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ABSTRACT

One of the most significant health issues the world is now ex-
periencing is mental health. Since it is challenging to mea-
sure, it fails to motivate behavioral change or other inter-
ventions targeted at improving it. The lack of such mea-
surements discourages learning and behavior modification,
which are critical for enhancing healthy habits. Neuroimag-
ing promises to provide a window into mental health. The
use of resting fMRI (rs-fMRI) models capable of categorizing
mental health at the individual level has the potential to pro-
vide insights into how it impacts the brain. Here, we applied a
deep learning approach to classify a mental health score using
static functional network connectivity (FNC) derived from
rs-fMRI data. Comparisons were made against traditional
machine learning approaches to evaluate the model’s perfor-
mance. The discriminative features present in each mental
health category were analyzed for interpreting the deep learn-
ing model. The experiments resulted in a classification ac-
curacy of 91%, 91%, 100%, and 100% for excellent, good,
fair, and poor mental health classes. Results also highlighted
the most salient brain network in the sSFNC matrix for each
mental health score classification.

Index Terms— Mental health, rs-fMRI, static functional
network connectivity, deep learning

1. INTRODUCTION

Mental health disorders are characterized by a clinically sig-
nificant impairment in a person’s intellect, emotional control,
or behavioral conduct. On the other hand, a mental health
condition is a term that encompasses mental diseases, psy-
chosocial impairments, and mental states linked to consid-
erable distress, functional impairment, or risk of self-harm.
According to the World Health Organization, the COVID-19
pandemic caused an increase in the number of people af-
fected by anxiety and depression disorders in 2020 [1, 2].
Initial projections indicate a 26% and 28% increase in anxi-
ety and severe depressive disorders, respectively, in just one
year. Therefore, it is crucial to monitor mental health to
identify and address any underlying mental illnesses. In re-
cent years many scientists sought to identify mental disorders

using MRI-based data. Many studies focus on categoriz-
ing each MRI scan as coming from a patient, or a healthy
control, and diagnosing the condition [3]. In the case of
schizophrenia, a summary of the classification performance
showed a high prediction performance with sMRI and fMRI
followed by diffusion-weight MRI. Moreover, some stud-
ies also used various clinical measures such as Depression,
Inventory-II (BDI-II) [4] and Positive and Negative Affect
Schedule (PANAS) [5] for assessing the symptoms related to
depression and mood.

With the increasing application of machine learning mod-
els in fMRI data, several studies have used static functional
network connectivities (SFNC) for classification tasks [6, 7].
In this work, we use sSFNC matrices and the self-reported
measures of mental health collected from the UK Biobank
database to predict the mental health score category for each
subject. The subjects are classified into four categories es cor-
responding to excellent, good, fair, and poor mental health.
The sFNC matrices are passed into a 1-dimensional con-
volutional neural network (1D-CNN) to extract the relevant
connectivity measures for distinguishing the mental health
classes. The main contributions of this work are (1) the use of
neuroimaging data to predict mental health (2) the proposed
novel approach to flexible prediction allowing any combina-
tion of scores to contribute to a given question (3) the use of
deep learning to predict health category from neuroimaging
data (4) visualization of both brain function relevant to each
category, and relevant questions for each category.

2. METHODS

2.1. Data Acquisition and Preprocessing

The neuroimaging dataset used in this study is the UK
Biobank (UKB) [8]. After a quality check on the subject
fMRI scans, 1000 people were initially selected for the study,
with participants ages ranging from 52 to 85. The sex dis-
tribution of the subjects in the dataset was also evenly dis-
tributed. On the 4D preprocessed UKB rs-fMRI data, a fully
automated spatially constrained ICA was applied using the
NeuroMark technique [9]. Later, after spatially matching cor-
related group-level independent components (ICs) between
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two healthy control fMRI datasets, a template of replicable
independent components (ICs) was generated using the Neu-
romark method. The identified highly replicated intrinsic
connection networks (ICNs) were used as the network tem-
plates which acted as a prior for spatially constrained ICA
algorithm that was applied independently to each UKB sub-
ject. This analysis found 53 functionally relevant resting-state
networks (RSNs) and corresponding time courses (TC). Fur-
ther, these RSN are categorized as subcortical (SC), auditory
(AUD), sensorimotor (SM), visual (VS), cognitive control
(CC), default mode (DM), and cerebellar (CB) domains. The
Pearsons correlations between the TCs of ICNs were also
computed to derive the sFNC. The degree of interconnec-
tivity between the various ICNs was described by using the
sFNC.

The mental health measures used in this study consist
of a set of self-report questions related to mental health in-
cluded in the UKB. Table 1 summarizes different mental
health questions used in the experiments. The first 12 ques-
tions were used to calculate the Eysenck Neuroticism score.
Neuroticism is characterized by high adverse effects, such as
depression and anxiety. The summed-up neuroticism scores
helped classify the subjects with bipolar disorder and severe
depression [10]. The four self-report questions from 14-17
measured the state-level depression on the day of scanning.
They indicated four different depressive domains that mea-
sured depressed mood, disinterest, restlessness, and tired-
ness. Similar measures were considered in the commonly
used Hamilton Depression Rating Scale (HAM-D) [11] and
the Montgomery—Asberg Depression Scale (MADRS) [12].
These questions were asked the day of the imaging scan, and
hence it provides a timely assessment of a subject’s mental
state, compared to other questions, which were assessed at
a different time point from the imaging scan. The rest of
the questions helped evaluate the probable depression status.
Hence combining these questions enabled the calculation of a
mental health score for each subject. Therefore, the summed
score across these questionnaires ranged between 0-20. These
scores were further divided into four categories for the classi-
fication task as shown in Table 2. The proposed deep learning
model classified each subject into its corresponding mental
health category.

2.2. Deep Learning Model

Fig 1 shows the 1D-CNN architecture used for the proposed
mental health score estimation. The network uses three con-
volutional layers of kernel size 3 with 16, 32, and 64 filters
for each layer. All convolutional layers and two fully con-
nected layers are followed by the rectified linear unit (ReLU)
activation layer. Max-pooling layers are added to the model
to reduce feature maps’ dimensionality and avoid overfitting.
Another regularization technique used in this model is a batch
normalization layer, which helps to normalize the previous

Table 1. Mental health questions used for calculating the
mental health score.

No. Mental health questions

I. Mood swings

2 Miserableness

3 Irritability

4. Sensitivity/hurt feeling

5. Fed-up feeling

6 Nervous feeling

7 Worrier/anxious feeling

8 Tense/highly strung

9. Worry to long after embarrassment

10. Suffer from nerves

IT. Loneliness/isolation

12. Guilty feelings

13. Risk taking

14. Frequency of depressed mood in Tast two weeks

15. Frequency of unenthusiasm/disinterest in ast two weeks
T6. Frequency of tenseness/restlessness in last two weeks
17. Frequency of tiredness/lethargy in last two weeks

I8. Seen doctor gp for nerves, anxiety, tension or depression
19. | Seen a psychiatrist for nerves, anxiety, tension or depression
20. Tllness, injury, bereavement, stress in last two years

Table 2. Mental health questionnaire classification

Mental health score | Level of mental health
0-5 Excellent
5-10 Good
10-15 Fair
15-20 Poor

layer’s output. Hence it accelerates and stabilizes the train-
ing of the overall model. Additionally, a dropout layer is
also used to prevent overfitting. It works by randomly dis-
abling specific neurons with a probability p. This prevents
the network from relying too much on the dropped-out neu-
rons and forces the rest to learn more robust features. Thus,
the model uses 3 Max-pooling layers of kernel size 2, three
batch-normalization layers, and a dropout layer with a proba-
bility of 0.5. The feature maps from the dropout layer are flat-
tened and then fed into the following fully connected layers.
The first two fully connected layers have 64 and 16 neurons.
In contrast, the final fully connected layer has four neurons
with a Softmax activation layer that outputs the probabilities
associated with each class. We use TensorFlow and Keras to
implement the 1D-CNN architecture in this paper.

2.3. Training Criterion

The proposed CNN is trained for 100 epochs using the Adam
optimizer with a learning rate set to 0.001. The learning rate
has a decay factor of 0.95 and the training is done using a
batch size of 8. The dataset is split at subject level and in the
experiments, 70% of the data is used for training, 10% for
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Fig. 1. Architecture of the proposed 1D-CNN. This model
comprises convolutional layers, max-pooling layers, batch
normalization layers, dropout, and fully connected layers.

validation and the rest are used for testing. Since the data was
imbalanced for the four different classes, Synthetic Minority
Over-sampling Technique (SMOTE) [13] was used to create a
balanced dataset. It is an approach in which the minority class
is over-sampled by creating synthetic examples rather than by
over-sampling with duplicated real data entries. Depending
upon the amount of over-sampling required, neighbors from
the k nearest neighbors of a sample from the minority class
are randomly chosen. This resulted in about 1710 samples in
training, 190 in validation and 476 in testing.

3. RESULTS AND DISCUSSION

The proposed 1D-CNN was trained and tested for mental
health classification tasks on the UKB dataset. The net-
work uses k-fold cross-validation with k=5 to evaluate the
robustness and generalization of our proposed network. Fig
2 shows the final confusion matrix for the four mental health
categories. From the confusion matrix, all poor and fair
mental health cases are classified correctly with no misclas-
sification. On the other hand, in excellent and good mental
health cases, few of the subjects were misclassified.

In order to visualize the separability between the classes,
t-Distributed Stochastic Neighbor Embedding (t-SNE) [14]
was used in the 1D-CNN. It is an unsupervised method for vi-
sualizing the arrangement of data in high-dimensional space.
This method helped to project the 16-dimensional represen-
tations of subjects extracted from the last hidden layer of the
trained 1D-CNN model to a 2D plane. Fig 3 shows the inter-
nal representation of the four categories in the samples used
for testing. The tSNE result denotes that the proposed model
could filter features successfully and separate the different
categories.

The multiclass receiver operating characteristic (ROC)
curve for 1D-CNN for the four mental health classes is shown
in Fig 4. When the curves are closer to the top-left corner,
it denotes better performance. In this multiclass model, we
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Fig. 2. Confusion matrix of multiclass classification of mental
health category using 1D-CNN.
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Fig. 3. t-SNE visualization of the last hidden layer represen-
tation in the proposed 1D-CNN

plot the 4 ROC curves using the one vs. all methodology
associated with the mental health categories. The area under
the ROC curve (AUC) tells us how much the model can dis-
tinguish between classes. In this case, the 1D-CNN achieves
a significantly high AUC 0f 0.96, 0.96, 1, and 1 for excellent,
good, fair, and poor mental health classes.

We compared the proposed 1D-CNN with three tradi-
tional machine learning classifiers such as Support Vector
Machine (SVM), Random Forest (RF), Naive Bayes, and
Deep Neural Network (DNN), as shown in Table 3. The input
for training all the models is the sFNC matrix. The table
illustrates that all the models achieve competitive sensitivity,
specificity, accuracy, and AUC for the fair and poor mental
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Fig. 4. Multi-class ROC curves using the proposed 1D-CNN.

health categories. It also shows that the worst-performing
mental health categories are excellent and good. In the case
of the excellent mental health category, the 1D-CNN achieves
the best performance with sensitivity 85%, specificity 93%,
accuracy 91%, and AUC 0.96 due to CNN’s ability to learn
higher-level structural and spatial features present in the
connectivity measures. The improvements demonstrate that
CNN can effectively capture discriminative information that
could reveal significant relationships between mental health
and rs-fMRI.

Table 3. Mental health classification performance and com-
parison of the proposed method with various state-of-the-art
machine learning models.

Models Classes | Sensitivity | Specificity | Accuracy | AUC
Excellent 63% 86% 80% 0.89
Good 67% 88% 83% 0.90
SYM Fair 90% 98% 96% | 0.99
Poor 100% 100% 100% 1
Excellent 67% 90% 84% 0.92
Random Good 73% 88% 85% 0.92
Forest Fair 96% 100% 99% 0.99
Poor 100% 100% 100% 1%
Excellent 57% 91% 69% 0.79
DNN Good 73% 89% 68% 0.89
Fair 99% 96% 90% 0.99
Poor 100% 100% 100% 1
Excellent 57% 86% 58% 0.85
Naive Bayes qud 36% 86% 46% 0.73
Fair 80% 92% 60% 0.86
Poor 85% 100% 100% 0.98
Excellent 85% 93% 91% 0.96
Proposed Good 78% 95% 91% 0.96
1D-CNN Fair 100% 100% 100% 1
Poor 100% 100% 100% 1

The histogram analysis of the responses to each question
determined the top contributing questions in each category.
Table 2 shows that excellent mental health corresponds to a

low score ranging from 0-5. The contributing questions in
this category were sensitivity/hurt feelings, worrier/anxious
feelings, worry too long after embarrassment, risk-taking, and
the frequency of tiredness/lethargy in the last two weeks. Sec-
ondly, in the case of the good mental health category, mood
swings, miserableness, sensitivity/hurt feelings, fed-up feel-
ings, worrier/anxious feelings, worry too long after embar-
rassment were the most important questions. There is a sig-
nificant overlap between these two categories. Thirdly, the
fair mental health category had all the questions mentioned
in the good category along with irritability, nervous feeling,
tense/highly strung, suffer from nerves, guilty feeling, and
seen doctor gp for nerves, anxiety, tension, or depression.
Finally, in the case of poor mental health, the scores range
between 15-20; hence, almost all the questions were signif-
icantly important to this class. Fig 5 illustrates the mean
sFNC on test subjects corresponding to excellent and poor
categories of mental health.
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Fig. 5. Mean sFNC for two categories of mental health. The
excellent category showed strong positive connectivity be-
tween the CC-SM, DM-SM, and CB-VS domains whereas
the poor category demonstrates positive connectivity in the
VS and SM domains.

4. CONCLUSION

In this study, we proposed a 1D-CNN-based deep learning ar-
chitecture for classifying mental health scores into different
categories. It was observed that this model outperformed the
traditional machine learning methods for this classification
task using a smaller-sized dataset. The higher dimensional
visualization of the features showed a well-defined separation
between the classes. This study suggests that rs-fMRI-based
data has great potential as a reliable imaging marker to dis-
criminate individuals based on their mental health. The future
work will incorporate the TCs and the RSNs by extending the
proposed deep-learning model. Additionally, we will also ex-
plore more meaningful and interpretable ways of finding bio-
logical markers for the various mental health categories.
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