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Introduction: Adolescence, a critical phase of human neurodevelopment, is

marked by a tremendous reorganization of the brain and accompanied by

improved cognitive performance. This development is driven in part by gene

expression, which in turn is partly regulated by DNA methylation (DNAm).

Methods: We collected brain imaging, cognitive assessments, and DNAm in a

longitudinal cohort of approximately 200 typically developing participants, aged

9–14. This data, from three time points roughly 1 year apart, was used to explore

the relationships between seven cytosine–phosphate–guanine (CpG) sites in

genes highly expressed in brain tissues (GRIN2D, GABRB3, KCNC1, SLC12A9,

CHD5, STXBP5, and NFASC), seven networks of grey matter (GM) volume

change, and scores from seven cognitive tests.

Results: The demethylation of the CpGs as well as the rates of change in DNAm

were significantly related to improvements in total, crystalized, and fluid cognition

scores, executive function, episodic memory, and processing speed, as well as

several networks of GM volume increases and decreases that highlight typical

patterns of brain maturation.

Discussion: Our study provides a first look at the DNAm of genes involved in

myelination, excitatory and inhibitory receptors, and connectivity, how they are

related to the large-scale changes occurring in the brain structure as well as

cognition during adolescence.
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Introduction

Epigenetic regulation of gene expression occurs through a

variety of mechanisms that include modification of histone, DNA

methylation, and noncoding RNA regulation. These mechanisms

modulate the accessibility of chromatin to transcriptional

machinery, leading to altered expression of genes (Moore et al.,

2013; Perri et al., 2017; Mangiavacchi et al., 2023). Methylation of

the DNA, themore well-studied of these epigenetic processes, occurs

when a methyl group attaches to a cytosine pyrimidine (CpG) ring,

causing either an increase or decrease in gene expression, as well as

alternative splicing during transcription of genes (Dupont et al.,

2009). This intricate orchestration of gene expression and regulation

is extremely plastic and sensitive to developmental cues (Dupont

et al., 2009). While there has been extensive research demonstrating

the strong impact methylation (DNAm), in particular, has on fetal

brain development in humans (Schneider et al., 2016), the invasive

nature of harvesting brain tissue for analysis has precluded the study

of its role in neurodevelopment during human adolescence

(Wheater et al., 2020). Recent developments have made it

possible to use peripheral tissue samples such as saliva to assess

DNAm changes non-invasively (Walton et al., 2016; Lin et al., 2018;

Proskovec et al., 2020), affording researchers the opportunity to

explore these molecular underpinnings of brain development

beyond the post-natal stage.

Animal studies have shown that during adolescence, a period of

neural maturation, there are large scale epigenomic changes

occurring (Mychasiuk and Metz, 2016). While studies of normal

development are few, a cross-sectional study in adolescent rats

demonstrated that epigenetic regulators of specific genes, such as

stress responders (Hsp10), cellular regulators, (Sirt1), growth factors

(brain-derived neurotrophic factor), and glial-specific genes (Gfap),

were expressed differentially, with greater overall expression in

females than males and increased levels of expression of these

regulators found in the prefrontal cortex compared to the

hippocampus (Mychasiuk et al., 2011). A longitudinal study in

rats showed adolescence-related reductions in the expression of

dopamine receptors in cortical output neurons ranging from the

prefrontal cortex to the nucleus accumbens (Shaw et al., 2006).

Recent research has shown that DNA methylation biomarkers

gathered from peripheral tissue samples like blood and saliva have

relationships with aspects of structural and functional measures of

the brain (Walton et al., 2016; Lin et al., 2018; Proskovec et al., 2020).

One study collected resected brain tissue in conjunction with saliva,

blood, and buccal samples from 27 subjects undergoing

neurosurgery for intractable epilepsy to calculate within and

between subject correlations of DNA methylation of CpGs

between peripheral tissue and brain. This study found that the

correlation between saliva and brain epigenome-wide profiles is as

high as r = 0.90 and 15.1% of individual CpGs in saliva correlated to

brain at a nominally significant level (Braun et al., 2019).

Since the use of DNAm biomarkers gathered from peripheral

tissue have made studying epigenetic mechanisms without

harvesting brain tissue possible, there have been a few

longitudinal studies looking at the changes occurring during

human adolescence (Sanders et al., 2022). A study published in

2019 investigated the pre- and post-adolescent changes in DNAm,

finding that between the ages of 10–18 years of age, roughly 15 k

CpGs showed significant changes in DNAm (Han et al., 2019).

Another study published in 2021 found that DNAm mediated the

relationship between childhood adversity and the symptoms of

depression across adolescence (Smith et al., 2021). Yet, there is

little existing research regarding epigenetic influences on normal

cognitive and brain development during adolescence (Wheater et al.,

2020).

The neural development that occurs during human adolescence

has been well-researched. Repeated longitudinal structural magnetic

resonance imaging (sMRI) studies, where grey matter (GM) density

and volume are measured as an indirect reflection of neuronal,

dendritic and synaptic processes, glia and vasculature in the brain,

consistently demonstrate that typical human brain development

involves a birth-to-adolescence increase in GM volume that is then

followed by a decrease during adolescence (10–25 years of age) that

stabilizes in early adulthood (25 years of age and up) (Gogtay et al.,

2004; Krongold et al., 2017; Tamnes et al., 2017). This reduction in

GM volume that is seen throughout adolescence is widespread in the

brain, but with regional variability as age increases. In general,

lower-order regions are first to mature and then the higher-order

association areas follow (Gogtay et al., 2004). This reorganization of

the structure of the brain is accompanied by behavioral changes that

manifest as overall improvement across a broad spectrum of

cognitive measures that include improved attention, increased

inhibition and control, improved memory and metacognition,

continued development of cognitive self-regulation, increased

speed of processing capacity, as well as more nuanced calibration

of risk and reward (Steinberg, 2005).

Our study will take advantage of the recent advances in DNAm

analysis to model the interactions between DNAm, GM volume

changes, and cognitive development during human adolescence. To

do this, we have used the Developmental Chronnecto-Genomics

(Dev-CoG): A Next-Generation Framework for Quantifying Brain

Dynamics and Related Genetic Factors in Childhood, a longitudinal

cohort of roughly 200 typically developing subjects aged 9–14. This

project collected brain imaging, cognitive assessments, DNA

genetics and methylation data over three time points, with

roughly 1 year between each (Stephen et al., 2021). With this

data, we will identify CpGs sites where DNAm changed

significantly over that time, and assess the relationship of DNAm

change with the GM volume and cognitive performance changes.

We will also investigate the relationships between the rates of

changes between DNAm and the rates of GM volume change

and cognitive performance respectively. Based on the current

understanding of neural development and cognitive improvement

during adolescence, we expect to see changes in DNAm in genes that

play a role in GM volume changes and improved cognitive function

over time.

Methods

Cohort

All data were collected as part of the Dev-CoG study (Stephen

et al., 2021) and shared through an agreement with the project

leaders. Subjects were recruited by the Mind Research Network

(MRN) and the University of Nebraska Medical Center (UNMC).
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Approval from the relevant institutional review board at each data

collection site (Advarrra IRB—MRN and UNMC IRB—Nebraska)

and data sharing across study sites was written into the consent

forms and the study protocols (Stephen et al., 2021). Images, saliva

samples, and cognitive tests were collected from 200 male and

female subjects between the ages of 9–14 over three time points,

roughly a year between each collection. The inclusion criteria for the

study were: English speaking, age 9–14 years at enrollment and both

child and parent were able and willing to assent/consent to the study.

The exclusion criteria for the study were: current pregnancy, unable

to consent/assent, history of developmental delays or disorders (or

an individual education plan indicative of a developmental delay/

disorder), history of epilepsy or other neurological disorders,

parental history of major psychiatric or neurological disorders,

self-reported prenatal exposure to alcohol or drugs, medication

use, contraindication to MRI (MRI screening form was

reviewed), or metal orthodontia (e.g., braces or spacers) (Stephen

et al., 2021). The mean age at enrollment was 11.3 years old (full

range 9–14) for the entire group. In the repeated measure analysis

reported below, 106 subjects were analyzed (48 girls, 58 boys), who

had a mean baseline age of 11.75 years old. The multivariate analysis

of difference maps included 138 subjects for deltaT1 (mean baseline

age 11.83 years old, 67 females, 71 males) and 81 subjects for deltaT2

(35 females, 46 males). The sample size differences between the

repeated measures andmultivariate analyses are due to the flexibility

of the linear mixed-effects model when dealing with missing data

(Gabrio et al., 2022). See Table 1 for more demographic information.

DNAm preprocessing

Saliva DNAm was assessed for each subject using the Illumina

HumanMethylation850 (850 k) microarray, which measures CpG

methylation across ~850,000 probes covering 99% of gene

promoters. Standardized quality control procedures and quantile

normalization was performed using the minfi Bioconductor package

in R (version 3.6.2) (Aryee et al., 2014). Red and green channel

intensities were mapped to the methylated and unmethylated status,

with average intensities used to check for low quality samples. Beta

values reflect the degree of methylation, (from 0–1) and were

calculated for each CpG, for each subject. Principal component

analyses (PCA) were performed on the beta values to identify any

samples more than three standard deviations away from the median

on any of the first four components. These were considered outliers

and removed. Samples where the genetically determined sex differed

from the self-reported value were also removed. 20 duplicate DNA

samples were included in each batch to ensure measurement

reliability. Samples processed in different batches were merged at

this stage. Stratified quantile normalization was then applied across

sample, using the minfi PreprocessQuantile function. The cell

proportions for each DNAm sample were calculated by

implementing the estimateCellCounts function in minfi, using a

combined reference of five types of blood cells (B cells, CD8T and

CD4T cells, NK-LGL cells, monocytes, and granulocytes), as well as

epithelial cells (GSE46573) (Aryee et al., 2014). In this cohort, the

proportion of B cells, CD8T, CD4T, monocytes, and NK-LGL cells

were zero. The estimated proportion of granulocytes and epithelial

cells was 70 percent and 30 percent respectively. The cell type effect

was regressed out from all the samples to account for the change of

cell proportion over time. Batch effects were corrected by using the R

package Combat, which assumes normalized data and equalizes the

mean from all batches, making negative values possible (Johnson

et al., 2007).

CpG selection

At this stage, there were approximately 750KCpG sites retained per

subject, per time point. We kept only CpG sites with a sample standard

deviation of 0.1 or higher at the first time point, to ensure that baseline

variability across subjects exceeded measurement variability (Duan

et al., 2021). This reduced the number of CpG sites to 2414. Since

we were primarily interested in CpG sites whose DNAm values were

changing over the three time points of data collected, the CpG sites were

further filtered by keeping the sites that had changed significantly in

methylation between time points, using paired t-tests. After FDR

correction for multiple testing (Benjamini and Hochberg, 2000),

54 CpG sites during deltaT1 (time point 2 - time point 1) and

465 CpGs during deltaT2 (time point 3 - time points 2) were

identified as changing significantly, and 54 CpGs were in common.

The Infinium MethylationEPIC Manifest file (Hansen, 2016) was used

to identify the annotated genes of these 54 CpGs. Cross-referencing

these genes with the Human Protein Atlas (Uhlén et al., 2015), seven of

these CpGs were found to be located on genes highly expressed in the

brain. Refer to Figure 1A for a diagram of the filtering process. The

subsequent analyses focused on these seven CpG sites. See Table 2 for

detailed results. A post hoc gene set enrichment analysis (GSEA) was

performed using the GENE2FUNC function in FUMA (https://fuma.

ctglab.nl/) (Watanabe et al., 2017). Correction for multiple testing was

done using the Benjamini–Hochbergmethod. To further confirm tissue

specificity, genes regulated by these seven CpGs were also tested for

enrichment in specific human tissues FUMA. See Supplementary Table

S2 for complete results.

sMRI data

T1-weighted structural MRI images were collected at the MRN

site on a Siemens 3T TrioTim scanner, and at UNMC site on a

Siemens 3T Magnetom Skyra and Prisma scanners, all with a 32-

TABLE 1 General Demographic information: MRN - Mind Research Network,

UNMC - University of NebraskaMedical College, BIPOC - Black, Indigenous, and

People Of Color, WASI II IQ - Wechsler Abbreviated Scale of Intelligence, a

general IQ test, a score between 90–102 is considered average, SES -

Socioeconomic Score.

Demographics MRN (101) UNMC (102)

Mean age at enrollment (range) 11.3 (9–14) 11.2 (9–14)

Gender (M/F) 51M/50F 51M/51F

Race (Caucasian/BIPOC) 86/15 87/15

Ethnicity (% Hispanic) 41.6% 7.8%

Mean WASI-II IQ (Range) 108.6 (72–139) 112.1 (68–148)

Mean SES (Range) 42.6 (17–66) 48.2 (15–65)
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channel radio frequency coil. Scanning parameters were equilibrated

as much as possible. The sMRI images were reoriented and

registered to a cohort specific template, created using the ANTS

multivariate template generator, and resampled to 2 mm × 2 mm ×

2 mm (Andersson et al., 2007a; Andersson et al., 2007b; Avants et al.,

2008; Sanchez et al., 2012). Using FAST in FSL, a high-dimensional

normalization pipeline, the non-brain tissues was removed, and the

grey matter, white matter, and cerebral spinal fluid segmented,

leaving normalized, modulated, Jacobian-scaled grey matter

images (Zhang et al., 2001) that were smoothed by a 4 mm ×

4 mm x 4 mm full width at half maximum Gaussian kernel (Smith

and Brady, 1997). The resultant grey matter images then had

scanner differences regressed out using a simple linear regression

with age and sex as covariates. Two subjects were removed due to

movement (framewise displacement from rs-fMRI) above

3 standard deviations from the mean of the group.

FIGURE 1

DNAm Filtering Process and Results - (A) Starting with 750k CpGs after preprocessing and QC, only CpGs above the 0.1 standard deviation of

variability were kept, reducing the number of CpGs to 2414. A pairwise t-test was used to detect CpGs with significant change across time points (FDR

corrected for multiple testing). Only 54 CpGs showed significant change across all three timepoints. Of these, seven were found to be regulating genes

that according to the Human Protein Atlas are expressed in the brain. (B–H) show the significant change across all three timepoints. The CpG

regulatingCHD5 (B)was the only one of the seven to show significant increase inmethylation, the other six CpGs decreased inmethylation over time. See

Table 2 for detailed results.

TABLE 2 Identification of the seven CpGs and change in DNAm over time: These CpGs regulate genes identified by the Infinium MethylationEPIC Manifest file,

cross-referenced by the Human Protein Atlas, and verified through FUMA tissue expression analysis as being highly expressed in the brain. TP1-TP2, n = 163, TP2-

TP3, n = 103. All p-values are FDR-corrected for multiple tests.

CpGs Gene Location Regulatory Activity T1-T2 (t/p) T2-T3 (t/p)

cg01008256 SLC12A9 Exon Highly Active −4.87/0.003 −4.31/5.3E-4

cg23841819 NFASC Exon Active −4.14/0.004 −12.38/5.2E-20

cg01483824 GRIN2D Exon Highly Active −4.31/0.003 −13.05/7.0E-21

cg15205435 CHD5 Intron Highly Active 3.57/0.021 4.69/1.50E-4

cg15866800 STXBP5 Intron Highly Active −4.36/0.003 −13.21/6.2E-21

cg14859324 GABRB3 Intron Highly Active −4.30/0.003 −9.35/1.3E-13

cg26703758 KCNC1 Intron Active −4.36/0.003 −13.44/6.0E-21
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To calculate the rate and direction of change across time points,

grey matter volumes from TP1 were subtracted from TP2 to create the

deltaT1 difference map for each individual, and TP2 was subtracted

from TP3 to create the deltaT2 difference map. An independent

component analysis (ICA) built in the GIFT toolbox (SBM v1.0b)

(Xu et al., 2009) was then applied to the difference maps to extract

components/brain networks, where distributed brain regions showed

covarying patterns of GM volume changes. The components’ associated

loadings reflect these brain regions’ variation across subjects. Using the

minimum description length (MDL) criterion (Calhoun and Adali,

2009), seven components were extracted from the GM volume changes

of deltaT1, identifying our brain networks of interest for this study. The

direction of the ICA loadings were confirmed through a voxel-based

morphometry (VBM) analysis in FSL (Smith et al., 2004), where

positive loadings indicate increases in GM volume and negative

loadings indicate decreases in GM volume. The spatial maps of

these seven components were projected onto the subjects’

deltaT2 GM images, as well as to the subjects’ GM images at each

time point to ensure uniformity of comparison.

Cognitive data

The age-uncorrected standard scores from the following NIH

cognitive toolbox tests (Denboer et al., 2014) were collected from

each subject: the Picture Sequence Memory (TBPSM) test for 8+

(episodic memory), the Pattern Comparison Processing Speed

(PCPS) test for 7+ (processing speed), the Flanker Inhibitory

Control and Attention (TBFICA) test for 8+ (executive function),

the Dimensional Change Card Sort (TBDCCS) for 8+ (executive

function). The Cognition Total Composite Score (COGTC), the

Cognition Fluid Composite Score (COGFC) reflecting capacity for

new learning, and the Cognition Crystallized Composite Score

(COGCC) reflecting past learning were computed. Age-uncorrected

scores were used to preserve the sensitivity to differences in age. Scores

were corrected for site differences using a linear regression with age and

sex as covariates. Linear mixed-effects repeated measures model

(Baayen et al., 2008) with age and sex as covariates were performed

using the lme4 package in R (version 4.1.2) (Bates et al., 2015) on all

seven measures to confirm the expected significant improvements in

cognitive performance over time. (Steinberg, 2005). To calculate the rate

of change across time points, scores from TP1 were subtracted from

TP2 to create the deltaT1 difference map, and TP2 was subtracted from

TP3 to create the deltaT2 difference map.

Statistical tests

DNAm and GM
A repeated measures mixed effects model (Baayen et al., 2008)

was used to test the relationships between each of the seven CpGs

and each of the seven GMnetworks across all three time points using

the lme4 package in R (version 4.1.2) (Bates et al., 2015). The

subjects’GMnetwork loadings (representing the networks’ variation

across subjects and across time) were the dependent variables, the

DNAmmeasures of the seven CpGs were the independent variables,

while sex and baseline age were covariates. Initially, a family variable

was added as a random effect to account for the impact of siblings

within the study, but then removed from the model because it did

not account for a significant amount of variance. Similarly, the

differing time intervals between subjects’ data collection was also

included as a possible confounder and ruled out. The results were

Bonferroni corrected to control for Type I error at 5% for 49 tests

(Emerging Infectious Diseases, 2015).

To further explore the multivariate relationships between

the rates of change within the DNAm and GM networks, a

MANCOVA analysis was performed using the jmv package in R

(version 4.1.2) (R: MANCOVA) on data from deltaT1 and

deltaT2 separately. The subjects’ loadings from the seven GM

networks of the difference maps were the dependent variables,

and the DNAm changes in seven CpG sites were the

independent variables, with sex and baseline age as the

covariates. Significant associations between GM networks and

CpG sites were further tested individually for potential

interactions with sex using the emmeans package in R

(version 4.1.2) (RDocumentation).

DNAm and cognitive tests
Similarly, a repeated measures mixed effects model was used to

test the relationships between each of the seven CpGs and each of the

cognitive tests across all time points. In this model, the score from

each cognitive test was the dependent variable and the DNAm of

each CpG was the independent variable, while sex and baseline age

were covariates. To further explore the multivariate relationships

between the rate and direction of change in the DNAm and cognitive

measures, a MANCOVA analysis was also performed on the

changes in seven cognitive scores (dependent variables) and

DNAm changes in seven CpG sites (independent variables) using

data from deltaT1 and deltaT2 separately, with sex and baseline age

as covariates.

GM and cognitive tests
In the same way a repeated measures mixed effects model was

used to test the relationships between each of the seven networks of

GM volume (the independent variable) and each of the cognitive

tests across (the dependent variable) across all three time points,

while sex and baseline age were covariates. A MANCOVA analysis

was performed on the changes of cognitive scores (dependent

variables) and GM networks (independent variables) using data

from deltaT1 and deltaT2 separately.

Results

DNAm generally decreased over time

To determine which CpGs were experiencing significant change

over time, a paired t-test was performed. The results showed that the

DNAm of six of the seven CpG sites, located on SLC12A9, NFASC,

GRIN2D, STXBP5, GABRB3, and KCNC1, all decreased in

methylation across the three time points. The CpG site located

on CHD5 was the only CpG that increased in methylation

significantly. All seven CpGs were located in active or highly

active regulatory regions of their genes, indicating a role in

regulating gene expression (Moore et al., 2013). There were no

significant differences between the changes in methylation over time
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TABLE 3 Cognitive Improvement over time: Summary of the significant results from the linear mixed effects models of cognition over time. Bonferroni corrected

for multiple tests (uncorrected p < 0.001).

Cognitive test T1 - T2, t-stat T1 - T2, p-value T2 - T3, t-stat T2 - T3, p-value

COGTC 9.12 2E-16 18.8 2E-16

COGCC 6.19 2.3E-09 14.2 2E-16

COGFC 7.35 2E-12 14.4 2E-16

TBPSM 4.54 8.5E-06 6.85 5.3E-11

PCPS 6.34 1E-09 11.53 2E-16

TBFICA 3.6 4E-04

TBDCCS 4.40 1.6E-05

FIGURE 2

Relationship betweenDNAmandCognition - (A)Cognition over time: Total Cognition (COGTC) across all three timepoints. The thick lines represent

the mean for each sex, green is females, orange is males, the triangles are the mean at each timepoint. The thin lines represent each subject’s individual

slope across time. Results of the repeated measures mixed effects model: between TP1 and TP2: t = 9.12, p < 2E-16, between TP2 and TP3: t = 18.80, p <

2E-16. (B) Repeated Measures Results: Summary of the significant relationships between DNAm and Cognitive Performance across all three time

points. The width of the links corresponds to the effect size (t-statistic) of the relationship. (C) Demethylation of SLC12A9 Related to Increase in Total

Cognition: The decrease in DNAm of SLC12A9 across all three time points was significantly related to the increase in total cognition (t = −3.76, p <

0.0002). (D)MANCOVAResults: Summary of the significant relationships between the rate of decrease in DNAm and the rate of improvement in cognitive

performance. Cognitive measure labels: Total - COGTC, Crystalized - COGCC, Fluid - COGFC, Executive - TBDCCS, Memory - TBPSM, and Processing -

PCPS. See Tables 4, 5 for complete results.
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for these CpGs related to sex. Figures 1B–H shows the changes of the

DNAm of these seven genes over time. A noticeable bimodal

distribution in the DNAm of GABRB3, NFASC, GRIN2D,

STXBP5, and KCNC1 is likely due to genetic regulation from a

proximal single nucleotide polymorphism (SNP): SNP allele type

modulates methylation value of CpG site (Dupont et al., 2009). See

Table 2 for detailed results. With the exception of CHD5, DNAm

decreased over time.

Cognitive performance improved over time

A repeated measures linear mixed effects analysis was used to

verified the expected significant improvement across all cognitive

measures (Bonferroni threshold: p < 0.007), although TBFICA and

TBDCCS only showed significant improvement between TP2 and

TP3. See Table 3 for a summary of the results. The following

cognitive measures also showed significant baseline age effects:

COGTC (t = 3.5, p < 0.0006), PCPS (t = 4.11, p < 7E-5), and

TBDCCS (t = 3.48, p < 0.0007), where increased age is associated

with increased cognitive performance. Figure 2A shows an example

of the overall improvement seen in Total Cognition (COGTC) along

the three timepoints.

Decreases in DNAm were associated with
improved cognitive performance

A separate repeated measures linear mixed effect analysis

showed that DNAm decreases in SLC12A9, NFASC, GRIN2D,

STXBP5, GABRB3, and KCNC1 were related to improvement in

many of the cognitive measures, after Bonferroni correction for

multiple testing. There were no significant relationships between the

DNAm of CHD5, which was the only CpG to show an increase in

methylation, and any of the cognitive measures. Figure 2B

summarizes the significant linear relationships between DNAm

and cognition. Figure 2C highlights the relationship between the

decrease in DNAm of SLC12A9 and the improvement in COGTC.

The MANCOVA analysis revealed that the rate of DNAm decrease

of GABRB3 and was related to the improvements in COGCC during

deltaT1. The rate of decrease in methylation of GRIN2D was

associated with the rate of improvement in COGFC, TBPSM,

and PCPS during deltaT2. There were main effects of sex

(multivariate F = 4.63, p < 0.01) and baseline age (multivariate

F = 4.73, p < 0.01) with regard to the rates of change in COGCC

(univariate F = 6.94, p < 0.009 and F = 7.37, p < 0.008 respectively) in

deltaT1. Females had a greater rate of improvement in their

crystallized cognition composite score than males. Adolescents

who were older at the initial assessment had a greater rate of

improvement in their crystalized cognition composite score than

those who were younger. Figure 2D summarizes the significant

multivariate relationships between the rate of decrease in DNAm

and the rate of improvement in cognition. See Tables 4, 5 for detailed

results. Decreases in DNAm at six of the CpGs was significantly

related to the improvements seen in total, crystalized, and fluid

cognition as well as improvements in executive function, episodic

memory, and processing speed.

GM volume decreased across networks of
parietal regions while the cerebellum and
ventral pre-frontal cortex still show
increased GM volume

The ICA performed on the subject’s GM scans identified seven

brain networks (referred to as components in Figure 3A)

highlighting covarying regions of GM change within the subjects’

brains over time. These regions were identified using the Harvard-

Oxford cortical and subcortical structural atlases (Frazier et al., 2005;

Desikan et al., 2006; Makris et al., 2006; Goldstein et al., 2007) and

the probabilistic cerebellar atlas (Diedrichsen et al., 2009). The first

component (Comp1) highlights increases in cerebellar volume,

TABLE 4 Complete Repeated Measures (RM) Results between DNAm and

Cognition - The decrease in DNAm at the CpGs on these genes showed

significant relationships with the improvement seen in the cognitive measures

across all three timepoints. Threshold for Bonferroni corrections due to

multiple testing was p < 0.001. Cognitive measure labels: Total - COGTC,

Crystalized - COGCC, Fluid - COGFC, Executive - TBDCCS, Memory - TBPSM, and

Processing - PCPS.

Genes Cognitive test RM t-stat RM p-value

SLC12A9 Total −3.76 0.0002

Processing Speed −4.09 6.2E-05

NFASC Total −5.56 7.8E-08

Crystalized −4.64 6.2E-06

Fluid −5.05 9.2E-07

Processing Speed −5.56 7.4E-08

GRIN2D Total −6.28 1.7E-09

Crystalized −5.23 5.1E-08

Memory −3.15 0.001

Processing Speed −5.87 1.4E-08

STXBP5 Total −6.49 5.2E-10

Crystalized −5.49 1.1E-07

Fluid −5.77 2.7E-08

Memory −3.16 o.oo1

Processing Speed −6.04 6.1E-09

GABRB3 Total −6.78 1.1E-10

Crystalized −5.64 5.8E-08

Fluid −6.09 5.4E-07

Executive −3.34 0.0009

Memory −3.48 0.0006

Processing Speed −6.34 1.9E-09

KCNC1 Total −4.17 4.3E-05

Crystalized −4.35 2.3E-05

Fluid −3.38 0.0008

Processing Speed −3.39 0.0008
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including right and left crus I-II, left VI and VIIb, and vermiss VI,

VIIIa-b, and vermiss crus II. The second (Comp2) highlights

increases in the ventral prefrontal cortex. The third component

(Comp3) consists of a network of increased GM volume in the

cerebellum, thalamus, insula, and posterior cingulate gyrus

covarying with decreases in GM volume in the anterior cingulate

gyrus, lingual gyrus, and paracingulate gyrus The fourth component

(Comp4) is a network of cerebellar increases covarying with

decreases in the inferior frontal gyrus, the paracingulate gyrus,

the temporal pole, the frontal pole, and left caudate. The fifth

component (Comp5) comprises a network of increasing GM

volume in the temporal occipital fusiform gyrus, the inferior

temporal and middle temporal gyrus covarying with decreases in

the posterior fusiform cortex, the lateral frontal orbital cortex,

temporal pole, hippocampus, and middle frontal gyrus. The sixth

component (Comp6) highlights a network of increasing cerebellar

GM volume covarying with decreasing GM volume in the frontal

operculum cortex and temporal pole. The seventh component

(Comp7) consists of a network of increasing GM volume in the

orbital frontal cortex and subcallosal cortex covarying with

decreases in the superior frontal gyrus, the anterior cingulate

gyrus, the frontal pole, the paracingulate gyrus, and the pars

operculum of the inferior frontal gyrus. See Supplementary Table

S1 for a detailed listing of the brain regions.

The rate of DNAm decrease were associated
with the rates of GM volume loss in several
networks

To assess the relationships between the rates of change between

DNAm and GM volume, a MANCOVA analysis of the respective

difference maps was performed. The rate of decrease in DNAm of

NFASC and KCNC1 were related to the rate of decreases in the GM

volume in three GM networks (Comp3, Comp4, and Comp6).

Additionally, the rate of demethylation of KCNC1 was related to

TABLE 5 Complete MANCOVA Results between DNAm and Cognition - The rate of decrease in DNAm at CpGs on these genes was related to the rate of

improvement in cognitive performance in deltaT2. Multi/Univariate - Multivariate and univariate F-statistic and p-values listed. Cognitive measure labels:

Crystalized - COGCC, Fluid - COGFC, Memory - TBPSM, and Processing - PCPS. Directionality of the relationships determined through linear regression.

Genes Cognitive test Multi/Univariate F-stat Multi/Univariate p-value Directionality of relationship

GRIN2D Fluid 3.53/6.37 0.01/0.01 Negative

Memory 3.53/7.18 0.01/0.009 Negative

Processing Speed 3.53/3.75 0.01/0.05 Negative

GABRB3 Crystalized 3.23/4.58 0.04/0.03 Negative

FIGURE 3

Relationship between DNAm and GM across time - (A)GM ICA results: Components 1–7, thresholded from −7 < z < −3 (blue to green) and from 3 <

z < 7 (red to yellow), highlighting covarying differences in GM volume between TP1 and TP2. Blue - green are areas of GM volume decrease over time, red

- yellow are areas of GM volume increase. See Supplementary Table S1 for a comprehensive list of regions. (B)MANCOVA Results Overview: Pictured are

the significant relationships between the rates of change in DNAm and GM. The width of the links corresponds to the effect size (F-ratio) of the

relationship. See Table 6 for complete results.
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decreases in Comp7. In contrast to this trend, the rate of increase in

the DNAm of CHD5 was related to the rate of decrease in GM

volume in Comp2 and the rate of increase in GM volume in Comp5.

Figure 3B summarizes the multivariate results between the rates of

DNAm change and GM volume changes. The relationship between

the rate of change between the DNAm of KCNC1 and Comp1 had a

significant interaction with sex (t = −4.768, p < 0.0001). In females,

the rate of decrease of DNAm of KCNC1 is related to the rate of

TABLE 6 Complete MANCOVA Results between DNAm and GM volume - The rate of decrease in DNAm at CpGs on these genes was related to networks of GM

change in the listed GM components. Multi/Univariate - Multivariate and univariate F-statistic and p-values listed. Directionality of the relationships determined

through linear regression.

Genes GM component Multi/Univariate F-stat Multi/Univariate p-value Directionality of relationship

NFASC Comp3 5.28/9.72 2.7E-05/0.002 Positive

Comp4 5.28/21.35 2.7E-05/9.2E-6 Positive

Comp6 5.28/17.61 2.7E-05/5.0E-5 Positive

KCNC1 Comp1 6.27/5.98 2.7E-6/0.02 Interaction

Comp3 6.27/7.55 2.7E-6/0.007 Positive

Comp4 6.27/7.08 2.7E-6/0.009 Positive

Comp6 6.27/5.65 2.7E-6/0.02 Positive

Comp7 6.27/22.21 2.7E-6/6.3E-6 Positive

CHD5 Comp2 2.31/6.01 0.03/0.02 Negative

Comp5 2.31/4.64 0.03/0.03 Negative

TABLE 7 Function and Role of the Genes - Listed are the function and role in the brain of the seven genes regulated by the seven CpGs selected in this study.

Expression of these genes in the brain was cross-referenced using the Human Protein Atlas and verified through FUMA tissue expression analysis.

Genes Function and role in the brain

SLC12A9 Solute carrier family 12 (potassium/chloride transporters), and specifically regulates the concentration of chloride in and around cells (including

neurons) utilizing a potassium:chloride symporter (Gagnon and Delpire, 2013). The SLCA12 transporters are involved in cellular processes

throughout the body, but in the brain have been functionally implicated in the signaling cascade of excitatory or inhibitory inputs (Smagin et al.,

2021) and are associated with auditory processes, inhibition, locomotion, and peripheral nerve health (Gagnon and Delpire, 2013)

STXBP5 Encodes syntaxin binding protein 5, or tomosyn, a protein involved in the regulation of neurotransmitter release by stimulating the SNARE

complex formation (Williams et al., 2011)

GABRB3 Encodes gamma-aminobutyric acid (GABA) receptor subunit beta-3, one of three subunits in the GABAA receptor, a ligand-gated ion channel for

GABA, a major inhibitory neurotransmitter in the nervous system (PubChem, 2022a). GABAergic neurons are diverse and can be found

throughout the brain, accounting for up to 25% of the neuronal composition of some regions (Schmidt-Wilcke et al., 2018). The role GABA plays in

adolescence has been well-researched in non-human primates and rats, highlighting a critical role in the development of the prefrontal cortex

through the fine-tuning of the excitatory/inhibitory balance (Caballero and Tseng., 2016). Non-human primates experience an adolescence-related

maturation of GABAergic functionality marked by a shift in the composition and expression of the subunits of the GABAA receptors (Caballero

and Tseng., 2016)

GRIN2D Glutamate ionotropic receptor 2D, is one of four N-methyl-D-apartate receptor 2 (NMDAR2) subunits (PubChem, 2022b), and has been found

throughout the brain playing key roles in synaptic plasticity that are essential to memory and learning (PubChem, 2022b). Research in rats has

shown that while expression of most NMDA receptor sub-types increases over the course of maturity, NMDAR2D expression declines and

becomes localized to the hippocampus and basal ganglia, while increasing in the cerebellum (Wenzel et al., 1996)

KCNC1 Encodes a potassium voltage-gated channel subfamily C member 1, which mediates the excitability of neuronal cells by regulating the influx of

potassium (PubChem, 2022c). There is no current research on the role KCNC1 plays in neural development or cognition, although mutations and

loss of function are connected to intellectual disability and epilepsy (Kessi et al., 2020)

NFASC Encodes neurofascin, an L1 family immunoglobulin cell adhesion molecule (L1CAM) (PubChem, 2022d). There are many isoforms of NFASC that

are developmentally and spatially differentiated throughout the brain (PubChem, 2022d). Isoforms ofNFASC have been found to be responsible for

neurite outgrowth, organization of the axon initial segment and nodes of Ranvier, and neurite myelination (PubChem, 2022d). Recent animal

research revealed that neurofascin regulates myelin targeting and sheath growth throughout the central nervous system (Suzuki et al., 2017)

CHD5 Encodes a neuron-specific protein of the chromodomain helicase DNA-binding protein family (National library of Medicine, 2023). These

chromatin remodelers regulate DNA accessibility by altering nucleosomal structure, usually during neurogenesis, changing the expression of genes

required in neuronal differentiation (Alendar and Berns, 2021). CHD5 is involved in the regulation of neuronal genes linked to terminal neuronal

differentiation, synaptic connectivity, and synaptic strength (Egan et al., 2013). The majority of research into CHD5 is focused on early fetal brain

development and its association with neoblast tumors (Alendar and Berns, 2021), little is known about its behavior during adolescence or its

relationship with cognition
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increase in GM volume in Comp1. In males, the rate of decrease of

DNAm of KCNC1 is related to the rate of decrease in GM volume in

Comp1. This interaction between sex and the rate of DNAm of

KCNC1 in the cerebellum is highlighted in Supplementary Figure S2.

See Table 6 for detailed results. Decreases in the rates of

demthylation of NFASC and KCNC1 were associated with the

rates of change in GM volume across varied regions of the brain,

mostly associated with GM volume loss. The rate of increase of

DNAm of CHD5 was associated with the rate of change in GM

networks that highlighted areas of GM volume increase.

Decreases in DNAm and improvement in
cognition weakly associated with GM
volume decreases

To test the direct relationships between DNAm and GM volume

over time, a repeated measures linear mixed-effects analysis was

performed. The results did not survive correction for multiple

testing, they did highlight a pattern of associations between

networks of GM volume loss in Components 3, 4, and 6 with

decreases in DNAm as well as improvements in cognition across

time, which was very similar to the multivariate results between the

rates of change in demethylation and networks of GM volume change.

A summary of these results can be found in Supplementary Figure S1.

Discussion

Investigation of the changes ofDNAm in these seven genes and those

relationships with GM volume and cognition across time in this

adolescent cohort have given us a first look at some of the molecular

underpinnings that may be partly responsible for driving the dynamic

and profound changes associated with adolescence. The function and

roles of these genes in the brain are highlighted in Table 7. The post hoc

pathway analysis (see Supplementary Table S2) found significant

pathways annotated to molecular-level functioning within the neuron,

synapse, axon, and transporter complexes (Watanabe et al., 2017). Tissue

enrichment from the FUMA analysis also confirmed elevated expression

of these gene-enrichment pathways exclusively within the brain

(Watanabe et al., 2017). More specifically, SLC12A9, NFASC,

GRIN2D, STXBP5, and CHD5 are all expressed throughout the brain,

while GABRB3 is expressed differentially in the following regions of the

brain: cerebral cortex, hippocampus, cerebellum, thalamus, olivary body,

and piriform cortex, andKCNC1 is expressed in neurons that fire at high

frequency, including neurons in the cerebellum, globus pallidus,

subthalamic nucleus, substantia nigra, reticular thalamic nuclei,

cortical and hippocampal interneurons (Uhlén et al., 2015). The

location of these CpGs further support their role in regulating gene

expression. The CpGs on SLC12A9, NFASC, and GRIN2D were located

on the exons of the gene, which is associated with alternative splicing of

the gene (Shayevitch et al., 2018). TheCpGs ofCHD5, STXBP5,GABRB3,

and KCNC1were located on the introns of the genes, which is associated

with changes in gene expression (Anastasiadi et al., 2018).

In our study, six genes, SLC12A9, NFASC, GRIN2D, STXBP5,

GABRB3, and KCNC1, experienced a sharp decrease in methylation

between TP2 and TP3. This dramatic rate of change was not

matched by the changes seen in GM volume or cognitive

performance, which showed more consistent decreases and

increases respectively over time. To rule out that this difference

in the rates of changes was caused by a batch effect within the

methylation data, subsamples of subjects withmethylation data of all

three timepoints within the same batch were analyzed. The same

precipitous drop in methylation between the last two timepoints was

observed. This suggests a biological mechanism, maybe related to

puberty status, worthy of future study.

The demethylation of these six genes which all play, to some

degree or another, a role in the regulation of the excitatory and

inhibitory signaling of the brain (Debanne and Poo, 2010; Arain

et al., 2013; Morris, 2013; Smagin et al., 2021), were significantly

related to the adolescents’ improvement in general, fluid, and

crystalized cognition, as well as processing speed. Additionally,

the demethylation of GRIN2D, GABRB3, and STXBP5, which are

more directly involved in neurotransmission, was related to

improvements of episodic memory over time. Current research

shows that maturation of the GABAergic network plays a role in

the restructuring of the hippocampus during adolescence (Caballero

and Tseng, 2016). The demethylation of GABRB3 was also related to

improvement in executive function, consistent with research

showing increased maturation of GABAergic networks is linked

to improvements in executive function (Caballero and Tseng, 2016).

The CpG site on CHD5 is the only one with increased

methylation over time. The rate of change in CHD5 was related

to the rates of GM volume increases in the prefrontal cortex, and in a

network of the temporal regions, as well as the rate of improvement

in executive function. These influences could be due to the role this

gene plays in the development of neural plasticity (Arain et al.,

2013).

The networks of GM volume change from this cohort were

consistent with existing research. At this stage of adolescence, the

cerebellum and prefrontal cortex are typically increasing in volume

(Tiemeier et al., 2010) while frontal and occipital poles, as well as

dorsal parietal cortices, begin showing the maturation-related GM

volume loss (Gogtay et al., 2004). The demethylation of NFASC,

KCNC1, GRIN2D, GABRB3, and STXBP5 across time were related,

although not strongly (not surviving multiple comparison

corrections) to the patterns in GM networks in components 3, 4,

and 6 (Supplementary Figure S1), highlighting cerebellar increases

covarying with decreases across the temporal, occipital, and frontal

poles. These promising relationships coupled with the significant

associations between the rates of DNAm and GM changes (Figure 3,

the MANCOVA analysis) suggest a concurrent rather than causal

association, particularly in light of recent research suggesting that

GM volume loss measured in healthy adolescents is actually cortical

thinning due to an increase in axon myelination (Natu et al., 2019).

This is also supported by the significant relationships seen between

the rates of GM volume “loss” and the rate of change in the

demethylation of NFASC, which regulates myelination

(Klingseisen et al., 2019). The rate of change of DNAm of

KCNC1 was also related to rates of GM volume change in

various brain networks, possibly related to the increased

excitability of adolescent brains (Debanne and Poo, 2010; Zanini

et al., 2016), but more research would be needed to confirm this.

Networks of GM volume changes across time also had trending

relationships with the cognitive changes in crystallized and fluid

cognition, as well as episodic memory and attention/inhibitory
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control. These relationships could also be due to the coincidental

association of GM volume “loss” during adolescence happening in

parallel to the changes in cognition, rather than driving them.

In addition to the strengths of this exploratory longitudinal

study, there were some limitations. There was no measure for the

stage of puberty for any time points. Future studies of methylation,

brain development, and cognition should include this measure to

further refine the model and take important hormonal changes

into account. Attrition of subjects by the third time point created

an imbalance between the deltaT1 and deltaT2 analyses, as well as

limiting the number of subjects with complete data. While still very

informative despite this limitation, this study should be seen as a

preliminary glance at the interaction of dynamic changes in

methylation, brain development, and cognition in adolescence.

Replicating these results with more subjects should be undertaken.

There is also a scarcity of research on the exact impact the

increases and decreases of methylation at these CpG sites have on

the expression of the genes they regulate. Increases in methylation

generally decreases gene expression, and decreases in methylation

generally increases gene expression (Dupont et al., 2009), but not

universally. This study provides a spotlight for further research into

these particular CpGs and their effects on gene regulation within the

brain, particularly during adolescence. Future work will also include

looking at this same cohort using an epigenome-wide analysis, as

well as include white matter and resting-state fMRI measures to

capture a more complete picture of the influence of methylation on

adolescent brain development and cognition.

Conclusion

This small sample of seven CpGs highlight the dynamics of

methylation and how they are related to some of the large-scale

changes occurring in adolescence, such as the fine-tuning of the

excitatory/inhibitory balance through shifts in the receptor subunits of

GRIN2D and GABRB3, or the changes in synaptic strength and

connectivity possibly driven by the changes in the regulation of CHD5,

STXBP5, or KCNC1, or even the thinning of GM associated with changes

in methylation of NFASC. The changes in cognition would also be

supported by changes in synaptic connectivity, excitability, maturation

of the excitatory and inhibitory networks, as well as the thickening of

myelination that could be occurring in response to the changes in gene

expression regulated by these CpGs. The findings of this study offer many

new directions fromwhich we can develop amore detailed understanding

of themolecular underpinnings of these dynamics in the adolescent brain.
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SUPPLEMENTARY FIGURE S1

Repeated Measures Results: GM, DNAm, and Cognition - Pictured are the

relationships between DNAm, GM volume, and Cognitive Performance

across all three time points that trended toward significant, but did not

survive Bonferroni correction (p < 0.001). The width of the links

corresponds to the effect size (t-statistic) of the relationship.

Components (Comp 3, 4, 5, 6, and 7 from bottom to top respectively)

were thresholded from |z| > 3. Blue - green are areas of GM volume

decrease over time, red - yellow are areas of GM volume increase.

Cognitive measure labels: Crystalized - COGCC, Fluid - COGFC,

Memory - TBPSM, and Attention - TBFICA.
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SUPPLEMENTARY FIGURE S2

Interaction plot between methylation of KCNC1 and cerebellar volume -

In females, the rate of decrease seen in methylation of KCNC1 is

associated with the rate of increase in GM volume, as opposed to

males, where the rate of decrease in methylation over time is associated

with rate of decrease in GM volume. This divergence in the relationship

between changes in methylation and changes in GM volume by sex was

significant (t-ratio = −4.768, p < 0.0001). See Table 6 for complete

results.

SUPPLEMENTARY TABLE S1

Comprehensive list of GM ICA results - Brain regions results of the ICA

highlighting covarying regions of GM change within the subjects’ brains

over time. These regions were identified by the MNI coordinates and

the Harvard-Oxford cortical and subcortical structural atlases as well as

the probabilistic cerebellar atlas.

SUPPLEMENTARY TABLE S2

FUMA Results - details of the enrichment analysis conducted using FUMA.
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