F/ C F the set of all
clients, and K’ < K are trained on their local data. These K’ clients
are sampled uniformly at random without replacement in a given
round but with replacement across different rounds. We sample
a subset of clients uniformly instead of including all the clients
in a single communication round because previous works have
shown that it is computationally more efficient and including more
clients in a single round leads to diminishing returns (McMahan
et al, 2016). This approach is also a standard practice in the
federated learning (FL) literature (Yang et al., 2018; Reddi et al,,
2020; Sun et al, 2020; Dai et al., 2022). Since each client has
an equal probability of being chosen for participation in a given
communication round, over the course of enough communication
rounds, all clients will eventually participate. In this work, we train
our FL pipeline for a total of T = 500 communication rounds,
similar to Dai et al. (2022).

At the end of local training on the random subset F’, the
updated weights of the selected clients are aggregated to get the new
updated parameters ékm)t, which would be the starting weights for
the next communication round. When sharing the updated weights
only the weights corresponding to the 1’s in the binary mask m
are shared among the clients and with the server, as only these
weights are being trained and the rest of the weights are zero-ed out.
This results in the gains in communication efficiency. To efficiently
share the model weights, the clients only share their sparse masked
weights 82, = 07 © m among the selected clients in " using
the compressed sparse row (CSR) encoding. The algorithm for the
training process is delineated in Algorithm 1.

4 Experiments

4.1 Dataset and non-IID partition

We evaluated NeuroSFL on the ABCD dataset. ABCD study
is the largest long-term study of brain development and child
health in the US. It recruited over 10 thousand children of 9 and
10 years old from 21 sites and followed them for 10 years with
annual behavioral and cognitive assessments and biannual MRI
scans (Garavan et al., 2018). Along with multi-session brain MRI
scans for structure and function, the ABCD study also includes
key demographic information including gender, racial information,
socio-economic backgrounds, cognitive development, and mental
and physical health assessments of the subjects. The ABCD open-
source dataset can be found on the National Institute of Mental
Health Data Archive (NDA) (https://nda.nih.gov/). In this study,
we used data from the ABCD baseline, which contain 11,875
participants aged 9-10 years.

T1-weighted MRI images were preprocessed using the
Statistical Parametric Mapping 12 (SPM12) software toolbox for
registration, normalization, and tissue segmentation. Then the gray
matter density maps were smoothed by a 6 mm?® Gaussian kernel,
creating images with the dimensionality of (121, 145, 121) of voxels
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Input: Total number of clients Kj;
rounds T

Output: Sparse local models 55

1: Initialize local models with 6y and transmit to
all clients.

21 sk <~

site k and share the scores to the server

importance scores at the server
4: Transmit m to all the sites K.
5: 0}y < 6 Om

1,2,..,K

#apply the mask at all sites k

6: for t=0 to T—1 do
7z {Ci}lel # Sample a set of K clients uniformly
of all clients

set

from the

8: for site k in parallel for all K clients do

9: é:‘, < csr(f§}); #Gather masked weights Oy
from the server

10: for t=0 to N—1 do

11: Sample a batch of data &y, from the
local dataset.

12: gZ‘m <« Vyﬁ(ézm;&(,m) Om # calculate and
mask gradients

13: é:,lt,r-%—l <« ékm‘m - ng;:,’t’r# take optimization
step with masked gradients on masked
weights

14: end for

15: transmit the non-zero elements of the

updated model OAZLN_I back to all clients.
16: end for
17: St <« Zkef(élr:,lt,N—l # Aggregate the masked
non-zero weights in the server

18: end for

Algorithm 1. NeuroSFL.

at Montreal Neuroimaging Institute (MNI) space with each voxel
having dimensions of 1.5 x 1.5 x 1.5 mm.

We simulated the heterogeneous data distributions across
federated clients through the adoption of two distinct data
partitioning strategies. We outline these strategies for generating
non-IID data partitions with a comprehensive discussion in
Section 4.1.1.

4.1.1 Generating non-I1ID data partition with
Dirichlet distribution

In contrast to centralized data-center training where data
batches are often independent and identically distributed (IID),
federated learning typically deals with non-IID data distributions
across different clients. Hence, to evaluate novel federated learning
methods it is crucial to not make the IID assumption to better
reflect the real world setting and instead generate non-IID data
among clients for evaluation (Hsu et al., 2019). In this section, we
discuss the process of generating non-identical data distribution in
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the client sites using the Dirichlet Distribution, specifically for the
context of federated learning.

4.1.1.1 Generating non-1ID data from Dirichlet
distribution

In this study, we assume that each client independently
chooses training samples. These samples are classified into N
distinct classes, with the distribution of class labels governed by a
probability vector g, which is non-negative and whose components
sum to 1, thatis, g; > 0,7 € [1,N] and ||q|l; = 1. For generating
a group of non-identical clients, g ~ Dir(ep) is drawn from the
Dirichlet Distribution, with p characterizing a prior distribution
over the N classes and o controls the degree of identicality among
the existing clients and is known as the concentration parameter.

In this section, we generate a range of client data partitions
from the Dirichlet distribution with a range of values for the
concentration parameter « for exposition. In Figure 1, we generate
a group of 10 balanced clients, each holding an equal number of
total samples. Similar to Hsu et al. (2019) the prior distribution
p is assumed to be uniform across all classes. For each client,
given a concentration parameter «, we sample a q from Dir(x)
and allocate the corresponding fraction of samples from each client
to that client. Figure 1 illustrates the effect of the concentration
parameter « on the class distribution drawn from the Dirichlet
distribution on different clients, for the CIFAR-10 dataset. When
o — 00, identical class distribution is assigned to each classes.
With decreasing «, more non-identicalness is introduced in the
class distribution among the client population. At the other extreme
with « — 0, each client only consists of one particular class. To
create a more realistic FL scenario, we used the value of & = 0.3 for
all of our experiments.

4.2 Architecture, hyperparameters and
experimental details

Here we provide a comprehensive overview of the architecture,
hyperparameters, and the experimental setup we use to evaluate
our proposed NeuroSFL method on the neuroimaging Adolescent
Brain Cognitive Development (ABCD) data. Our study focuses
on the task of classifying a participant’s sex based on MRI scans,
by employing a 3D variant of the well-known AlexNet model
(Krizhevsky etal., 2012). The 3D variant was referenced from Abrol
et al. (2021), which has a specific channel configuration for the
convolutional layers set as: 64C-128C-192C-192C-128C, where “C”
denotes channels.

We optimized the learning rate for this task through an
exhaustive search ranging from LR = 1 x 1072 to 1 x 107°,
achieving a delicate balance between rapid convergence and fine-
tuning during training. We employed a batch size of 32 and a
learning rate decay factor of 0.998 was applied. We applied varying
sparsity levels, ranging from 0%, 50%, 80%, 90%, and 95% to assess
the overall performance. A random split of 80/20 was used for
training and testing within each individual site. For nonlIID setting,
as we used alpha = 0.3 for Dirichlet distribution, we enforced an
additional constraint of having at least five samples in each client,
in order to perform stable training and perform random 80/20 split
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similar to IID setting. Our training consists of five epochs with 200
communication rounds.

4.3 Baselines

We compared our method with both centralized and
decentralized baselines. Centralized baseline includes FedAvg
(McMahan et al., 2017), FedAvg-FT (Cheng et al., 2021) which are
the standard dense baselines, and for the decentralized FL setting,
we take the sparse Dis-PFL (Dai et al., 2022).

In FedAvg (McMahan et al, 2017), each client trains its
local model using its local data, and then these local models
are aggregated or averaged to update the global model. On the
other hand, FedAvg-FT (Cheng et al,, 2021) extends the FedAvg
algorithm by incorporating fine-tuning or transfer learning.
Specifically, after the global model is trained using FedAvg, the
global model is then fine-tuned or adapted using additional data
from a central server or other external sources. This fine-tuning
step allows the global model to adapt to new tasks or data
distributions beyond what was initially learned from the federated
learning process. We also compare with DisPFL (Dai et al.,, 2022)
with varying sparsity levels. DisPFL is a new sparse FL technique
that randomly prunes each layer similar to Evci et al. (2020) and
uses the prune and regrow method from that work as well, resulting
in a dynamically sparse method. The prune and regrow method
involves periodically pruning a fraction of the network’s weights to
zero, and then regrowing new weights in their place, allowing the
model to dynamically adjust its sparsity pattern during training.

In exploring the impact of using unique local masks instead
of a global mask on the performance of FL, we established
IndividualSNIP as a baseline, representing an approach where
unique local masks are devised from the saliency criterion, and local
models are trained based on these masks. Moreover, to isolate the
impact of just using global masking, that is using the same random
mask in all clients, instead of using different unique random masks
at different sites we compare our method and competing methods
against random global masking as well in Figure 2.

Additionally, with further experiment on how different
methods of model pruning and selection impact the performance of
our approach, we further experiment with other techniques named
IterSNIP and WeightedSNIP. IterSNIP builds upon the traditional
SNIP method (Lee et al, 2018) by incorporating multiple
minibatches during the training process of mask generation. This
approach aggregates saliency scores from these minibatches to
generate a comprehensive and robust pruning mask. Conversely,
WeightedSNIP adopts a different strategy, deriving a global mask
through a weighted average of saliency scores based on the
frequency of data at each site, and assigning importance levels to
individual sites based on the amount of data at sites.

4.4 Experiments in real-world FL system
In order to demonstrate the use-case of the NeuroSFL

in real world scenario, we further aim to perform extensive
experiments in a real-world FL system by making use of
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Generating non-identical client data partitions using the Dirichlet Distribution for the Cifar10 dataset among 10 clients. Distribution among classes is
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Coinstac (Plis et al., 2016), a cutting-edge open-source federated
learning solution designed for collaborative neuroimaging
endeavors at scale. Deployed in real-world scenarios, Coinstac
embodies a paradigm shift in collaborative research, transcending
traditional boundaries and fostering synergistic interactions
among researchers worldwide. Coinstac’s architecture facilitates
decentralized computations across a distributed network of
geographically dispersed client nodes, seamlessly integrating
diverse computational tasks while safeguarding data privacy
through state-of-the-art differential privacy mechanisms. Having
said this, our experiment leverages Coinstac’s robust infrastructure
to benchmark our method against the standard dense FedAvg
algorithm (McMahan et al., 2017) within a practical real-world
context. Our evaluation spans five diverse client locations,
spanning from North Virginia to Frankfurt, each representing
a distinct geographical node within Coinstac’s decentralized
network. By meticulously assessing the mean communication
timereflecting the duration for the server model to aggregate
all client weights during each communication round, we
demonstrate the efficiency of our algorithm in optimizing
federated learning workflows. Our investigation encompasses
five local client models, each featuring varying sizes or depths of
ResNet architectures while maintaining a sparsity level of 90%
across experiments.
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5 Results and discussion

5.1 Effect of varying sparsity levels

We first explore the effect of sparsity on IID data in Section
5.1.1 and then explore the efficacy of NeuroSFL on non-IID data
in Section 5.1.2.

5.1.1 Effect of varying sparsity levels on IID data
The performance of various methods across different sparsity
levels was evaluated, as presented in Table I, and visually
presented in Figure 2. Sparse baselines, including Ours (NeuroSFL),
IndividualSNIP, DisPFL (Dai et al., 2022), and Global Random
Mask, were compared against dense baselines such as FedAvg-
FT (Cheng et al, 2021) and FedAvg (McMahan et al, 2017).
Notably, our proposed NeuroSFL, exhibited robust performance
across varying sparsity levels, achieving an accuracy of 92.52%
at 0% sparsity and maintaining high accuracy even at higher
sparsity levels, with 71.18% accuracy at 95% sparsity. In
comparison, IndividualSNIP demonstrated decreasing accuracy
as sparsity increased, with a significant drop to 52.70% at 95%
sparsity. This is in line with expectation as individual-SNIP only
incorporates the saliency scores from a single site at random and
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TABLE 1 Performance comparison of different methods and sparsity levels.

Method

10.3389/fninf.2024.1430987

Sparsity (%)

110)74

Sparse baselines

Ours (NeuroSFL) 92.52% 92.4% 88.19% 87.5% 71.18%
DisPFL 85.24% 79.78% 76.00% 74.01% 62.12%
IndividualSNIP 91.59% 80.20% 52.37% 51.04% 52.70%
Global Random Mask 90.39% 89.20% 84.48% 71.44% 47.53%

Dense baselines

FedAvg-FT

92.1% (dense baseline)

FedAvg

90.5% (dense baseline)

Sparse baselines include Ours- (NeuroSFL), DistPFL, IndividualSNIP, and Global Random Mask. Dense baselines include FedAvg and FedAvg-FT.

does not incorporate information from the datasets at all the
participating cites.

Moreover, in contrast to NeuroSFL, DisPFL, and Global
Random Mask also showcased diminishing accuracy with
increasing sparsity, highlighting the effectiveness of our proposed
approach in mitigating the adverse effects of sparsity on model
performance on neuroimaging data. Notably, Global Random
Mask outperformed DisPFL on lower sparsities, suggesting that in
general global random masks might be more suitable for federated
applications compared to even targeted unique local masks which
DisPFL employs.

Dense baselines, such as FedAvg-FT and FedAvg, even
while being not sparse and using full communication achieved
comparable performances to NeuroSFL in the non-extreme sparsity
region. NeuroSFL even surpassed the performance of dense
baselines at a sparsity level of 50%, highlighting the effectiveness
of our proposed sparse method in optimizing model performance
while reducing communication costs. Furthermore, Figure 2B
illustrates that the single global model trained with NeuroSFL
demonstrated excellent performance for data within each site,
emphasizing the model’s effectiveness in capturing site-specific
characteristics while maintaining high accuracy.

Additionally, in Figure 3, it is observed that the performance
of local models trained with NeuroSFL remains consistently robust
across non-IID states of local data, indicating the model’s versatility
and reliability in various data distribution scenarios.

5.1.2 Effect of varying sparsity levels on non-IID
data

In this section, we explore the influence of changing sparsity
levels on our model’s performance on non-IID data across different
client configurations: 10, 20, and 30 clients with f1-score as a metric.
For all configurations, we employ the Dirichlet Distribution with
alpha = 0.3 across various sparsity levels.

5.1.2.1 10 Clients

We begin by examining the model’s performance with 10
clients. Figure4 provides a visual representation of the F1-
score versus sparsity relationship, showcasing the consistent
performance achieved across different sparsity levels (Figure 4A).
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Additionally, Figure 4B illustrates the class distribution with
Dir(0.3) for the ABCD dataset for 10 clients and their final local
test Fl-score. The Dirichlet partition results in an uneven data
distribution, as visually confirmed by Figure 4B.

Notably, our model demonstrated robust performance across
different sparsity levels, ranging from 84.75 to 92.07%. These
results underscore the resilience of our approach in maintaining
high performance even under significant sparsity constraints. This
resilience suggests that our model’s effectiveness extends beyond
homogeneous datasets, making it suitable for deployment in
federated learning scenarios with diverse client characteristics.

5.1.2.2 20 Clients

Expanding our analysis to 20 clients, we investigate how varying
sparsity levels impact our model’s performance on non-IID data.
Figure 5 provides a visual representation of the Fl-score versus
sparsity relationship, highlighting the consistent performance
achieved across different sparsity levels (Figure 5A). Additionally,
Figure 5B illustrates the class distribution with Dir(0.3) for the
ABCD dataset for 20 clients and their final local test F1-score.

The findings indicate a similar pattern to the 10-client case,
with the model maintaining notable Fl-scores across varying
sparsity levels, with the lowest performance being 79.21% under
the highly sparse constraint of 95% sparsity. This highlights
the model’s ability to generalize effectively even with significant
data sparsity.

5.1.2.3 30 Clients

Finally, we extend our analysis to 30 clients to further
understand the impact of varying sparsity levels on non-
IID data with larger number of clients. Figure 6 provides
a visual representation of the Fl-score versus sparsity
relationship, showcasing the consistent performance achieved
different  sparsity (Figure 6A).  Additionally,
Figure 6B illustrates the class distribution with Dir(0.3)
for the ABCD dataset for 30 clients and their final local

test F1-score.

across levels

The results reveal a similar trend to the 20-client scenario,
with the model achieving notable Fl-scores across varying
sparsity levels. However, for the highly sparse condition of
95%, there is a slight drop in Fl-score to 76.42%. This decline
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Gender differences in each of the 21 ABCD sites along with the performance of the local models on each site with 50% sparsity.
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(A) Comparison of methods for gender classification using non-1ID Dirichlet distribution with alpha = 0.3 and varying sparsity levels. (B) Gender
differences in each of the 10 ABCD sites along with the performance of the model.
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can be attributed to the increased difficulty for the model
to generalize with such sparse data under the additional
restriction of having larger clients. Despite this challenge, our
model maintains its effectiveness across a diverse range of
sparsity levels, indicating its potential for practical applications
in federated learning scenarios with a larger number of
client sites.
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5.2 lterativeSNIP performance

We evaluate the performance of IterSNIP and WeightedSNIP
to explore their efficacy in sparse FL scenarios. Table 2 summarizes
the accuracy results obtained at 50% sparsity for different iterations
of IterSNIP and WeightedSNIP. IterSNIP, with varying numbers
of iterations (1, 10, and 20), demonstrated consistent performance
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(A) Comparison of methods for gender classification using non-I1ID Dirichlet distribution with alpha = 0.3 and varying sparsity levels. (B) Gender
differences in each of the 20 ABCD sites along with the performance of the model.
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(A) Comparison of methods for gender classification using non-1ID Dirichlet distribution with alpha = 0.3 and varying sparsity levels. (B) Gender
differences in each of the 30 ABCD sites along with the performance of the model for 50% sparsity.
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TABLE 2 Performance comparison of IterSNIP with different iterations
and WeightedSNIP in terms of accuracy at sparsity of 50%.

Method Iterations Accuracy (50%
sparsity)
TterSNIP 1 Iteration 92.40%
10 Iteration 91.82%
20 Iteration 92.67%
WeightedSNIP 1 Iteration 92.10%

with increasing iterations, achieving accuracies of 92.4%, 91.82%,
and 92.67%, respectively. These results suggest that utilizing
multiple iterations to obtain SNIP masks does not necessarily
enhance model performance in scenarios with sparsity constraints,
and especially when used on neuroimaging data. This is a
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departure from the single-node case on natural image datasets
such as CIFAR10 or CIFAR100 (De Jorge et al., 2020). Similarly,
WeightedSNIP, which incorporates weighted averages of saliency
scores, achieved an accuracy of 92.10% and does not outperform
the vanilla averaging technique. This proves that our model is
robust enough to find a sparse mask, with minimal effect from the
amount of data at each sites.

5.3 Wall-time efficiency gains in the real
world COINSTAC system

The results of the ensuing comparative analysis as delineated
in Table 3, demonstrate the tangible speed enhancements achieved
by our proposed methodology NeuroSFL as compared to the
standard FedAvg in a real-world setting. Importantly, our results
indicate that our approach consistently outperforms Fed Avg across
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TABLE 3 Comparison of communication time between FedAvg and NeuroSFL on Cifar10 for ResNet architectures of different depth.

Architecture Accuracy Communication time (s) Speed up
FedAvg NeuroSFL

ResNet32 90.52% 0.285 + 0.04 0.238 £ 0.02 1.20 times

ResNetd4 89.65% 0.409 + 0.06 0328 4 0.04 1.24 times

ResNet56 93.74% 0531 4 0.07 0.407 £ 0.06 1.30 times

ResNet110 93.25% 1.812+0.33 0.78140.13 2.32 times

all ResNet architectures. For instance, in the case of ResNet32,
our method achieves a communication time of 0.238 £ 0.02 s,
compared to 0.285 £ 0.04 s for FedAvg, resulting in a speedup
of 1.20times. This trend continues across deeper architectures,
with our technique demonstrating significant improvements in
communication efficiency. For instance, for ResNetll0, our
method achieves a remarkable speedup of 2.32x over FedAvg,
showcasing its ability to handle complex models with greater
efficiency. These empirical findings underscore the importance
of sparse federated techniques like NeuroSFL, thereby propelling
collaborative neuroimaging research to unprecedented heights.

5.4 Sparsity vs. accuracy performance
comparison

In this section we analyze and interpret the results from Section
5. First, we probe the reasons behind the performance gains in
comparison to a state of the art federated sparse learning method
(Dai et al., 2022).

In a specific comparison with DistPFL, we can see that
NeuroSFL consistently performs better than DisPFL in a range of
sparsities in the selected tasks. This is probably due to a better
choice of the initial sparse sub-network using the importance
criterion. Another difference is that, in DisPFL different local
clients have different levels of sparsity and a final model averaging
is done, where the final model becomes denser due to the union
of many sparse subnetworks. We however retain the same mask
in all the clients and start from the same initialization in all the
clients, result in equivalent sparsity in all the clients; this also leaves
open the potential of keeping sparse global models in a centralized
FL setting.

6 Conclusion and future work

In this work, we propose and analyze a novel communication-
efficient FL method for neuroimaging called NeuroSFL. By
extending a gradient-based parameter importance criterion to the
FL setting, we achieve reduced communication costs and better
bandwidth in decentralized training. Our method leverages the
nature of local data distribution, resulting in a client data-aware
global sparse mask. This leads to savings in communication time
and bandwidth during sparse training. We tested our approach on
the ABCD dataset and reported improved performance compared
to contemporary methods. Overall, our sparse FL technique
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enhances communication time, making it suitable for bandwidth-
limited settings without compromising accuracy.

However, more exploration is needed regarding privacy
considerations and performance in more complex tasks. Although
FL models inherently provide more privacy compared to other
training pipelines, such as training with centralized data (Li Q. et al.,
2021), they can still be susceptible to more sophisticated forms
of attacks (Geiping et al., 2020). Sparse gradients can often result
in more privacy-preserving methods (Zhang et al., 2023), hence
it is likely our method would enjoy similar advantages. Moreover,
our method should be easily extensible to incorporate differential
privacy techniques (Ouadrhiri and Abdelhadi, 2022). We leave such
explorations for future work.
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