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Under tensile loadings, thin-walled structures such as sheet metal and tubes develop load maxima, or
limit loads, beyond which deformation localizes leading to rupture. For uniform stress states,
Consideére-type estimates of limit loads can serve as forming limits in applications. The paper explores
the effect of anisotropy on such estimates for thin-walled Al-alloy tubes under combined tension and tor-
sion. Anisotropy is modeled using Yld04-3D with an exponent of 8. Material hardening originates from a
simple shear test using this yield function, taking into account material axes rotation caused by the shear-
ing. A Consideére formulation is developed for the problem, which also incorporates the effect of material
frame rotation. The analysis is used to establish limit loads for a set of circumferentially constrained ten-
sion-torsion experiments tested under radial nominal tension-shear stress paths. The predictions repro-
duce the strains measured at the limit loads for the range of biaxiality ratios considered. By contrast,
corresponding results produced using the isotropic yield functions of von Mises and Hosford(8) increas-
ingly deviate from the measured results as the shear stress increases. Considére-type formulation is also
developed for the same tension-torsion loadings for a uniform thickness tube. The results exhibit a sim-
ilar trend but the limit strains for shear dominant paths are significantly lower, demonstrating the stabi-
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lizing effect of the circumferential constraint used in the experiments.

© 2021 Published by Elsevier Ltd.

1. Introduction

The response of thin-walled structures made of ductile metals
to tensile loads is typically characterized by a load maximum or
limit load. Beyond this point deformation localizes leading to rup-
ture. Consequently, the strains associated with a limit load repre-
sent a forming limit for the structure. For example, such limit
states develop in thin-walled sheets under biaxial loads encoun-
tered in forming processes, and thin-walled tubes under combined
internal pressure, tension and torsion. The classical Considére
(1885) condition for the limit load of bars under tension is also
applicable to biaxial stress states, and can provide an analytical
alternative to numerical solutions for establishing such critical
states. The tensile instability of thin-walled sheets and tubes was
investigated by Swift (1952), Mellor (1962), Hillier (1963), Stout
& Hecker (1983), Section 5 of Butcher and Abedini (2019) among
others, and is rather well established. More recently plastic
anisotropy has been shown to also influence tensile instabilities
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of thin-walled structures (e.g., Scales et al., 2021, for combined ten-
sion and pressure, see also Hillier (1974) for a tube under internal
pressure).

In our recent study of the response and failure of thin-walled
tubes under combined shear and tension - Scales et al. (2019),
Chen et al. (2019) - we encountered a challenge to such calcula-
tions brought about by plastic anisotropy. Aluminum 6061-T6
tubes were tested to failure under a set of stress paths in the nom-
inal axial-shear stress space

S=oT, - -0<a<4 (1)

For o < 3.5, the machine is operated in rotation and axial load
control, with the torque acting as the command signal for the force.
For oo > 3.5 the machine is operated in axial displacement and tor-
que control, with the force acting as the command signal for the
torque. With the exception of the pure torsion test (o = 0), the
nominal axial and shear stress responses recorded developed limit
loads, beyond which deformation localized into narrow circumfer-
ential bands which subsequently ruptured (see Fig. 10 in Scales
et al, 2019). The material exhibited plastic anisotropy, which
was modeled using the YId04-3D anisotropic yield function
(Barlat et al., 2005) calibrated in Appendix A of Chen et al. (2019).
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The hardening response of the material was established from a
pure torsion test on a thin-walled tube using the Yld04-3D model
as well as the isotropic von Mises and the non-quadratic Hosford
(1972) yield functions. Chen et al. (2018) pointed out that shear
rotates the material axes and the rotation must be accounted for
when the material exhibits plastic anisotropy (see also Abedini
et al,, 2020). A way of accounting for the material frame rotation
is outlined in this reference where it was applied to the Hill-48
(H-48, Hill, 1948) quadratic anisotropic yield function. Subse-
quently Chen et al. (2019) incorporated material frame rotation
in the calibration of Yld04-3D. The extracted plastic equivalent
stress—strain response for H-48 and Y1d04-3D, referred to as Mate-
rial Frame (MF), are plotted in Fig. 1. Included in the figure are the
hardening responses corresponding to the von Mises (vM) and
Hosford (H8) yield functions. The four hardening responses differ
from each other pointing to the need that each be used with the
corresponding yield function in analyses (see Tardif & Kyriakides,
2012).

These calculations showed that for anisotropic yield functions
material frame rotation affects the equivalent stress and strain.
Since Considére limit load estimates for uniform stress-states
depend on the equivalent stress and strain, frame rotation must
be accounted for when such estimates are based on anisotropic
yield functions. The paper uses the YId04-3D and H-48 anisotropic
yield functions to examine the effect of frame rotation on the pre-
diction of the limit strain under combined tension and shear. The
limit strains predicted by the analytic expressions developed are
evaluated by comparing them with results from finite element cal-
culations and the values measured in the tension-torsion experi-
ments of Scales et al. (2019). The experiments considered were
performed on tubes with a relatively short, thin-walled test sec-
tion. This setting constrains hoop deformation and stabilizes the
structure. To highlight this stabilizing effect, we also analyze a tube
with uniform thickness under combined tension and torsion.

2. Analysis
2.1. The problem

The tension-torsion experiments of Scales et al. (2019) involved
thick-walled Al-6061-T6 tubes (1.969 x 0.173 in - 50 x 4.38 mm)
into which a thin-walled test section was machined as shown in
Fig. 2 with the following geometry: {height, L, mean radius, R,
thickness, t,} = {0.400, 0.833, 0.039} in - {10.2, 21.2, 1.00} mm
and R/t, ~ 21.4. The experiments were simulated via finite ele-
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Fig. 1. Equivalent stress-strain responses extracted from a pure torsion experiment
on an Al-6061-T6 tube using the isotropic vM and H8 and the anisotropic Yld04-3D
and H-48 constitutive models. The anisotropic models account for material frame
rotation.
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Fig. 2. Schematic of the geometry of the test specimen used in the tension-torsion
experiments of Scales et al. (2019). The test section is essentially circumferentially
constrained.

ment analysis using the Yld04-3D, vM and H8 constitutive models
in Chen et al. (2019). Fig. 3 compares predictions from the three
constitutive models against the measured nominal shear stress-
rotation (7 — ¢) and axial stress-elongation (X — §/L) responses
for stress ratio o« = 0.75 (¢ and ¢ are respectively the rotation
and the elongation of the test section shown in Fig. 2). Marked
on each response with triangular symbols is the limit load. The
Y1d04-3D and H8 responses follow the experimental results well
developing some difference after the limit load. The vM responses
on the other hand trace lower stress trajectories with the shear
limit stress occurring at significantly smaller rotation angle.
Fig. 4 plots the equivalent plastic strain (&2) at the most deformed
point in the test section against the twist angle. Initially the strain
grows nearly linearly with ¢ for all cases. As the limit load is
approached, growth accelerates and beyond it becomes increas-
ingly more rapid within the localizing band. The trajectories pre-
dicted using H8 and Y1d04-3D track the experimental one well.
The vM analysis developed a limit load much earlier and conse-
quently the localization occurs at much smaller ¢. Collectively
the results of Chen et al. (2019) demonstrated that for Al-alloys,
accurate prediction of the inelastic response and large deformation
behavior associated with localized deformation requires the adop-
tion of a non-quadratic yield function and accurate representation
of the anisotropy. At the same time, the results demonstrate the
importance of the limit load strain in design.

For the set-up in Fig. 2, let the test section radius be R and its
wall-thickness t, << R. Designate x;, X, and x; as the hoop, axial,
and radial direction coordinates. The Cauchy hoop, axial, and shear
stresses are {011, 022, 012} While the through thickness stress 733
is negligibly small. Let the corresponding logarithmic strains be &;.
Since the specimens were loaded along radial paths in the nominal
axial-shear stress space, X = o7, the corresponding true stresses
are

Oy = aGneE” (2&)
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Fig. 3. Comparison of measured and predicted responses using three different
constitutive models for « = 0.75 from Chen et al. (2019). (a) Nominal shear stress-
rotation and (b) nominal axial stress-elongation (¢ and ¢ are the rotation and
elongation of the test section).
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Fig. 4. Measured equivalent plastic strain in the localizing zone vs. rotation for
a=0.75, and corresponding ones calculated using the vM, H8 and YId04-3D
constitutive models.

(for the importance of the control variables on the limit load see
Hill, 1996). The circumferential constraint of the text section
implies that

d811 =0and 011 = ﬁGzz. (2b)

The principal stresses are then

International Journal of Solids and Structures 229 (2021) 111148

1) =%[(1 +p+4/a —/3)2+4/oc2}. (2¢)

Chen et al. (2019) simulated the tension-torsion experiments
using a finite element model together with the von Mises yield
function (vM), the non-quadratic yield function of Hosford (1972)
with exponent of 8 (H8), and the non-quadratic anisotropic
three-dimensional yield function of Barlat et al. (2005) Yld04-3D
with the same exponent. The same yield functions are adopted
here. For the stress state of the present problem, vM reduces to:

1/2
® = [0}, — 011022 + 03, +30%] . 3)

H8 expressed in terms of the principal stresses is

1/8
? = {[(01 ~ 02)° + 03 +01]/2} (4)
The Y1d04-3D can be written as
/ /! / ! / /! / ' / I 8
@ = [(S, = SiI° +1S) = S3° +1S) = S5I° +1S, = SiI° +1, — S|
+ 15 = S5 418y = ST+ 1Sy — S5 + 1S5 — S5 °)) /4]

(5)
where S’ and §” are linear transformations of the Cauchy stress ten-
sor through which orthotropic anisotropy is introduced. The trans-
formations introduce 18 anisotropy parameters (see Barlat et al.,

2005), which were evaluated as described in Appendix A of Chen
et al. (2019) and are listed in Table 1.

2.2. Limit load for a general yield function

The limit load instability is the result of wall thinning of the test
section caused by the axial force, F. Let the tube be finitely
deformed to a current radius and thickness {r,t}, and assume the
elastic strains to be negligibly small. At the load maximum

don dt dr_

dF =0 0
()] t r
or 492 4 dess +dey =0 (6a)
022

Using incompressibility in (6a) leads to
dO'zz = O'zzdgzz. (6b)

Proportionality between the axial force and the torque, T,
implies also that

d012+g+2g:
12 t r

dT =0 = 0 (7a)

Using incompressibility together with de;; = 0 leads to:
Aoy = 012dex (7b)

Let @ be the yield function and ¢.(011, 022, 012, ¥) the associated
equivalent stress, where y is the rotation of the material frame (see
Fig. A1). Then,

oP 0P 0P 0P
do, =——doy1 + ——doyp + —do, +—d
* =01, 11 9022 22 901 12 oy v )
_(22 + 22 09 +@d—¢ 0de
" \002 02 0012 O dom, e
Plastic work compatibility requires
201, de
Ued8e1022d822+2012d812:022d822<1+ 12 i) 9)
02 déy

(In these calculations elastic strains are neglected so the equivalent
plastic strain increment is depicted by dé..) Furthermore, from (6b)
and adopting dyy = —de;, from Appendix A
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Table 1
Anisotropy parameters for Yld04-3D model.
Ca Ci3 oy C3 Cay C3, Cla Css Cos
1.028 1.150 1.162 0.941 0.679 0.985 1.0 1.0 1.367
Ca Ci3 5 33 5 5 Cia Cs5 Cés
0.713 0.683 0.847 1.093 1.056 0.962 1.0 1.0 0.695
dy _ 1 dy 1 de, 10 @
doy, 0 dep 0 dép 0.7
Combining (8) and (9) and adopting (10) leads to ’ YId04-3D Al-6061-T6
( o0 o1 09 1 99 @)
do, 003 03 0012 O OY déy
% _ g, . (11)
dﬁe ( 20'12 d8]2>
1+ -
02 dexp
. de 10®/00
Using the flow rule, 2 = 00/0012 (12)

7F227§ 6@/60’22'

(Note that (12) can be obtained from the material frame application
of the flow rule by a standard transformation of the strains and
stresses.) Furthermore, applying the circumferential constraint,
&11 = 0, to (2a) leads to: 62, = oo, and thus (11) becomes

1 09 09

dO'e o oD 209 w 012
& |00y 00 T 00| 13

009 oL 001

It is worth noting that the derivatives of @ in (13) are functions of
(o, B, ¥) and the relationships between the three must be evaluated
numerically as described in the next section. For the isotopic yield
functions (13) reduces to:

do. _ 09

o Oe 902" (14)

2.3. Limit load solution

a. Relationships between the problem variables (o, ,1) can be
obtained from the constraint de;; = 0, which implies that

% (o, B, ) = 0. This can be solved numerically for fixed val-

ues of « producing y — B relationships like the ones in Fig. 5a.
b. Work compatibility (9) can be written as

d822

Oeldee =0p—21(1 +g lez deqa,
d8]2 o d822 (_15)
_ 2022 8¢/8022 1
orde, = —= - <aq>/ao-12 * a) dy.

Since the ratio of 65/0. = f(a, 8, ), use the y — g relationship
generated for chosen values of o to make the RHS of (15) strictly
a function of y. Integration produces &, — i relationships like the
ones in Fig. 5b.

c. The limit load for a chosen stress ratio can then be evaluated
from the Considére condition (13) as follows. Select a value
of &, and evaluate the corresponding . and the local tangent
modulus do./de. from the material hardening response
(Fig. 1). Obtain the corresponding v from the &, — i relation-
ship. Evaluate the derivatives of & using the corresponding
values of y and 8, and compare the RHS of (13) with the
value on the LHS. If they do not agree, increase ¢, and repeat
until they do, which gives the equivalent strain at the limit
load.

(b) -V
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\p°40_ 075
o

T i 1
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20+
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0 02 04 06 08 1
—»89

Fig. 5. (a) Stress ratio f = 011/02; vs. the material rotation angle  for three values
of . (b) Equivalent strain vs. y for the same values of o.

2.4. Limit loads for isotropic yield functions

2.4.1. Von Mises

For the circumferentially constrained case (de¢;; = 0), the von
Mises yield function implies that = 1/2 and the Considére condi-
tion (14) becomes

do. V30,

dee 201 +4/a2)'% (16)

2.4.2. Hosford(8)

For the circumferentially constrained case f varies with ¢. The
relationship is derived in Appendix B and plotted in Fig. B1. The
Consideére condition (14) becomes
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do. oe (1-p+20-1) 1]

- 1+7I7 +
e 29801 4184 (1 - )" (1 - p? +4/02)"”
(17a)
) 12
wherer = 22 1A= 10 =) +4/()(2]1/2 (17b)
O 1+ B+ [(1- ) +4/02)
3. Results

Expression (13) and the numerical procedure of Section 2.3 are
now used to evaluate the plastic equivalent strain corresponding to
the limit load, &, for different stress ratios, «. The strains are plot-
ted in Fig. 6 against tan~'« for better clarity. Drawn with a solid
line are the results for the YId04-3D anisotropic yield function used
in conjunction with the corresponding material hardening
response in Fig. 1. The tension-torsion tests were also simulated
numerically using a finite element model and solution procedure

0.8
Al-6061-T6

8eL / tE =214

T 0.6 ' °

0.4+

0.21

04 06 08 1,12 14
—— tan (o)

Fig. 6. Predicted equivalent strains at the limit loads vs. the stress ratio . Included
are predictions for YId04-3D, H-48, vM and H8 constitutive models.
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Fig. 7. Comparison of limit load equivalent strains calculated with the present
analysis and by a finite element model over the range of « of interest.
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along the lines of those described in Section 3.1 of Chen et al.
(2019). Since here interest is limited to establishing the limit load,
we opted to use an axisymmetric FE model, which makes the sim-
ulation much less computationally intensive. Fig. 7 compares the
values of & evaluated through the FE analysis and those produced
through Eq. (13) for stress ratios in the range of 0.5 < « < 4.0. The
two sets of results are very close to each other for the whole range
of «, thus confirming the accuracy of the analytical limit load
solution.

The Y1d04-3D analytic results are also compared to the limit
strains corresponding to the seven experiments of Scales et al.
(2019) in Fig. 6. The experimental data are seen to be in generally
very good agreement with the analytic results thus providing one
more confirmation of the veracity of the analysis. Included in the
figure are predictions of limit load equivalent strains for vM and
H8. Both track the Yld04-3D predictions well for stress ratios lar-
ger than 2. However, vM produces progressively lower strains as
o is reduced from 2 to 0.5. For the 0.5 stress ratio the vM value is
only 58% of the Yld04-3D result. This level of poor performance
confirms once more that an isotropic quadratic representation
of the yield function is not appropriate for Al-alloys. By contrast,
the isotropic H8 predictions remain close to the anisotropic
results up to a stress ratio of 1.0, but overestimate them for lower
values of «. This points to the importance of anisotropy to the
problem.

For comparison, we also considered the Hill-48 anisotropic
quadratic yield function (Hill, 1948 - H-48), which for the present
problem can be expressed as:

1/2

1 1 1 3
2 2 2

Oe= |07, — <l+—2——2>0'110'22 +505%+5 00| - (18)
{ S2 53 S2 512

For this material, the anisotropy variables S; were determined

in Chen et al. (2018) using the tension-torsion experiments of

Scales et al. (2019), and take the values

S, =101, $5=097, §,=093

The corresponding material hardening response was extracted
from the same pure torsion test used to extract the hardening
responses for vivl, H8 and Yld04-3D models adopted in the present
study. An essential aspect of this extraction is the use of (18) and
accounting for material frame rotation as described in Chen et al.
(2018, 2019). The resultant hardening response is included in
Fig. 1 where it is seen to be significantly different from that of
the isotropic case (vM). It also differs from the response of the ani-
sotropic Yld04-3D.

The calibrated H-48 yield function was used in (13) together
with the corresponding material hardening response to estimate
the plastic equivalent strain at the limit load for the same range
of stress ratios, and the results are included in Fig. 6. Here again
the material frame rotation was accounted for using the procedure
outlined in Section 2.3. The H-48 predictions, although better than
the vM results, remain significantly lower than the YId04-3D
strains for stress ratios smaller than about 1.5. This demonstrates
again that quadratic yield functions, even one that accounts for
anisotropy, are not appropriate for Al-alloys.

Before leaving this section, it is worth pointing out that the
geometry of the test section used in the tension-torsion exper-
iments of Scales et al. (2019) was designed to preclude buck-
ling due to torsion. The experiments confirmed that the
specimens did not buckle for the lowest value of o = 0.5, which
undergoes significant shear strain before reaching the limit
load. It is thus important to emphasize that, for different
geometries buckling may precede the limit load calculated
through expressions (13).
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4. Uniform thickness thin-walled tube under combined tension
and torsion

The test section of the tension-torsion experiments of Scales et al.
(2019) has a significant stabilizing effect on the structure. To demon-
strate this effect on the limit load we also formulate the Considére
limit load criterion for a long circular tube with uniform thickness
loaded under radial nominal stress paths, X = a7. Here, in the
absence of the circumferential constraint imposed by the geometry,

o1 =0. (]9&)
Consequently,dF =0 = do; = 0pdé, (19b)
anddT =0 = doy; = 012(dey — dény) (19¢)
oP 012 < d8]1> o oP dlﬂ
Thendo, = —(1-" +— | 0yndéey,
|:60'22 02 d822 80'12 8(// dO'zz nen
(20a)

andde, = g5ydey, (1 + 2012 @> /Ge. (20b)

02 déy
Using (20a) and (20b)

01, 09 09 1 99 09
@: . 0P |03 0011 8012 203 Oy 001, 21)
de. ¢ 1902 0 a1, 09 :
003 02 0012
. .. . 0P oD 1 00

For isotropic yield functions, kT =0 and P05 = 290, and so
(21) becomes

012 0P
do—e _ 0P 20'22 012
dSe 76380'22 1+ 0P 012 09 |’ (22)

00 03 001

For cases in which the limit load occurs at small values of &,
02, ~ 0012 and (22) simplifies to

1 00
dO’ei oP ﬂ{)o’lz
B o0, |  TO0 1 00| (23)

00, & 9012
Specializing (23) to the von Mises yield function results in

do. _ (1+9/20%)
dSE e(1+3/a2)3/2.

(This differs to some degree from Hillier’s (1963) Eq. (26) derived
for a thin-walled plate under combined in-plane loads specialized
to tension and shear, because of differences in the way the propor-
tional loading is applied.) Applying Hosford(8) to (23) is alge-
braically more lengthy, so the critical state can be determined
using the derivatives of ¢ derived in Appendix C.

(24)

4.1. Limit load solution

In this case in general

% = oe™ = K(g1;)and @ = O(K, ) (25)
12

Before proceeding to the Considére expression (22), the rela-
tionship between x and  must be established for chosen values

of o.. From Appendix A de;; = —dy holds also for this case, thus

International Journal of Solids and Structures 229 (2021) 111148

(a)
Al-6061-T6
0220.9- 1 Y1d04-3D
O
T 0.7-
0.75

0.3 . . . .
0 10 20 30 o 40

(b)

Al-6061-T6

Y1d04-3D
-0.011

11
-0.02+
05

-0.03+ 0.75

-0.041 !

'005 T T T T
0 5 20 25

Al-6061-T6

o 7vYidos-3D 5’755
L

0 T T T T
0 0.2 0.4 0.6

—> £

Fig. 8. (a) Stress ratio g,, /012 vs. the material rotation angle y for three values of o
for the uniform thickness tube (g1, = 0). (b) Hoop strain vs. y, and (c) equivalent
strain vs. i for the same values of o.

d8]] =-2 (78@/66“>d!ﬂ

9®/00+, (26a)

Use (26a) in the difference scheme below to incrementally evaluate
the stress ratio x for different increments dy,
8d>/80'1 1> :|
eni— 2| —==—) d
=25 aen),

Kiy1 = 0leXp (26b)
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Fig. 8a shows stress ratio - i relationships generated in this manner
for three values of «; the difference from the nominal value is seen
to increase as the material rotation angle increases. Fig. 8b plots &1
against y for the same three nominal stress ratios.

The incremental relationship for the equivalent strain (20b) can
be written as

_20'22 <8@/8022 &> l//

dge - O 8@/00‘12 (Y

(27)

Since 0/, = f(é11, K,¥), use the y — K relationship for a chosen
value of o to make the RHS of (27) strictly a function of . Integra-
tion of (27) then produces relationships like those in Fig. 8c.

The critical state can then be evaluated form the Considére
expression (22), as follows: Select a value of &, from the material
hardening response and evaluate the corresponding ¢. and the
local do./dé¢.. Obtain the corresponding frame rotation angle from
the ¢, — y relationship. Evaluate the derivatives of @ using the cor-
responding values of x and , and compare the RHS of (22) with
the value on the LHS. If they do not agree, increase &, and repeat
until they do, which produces the critical state.

4.2. Results

The Considére expression (22) and the procedure outlined in
Section 4.1 are now used to evaluate the equivalent plastic strain
corresponding to the limit load, &, for different stress ratios, .
The strains are plotted in Fig. 9 against tan "o for better clarity.
Included are results for the vM, H8 and YId04-3D yield functions,
each used in conjunction with the corresponding material harden-
ing response in Fig. 1. The YId04-3D strains are higher than those of
the other two yield functions with the difference progressively
increasing from o < 1.0. In this case H8 and vM produce essentially
parallel trajectories with the one of vM being slightly higher, a
trend that differs significantly from that of the circumferentially
constrained case in Fig. 6. What is striking, however, is that the
limit stains for this uniform geometry tube are significantly lower
than those of the constrained geometry in Fig. 6. Thus, although the
sharply increasing relationship between ¢,, and lower values of o is
maintained, the Yld04-3D limit strain for the constrained case for
o = 0.5 are higher by a factor of about 1.92 but for o = 4 they differ
by only about 2%. This demonstrates the stabilizing role of the

0.31
eL
Lo
0.11
6, 0 Al-6061-T6
0 T T T T T
0.4 0.6 0.8 1 1.2 1.4

— tan'1(0c)

Fig. 9. Predicted equivalent strains at the limit loads vs. the stress ratio « for the
uniform thickness tube. Included are predictions for Yld04-3D, vM and H8
constitutive models.
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constrained geometry adopted in the experiments of Scales et al.
(2019). The trend for vM is similar whereas for H8 the difference
between the two geometries is much more pronounced. It is also
important to point out that for lower values of «, bifurcation buck-
ling in the form of a two-lobe (n = 2) spiral buckling mode can pre-
cede the limit load instability discussed in this section, rendering it
impractical. This issue becomes even more severe for higher R/t,
tubes than the one used in this study.

Fig. 9 includes with a dashed line the Yld04-3D limit strains
predicted for g,/ ~ o, which of course simplifies the solution.
Interestingly, for this material and geometry, the difference from
the more exact solution is quite small for the whole range of stress
ratios considered. The main cause for this close relationship is that
the hoop strains &;; produced at the limit load are rather small for
the stress ratios considered. The difference between the more exact
and approximate stress ratios for vM and H8 is similarly small and
the results are not included.

5. Summary and conclusions

Under tensile loads thin-walled structures develop load max-
ima, or limit loads, beyond which deformation localizes leading
to rupture. Thus, limit loads constitute forming limits for the struc-
tures. For structures such as sheet metal and tubes under uniform
stresses, Considére-type estimates of limit loads provide simpler
analytical alternatives to numerical calculations. This paper devel-
oped such estimates for anisotropic Al-alloy thin-walled tubes
under combined tension and torsion. The anisotropy is modeled
using the YId04-3D with an exponent of 8 suitably calibrated,
together with the material hardening response extracted from a
simple shear test using this yield function. Shearing causes rotation
of the material axes, and is accounted for in the process. Material
frame rotation affects also the equivalent stress and strain on
which Considére calculations are based. The present study
describes how to analytically account for material frame rotation
in limit load estimates for thin-walled tubes under combined ten-
sion and torsion. The analysis is verified by comparisons of the cal-
culated strains at the limit loads with those measured in the
circumferentially constrained tension-torsion experiments of
Scales et al. (2019), and by FE simulations. Following are observa-
tions, comments, and conclusions drawn from this study.

a. The adoption of a non-quadratic anisotropic yield function in
limit load calculations is essential for Al-alloys. Furthermore,
the material hardening response extracted from a uniaxial or
pure/simple shear test must be extracted using the same
anisotropic yield function.

b. In the present study the material hardening came from a
simple shear test. Deformation induced by simple shear
results in rotation of the material frame and this must be
accounted for.

c. The combined shear-tension state of stress of the tension-
torsion experiments of Scales et al. (2019) leads to a limit
load, which can be predicted by Considére-type analysis.
This biaxial state of stress results in material frame rotation,
which must also be accounted for in the calculation of the
equivalent stress and strain.

d. Consideére-type calculations reproduced accurately the mea-
sured limit loads by: (i) adopting the Y1d04-3D yield func-
tion; (ii) using a material hardening response extracted as
in point b; and (iii) accounting for material frame rotation
in the calculation of the equivalent stress and strain. By con-
trast, calculations based on vM, H8 and H-48 deviate from
the measured results increasingly so as the stress ratio
decreases.
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e. The tension-torsion experiments simulated were performed
under radial nominal stress paths X = o7 . The correspond-
ing true stresses are g, = o02e" and this difference can
affect the analytical calculation of the limit state.

f. The circumferential constraint of the experimental setup of
Scales et al. (2019) has a strong stabilizing effect on the
structure. Thus, the strains corresponding to the limit loads
for a uniform tube tested under the same radial stress paths
are significantly smaller for shear-dominant stress states. It
is also important to point out that in the case of the uniform
tube with lower values of «, bifurcation buckling in the form
of a spiral buckling mode can precede the limit load instabil-
ity predicted. Buckling becomes more likely as R/t,
increases.
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Appendix A Material frame rotation

Casel: &1 =0

Consider a material element in the 1-2 frame that is undergoing
shear and stretch as shown in Fig. A1.The deformation gradient, F,
is

1y O
F={0 12 0 |. (A1)
00 1/x

where / is the axial stretch and v is the normalized shear displace-
ment. The incremental strain is

0 dy/24 0
de =sym(dF -F') = | dy/24 di/i 0o |, (A2a)
0 0 —di/ 2
and the instantaneous spin tensor is
0 dy/2. 0
do = skewsym(dFF ') = | —dy/2. 0 0 (A2b)
0 0 0

Fig. Al. Sheared and stretched material element for ¢;; = 0; shown are the initial
and rotated material axes.
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Fig. A2. Sheared and stretched material element for ¢,; = 0.
The instantaneous material frame rotation depicted in Fig. A1 is
dy = —dy/2) = —der, (A3)

It is worth pointing out that dw corresponds to the incremental
form of the rotation tensor of polar decomposition, which we con-
sider more appropriate for incremental plasticity applications such
as the present one. It is also consistent with how frame rotation is
handled in ABAQUS (2016) that was employed to calculate the
response using the finite element model.

Casell: 611 =0

In this case 1,0 and because of the material anisotropy A3#4,.
The deformed material element now becomes:

ThenF=|0 7 0|, i =—. (Ad)
A
0 0 J !

Furthermore de = sym(dF - F ')

d;q /;,1 (d'})/Z/l — ')/d]] /2/1/1] ) 0
— | (dy/2 = ydin j2000) di/s o |
0 0 dis/’s
(A5a)
and dw = skewsym(dFF ")
0 (dy/2 — ydiy [2731) O
— | —(dy/27 = ydin [2001) 0 0 (A5b)
0 0 0
Thusdy = —(dy/2/ —ydii/2)41) = —dé1a. (A6)

Appendix B Hosford (8) for ¢; = 0

For this yield function the value of the stress ratio g11/022 = §
depends on the applied stress proportionality constant «. § can

be related to o through the hoop strain constraint de;; = Owhich
implies that
0P o0® 0o1 0P 00,

=0=— il B1
0011 0 001 0011 00, 0011 ( )

The derivatives on the RHS of (B1) are:

oD 1+(1-1)
00y U811 484 (1- )"

[+7 + 7)} (B2a)
ob r-@a1-n

o0, 281+ (1 - F)Sf/s’

where I' = 6, /0 is given in Eq. (17b), and



K. Chen and S. Kyriakides

Al-6061-T6
0.9

0.8+
tor.

B

H8

0.6
0.5
0.4

0.3 T T T T T T T
0 1 2 3 4

—

vM

Fig. B1. Stress ratio = g11/02 vs. o for the Hosford(8) and von Mises yield
functions.

901, 1 (1-5)
oo 2 {l - (1) +4/oc21”2}' (B20)

Thus (B1) can be written as:

A+ - p2+4/02" 20TV +1-TI7)(1- ) =0.
(B3)

Solving (B3) for specific values of o produces the relationship plot-
ted in Fig. B1.

Appendix C Hosford (8) for 611 = 0

For a uniform thickness tube under combined tension and tor-
sion, the principal stresses can be written as:

022
I, =5 {1 +4/1 +4/oc2}

_ 2
andl“:ﬁz—1 [(1+4/<x]]2.
o 1+ [(1+4/02))

Then 0012 = 1 1+ ;1/2 and
003 2 1+ 4/02]
0013 1
—== 12"
9012 1+ 4/02]"

112 (€1)

(€2)
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Thus, the derivatives of @ on the RHS of (23) can be expressed as

00  1+T7+[1-I"+2(1-1)")/[1+4/02]" )
00y 2981 4 I8 4 (1 — F)8]7/8 ’

7 7
and 22 _ M-1"+201-T1))] )

778

9012 2811 4 1% 4 (1 - 1)%)"*[1 1 o2/4)"?
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