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Functional connectivity uniqueness and 
variability? Linkages with cognitive and 
psychiatric problems in children

Zening Fu)  )1 , Jingyu Liu)  )1,2,3,4, Mustafa S. Salman1,5, Jing Sui1,6 & 

Vince D. Calhoun)  )1,2,3,4,5

Brain functional connectivity (FC) derived from functional magnetic 

resonance imaging has been serving as a potential 8fngerprint9 for adults. 

However, cross-scan variation of FC can be substantial and carries biological 

information, especially during childhood. Here we performed a large-scale 

cross-sectional analysis on cross-scan FC stability and its associations with a 

diverse range of health measures in children. Functional network connectivity 

(FNC) was extracted via a hybrid independent component analysis framework 

on 9,071 participants and compared across four scans. We found that FNC 

can identify a given child from a large group with high accuracy (maximum 

>94%) and replicated the results across multiple scans. We then performed 

a linear mixed-efects model to investigate how cross-scan FNC stability 

was predictive of children9s behaviour. Although we could not fnd strong 

relationships between FNC stability and children9s behaviour, we observed 

signifcant but small associations between them (maximum r)=)0.1070), with 

higher stability correlated with better cognitive performance, longer sleep 

duration and less psychotic expression. Via a multivariate analysis method, 

we captured larger efects between FNC stability and children9s cognitive 

performance (maximum r)=)0.2932), which further proved the relevance of 

FNC stability to neurocognitive development. Overall, our fndings show 

that a child9s connectivity profle is not only intrinsic but also exhibits reliable 

variability across scans, regardless of brain growth and development. Cross-

scan connectivity stability may serve as a valuable neuroimaging feature to 

draw inferences on early cognitive and psychiatric behaviours in children.

Functional connectivity (FC) derived from functional magnetic 

resonance imaging (fMRI) data has been associated with cognition1  

and various brain disorders2. Brain FC is assumed to be unique  

to individuals previously, regardless of how the brain is engaged  

during scanning3. FC heterogeneity has long been appreciated in fMRI, 

even within the same population4. Using a multi-condition fMRI data-

set from the Human Connectome Project (HCP), studies have shown 

that FC profile can distinguish adult participants across scan sessions 
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more temporal variability in brain FC10 compared with adults. Age 

is negatively associated with the variability of transient brain states 

identified by a clustering strategy on dynamic FC estimates10. The 

prominent variation in youths9 FC can be due to more neuroplasticity 

in the adolescent9s brain11, though this is still far from understood.  

On the other hand, some other studies believed that FC is unique to 

an adolescent and that the FC profile can identify an adolescent from 

a group of participants11,12. In recent years, literature has provided 

evidence supporting the existence of both uniqueness and variability 

in FC13,14. Kaufmann and colleagues found that brain FC develops into a 

more stable condition, where individuals with mental health problems 

show a delay in the age-related stabilization of FC13. However, contradic-

tive results were reported in another study, where the intra-participant  

FC stability was not related to age, but correlated with the development 

of social skills14.

Despite such progress, we argue that the exploration of cross-

scan FC has been limited, as most studies have used relatively small 

and even between distinct task conditions5,6, acting as a 8fingerprint9. 

Griffa et al. proposed a structure-informed graph signal processing 

filtering method and applied it to a subset of HCP data to capture more 

unique FC to participant and cognition5. In another study, Horien and 

colleagues used four longitudinal datasets to show the uniqueness of 

individual FC over months to years6. However, brain FC is not constant 

but continuously changes with remarkable variations at different scales, 

adapting to internal and external demands7. That is, besides the intrinsic 

patterns, an individual9s FC also exhibits prominent intra-participant 

variability, which might underlie important biological mechanisms8. 

Many existing works have only examined the FC variation within a single 

scan, and an individual9s cross-scan FC variability has received rela-

tively little attention from the neuroimaging field. A comprehensive 

understanding of cross-scan FC is necessary for developing robust 

FC-based biomarkers.

The human brain shows considerable growth and development 

during childhood9. Existing evidence suggests that youth might exhibit 
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Fig. 1 | The flowchart of the FNC analysis to investigate cross-scan FNC.  

a, Neuromark framework extracts robust functional components from the ABCD 

data. Component templates are identified using two independent data with 

different repetition time (TR). b, FNC is estimated using the TCs of components 

from each scan. c, Cross-scan FNC similarity is measured by the correlation 

between FNC from different scans. d, Individual identification is performed  

on the basis of the cross-scan FNC similarity. e, Association analysis between  

FNC stability (intra-participant FNC similarity) and individuals9 behaviour via  

the LMM.
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numbers of participants. The limited sample size might be a poten-

tial cause of the contradictive findings in previous studies. In addi-

tion, previous studies used samples with a wide age range, where age  

and brain development might introduce confounding effects in the 

FC similarities between scans. More importantly, most existing work 

has only focused on limited behaviour measures and failed to com-

prehensively investigate the relationships between intra-participant 

FC variation and a wide range of behaviour in children. The stability  

of FC across scans may be linked to neural mechanisms, reflected by  

its relevance to adolescents9 neurocognitive development, adverse 

mental health outcomes and other healthy backgrounds. There-

fore, there is a need for a reliable large-scale study to examine the FC  

finger print property, the cross-scan FC variability and their relevance 

to individual differences in behaviour.

In this Article, we investigate the cross-scan FC in children using a 

multimodal database called Adolescent Brain Cognitive Development 

(ABCD). The ABCD database includes more than 11,800 participants, 

with multiple scans collected from two longitudinal sessions. This 

dataset collects a comprehensive range of measures related to mental 

problems, cognitions and other health backgrounds15 that are useful 

for the investigation of the relationship between adolescent behaviour 

and brain functions16. The novelty of our study is two-fold. First, this 

is a large-scale analysis of the FC fingerprint property in children. We 

used more than 9,000 samples from the baseline session and about 

3,000 samples from the second-year session that can provide more 

reliable results of the fingerprint property in children. In addition, 

our present study used the dataset where the individuals are around 

the same age, which therefore is capable of precisely targeting the 

FC fingerprint property in pre-teen years. The second novelty of our 

work is that, unlike most of the FC fingerprint studies, we speculate 

that the cross-scan variation in individualized FC is meaningful with 

cognitive and psychological relevance. Recent studies have proposed 

several approaches to characterize the dynamic brain patterns within a 

single scan, which can identify individuals and predict cognitive func-

tions, acting like fingerprinting17,18. While previous studies focused on 

the unique patterns of individualized connectome profile (static or 

dynamic within a single scan), our study concentrated on the intra-par-

ticipant FC changes across scans, highlighting that children9s FC shows 

substantial cross-scan variability that carries biological information 

associated with children9s behaviour. We provided reliable evidence 

demonstrating that, besides the fingerprint property, individualized 

FC exhibits neuronally related variability across scans, which is associ-

ated with children9s behaviour. We also hypothesized that FC variability 

in children is associated with parental psychopathology and prenatal 

exposure. The public health implications are that parents9 conditions 

should be considered in relation to the variability of individualized 

FC in children that is associated with neurocognitive development.

Results
Flowchart of the cross-scan FC analysis
Figure 1 displays the flowchart of the cross-scan functional network 

connectivity (FNC) analysis. We first applied a Neuromark framework 

to extract robust intrinsic connectivity networks (ICNs) that are com-

parable across participants, scans and sessions. FNC was estimated 

using the time-courses (TCs) of ICNs from each scan. After obtaining 

the FNC matrix of each scan, cross-scan FNC similarity was measured 

by the correlation between FNC from different scans. The individual 

identification was performed based on the cross-scan FNC similar-

ity. Finally, we investigated the associations between FNC stability 

(intra-participant FNC similarity) and individuals9 behaviour via a linear 

mixed-effects model (LMM).

Functional networks
Fifty-three ICNs were extracted by the Neuromark framework, with 

activation peaks falling on the cortical and subcortical grey matter 

areas across the whole brain. The ICNs were arranged into seven func-

tional domains according to their anatomical locations and functional 

information7, including subcortical (SC), auditory (AUD), visual (VS), 

sensorimotor (SM), cognitive-control (CC), default-mode (DM) and 

cerebellar (CB) domains. Details of the spatial maps and coordinates of 

ICNs are provided in Supplementary Table 1 and Supplementary Fig. 2.

FNC shows high intra-participant similarity across scans
There are 9,071 participants from the baseline session and 2,918 par-

ticipants from the second-year session for the within-session ana lysis. 

There are 2,290 participants with good longitudinal scans for the cross-

session analysis. The basic demographics are provided in Table 1.  

Figure 2 displays the FNC of participants with the maximum and mini-

mum intra-participant FNC similarity between scans. Children showed 

different levels of cross-scan FNC similarity. For participant 1, the FNC of 

scan 1 and the FNC of scan 2 were highly similar (r)=)0.9448). In contrast, 

for participant 2, the FNC showed less stability between scan 1 and scan 2,  

where the intra-participant FNC similarity was only r)=)0.1914. Figure 3  

displays the percentage of children with an intra-participant FNC simi-

larity higher than a given percentage of inter-participant FNC simi-

larities, from 60% to 99%. Intra-participant FNC similarity was higher 

than most inter-participant FNC similarities, though intra-participant 

FNC variability exists. The FNC showed the highest intra-participant 

similarity between scan 1 and scan 2. More than 90% of participants 

had an intra-participant FNC similarity higher than 60% of inter-par-

ticipant FNC similarities, and more than 65% of participants had an 

intra-participant FNC similarity higher than 99% of inter-participant 

FNC similarities. The intra-participant FNC showed the lowest similarity 

between scan 1 and scan 4. Still, more than 80% of participants had an 

intra-participant FNC similarity higher than 60% of inter-participant 

Table 1 | Basic demographics of participants

Basic demographics Baseline Second year

Total participants 9,071 2,918

Age (month) 119.06)±)7.52 142.86)±)7.51

Sex (female/male) 4,365/4,706 1,333/1,585

Height (inch) 55.28)±)3.35 60.04)±)3.53

Weight (lbs) 82.97)±)23.52 107.57)±)31.99

Race (W/B/H/A/O) 4,771/1,325/1,863/181/929 1,631/317/629/57/284

Cognition (nihtbx_totalcomp) 86.44)±)8.99 89.08)±)10.19

Psychiatric problem (cbcl_scr_syn_totprob) 45.73)±)11.35 44.78)±)11.27

Sleep disturbance (sleepdisturb1_p) 1.72)±)0.81 1.99)±)0.86

W, White; B, Black or African American; H, Hispanic; A, Asian; O, others or unknown.
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FNC similarities, and about 40% of participants had an intra-participant 

FNC similarity higher than 99% of inter-participant FNC similarities.

These patterns are consistent when examining the scans from  

the second-year session. Similarly, participants showed different  

levels of cross-scan FNC similarity. FNC had the highest intra-par-

ticipant similarity between scan 1 and scan 2 and the lowest intra-

participant similarity between scan 1 and scan 4. FNC also showed 

intra-participant similarities between longitudinal scans. Although 
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Fig. 2 | Cross-scan FNC similarity within the same session and between 

longitudinal sessions. FNC similarity is calculated using scans within the baseline 

session, within the second-year session and from longitudinal sessions (one is 

from the baseline and the other one is from the second year). Example participants 

with the maximum and minimum FNC similarity within the baseline session and 

the second-year session, and across longitudinal sessions. Par, participant.
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a 2-year time interval between scans incurred a notable decrease in  

the intra-participant similarity, the intra-participant similarity was  

still higher than most inter-participant FNC similarities, especially 

when the FNC was averaged within each session before measuring 

the similarity.

Individual identification using whole-brain FNC
Figure 4 shows the children9s identification results based on the  

cross-scan FNC similarity. At the baseline session, the identification accu-

racy was 94.02)±)0.19%, 84.81)±)0.28%, 81.84)±)0.30% and 93.10)±)0.20% 

based on the database target of scan 1–scan 2, the database target of  

scan 1–scan 3, the database target of scan 1–scan 4 and the database  

target of scan 1–scan mean, respectively. The identification was replicated  

by using the second-year data. Similar to the results from the baseline, 

the highest identification accuracy of 95.14)±)0.32% was achieved on  

the basis of the database target of scan 1–scan 2, while the lowest  

identification accuracy of 82.84)±)0.51% was achieved on the basis  

of the database target of scan 1–scan 4. In the supplementary section  

8Individual identification based on the FNC similarity between other 

scans9, we calculated three more pairwise similarities between scans 

(scan 2 versus scan 4, scan 2 versus scan 4, and scan 3 versus scan 4) 

and performed individual identification based on these cross-scan 

similarities.

The individual identification was further performed using  

the FNC from longitudinal scans (Fig. 4b). Scans from the baseline 

session were the databases, and scans from the second-year session 

were the targets. Despite more intra-participant FNC variations across 

scans, the FNC from the baseline session can still identify a child9s FNC 

from the second-year session. The highest accuracy was 91.44)±)0.46%, 

achieved by averaging the FNC across all four scans within each session 

before the identification. We also performed individual identifica-

tion using only females or males, respectively. The overall results 

are in line with those obtained by pooling all participants (Fig. 4c). 

An interesting observation is that the longitudinal identification 

achieved higher accuracy in female participants, suggesting fewer 

brain FC changes in females around this age. It may be possible that 

female participants had reached a more matured brain functional state 

before the study, therefore resulting in fewer FC changes during the 

time course of the study.

The non-parametric permutation testing shows that the average 

identification accuracy was 50% if the identity was shuffled for each 

scan. The real identification accuracy was significantly higher than the 

accuracy obtained by the permutation tests (P)<)1.0)×)1023).

FNC stability correlates with cognitive performance
Besides the intrinsic patterns, individualized FNC showed notable 

variability across scans. Here we focused on children9s cognitive 

performance, mental health problems, sleep conditions and screen 

usage. These behaviour measures have been linked to brain func-

tions and structures in previous studies19,20. We could not find strong 

relationships between FNC stability and children9s behaviour, but  

we observed small associations between them. The cognitive measures 
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Fig. 3 | Percentage of participants with an intra-participant FNC similarity higher than a given percentage of inter-participant FNC similarities. Higher intra-

participant FNC similarity is observed between scans from the same session. Intra-participant FNC similarity between longitudinal sessions is higher when FNC is 

averaged across scans within each session.
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were positively correlated with the intra-participant FNC stability  

(false discovery rate (FDR) corrected, q)<)0.05; Fig. 5a). Specifically, ten 

out of ten cognitive summary scores were positively correlated with 

FNC stability, with correlation r values ranging from 0.0376 to 0.1070 

(Supplementary Table 2). The Total Composite Score was the score most 

significantly positively correlated with the FNC stability (r)=)0.1070, 

Cohen9s d)=)0.2152, P)=)4.82)×)10224). For the neurocognitive battery in 

the subdomain, the score of Toolbox Picture Vocabulary Task was the 

score most significantly positively correlated with the FNC stability 

(r)=)0.0841, Cohen9s d)=)0.1688, P)=)1.54)×)10215) while the score of Tool-

box Flanker Task was the score least significantly positively correlated 

with intra-participant FNC stability (r)=)0.0376, Cohen9s d)=)0.0753, 

P)=)3.68)×)1024). To better visualize the correlated relationships, we 

divided the children into four groups from low cognitive performance 

to high cognitive performance according to each cognitive score (group 

1: ~0–25%, group 2: ~25–50%, group 3: ~50–75% and group 4: ~75–100%) 

and the average cross-scan FNC stability within each group is displayed 

in Fig. 5b. Clear increasing trends can be observed along groups 1 to 4, 

indicating that children with good cognitive performance tended to 

have higher FNC stability.

FNC stability correlates with psychiatric problems
The psychopathological measures of children were negatively correlated 

with the intra-participant FNC stability. Twelve out of 20 psychiatric prob-

lem scores show significantly negative correlations with FNC stability, 

with r values ranging from 20.0257 to 20.0496 (FDR corrected, q)<)0.05; 

Fig. 5a). The social problem score was the score most significantly nega-

tively correlated with the FNC stability (r)=)20.0496, Cohen9s d)=)20.0992, 

P)=)2.38)×)1026). Again, we divided the children into four groups according 

to each psychopathological measure. The FNC stability shows decreasing 

trends along groups 1 to 4, indicating that children with high psychiatric 

problem scores tended to have lower FNC stability (Fig. 5b).

FNC stability correlates with sleep and screen usage
We further found significant associations between FNC stability and the 

sleep conditions of children (Fig. 5a). Cross-scan FNC stability was nega-

tively correlated with the sleep duration score (r)=)20.0752, Cohen9s 

d)=)20.1508, P)=)7.74)×)10213). In the ABCD measurement system, a high 

sleep duration score indicates short sleep duration (1: 9–11)h; 2: 8–9)h; 

3: 7–8)h; 4: 5–7)h; 5: less than 5)h). The FNC stability was also negatively 

correlated with the score that evaluates how long an adolescent falls 

In
d

iv
id

u
a

l 
id

e
n

ti
fi

c
a

ti
o

n
 a

c
c

u
ra

c
y
 (

%
)

Individual identification accuracy (%)

Individual identification accuracy (%)

Within-session

Cross-session

Cross-session

Within-session

b

a

84 86 88 92 9694

...
82

Baseline session

Second-year follow-up session

80 84 928876

Scan 1
base

 versus Scan 1second

Scan 1
base

 versus Scan 2 second

Scan 1
base

 versus Scan 3second

Scan 1
base

 versus Scan 4second

Scan 1
base

 versus Meansecond(scan 1~4)

72

Scan 1
base

 versus Scan 1second

Scan 2
base

 versus Scan 2second

Scan 3
base

 versus Scan 3second

Scan 4
base

 versus Scan 4second

Mean
base

 versus Meansecond

Scan
 1 bas

e
 v

ers
us 

M
ean

se
cond

Scan
 1 bas

e
 v

ers
us 

Scan
 1 se

cond

Scan
 1 bas

e
 v

ers
us 

Scan
 2 se

cond

Scan
 1 bas

e
 v

ers
us 

Scan
 3

se
cond

Scan
 1 bas

e
 v

ers
us 

Scan
 4

se
cond

Scan
 1 bas

e
 v

ers
us 

Scan
 1 se

cond

Scan
 2 bas

e
 v

ers
us 

Scan
 2 se

cond

Scan
 3 bas

e
 v

ers
us 

Scan
 3

se
cond

Scan
 4 bas

e
 v

ers
us 

Scan
 4

se
cond

M
ean

bas
e
 v

ers
us 

M
ean

se
cond

Scan
 1 bas

e
 v

ers
us 

M
ean

bas
e

Scan
 1 bas

e
 v

ers
us 

Scan
 2 bas

e

Scan
 1 bas

e
 v

ers
us 

Scan
 3 bas

e

Scan
 1 bas

e
 v

ers
us 

Scan
 4 bas

e

Scan
 1 se

cond
 v

ers
us 

Scan
 2 se

cond

Scan
 1 se

cond
 v

ers
us 

Scan
 3

se
cond

Scan
 1 se

cond
 v

ers
us 

Scan
 4

se
cond

Scan
 1 se

cond
 v

ers
us 

M
ean

se
cond

MaleFemale

c

80

85

90

95

* * * * * * *

70

75

80

85

90

95 * * * * * * * * * *

In
d

iv
id

u
a

l 
id

e
n

ti
fi

c
a

ti
o

n
 a

c
c

u
ra

c
y
 (

%
)

Scan 1
base

 versus Scan 2base

Scan 1
base

 versus Scan 3base

Scan 1
base

 versus Scan 4base

Scan 1second versus Scan 2second

Scan 1second versus Scan 3second

Scan 1second versus Scan 4second

Scan 1
base

 versus Meanbase(scan 2~4)

Scan 1second versus Meansecond(scan 2~4)
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identification is replicated using FNC of scans from the second-year session.  

b, Individual identification performed between scans from longitudinal sessions. 

Scans from the baseline session are the database and scans from the second-year 
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changes are introduced. c, Individual identification is performed using only 

female participants or male participants. Data expressed as mean)±)s.d. Each 
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asleep (sleepdisturb2_p). A higher score in sleepdisturb2_p indicates 

a longer time to fall asleep. The FNC stability was negatively correlated 

with other sleep behaviour of adolescents, such as sleepdisturb24_p 

(evaluates a child feels unable to move when waking up in the morning) 

and sleepdisturb26_p (evaluates a child falls asleep suddenly in inap-

propriate situations). Higher scores in these measurements indicate 

more frequently that the event happens (1: never; 2: occasionally (once 

or twice per month or less); 3: sometimes (once or twice per week); 

4: often (three or five times per week); 5: always). The overall results 

indicate that children with worse sleep conditions (for example, shorter 

sleep duration or longer time to fall asleep) tended to have lower FNC 

stability (Fig. 5b and Supplementary Table 5).

Children9s screen usage was also negatively correlated with cross-

scan FNC stability. All 14 youth screen time utilization scores, includ-

ing the use of television, internet, cell phone and video games, show 

negative correlations with individuals9 FNC stability (FDR corrected, 

q)<)0.05; Fig. 5a). Children with more screen usage tended to have lower 

FNC stability. Details of the correlation statistics can be found in Supple-

mentary Table 6. The association analysis was also performed on female 

and male participants, respectively. Similar association patterns were 

observed across female and male participants, where females showed 

larger associations between FNC stability and behaviour scores (Fig. 5c).

FNC stability correlates with parental psychopathology
Moreover, parental dimensional psychopathology showed significant 

correlations with their children9s FNC stability (Fig. 6a,b). Specifically, the 

positive questions in the parents9 psychopathology assessment, including 

asr_q15_p (I am pretty honest), asr_q73_p (I meet my responsibilities to 

my family), asr_q88_p (I enjoy being with people), asr_q98_p (I like to help 

others), asr_q106_p (I try to be fair to others) and asr_q123_p (I am a happy 

person), were positively correlated with the FNC stability of children, 

with r values ranging from 0.0315 to 0.0583 (FDR corrected, q)<)0.05). In 

contrast, the negative questions in the parents9 psychopathology assess-

ment were negatively correlated with the FNC stability of children, with  

r values ranging from 20.0287 to 20.0482 (FDR corrected, q)<)0.05). These 

results indicate that parents with positive behaviour are associated with 

higher FNC stability in children while parents with negative behaviour are 

associated with lower FNC stability in children. We further performed a 

mediation analysis and found that, although children9s psychopathology 

mediated the effect between parental psychopathology and children9s 

FNC stability, there was a strong direct effect between parental psycho-

pathology and children9s FNC stability (Supplementary Fig. 6).

Our analysis also showed that prenatal exposure before and during 

pregnancy was associated with FNC stability in children. Parents with 

prenatal exposure to tobacco and marijuana will result in lower FNC 

stability in children (Fig. 6a). Also, a planned pregnancy will result in 

higher FNC stability in children. The age of parents during the preg-

nancy showed positive correlations with FNC stability as well. While 

older mothers will result in higher FNC stability in children, fathers 

aged between 30 and 40)years old (when the child was born) result in 

the highest FNC stability in children (Fig. 6a,b). The overall association 

results are consistent across females and males (Fig. 6c).

Total composite

Fluid composite

Crystallized composite

Picture vocabulary

Picture memory

Pattern comparison

Oral reading

Card sort

TV (weekend)

R-rated movies

TV (weekday)

Mature-rated game
Website (weekday)

Sleep duration

Rule break

Conduct DSM5 scale

0 0.04 0.08 0.12–0.04–0.08

Correlation (r)

Correlation (r)

Most significant associations (female)

C
o

rr
e

la
ti

o
n

 (
r
)

Cognitive scores

Total composite

Fluid composite
Picture vocabulary

0

0.05

0.10

0.15

–0.05

–0.10

Mental health

Social problem

Sleep duration

Sleep disturbance

Website (weekday)

Mature-rated game

Screen usage

S
o

c
ia

l 
p

ro
b

le
m

Cross-scan FNC stability

0.75 0.76 0.77

<25%

25–50%

50–75%

>75%

M
a

tu
re

-r
a

te
d

 g
a

m
e

Cross-scan FNC stability

0.73 0.75 0.77

Never

Once

Often

AlwaysS
le

e
p

 d
u

ra
ti

o
n

Cross-scan FNC stability

0.73 0.75 0.77

9–11 h

8–9 h

7–8 h

<7 h

T
o

ta
l 

c
o

m
p

o
si

te

Cross-scan FNC stability

0.74 0.76 0.78

<25%

25–50%

50–75%

>75% 

a

b

c

Text on phone (weekday)

Sleep duration

Total composite

Fluid composite

Crystallized composite

Picture vocabulary

Oral reading

Pattern comparison

Card sort

List sorting memory

Website (weekday)

Mature-rated game

Website (weekend)

TV (weekday)

Video chat

Social problem

0 0.04 0.08 0.12–0.04–0.08

Most significant associations (male)

Fig. 5 | Cross-scan FNC stability is associated with children’s behaviour. a, 

Cross-scan FNC stability is negatively correlated with mental health scores, 

positively correlated with cognitive performance, negatively correlated with 

sleep condition and negatively correlated with screen usage. The dashed lines 

indicate the significant correlation threshold after the multiple comparison 

correction (LMM correlation analysis, q)<)0.05, FDR corrected). b, Children with 

high psychiatric problem scores tend to have lower cross-scan FNC stability. 

Children with good cognitive performance tend to have higher cross-scan 

FNC stability. Children with bad sleep conditions (for example, shorter sleep 

duration and longer time to fall asleep) tend to have lower cross-scan FNC 

stability. Children with more screen usage (for example, longer time watching 

TV and video) tend to have lower cross-scan FNC stability. c, Most significant 

associations between cross-scan FNC stability and children9s behaviour based 

on only female and male participants, respectively. Results are consistent across 

female and male participants. Females have larger associations between FNC 

stability and behaviour scores.
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FNC stability predicts children’s cognition
To show that multivariate predictive techniques can capture larger 

effects between FNC stability and children9s behaviour, we imple-

mented a partial least squares regression (PLSR) for predicting chil-

dren9s cognition. We chose the domain-based cross-scan FNC stability 

as the imaging feature and selected the total composite cognitive score 

as the target measure. The results of the PLSR show that combining 26 

domain-based cross-scan FNC stability can predict the total composite 

score (r)=)0.1570)±)0.0013, P)<)1.0)×)1023). We found that the effect size 

(r)=)0.1570) is larger than the effect size from the univariate analyses 

(r)=)0.1070). We also implemented the same predictive model to the 

other two composite scores (Crystallized Intelligence Composite and 

Fluid Intelligence Composite), and the results are highly consistent, 

where multivariate models provide larger effect sizes in the associa-

tion analysis (r)=)0.1344 and r)=)0.1306, compared with r)=)0.0911 and 

r)=)0.0865 by univariate analyses).

We further introduced a method to evaluate cross-scan FNC 

stability for each pair of FNC, which can provide high-dimensional 

FNC stability features for building the prediction model. Detailed 

methodologies are provided in the section 8Multivariate model to 

predict children9s behaviour9 in Supplementary Information. Our 

results show that combining pairwise FNC stability features with PLSR 

can predict the total composite score with a much larger effect size 

(r)=)0.2855)±)0.0020, P)<)1.0)×)1023, permutation test, Supplementary 

Fig. 7). We also implemented the same model to predict the other two 

composite scores, and the results were highly similar, where multi-

variate models based on the pairwise FNC stability provided much 

larger effect sizes in the association analysis (r)=)0.2932)±)0.0016 and 

r)=)0.2129)±)0.0030, P)<)1.0)×)1023, permutation test, Supplementary 

Fig. 7). More interestingly, when applying the cognition-predictive 

model (based on Crystallized Intelligence Composite) defined in the 

baseline data to second-year data, we observed a significant correla-

tion between actual and predicted cognitive scores controlling for the 

covariates (r)=)0.2689, P)=)1.0)×)10226).

Discussion
Our work attempts to investigate the FC fingerprint and variability in 

children at a large scale. We found that children9s FC shows intrinsic 

patterns and variations across scans. On the one hand, the individual-

ized FC patterns allow the identification of individuals among a pool of 

children. On the other hand, the variations of individualized FC across 

scans are substantial and convey psychological and physiological 

information underlying distinct behavioural phenotypes in children. 

Although the univariate brain–behaviour associations are significant 

but small, we proved that multivariate methods could help to capture 

much larger effects between FNC stability and children9s behaviour. 

Given this foundation, future neuroimaging studies should focus not 

only on the FC fingerprint property but also on the intra-participant 

FC variability, which might provide a different window into neuropsy-

chological mechanisms.

Fingerprint property of children’s FNC
Brain FC and its network analogue, FNC, are believed to provide a 

window into brain function and intrinsic brain organization21. Adults9 

FC profile shows substantial inter-participant variability, and such 

variability can distinguish individuals from another scan3. Unlike 
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Fig. 6 | Children’s FNC stability is associated with developmental history 

and parental dimensional psychopathology. a, Cross-scan FNC stability is 

negatively correlated with parental negative behaviour (for example, question 

q12: I feel lonely) and positively correlated with parental positive behaviour 

(for example, question q15: I am pretty honest). There are also significant 

associations between FNC stability and parents9 age at birth and other 

developmental histories. The dashed lines indicate the significant correlation 

threshold after the multiple comparison correction (LMM correlation 

analysis, q)<)0.05, FDR corrected). b, Children with parents having negative 

psychopathology tend to have lower cross-scan FNC stability. Children with 

parents having positive behaviour tend to have higher cross-scan FNC stability. 

The parents9 age is positively correlated with children9s FNC stability. c, Most 

significant associations between cross-scan FNC stability and developmental 

history and parental psychopathology based on only female and male 

participants, respectively. Results are consistent across female and male 

participants.

http://www.nature.com/natmentalhealth


Nature Mental Health | Volume 1 | December 2023 | 956–970 964

Article https://doi.org/10.1038/s44220-023-00151-8

adults, children show more intra-participant variability in FC due to 

the developments and maturation in the brain22. Heterogeneous brain 

states and confounding effects in youths (for example, head motions)23 

might also influence individual identification. In the section 8Individual 

identification and head motions9 in Supplementary Information, we 

found that the head motion parameters (rotations and translations) 

can distinguish individuals between scans (slightly higher than the 

accuracy obtained by the permutation tests). Therefore, we performed 

additional analyses to demonstrate that our processing has successfully 

removed much of the motion artefact, and the FNC fingerprint property 

in children is not mainly driven by the similar head motions of the data.

Although some previous studies suggested that the youths9 identi-

fication is not different from the adults911 and the stability of paediatric 

FC is not correlated with age14, a contradictory finding by Kaufmann 

et al. showed that inter-participant FC distinctiveness increases with 

age13. The opposite findings from these studies might be due to the 

small sample size used for the investigation, which is easily biased by 

the sampling variability24. Via a large-scale analysis of more than 9,000 

children, we observed robust cross-scan FNC similarity in children, 

which slightly increased in the second-year session. Interestingly, the 

identification accuracy decreased (the intra-participant FNC variability 

increased) as the time interval of scans increased. Our result provides 

evidence that FC exhibits cross-scan variability at an early age, and the 

assumption of FNC uniqueness might oversimplify the interrelation-

ships between brain regions. The different occurrences of dynamic 

states could be one potential cause driving the FNC less similar as the 

time interval increased. The brain state in fMRI is a conceptual analogy 

to electroencephalogram (EEG) microstates, which is one of the most 

popular notions widely used to explore transient brain patterns dur-

ing the resting state7,25. Existing evidence has demonstrated that some 

brain states show continuously increasing or decreasing occurrences 

during the scan7,26,27. Using simultaneous EEG–fMRI, our previous work 

found that a dynamic state with thalamocortical anticorrelation is asso-

ciated with reduced EEG ³ power and increased · and » power, showing 

increasing occurrence over time, possibly reflecting the decreased 

vigilance27. We speculate that as participants stay in the scanner for 

a longer time, the brain changes its occurrences in different dynamic 

states that might influence the overall FNC patterns, potentially result-

ing in less similarity to the initial 8resting-state9 FNC.

We successfully performed the individual identification between 

longitudinal scans with a 2-year interval, although with reduced overall 

accuracy. This finding is in line with a previous result based on a rela-

tively small sample size, which suggested that a larger time interval can 

incur a notable decrease in identification accuracy11. We further found 

that averaging FNC across scans within each session can increase accu-

racy. Growth and development inside the children9s brain will introduce 

FC variation intra-participant, associated with children9s neurodevel-

opment and behaviour28. Averaging FNC within the same session can 

mitigate the heterogeneity induced by transient brain states but not the 

variability induced by brain development. Our result suggests that the 

decreased identification accuracy between longitudinal scans can be 

due to both brain development and the difference in the temporal brain 

conditions. The successful longitudinal identification further supports 

that the FC profile contains fundamental properties unique to each 

child, regardless of the FC developments during adolescence11. Another 

interesting finding of the FNC fingerprint property is that cross-session 

identification achieves higher accuracy in female participants. This 

finding suggests that females at the age of 9–11)years show fewer age-

related FNC changes. Sex differences in developmental trajectories 

have been widely reported in the literature, and the investigation of 

sex-related developmental trajectories might help to clarify the allo-

metric issues previously discussed29. An EEG resting-state study has 

also found sex differences in microstate occurrences from childhood 

to adolescence30. Specifically, there is a particular development trajec-

tory of increased duration of the microstate in males, but not in females. 

Another work based on a subset of the data from the Child Psychiatry 

Branch at the National Institute of Mental Health demonstrated that, 

while females have their cerebral volume peaking at age 10.5)years, 

males have their volume continuously growing until 14.5)years old31. 

Our result is in line with these previous findings and provides further 

evidence of the sex differences in functional brain development from 

childhood to adolescence. While females9 FNC becomes stable at the 

age of 9–11)years, males9 FNC shows more variability at this age. We 

speculate that such a late maturation of FNC in males might be linked 

to the risk for abnormal neurodevelopmental processes that could 

facilitate the onset of schizophrenia32.

FNC stability and children’s behaviour
Although the brain–behaviour associations are small, the balance 

between cross-scan FNC similarity and variability does not appear 

to be driven by random noise. Cross-scan FNC stability was positively 

correlated with cognitive performance, including reading recognition, 

pattern comparison, memory and so on. Previously, neuroimaging 

studies focused on FC strength and suggested that it is relevant to indi-

vidual differences in behaviour. However, brain FC shows considerable 

variation between tasks and rest, across scans, and even within a single 

scan8,27,33. Spontaneous FC variations can predict the performance 

of different cognitive tasks34. Literature also showed that individu-

als with temporally stable FC show advanced cognitive performance, 

reflected by increased accuracy and more stable response time35,36. 

Our finding has extended the investigation of FC variability within a 

single scan to the investigation of FC stability across scans and showed 

robust relationships between cross-scan FC stability and cognitions. 

A possible explanation of this finding is that the resting state is in a 

8relaxed9 brain condition that ameliorates the adaptive reconfigura-

tion of brain networks in the context of cognitive tasks. A stable FC 

during the execution of cognitive tasks is associated with successful 

cognition and difficult task conditions require increased stability of 

FC35,36. The stable FC during the resting state might facilitate the brain 

switching from a relaxed condition to a task-demand condition that 

purportedly requires sustained cognition, consequently resulting in 

better cognitive performance37.

In addition to the associations with cognitions, we found nega-

tive correlations between FNC stability and children9s mental health. 

Children with less cross-scan FNC stability have more dimensional 

psychopathological problems and more frequent symptoms of mania. 

This result is in line with a previous finding showing that the stability of 

FC is related to psychiatric disorders13. Although they did not identify 

different FC distinctiveness between groups in children (<14)years), 

they found that adolescents with increased psychiatric symptom scores 

show less FC distinctiveness compared with controls13. Our result 

extends their finding by showing that the associations between FC 

stability and dimensional psychopathology exist during a very early age 

(~9–11)years). One interpretation of these associations is that decreased 

FC stability underlies the dysregulated brain rhythms that characterize 

psychiatric problems. Of note, increased rumination is associated with 

higher medial prefrontal cortex to insula FC variability, suggesting 

that the intra-participant FC heterogeneity might trigger rumination 

by enhancing sensitivity to self-referential information38. It is also sug-

gested that the unstable FC may be associated with deficits in executive 

functioning and reflect weaknesses in brain circuits responsible for 

cognitive control39. The strongest correlation between FC stability and 

children9s mental health was found with the social problem score in our  

study, which is an essential replication of the finding by Vanderwal et al.14.  

Using children and adolescent samples with ages ranging from ~6 to 

21)years, they found that lower FC stability is associated with a higher 

social responsiveness scale, a popular measure of social skill prob-

lems. These cross-study results indicate a surprisingly tight coupling 

between FC stability and social skills. A growing body of literature has 

linked dynamic FC patterns to psychiatric problems. Individuals with 
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autism spectrum disorder have larger FC variability in time, associated 

with the increase depending on autism symptom severity40. Using 

magnetoencephalography, researchers have shown that patients with 

schizophrenia exhibit more trial-to-trial network topology variability 

during a two-back working memory task41. Increased FC variability has 

also been observed in both patients with depressed bipolar disorder 

and major depressive disorder, who shared overlapping symptoms that 

typically confound the diagnosis42. Our results complement the prior 

work by showing that an individual9s FNC exhibits reliable variability 

across scans, which might signify underlying biological mechanisms 

in mental health. The stability of cross-scan FNC can add information 

to the connectivity strength and will be a potential brain feature that 

predicts early psychiatric problems in children.

Our analysis further showed that the FNC stability of children is 

also associated with parental conditions. The development history of 

children can be an important indicator of later mental and psychical 

behaviour in youths15. Prenatal cannabis exposure is associated with a 

greater risk for psychopathology in adolescents43. Our present study 

found that prenatal tobacco and marijuana exposure is associated with 

lower cross-scan FNC stability during middle childhood. Considering 

the associations between FNC stability and cognition and dimensional 

psychopathology, this result underscores the potential to use FNC 

stability to advance our understanding of the relationships between 

prenatal drug usage, cognitive developments and mental health among 

offspring. Another interesting finding of our present study is that 

parental psychopathology was correlated with the FNC stability of 

children, where higher FNC stability in children was associated with 

more positive behaviour and less negative behaviour in their parents. 

We speculate that the family environment might influence the stability 

of FC in children. This speculation is supported by a further analysis 

showing a positive correlation between children9s FNC stability and 

neighbourhood safety, an important living environmental factor. The 

inherited characteristic can be another cause of these relationships. 

Analysis including genetic data is needed in future studies for validat-

ing this hypothesis.

The smaller-than-expected associations between FNC stability 

and behaviour drive us to perform additional multivariate analyses 

to show the neurocognitive relevance of FNC stability. We implement 

a PLSR method combined with FNC stability to successfully predict 

the children9s cognition with much larger effect sizes. We also dem-

onstrated that the behaviour-predict model constructed on the basis 

of the baseline data could predict children9s cognitive performance in 

the second-year session, which further suggests the robust linkages 

between FNC stability and children9s cognition. Overall, the multivari-

ate results prove that FNC stability is a reliable neuroimaging feature 

that can be combined with multivariate analyses to detect reliable 

effects on children9s behaviour.

Limitations and future directions
We noted that, across all univariate association analyses between FNC 

stability and children9s phenotype variables, the highest correlation was 

r)=)0.1070 (d)=)0.2152). Cohen suggested d)=)0.2 as a lower threshold for 

8small9 effect size. However, this threshold is based on the beta error 

that Cohen estimated as four times the alpha error, which is somehow 

arbitrary and should not be interpreted rigidly44. Effects in psychologi-

cal research are much smaller than they appear from past publications, 

implying that Cohen9s magnitude might not be appropriate because 

it is guided by the typical effects that have been found in the past in a 

specific area of research45. A recent publication in psychological science 

has highlighted the dangers of a publication culture that continues to 

demand large effects that can be probably inflated and ignored small 

effects that are most likely to be true46.

Imaging features have been widely linked to the variation in 

cognitive ability and psychopathology using univariate methods, 

typically with relatively larger associations (r)=)~0.2–0.8) reported 

in small-sample neuroimaging studies. However, brain–phenotype 

association findings usually suffer high levels of replication failures. 

Among many factors that might contribute to the poor reproduc-

ibility of the previous results, the small sample used in the studies is 

the most challenging. Based on the analyses of the largest databases 

in the neuroscience field (ABCD, UK Biobank and HCP), a recent study 

demonstrated that the real brain–phenotype associations are much 

smaller (linear correlation r)<)0.1) than previously assumed, and the 

precise characterization of brain–phenotype associations requires 

large samples24. More importantly, the statistical errors were pervasive 

across sample sizes. The false negative rates were very high (~75–100%) 

even for samples as large as 1,000, where half of the significant rela-

tionships were inflated by at least 100% (ref. 24). That is to say, most 

previous MRI studies focusing on the brain–phenotype associations 

might not be sufficiently powered to find reasonable effect sizes, and 

the reported large associations might be solely due to effects inflated 

by chance24.

Such small brain–phenotype associations might be due to the 

heterogeneity of the general population or the imprecision of phe-

notyping in big data. A recent study has shown that the reliability 

of neuropsychological scores has significant effects on character-

izing the associations between biology and psychopathology47. For 

example, sampling biases, inconsistent phenotyping and phenotypic 

complexity can have great impacts on the reliability of phenotypic 

scores, which further influences the precise characterization of rela-

tionships between brain imaging features and human behaviour. In 

future studies, we can apply strategies for enhancing the precision of 

phenotyping, such as increasing phenotypic resolution by using the 

measures that have already been optimized within an item response 

theory framework, which is a sophisticated approach to phenotypic 

scale construction and refinement48.

We also performed the association analyses between FNC unique-

ness and children9s cognitive performance and mental health, where 

the results are put in the section 8Associations between FNC and cogni-

tion/mental health9 in Supplementary Information. Our results (Sup-

plementary Figs. 8 and 9) show that the associations between FNC 

and behaviour have small effect sizes similar to those between intra-

participant FNC variability and behaviour. Although the correlations 

between FNC uniqueness and behaviour might be less reproducible 

between sessions and the existence of intra-participant FC variability 

might raise the question about the reliability of resting-state FC, we do 

not intend to argue that resting-state FNC is an unreliable indicator of 

phenotypic cognitive and mental health variables. The human brain 

is a highly dynamic system that constantly integrates and coordinates 

different neural populations, where FC is not constant but shows sub-

stantial variability in the temporal scale7,27,49. But it should be noted that 

our present work also found that different FC exhibit different levels 

of variations across scans. This suggests that some resting-state FC 

might show strong reliability across trials while others exhibit more 

variations. FC fingerprint property and FC variability might provide 

complementary information to each other, and the investigation of 

both features might advance the association and prediction analy-

sis in biomarker research. It could be possible that, for predicting 

some phenotypes, using either feature alone might be better, while 

for predicting other behaviour scores, combining both can improve 

the performance50. Future neuroimaging studies might also provide 

more moment-by-moment monitoring during the scan, which will help 

to guarantee the participants are in similar conditions during the scan-

ning, probably beneficial for more precise characterization of brain 

signatures associated with complex human behaviour.

Methods
Participants and image acquisition
The present study used a longitudinal dataset shared by the ABCD, 

the largest long-term study of brain development and child health in 
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the United States (https://abcdstudy.org/). We used release 3.0 of the 

ABCD dataset, containing over 11,800 children aged 9–10)years (at 

baseline), with two imaging sessions (baseline and the second-year 

follow-up) and multiple resting-state scans within each session. Our 

study is under Application ID 13591, and we downloaded the ABCD 

FastTrack images with recommended active series from NDA. The ABCD 

study incorporated a comprehensive range of measures, including 

neurocognitive battery, physical and mental health assessments, and 

other health backgrounds, to assess predictors and outcomes related 

to different domains15,16. The parent9s full written informed consent 

and the child9s assent were obtained under protocols approved by 

the institutional review board (IRB). The University of California, San 

Diego provided centralized IRB approval, and each participating site 

received local IRB approval.

We pre-processed the raw resting-state fMRI data using a combina-

tion of the FMRIB Software Library (FSL) v6.0 toolbox and Statistical 

Parametric Mapping (SPM) 12 toolbox, under the MATLAB 2020b 

environment. The pre-processing steps included: (1) rigid body motion 

correction; (2) distortion correction; (3) removal of dummy scans; (4) 

normalization to standard Montreal Neurological Institute space; and 

(5) smoothing with 6)mm a Gaussian kernel. We performed data quality 

control on the pre-processed fMRI data via the Neuromark framework51. 

For the within-session analysis, there are 9,071 participants with four 

good scans from the baseline session and 2,918 participants with four 

good scans from the second-year session. For the cross-session analysis, 

there are 2,290 participants with four good scans from the baseline 

session and also four good scans from the second-year session. The 

basic demographics can be found in Table 1. Details of the fMRI pre-

processing and quality control can be found in the section 8Quality 

control9 in Supplementary Information.

Neuromark framework
To capture reliable ICNs and their corresponding TCs for each par-

ticipant and each scan, a robust independent component analysis 

(ICA)-based framework called Neuromark51 was applied to the ABCD 

data. Unlike atlas-based methods that typically assume fixed brain 

regions across participants, Neuromark can identify brain networks 

comparable across participants and scans, adapting to single-scan 

variability with the networks. It can retain more single-scan variability in 

the estimation of network-related features, which better fits our current 

study aim. The effectiveness of Neuromark has been demonstrated in 

previous work, with a wide range of brain markers and abnormalities 

identified in different populations25,52–56.

Two healthy controls datasets, the HCP (823 participants after 

the participant selection) and the Genomics Superstruct Project 

(GSP; 1,005 participants after the participant selection), were used 

for the construction of the network templates. These two datasets 

have different temporal resolutions and were pre-processed via dif-

ferent pipelines. We chose them because we want to capture robust 

network templates that are reproducible across different scenarios. 

High model order (order 100) group ICA was performed on each 

dataset, and then the independent components (ICs) from the two 

datasets were matched by examining the similarity of their spatial 

maps57. Those pairs were considered consistent and reproducible 

across the GSP and HCP datasets if their spatial correlation was g0.4. 

A correlation value g0.25 has been shown to represent a significant 

correspondence (P)<)0.005, corrected) between components, and 

here we used a higher threshold because we would like to identify 

more reliable and consistent ICs. The matched IC pairs were labelled 

as ICN templates or noise components by inspecting the locations 

of the peak activations of their spatial maps and the low-frequency 

fluctuations of their TCs. The reproducible templates were used as 

the spatial network priors to back-reconstruct spatial maps and TCs 

for the ABCD data. Specifically, we used the multivariate-objective 

optimization ICA with reference58 to estimate single-scan spatial maps 

and TCs. This method used a multiple-objective function optimization 

algorithm, taking only the network templates and the scan-specific 

fMRI data as the inputs. There are two objective functions, one is to 

optimize the independence of networks in the single-scan fMRI data, 

and the other one is to optimize the similarity between the scan-

specific networks and the network templates. To combine these two 

objective functions, a linear weighted sum method was applied51. 

After the optimization, single-scan networks were obtained, which 

not only show scan-specific network patterns but also are compara-

ble across scans and participants. Note that principal component 

analysis (PCA) was performed before single-participant ICA back-

reconstruction. In PCA, the global mean signal per timepoint was 

removed as the standard PCA processing step during participant-level  

PCA reduction. This technical point is detailed and explained in  

ref. 27. Therefore, the global signal has been removed in the PCA  

step in the Neuromark framework, which will not influence the estima-

tion of FNC between TCs. More details of the Neuromark framework 

are provided in ref. 51.

FNC
We performed four additional post-processing steps to carefully 

regress out the remaining noise in the TCs of ICNs: (1) detrending 

linear, quadratic and cubic trends, (2) removal of detected outliers, 

(3) multiple regression of the head motions parameters (three rota-

tions and three translations) and their derivatives, and (4) band-pass 

filtering with a cut-off frequency of 0.01–0.15)Hz. Pearson correlation 

coefficients between post-processed TCs were calculated to measure 

the FNC for each scan.

FNC similarity and participant identification
We calculated the correlation between whole-brain FNC from different 

scans to measure the FNC similarity. The correlation was calculated 

between the FNC of scan 1 and the FNC of the other scans, resulting 

in four comparisons (scan 1 versus scan 2, scan 1 versus scan 3, scan 

1 versus scan 4, and scan 1 versus mean (FNC) across ~2–4). For each 

comparison, the correlation between the FNC of scans from the same 

participant was the intra-participant FNC similarity (stability) and the 

correlation between the FNC of scans from different participants was 

the inter-participant FNC similarity. Therefore, for each participant 

(in each comparison), there were one intra-participant similarity and 

9,070 inter-participant similarities. Then we calculated the percent-

age of children having an intra-participant FNC similarity higher than 

a given percentage of inter-participant FNC similarities (60%, 70%, 

80%, 90%, 95% and 99%).

We performed individual identification using the FNC similarity 

from each comparison. For each participant, we compared their intra-

participant FNC similarity with a randomly picked inter-participant 

FNC similarity. The predicted identity was that with the larger corre-

lation value. We performed this step for every participant to obtain 

an identification vector, which can be used to calculate the overall 

identification accuracy. The whole procedure was repeated 1,000 

times to estimate the distribution of the identification accuracy. 

We implemented non-parametric permutation testing to assess the 

statistical significance of identification accuracy. We permuted par-

ticipant identity for the FNC of scans to shuffle the intra-participant 

and inter-participant FNC similarity. The same identification was 

performed 1,000 times on the permuted data to have the identifica-

tion accuracy for the permuted data. The individual identification 

was further performed using only females or males to examine the 

sex-related difference.

We also calculated the correlations between other scans (scan 2 

versus scan 4, scan 2 versus scan 4, and scan 3 versus scan 4) and per-

formed individual identification based on these cross-scan similarities. 

The identification was further performed using domain-based FNC to 

investigate more domain-specific fingerprint properties.

http://www.nature.com/natmentalhealth
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Second-year data and longitudinal identification
To show that the within-session FNC similarity is robust to age, we 

calculated the FNC similarity between scans from the second-year ses-

sion. The same identification was performed using the FNC similarity 

between scans. To investigate whether the FNC profile can identify 

an individual from a longitudinal scan while there are developmental 

changes in the brain, we further measured the FNC similarity between 

scans from the baseline session and scans from the second-year session 

and then performed the identification based on the FNC similarity 

between longitudinal scans.

Cognitive measures
The cross-scan FNC stability was measured by the intra-participant 

similarity between the FNC of scan 1 and mean FNC across scans ~2–4 

using the baseline data. To show the test–retest reliability of the associa-

tions, we also replicated the results)1) using FNC stability evaluated by 

different intra-participant similarity measures, (2) controlling for head 

motion in the LMM, (3) using participants with small head motions, 

(4) using participants collected by the same scanner and (5) using the 

second-year data.

We first investigate the associations between FNC stability and cog-

nitive assessments. Note that, although there are multiple resting-state 

scans at the baseline and the second-year sessions, for each assessment 

of each participant, there is only one value for the baseline session and 

one value for the second-year session. The cognitive performance of 

each adolescent was measured via the NIH Cognition Battery Toolbox 

(abcd_tbss01)16. Higher scores indicate better cognitive performance. 

The NIH neurocognitive battery contains seven distributional character-

istics, including the Toolbox Picture Vocabulary Task, the Toolbox Oral 

Reading Recognition Task (TORRT), the Toolbox Pattern Comparison 

Processing Speed Test (TPCPST), the Toolbox List Sorting Working 

Memory Test (TLSWMT), the Toolbox Picture Sequence Memory Test 

(TPSMT), the Toolbox Flanker Task and the Toolbox Dimensional Change 

Card Sort Task (TDCCS). There are also three composite scores, including 

a Crystallized Intelligence Composite and a Fluid Intelligence Composite, 

and a Total Score Composite. In total, ten cognitive scores were used in 

the analysis. Detailed information on each score can be found in ref. 16.

Mental health measures
The associations between cross-scan FNC stability and children9s 

mental health conditions were also investigated. The mental health 

conditions of children were measured by the Parent-Child Behavior 

Checklist Scores (CBCL, abcd_cbcls01). These checklist scores con-

tain 11 syndrome scales related to psychiatric problems and 1 total  

Syndrome Scale, 6 DSM-Oriented scales and 3 CBCL Scale2007 Scales. 

In total, 20 scores from the CBCL Scores were used for the investigation. 

The ABCD Parent General Behavior Inventory-Mania (abcd_pgbi01) was 

also used to assess the subsyndromal mania. It contains ten scores that 

evaluate the children9s behaviour of mania. Higher scores on mental 

health measures indicate dimensional psychopathology.

Sleep conditions and screen usage
The assessments of sleep conditions and sleep disorders of children 

were measured by ABCD Parent Sleep Disturbance Scale for Children 

(abcd_sds01). It includes 26 questionnaires to evaluate the sleep dis-

turbance of each child. For example, question 1 is 8How many hours of 

sleep does your child get on most nights?9 and question 2 is 8How long 

after going to bed does your child usually fall asleep?9. The scores will 

be between 1 and 5, with a higher score indicating a worse sleep condi-

tion (for example, fewer hours of sleep and longer time to fall asleep). 

The screen time utilization of youth, which is measured by the ABCD 

Youth Screen Time Survey (abcd_stq01), was also used to investigate 

its relationships with cross-scan FNC stability. It contains 14 scores that 

evaluate the screen usage of a child during the weekdays and weekends, 

with higher scores indicating longer screen usage.

Parental behaviour and prenatal exposure
We were also interested in the potential relationships between parental 

factors and children9s FNC stability. The prenatal exposure before and 

during pregnancy, measured by ABCD Developmental History Ques-

tionnaire (dhx01), was used for the investigation. We focused on pre-

natal exposure to tobacco, alcohol and marijuana, and the parents9 age 

when the child was born. The parental dimensional psychopathology, 

measured by ABCD Parent Adult Self Report Raw Scores Aseba (pasr01), 

was also used in the analysis. These scores evaluate parental psychopa-

thology from either a positive question (for example, question q15: I 

am pretty honest) or a negative question (for example, question q12: I 

feel lonely). The higher scores in the positive question indicate a better 

condition of parents while the higher scores in the negative question 

indicate a worse dimensional psychopathological condition.

Association between cross-scan FNC stability and behaviour
Assuming moderate observational errors (~5% of the mean) in resting-

state fMRI data and only a weak effect on the brain–behaviour associa-

tions24 (~10% of the variability in X explained by Y), the requested sample 

size to achieve power equal to 0.80 and a type I error equal to 0.05 in 

the correlation analysis is 783. Our sample size is much larger than 

this number, which proves that we have sufficient samples to conduct 

brain–behaviour association analyses. An LMM was implemented to 

investigate the associations between cross-scan FNC stability and 

behavioural assessments. The LMM was also used to examine the asso-

ciations between children9s FNC stability and their parents9 conditions 

and neighbourhood safety. The ABCD data contain related data at sites 

and within families due to twins and siblings. The LMM can model 

families nested within the site to take account of this effect. It has been 

successfully applied in previous ABCD studies and identified mean-

ingful brain–behaviour associations with a wide range of individual 

behaviour19,59. In this work, cross-scan FNC stability was modelled as 

the dependent variable, while each score/behaviour was modelled as 

a fixed effect. Age, sex, race, height and weight were modelled as other 

fixed effects. We used the sex of the participant at birth, which is the 

assignment as male or female based on the biological attribute. Birth 

sex is measured by the PhenX toolkit. The family structures and sites 

were modelled as random effects19. The correlation r value, t-statistic 

and effect size Cohen9s d were obtained for each association analysis 

to reflect the relationship between FNC stability and a behavioural 

score. The results were corrected by FDR correction60 across children9s 

behaviour measures.

The LMM analysis was also performed using only female partici-

pants and male participants, where age, race, height and weight were 

modelled as fixed effects, and the family structures and sites were 

modelled as random effects.

Multivariate model to predict children’s behaviour
Here we implemented a multivariate predictive technique, namely 

PLSR, to predict children9s behaviour. We aimed to show that FNC 

stability is a reliable feature that can be combined with the multivari-

ate method to detect larger effect sizes of associations with behaviour 

variables. We used the domain-based cross-scan FNC stability and 

the pairwise FNC stability as the imaging feature and selected the 

composite cognitive score as the target measure. We utilized 10-fold 

nested cross-validation with 1,000 random replications to avoid cir-

cularity bias. The predictive model was then applied to the testing 

data, generating a predictive score for each participant in the testing 

data. By iteratively designating each fold of data as a testing set once, 

we can obtain the predictive scores for all participants. Model perfor-

mance was quantified as the correlation r between actual and predicted 

scores averaged across 1,000 repetitions. The same covariates were 

controlled in cross-validation to show that our predictive models are 

robust to these confounds. To examine the significance of the corre-

lation, we performed a non-parametric permutation test by shuffling 
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the correspondence between imaging features and the target measure 

1,000 times and then repeating the nested cross-validated predictive 

analysis, generating a null distribution of 1,000 correlations. Then, 

the significance of the correlation was estimated by calculating the 

frequency with which the permutation-derived correlations exceeded 

the actual correlation.

We further investigated whether the behaviour-predict model 

constructed using the FNC stability from the baseline data can predict 

children9s behaviour in the longitudinal sessions. PLSR was first utilized 

to define a cognition-predictive model using the pairwise FNC stabil-

ity from the baseline data. Next, the weight map from the constructed 

model was obtained by extracting the regression coefficient for each 

feature. Then, the dot product of vectorized pairwise FNC stability from 

the second-year data was calculated with the weight map61,62. Finally, 

the correlation between actual and predicted cognitive scores was 

calculated by controlling for the covariates.

Confounding effect of the head motion in children
In this study, we did not exclude those participants with larger head 

motions because we want to retain more participants to have larger 

statistical power in the analysis. Head motion during fMRI collections 

can influence the data quality, which may further impact the estimation 

of FNC and its stability.

Therefore, we have performed three steps to carefully minimize 

the impacts of head motion before the estimation of FNC. First, we 

performed head motion correction in the pre-processing using the 

FSL toolbox. Rigid body motion correction was performed using the 

mcflirt tool in FSL. Second, the Neuromark is an ICA-based framework 

that is capable of extracting networks that are independent of the noise 

components, such as the head motion. The ICA-based strategy has been 

widely used for removing motion artefacts in previous studies63,64. 

Third, after extracting the TCs of ICNs, additional post-processing was 

performed on the TCs to further minimize the influence of head motion. 

That is, for each TC, we (1) detrended linear, quadratic and cubic trends, 

(2) removed detected outliers, (3) ran multiple regression of the head 

motions parameters (three rotations and three translations) and their 

derivatives, and (4) ran band-pass filtering with a cut-off frequency of 

0.01–0.15)Hz. These post-processing procedures have been widely used 

in previous ICA studies for the removal of head motion effects7,25,65.

To show the robustness of the association results, we calculated 

the mean framewise displacement (FD)66,67 for each scan. The average 

mean FD for baseline scan 1 is 0.2981 (mean 0.2981, s.d. 0.3697, range 

~0.0507–8.7207) and for scan 2 is 0.3526 (mean 0.3526, s.d. 0.4759, 

range ~0.4759–13.7952). For each participant, we averaged mean FD 

across scans and repeated our analysis by adding this averaged mean FD 

as one of the fixed effects in the LMM. The overall findings are consist-

ent. Additionally, we also replicated our findings after excluding those 

participants with large head motions (participants were excluded if one 

of the scans with head motion >0.3 mean FD). We selected the 0.3)mm 

threshold because it is mid-range within commonly used thresholds in 

developmental FC studies14,68. Details of these analyses and results are 

provided in the section 8Replication of the associations by controlling 

for head motion9 in Supplementary Information.

Statistical analysis
The fMRI data were pre-processed using a combination of the FSL 

v6.0 toolbox and SPM 12 toolbox, under the MATLAB 2020b environ-

ment. The multivariate-objective optimization ICA with reference 

(MOO-ICAR) was used for the estimation of single-scan components 

in MATLAB 2020b. The significance of identification accuracy was 

determined by permutation test (1,000 iterations). The significance 

of associations between FNC stability and health backgrounds was 

assessed using the LMM in MATLAB 2020b (fitlme function). The 

multivariate analysis was performed using the PLSR in MATLAB 2020b 

(plsregress function).

Reporting summary
Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability
The ABCD data used in the present study can be accessed upon appli-

cation from NDA (https://nda.nih.gov/) with the approval of the ABCD 

consortium. The digital object identifier (DOI) of the ABCD data is 

https://doi.org/10.15154/1520591.

Code availability
MATLAB 2020b can be downloaded at https://www.mathworks.com. 

The FSL 6.0.2 toolbox can be downloaded at https://fsl.fmrib.ox.ac.uk/

fsl/fslwiki, and the SPM 12 toolbox can be downloaded at https://www.

fil.ion.ucl.ac.uk/spm/. The codes of the Neuromark framework and the 

Neuromark template have been released and integrated into the group 

ICA Toolbox (GIFT 4.0c, https://trendscenter.org/software/gift/), which 

can be downloaded and used directly by users worldwide. Other MAT-

LAB codes of this study can be obtained from the corresponding author.
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