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a b s t r a c t

Under tensile loadings, thin-walled structures such as sheet metal and tubes develop load maxima, or

limit loads, beyond which deformation localizes leading to rupture. For uniform stress states,

Considère-type estimates of limit loads can serve as forming limits in applications. The paper explores

the effect of anisotropy on such estimates for thin-walled Al-alloy tubes under combined tension and tor-

sion. Anisotropy is modeled using Yld04-3D with an exponent of 8. Material hardening originates from a

simple shear test using this yield function, taking into account material axes rotation caused by the shear-

ing. A Considère formulation is developed for the problem, which also incorporates the effect of material

frame rotation. The analysis is used to establish limit loads for a set of circumferentially constrained ten-

sion–torsion experiments tested under radial nominal tension-shear stress paths. The predictions repro-

duce the strains measured at the limit loads for the range of biaxiality ratios considered. By contrast,

corresponding results produced using the isotropic yield functions of von Mises and Hosford(8) increas-

ingly deviate from the measured results as the shear stress increases. Considère-type formulation is also

developed for the same tension–torsion loadings for a uniform thickness tube. The results exhibit a sim-

ilar trend but the limit strains for shear dominant paths are significantly lower, demonstrating the stabi-

lizing effect of the circumferential constraint used in the experiments.

� 2021 Published by Elsevier Ltd.

1. Introduction

The response of thin-walled structures made of ductile metals

to tensile loads is typically characterized by a load maximum or

limit load. Beyond this point deformation localizes leading to rup-

ture. Consequently, the strains associated with a limit load repre-

sent a forming limit for the structure. For example, such limit

states develop in thin-walled sheets under biaxial loads encoun-

tered in forming processes, and thin-walled tubes under combined

internal pressure, tension and torsion. The classical Considère

(1885) condition for the limit load of bars under tension is also

applicable to biaxial stress states, and can provide an analytical

alternative to numerical solutions for establishing such critical

states. The tensile instability of thin-walled sheets and tubes was

investigated by Swift (1952), Mellor (1962), Hillier (1963), Stout

& Hecker (1983), Section 5 of Butcher and Abedini (2019) among

others, and is rather well established. More recently plastic

anisotropy has been shown to also influence tensile instabilities

of thin-walled structures (e.g., Scales et al., 2021, for combined ten-

sion and pressure, see also Hillier (1974) for a tube under internal

pressure).

In our recent study of the response and failure of thin-walled

tubes under combined shear and tension – Scales et al. (2019),

Chen et al. (2019) – we encountered a challenge to such calcula-

tions brought about by plastic anisotropy. Aluminum 6061-T6

tubes were tested to failure under a set of stress paths in the nom-

inal axial-shear stress space

R ¼ aT ; � � �0 6 a 6 4: ð1Þ

For a < 3.5, the machine is operated in rotation and axial load

control, with the torque acting as the command signal for the force.

For aP 3:5 the machine is operated in axial displacement and tor-

que control, with the force acting as the command signal for the

torque. With the exception of the pure torsion test (a ¼ 0), the

nominal axial and shear stress responses recorded developed limit

loads, beyond which deformation localized into narrow circumfer-

ential bands which subsequently ruptured (see Fig. 10 in Scales

et al., 2019). The material exhibited plastic anisotropy, which

was modeled using the Yld04-3D anisotropic yield function

(Barlat et al., 2005) calibrated in Appendix A of Chen et al. (2019).
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The hardening response of the material was established from a

pure torsion test on a thin-walled tube using the Yld04-3D model

as well as the isotropic von Mises and the non-quadratic Hosford

(1972) yield functions. Chen et al. (2018) pointed out that shear

rotates the material axes and the rotation must be accounted for

when the material exhibits plastic anisotropy (see also Abedini

et al., 2020). A way of accounting for the material frame rotation

is outlined in this reference where it was applied to the Hill-48

(H-48, Hill, 1948) quadratic anisotropic yield function. Subse-

quently Chen et al. (2019) incorporated material frame rotation

in the calibration of Yld04-3D. The extracted plastic equivalent

stress–strain response for H-48 and Yld04-3D, referred to as Mate-

rial Frame (MF), are plotted in Fig. 1. Included in the figure are the

hardening responses corresponding to the von Mises (vM) and

Hosford (H8) yield functions. The four hardening responses differ

from each other pointing to the need that each be used with the

corresponding yield function in analyses (see Tardif & Kyriakides,

2012).

These calculations showed that for anisotropic yield functions

material frame rotation affects the equivalent stress and strain.

Since Considère limit load estimates for uniform stress-states

depend on the equivalent stress and strain, frame rotation must

be accounted for when such estimates are based on anisotropic

yield functions. The paper uses the Yld04-3D and H-48 anisotropic

yield functions to examine the effect of frame rotation on the pre-

diction of the limit strain under combined tension and shear. The

limit strains predicted by the analytic expressions developed are

evaluated by comparing them with results from finite element cal-

culations and the values measured in the tension–torsion experi-

ments of Scales et al. (2019). The experiments considered were

performed on tubes with a relatively short, thin-walled test sec-

tion. This setting constrains hoop deformation and stabilizes the

structure. To highlight this stabilizing effect, we also analyze a tube

with uniform thickness under combined tension and torsion.

2. Analysis

2.1. The problem

The tension–torsion experiments of Scales et al. (2019) involved

thick-walled Al-6061-T6 tubes (1.969 � 0.173 in – 50 � 4.38 mm)

into which a thin-walled test section was machined as shown in

Fig. 2 with the following geometry: {height, Lg, mean radius, R,

thickness, to} = {0.400, 0.833, 0.039} in – {10.2, 21.2, 1.00} mm

and R=to � 21:4. The experiments were simulated via finite ele-

ment analysis using the Yld04-3D, vM and H8 constitutive models

in Chen et al. (2019). Fig. 3 compares predictions from the three

constitutive models against the measured nominal shear stress-

rotation ðT � /Þ and axial stress-elongation ðR� d=LgÞ responses

for stress ratio a ¼ 0:75 (/ and d are respectively the rotation

and the elongation of the test section shown in Fig. 2). Marked

on each response with triangular symbols is the limit load. The

Yld04-3D and H8 responses follow the experimental results well

developing some difference after the limit load. The vM responses

on the other hand trace lower stress trajectories with the shear

limit stress occurring at significantly smaller rotation angle.

Fig. 4 plots the equivalent plastic strain ðepeÞ at the most deformed

point in the test section against the twist angle. Initially the strain

grows nearly linearly with / for all cases. As the limit load is

approached, growth accelerates and beyond it becomes increas-

ingly more rapid within the localizing band. The trajectories pre-

dicted using H8 and Yld04-3D track the experimental one well.

The vM analysis developed a limit load much earlier and conse-

quently the localization occurs at much smaller /. Collectively

the results of Chen et al. (2019) demonstrated that for Al-alloys,

accurate prediction of the inelastic response and large deformation

behavior associated with localized deformation requires the adop-

tion of a non-quadratic yield function and accurate representation

of the anisotropy. At the same time, the results demonstrate the

importance of the limit load strain in design.

For the set-up in Fig. 2, let the test section radius be R and its

wall-thickness to << R. Designate x1, x2 and x3 as the hoop, axial,

and radial direction coordinates. The Cauchy hoop, axial, and shear

stresses are fr11; r22; r12g while the through thickness stress r33

is negligibly small. Let the corresponding logarithmic strains be eij.
Since the specimens were loaded along radial paths in the nominal

axial-shear stress space, R ¼ aT , the corresponding true stresses

are

r22 ¼ ar12e
e11 ð2aÞ

Fig. 1. Equivalent stress–strain responses extracted from a pure torsion experiment

on an Al-6061-T6 tube using the isotropic vM and H8 and the anisotropic Yld04-3D

and H-48 constitutive models. The anisotropic models account for material frame

rotation.

Fig. 2. Schematic of the geometry of the test specimen used in the tension–torsion

experiments of Scales et al. (2019). The test section is essentially circumferentially

constrained.
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(for the importance of the control variables on the limit load see

Hill, 1996). The circumferential constraint of the text section

implies that

de11 ¼ 0andr11 ¼ br22: ð2bÞ

The principal stresses are then

r1;2 ¼ r22

2
ð1þ bÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� bÞ2 þ 4=a2

q
� �

: ð2cÞ

Chen et al. (2019) simulated the tension-torsion experiments

using a finite element model together with the von Mises yield

function (vM), the non-quadratic yield function of Hosford (1972)

with exponent of 8 (H8), and the non-quadratic anisotropic

three-dimensional yield function of Barlat et al. (2005) Yld04-3D

with the same exponent. The same yield functions are adopted

here. For the stress state of the present problem, vM reduces to:

U ¼ ½r2
11 � r11r22 þ r2

22 þ 3r2
12�

1=2
: ð3Þ

H8 expressed in terms of the principal stresses is

U ¼ f½ðr1 � r2Þ8 þ r8
2 þ r8

1�=2g
1=8 ð4Þ

The Yld04-3D can be written as

U ¼ ½ðjS01 � S001j
8 þ jS01 � S002j

8 þ jS01 � S003j
8 þ jS02 � S001j

8 þ jS02 � S002j
8

þ jS02 � S003j
8 þ jS03 � S001j

8 þ jS03 � S002j
8 þ jS03 � S003j

8�Þ=4�1=8

ð5Þ

where S
0 and S

00 are linear transformations of the Cauchy stress ten-

sor through which orthotropic anisotropy is introduced. The trans-

formations introduce 18 anisotropy parameters (see Barlat et al.,

2005), which were evaluated as described in Appendix A of Chen

et al. (2019) and are listed in Table 1.

2.2. Limit load for a general yield function

The limit load instability is the result of wall thinning of the test

section caused by the axial force, F. Let the tube be finitely

deformed to a current radius and thickness fr; tg, and assume the

elastic strains to be negligibly small. At the load maximum

dF ¼ 0 ) dr22

r22

þ dt

t
þ dr

r
¼ 0

or
dr22

r22

þ de33 þ de11 ¼ 0 ð6aÞ

Using incompressibility in (6a) leads to

dr22 ¼ r22de22: ð6bÞ

Proportionality between the axial force and the torque, T,

implies also that

dT ¼ 0 ) dr12

r12

þ dt

t
þ 2

dr

r
¼ 0 ð7aÞ

Using incompressibility together with de11 ¼ 0 leads to:

dr12 ¼ r12de22 ð7bÞ

Let U be the yield function and reðr11;r22;r12;wÞ the associated

equivalent stress, where w is the rotation of the material frame (see

Fig. A1). Then,

dre ¼
@U

@r11

dr11 þ
@U

@r22

dr22 þ
@U

@r12

dr12 þ
@U

@w
dw

¼ @U

@r22

þ r12

r22

@U

@r12

þ @U

@w

dw

dr22

� �

r22de22:
ð8Þ

Plastic work compatibility requires

redee ¼ r22de22 þ 2r12de12 ¼ r22de22 1þ 2r12

r22

de12
de22

� �

: ð9Þ

(In these calculations elastic strains are neglected so the equivalent

plastic strain increment is depicted by dee.) Furthermore, from (6b)

and adopting dw ¼ �de12 from Appendix A

Fig. 3. Comparison of measured and predicted responses using three different

constitutive models for a ¼ 0:75 from Chen et al. (2019). (a) Nominal shear stress-

rotation and (b) nominal axial stress-elongation (/ and d are the rotation and

elongation of the test section).

Fig. 4. Measured equivalent plastic strain in the localizing zone vs. rotation for

a = 0.75, and corresponding ones calculated using the vM, H8 and Yld04-3D

constitutive models.
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dw

dr22

¼ 1

r22

dw

de22
¼ � 1

r22

de12
de22

ð10Þ

Combining (8) and (9) and adopting (10) leads to

dre

dee
¼ re

@U

@r22

þ r12

r22

@U

@r12

� 1

r22

@U

@w

de12
de22

� �

1þ 2r12

r22

de12
de22

� � : ð11Þ

Using the flow rule;
de12
de22

¼ 1

2

@U=@r12

@U=@r22

: ð12Þ

(Note that (12) can be obtained from the material frame application

of the flow rule by a standard transformation of the strains and

stresses.) Furthermore, applying the circumferential constraint,

e11 ¼ 0, to (2a) leads to: r22 ¼ ar12 and thus (11) becomes

dre

dee
¼ re

@U

@r22

�

1

2r22

@U

@w

@U

@r12

@U

@r22

þ 1

a
@U

@r12

2

6

6

4

3

7

7

5

: ð13Þ

It is worth noting that the derivatives of U in (13) are functions of

ða;b;wÞ and the relationships between the three must be evaluated

numerically as described in the next section. For the isotopic yield

functions (13) reduces to:

dre

dee
¼ re

@U

@r22

: ð14Þ

2.3. Limit load solution

a. Relationships between the problem variables ða; b;wÞ can be

obtained from the constraint de11 ¼ 0, which implies that
@U
@r11

ða; b;wÞ ¼ 0. This can be solved numerically for fixed val-

ues of a producing w� b relationships like the ones in Fig. 5a.

b. Work compatibility (9) can be written as

redee ¼ r22
de22
de12

1þ 2

a
de12
de22

� �

de12;

or dee ¼ �2r22

re

@U=@r22

@U=@r12

þ 1

a

� �

dw:

ð15Þ

Since the ratio of r22=re ¼ f ða; b;wÞ, use the w� b relationship

generated for chosen values of a to make the RHS of (15) strictly

a function of w. Integration produces ee � w relationships like the

ones in Fig. 5b.

c. The limit load for a chosen stress ratio can then be evaluated

from the Considère condition (13) as follows. Select a value

of ee and evaluate the corresponding re and the local tangent

modulus dre=dee from the material hardening response

(Fig. 1). Obtain the corresponding w from the ee � w relation-

ship. Evaluate the derivatives of U using the corresponding

values of w and b, and compare the RHS of (13) with the

value on the LHS. If they do not agree, increase ee and repeat

until they do, which gives the equivalent strain at the limit

load.

2.4. Limit loads for isotropic yield functions

2.4.1. Von Mises

For the circumferentially constrained case ðde11 ¼ 0Þ, the von

Mises yield function implies that b ¼ 1=2 and the Considère condi-

tion (14) becomes

dre

dee
¼

ffiffiffi

3
p

re

2½1þ 4=a2�1=2
: ð16Þ

2.4.2. Hosford(8)

For the circumferentially constrained case b varies with a. The
relationship is derived in Appendix B and plotted in Fig. B1. The

Considère condition (14) becomes

Fig. 5. (a) Stress ratio b ¼ r11=r22 vs. the material rotation angle w for three values

of a. (b) Equivalent strain vs. w for the same values of a.

Table 1

Anisotropy parameters for Yld04-3D model.

c012 c013 c021 c023 c031 c032 c044 c055 c066

1.028 1.150 1.162 0.941 0.679 0.985 1.0 1.0 1.367

c0012 c0013 c0021 c0023 c0031 c0032 c0044 c0055 c0066
0.713 0.683 0.847 1.093 1.056 0.962 1.0 1.0 0.695
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dre

dee
¼ re

29=8½1þ C8 þ ð1� CÞ8�7=8
1þ C7 þ ð1� bÞ½1þ 2ð1� CÞ7 � C7�

½ð1� bÞ2 þ 4=a2�1=2

" #

ð17aÞ

whereC ¼ r2

r1

¼ 1þ b� ½ð1� bÞ2 þ 4=a2�1=2

1þ bþ ½ð1� bÞ2 þ 4=a2�1=2
ð17bÞ

3. Results

Expression (13) and the numerical procedure of Section 2.3 are

now used to evaluate the plastic equivalent strain corresponding to

the limit load, eeL, for different stress ratios, a. The strains are plot-

ted in Fig. 6 against tan�1a for better clarity. Drawn with a solid

line are the results for the Yld04-3D anisotropic yield function used

in conjunction with the corresponding material hardening

response in Fig. 1. The tension–torsion tests were also simulated

numerically using a finite element model and solution procedure

along the lines of those described in Section 3.1 of Chen et al.

(2019). Since here interest is limited to establishing the limit load,

we opted to use an axisymmetric FE model, which makes the sim-

ulation much less computationally intensive. Fig. 7 compares the

values of eeL evaluated through the FE analysis and those produced

through Eq. (13) for stress ratios in the range of 0:5 6 a 6 4:0. The

two sets of results are very close to each other for the whole range

of a, thus confirming the accuracy of the analytical limit load

solution.

The Yld04-3D analytic results are also compared to the limit

strains corresponding to the seven experiments of Scales et al.

(2019) in Fig. 6. The experimental data are seen to be in generally

very good agreement with the analytic results thus providing one

more confirmation of the veracity of the analysis. Included in the

figure are predictions of limit load equivalent strains for vM and

H8. Both track the Yld04-3D predictions well for stress ratios lar-

ger than 2. However, vM produces progressively lower strains as

a is reduced from 2 to 0.5. For the 0.5 stress ratio the vM value is

only 58% of the Yld04-3D result. This level of poor performance

confirms once more that an isotropic quadratic representation

of the yield function is not appropriate for Al-alloys. By contrast,

the isotropic H8 predictions remain close to the anisotropic

results up to a stress ratio of 1.0, but overestimate them for lower

values of a. This points to the importance of anisotropy to the

problem.

For comparison, we also considered the Hill-48 anisotropic

quadratic yield function (Hill, 1948 – H-48), which for the present

problem can be expressed as:

re ¼ r2
11 � 1þ 1

S22
� 1

S23

 !

r11r22 þ
1

S22
r2

22 þ
3

S212
r2

12

" #1=2

: ð18Þ

For this material, the anisotropy variables Sij were determined

in Chen et al. (2018) using the tension–torsion experiments of

Scales et al. (2019), and take the values

S2 ¼ 1:01; S3 ¼ 0:97; S12 ¼ 0:93

The corresponding material hardening response was extracted

from the same pure torsion test used to extract the hardening

responses for vM, H8 and Yld04-3D models adopted in the present

study. An essential aspect of this extraction is the use of (18) and

accounting for material frame rotation as described in Chen et al.

(2018, 2019). The resultant hardening response is included in

Fig. 1 where it is seen to be significantly different from that of

the isotropic case (vM). It also differs from the response of the ani-

sotropic Yld04-3D.

The calibrated H-48 yield function was used in (13) together

with the corresponding material hardening response to estimate

the plastic equivalent strain at the limit load for the same range

of stress ratios, and the results are included in Fig. 6. Here again

the material frame rotation was accounted for using the procedure

outlined in Section 2.3. The H-48 predictions, although better than

the vM results, remain significantly lower than the Yld04-3D

strains for stress ratios smaller than about 1.5. This demonstrates

again that quadratic yield functions, even one that accounts for

anisotropy, are not appropriate for Al-alloys.

Before leaving this section, it is worth pointing out that the

geometry of the test section used in the tension–torsion exper-

iments of Scales et al. (2019) was designed to preclude buck-

ling due to torsion. The experiments confirmed that the

specimens did not buckle for the lowest value of a ¼ 0:5, which

undergoes significant shear strain before reaching the limit

load. It is thus important to emphasize that, for different

geometries buckling may precede the limit load calculated

through expressions (13).

Fig. 6. Predicted equivalent strains at the limit loads vs. the stress ratio a. Included
are predictions for Yld04-3D, H-48, vM and H8 constitutive models.

Fig. 7. Comparison of limit load equivalent strains calculated with the present

analysis and by a finite element model over the range of a of interest.
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4. Uniform thickness thin-walled tube under combined tension

and torsion

The test section of the tension–torsion experiments of Scales et al.

(2019) has a significant stabilizing effect on the structure. To demon-

strate this effect on the limit load we also formulate the Considère

limit load criterion for a long circular tube with uniform thickness

loaded under radial nominal stress paths, R ¼ aT . Here, in the

absence of the circumferential constraint imposed by the geometry,

r11 ¼ 0: ð19aÞ

Consequently;dF ¼ 0 ) dr22 ¼ r22de22; ð19bÞ

anddT ¼ 0 ) dr12 ¼ r12ðde22 � de11Þ ð19cÞ

Thendre ¼
@U

@r22

þ r12

r22

1� de11
de22

� �

@U

@r12

þ @U

@w

dw

dr22

� �

r22de22;

ð20aÞ

anddee ¼ r22de22 1þ 2r12

r22

de12
de22

� �

=re: ð20bÞ

Using (20a) and (20b)

dre

dee
¼ re

@U

@r22

�

r12

r22

@U

@r11

@U

@r12

þ 1

2r22

@U

@w

@U

@r12

@U

@r22

þ r12

r22

@U

@r12

0

B

B

@

1

C

C

A

2

6

6

4

3

7

7

5

: ð21Þ

For isotropic yield functions,
@U

@w
¼ 0 and

@U

@r11
¼ �1

2

@U

@r22
, and so

(21) becomes

dre

dee
¼ re

@U

@r22

1þ

r12

2r22

@U

@r12

@U

@r22

þ r12

r22

@U

@r12

2

6

6

4

3

7

7

5

: ð22Þ

For cases in which the limit load occurs at small values of e11,
r22 � ar12 and (22) simplifies to

dre

dee
¼ re

@U

@r22

1þ

1

2a
@U

@r12

@U

@r22

þ 1

a
@U

@r12

2

6

6

4

3

7

7

5

: ð23Þ

Specializing (23) to the von Mises yield function results in

dre

dee
¼ re

ð1þ 9=2a2Þ
ð1þ 3=a2Þ3=2

: ð24Þ

(This differs to some degree from Hillier’s (1963) Eq. (26) derived

for a thin-walled plate under combined in-plane loads specialized

to tension and shear, because of differences in the way the propor-

tional loading is applied.) Applying Hosford(8) to (23) is alge-

braically more lengthy, so the critical state can be determined

using the derivatives of U derived in Appendix C.

4.1. Limit load solution

In this case in general

r22

r12

¼ aee11 � jðe11Þ andU ¼ Uðj;wÞ ð25Þ

Before proceeding to the Considère expression (22), the rela-

tionship between j and w must be established for chosen values

of a. From Appendix A de12 ¼ �dw holds also for this case, thus

de11 ¼ �2
@U=@r11

@U=@r12

� �

dw ð26aÞ

Use (26a) in the difference scheme below to incrementally evaluate

the stress ratio j for different increments dw,

jiþ1 ¼ aexp e11i � 2
@U=@r11

@U=@r12

� �

iþi

dw

� �

ð26bÞ

(c)

Fig. 8. (a) Stress ratio r22=r12 vs. the material rotation angle w for three values of a
for the uniform thickness tube (r11 ¼ 0). (b) Hoop strain vs. w, and (c) equivalent

strain vs. w for the same values of a.
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Fig. 8a shows stress ratio - w relationships generated in this manner

for three values of a; the difference from the nominal value is seen

to increase as the material rotation angle increases. Fig. 8b plots e11
against w for the same three nominal stress ratios.

The incremental relationship for the equivalent strain (20b) can

be written as

dee ¼ �2r22

re

@U=@r22

@U=@r12

þ r12

r22

� �

dw ð27Þ

Since r22=re ¼ f ðe11;j;wÞ, use the w� j relationship for a chosen

value of a to make the RHS of (27) strictly a function of w. Integra-

tion of (27) then produces relationships like those in Fig. 8c.

The critical state can then be evaluated form the Considère

expression (22), as follows: Select a value of ee from the material

hardening response and evaluate the corresponding re and the

local dre=dee. Obtain the corresponding frame rotation angle from

the ee � w relationship. Evaluate the derivatives of U using the cor-

responding values of j and w, and compare the RHS of (22) with

the value on the LHS. If they do not agree, increase ee and repeat

until they do, which produces the critical state.

4.2. Results

The Considère expression (22) and the procedure outlined in

Section 4.1 are now used to evaluate the equivalent plastic strain

corresponding to the limit load, eeL, for different stress ratios, a.

The strains are plotted in Fig. 9 against tan�1a for better clarity.

Included are results for the vM, H8 and Yld04-3D yield functions,

each used in conjunction with the corresponding material harden-

ing response in Fig. 1. The Yld04-3D strains are higher than those of

the other two yield functions with the difference progressively

increasing from a 6 1:0. In this case H8 and vM produce essentially

parallel trajectories with the one of vM being slightly higher, a

trend that differs significantly from that of the circumferentially

constrained case in Fig. 6. What is striking, however, is that the

limit stains for this uniform geometry tube are significantly lower

than those of the constrained geometry in Fig. 6. Thus, although the

sharply increasing relationship between eeL and lower values of a is

maintained, the Yld04-3D limit strain for the constrained case for

a ¼ 0:5 are higher by a factor of about 1.92 but for a ¼ 4 they differ

by only about 2%. This demonstrates the stabilizing role of the

constrained geometry adopted in the experiments of Scales et al.

(2019). The trend for vM is similar whereas for H8 the difference

between the two geometries is much more pronounced. It is also

important to point out that for lower values of a, bifurcation buck-

ling in the form of a two-lobe ðn ¼ 2Þ spiral buckling mode can pre-

cede the limit load instability discussed in this section, rendering it

impractical. This issue becomes even more severe for higher R=to
tubes than the one used in this study.

Fig. 9 includes with a dashed line the Yld04-3D limit strains

predicted for r22=r12 � a, which of course simplifies the solution.

Interestingly, for this material and geometry, the difference from

the more exact solution is quite small for the whole range of stress

ratios considered. The main cause for this close relationship is that

the hoop strains e11 produced at the limit load are rather small for

the stress ratios considered. The difference between the more exact

and approximate stress ratios for vM and H8 is similarly small and

the results are not included.

5. Summary and conclusions

Under tensile loads thin-walled structures develop load max-

ima, or limit loads, beyond which deformation localizes leading

to rupture. Thus, limit loads constitute forming limits for the struc-

tures. For structures such as sheet metal and tubes under uniform

stresses, Considère-type estimates of limit loads provide simpler

analytical alternatives to numerical calculations. This paper devel-

oped such estimates for anisotropic Al-alloy thin-walled tubes

under combined tension and torsion. The anisotropy is modeled

using the Yld04-3D with an exponent of 8 suitably calibrated,

together with the material hardening response extracted from a

simple shear test using this yield function. Shearing causes rotation

of the material axes, and is accounted for in the process. Material

frame rotation affects also the equivalent stress and strain on

which Considère calculations are based. The present study

describes how to analytically account for material frame rotation

in limit load estimates for thin-walled tubes under combined ten-

sion and torsion. The analysis is verified by comparisons of the cal-

culated strains at the limit loads with those measured in the

circumferentially constrained tension–torsion experiments of

Scales et al. (2019), and by FE simulations. Following are observa-

tions, comments, and conclusions drawn from this study.

a. The adoption of a non-quadratic anisotropic yield function in

limit load calculations is essential for Al-alloys. Furthermore,

the material hardening response extracted from a uniaxial or

pure/simple shear test must be extracted using the same

anisotropic yield function.

b. In the present study the material hardening came from a

simple shear test. Deformation induced by simple shear

results in rotation of the material frame and this must be

accounted for.

c. The combined shear-tension state of stress of the tension–

torsion experiments of Scales et al. (2019) leads to a limit

load, which can be predicted by Considère-type analysis.

This biaxial state of stress results in material frame rotation,

which must also be accounted for in the calculation of the

equivalent stress and strain.

d. Considère-type calculations reproduced accurately the mea-

sured limit loads by: (i) adopting the Yld04-3D yield func-

tion; (ii) using a material hardening response extracted as

in point b; and (iii) accounting for material frame rotation

in the calculation of the equivalent stress and strain. By con-

trast, calculations based on vM, H8 and H-48 deviate from

the measured results increasingly so as the stress ratio

decreases.

Fig. 9. Predicted equivalent strains at the limit loads vs. the stress ratio a for the

uniform thickness tube. Included are predictions for Yld04-3D, vM and H8

constitutive models.
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e. The tension–torsion experiments simulated were performed

under radial nominal stress paths R ¼ aT . The correspond-

ing true stresses are r22 ¼ ar12e
e11 and this difference can

affect the analytical calculation of the limit state.

f. The circumferential constraint of the experimental setup of

Scales et al. (2019) has a strong stabilizing effect on the

structure. Thus, the strains corresponding to the limit loads

for a uniform tube tested under the same radial stress paths

are significantly smaller for shear-dominant stress states. It

is also important to point out that in the case of the uniform

tube with lower values of a, bifurcation buckling in the form

of a spiral buckling mode can precede the limit load instabil-

ity predicted. Buckling becomes more likely as R=to
increases.
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Appendix A Material frame rotation

Case I: e11 ¼ 0

Consider a material element in the 1-2 frame that is undergoing

shear and stretch as shown in Fig. A1.The deformation gradient, F,

is

F ¼
1 c 0

0 k 0

0 0 1=k

2

6

4

3

7

5
: ðA1Þ

where k is the axial stretch and c is the normalized shear displace-

ment. The incremental strain is

de ¼ symðdF � F�1Þ ¼
0 dc=2k 0

dc=2k dk=k 0

0 0 �dk=k

2

6

4

3

7

5
; ðA2aÞ

and the instantaneous spin tensor is

dx ¼ skewsymðdFF�1Þ ¼
0 dc=2k 0

�dc=2k 0 0

0 0 0

2

6

4

3

7

5
: ðA2bÞ

The instantaneous material frame rotation depicted in Fig. A1 is

dw ¼ �dc=2k ¼ �de12 ðA3Þ

It is worth pointing out that dx corresponds to the incremental

form of the rotation tensor of polar decomposition, which we con-

sider more appropriate for incremental plasticity applications such

as the present one. It is also consistent with how frame rotation is

handled in ABAQUS (2016) that was employed to calculate the

response using the finite element model.

Case II: r11 ¼ 0

In this case k1–0 and because of the material anisotropy k3–k1.

The deformed material element now becomes:

Then F ¼
k1 c 0

0 k 0

0 0 k3

2

6

4

3

7

5
; k3 ¼ 1

kk1
: ðA4Þ

Furthermore de ¼ symðdF � F�1Þ

¼
dk1=k1 ðdc=2k� cdk1=2kk1Þ 0

ðdc=2k� cdk1=2kk1Þ dk=k 0

0 0 dk3=k3

2

6

4

3

7

5
;

ðA5aÞ

and dx ¼ skewsymðdFF�1Þ

¼
0 ðdc=2k� cdk1=2kk1Þ 0

�ðdc=2k� cdk1=2kk1Þ 0 0

0 0 0

2

6

4

3

7

5
: ðA5bÞ

Thusdw ¼ �ðdc=2k� cdk1=2kk1Þ ¼ �de12: ðA6Þ

Appendix B Hosford (8) for e11 ¼ 0

For this yield function the value of the stress ratio r11=r22 ¼ b

depends on the applied stress proportionality constant a. b can

be related to a through the hoop strain constraint de11 ¼ 0which

implies that

@U

@r11

¼ 0 ¼ @U

@r1

@r1

@r11

þ @U

@r2

@r2

@r11

ðB1Þ

The derivatives on the RHS of (B1) are:

@U

@r1

¼ 1þ ð1� CÞ7

21=8½1þ C8 þ ð1� CÞ8�7=8
;

@U

@r2

¼ C7 � ð1� CÞ7

21=8½1þ C8 þ ð1� CÞ8�7=8
;

ðB2aÞ

where C ¼ r2=r1 is given in Eq. (17b), and
Fig. A1. Sheared and stretched material element for e11 ¼ 0; shown are the initial

and rotated material axes.

Fig. A2. Sheared and stretched material element for r11 ¼ 0.
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@r1;2

@r11

¼ 1

2
1� ð1� bÞ

½ðb� 1Þ2 þ 4=a2�1=2

( )

: ðB2bÞ

Thus (B1) can be written as:

ð1þ C7Þ½ð1� bÞ2 þ 4=a2�1=2 � ½2ð1� CÞ7 þ 1� C7�ð1� bÞ ¼ 0:

ðB3Þ

Solving (B3) for specific values of a produces the relationship plot-

ted in Fig. B1.

Appendix C Hosford (8) for r11 ¼ 0

For a uniform thickness tube under combined tension and tor-

sion, the principal stresses can be written as:

C1;2 ¼ r22

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4=a2

q

� �

andC ¼ r2

r1

¼ 1� ½ð1þ 4=a2�1=2

1þ ½ð1þ 4=a2�1=2
:

ðC1Þ

Then
@r1;2

@r22

¼ 1

2
1� 1

½1þ 4=a2�1=2

( )

and

@r1;2

@r12

¼ � 1

½1þ 4=a2�1=2
:

ðC2Þ

Thus, the derivatives of U on the RHS of (23) can be expressed as

@U

@r22

¼ 1þ C7 þ ½1� C7 þ 2ð1� CÞ7�=½1þ 4=a2�1=2

29=8½1þ C8 þ ð1� CÞ8�7=8
; ðC3Þ

and
@U

@r12

¼ ½1� C7 þ 2ð1� CÞ7�
21=8½1þ C8 þ ð1� CÞ8�7=8½1þ a2=4�1=2

: ðC4Þ
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