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ABSTRACT 

While analysis of temporal signal fluctuations has long been 

a fixture of blood oxygenation-level dependent (BOLD) 

functional magnetic resonance imaging (fMRI) research, the 

role of spatially localized directional diffusion in both signal 

propagation and emergent large-scale functional integration 

remains almost entirely neglected. We are proposing an 

extensible framework to capture and analyze spatially 

localized fMRI directional signal flow dynamics. The 

approach is validated in a large resting-state fMRI 

schizophrenia study where it uncovers significant and novel 

relationships between hyperlocal spatial dynamics and subject 

diagnostic status.  

1. INTRODUCTION 

The patterns of activated brain space measured by BOLD 

fMRI are typically investigated via pairwise correlations 

between timeseries corresponding to a fixed collection of 

functionally-identifiable brain regions or distributed networks 

[1-3]. This reduced representation of the BOLD signal is 

referred to static functional network connectivity (sFNC) 

when the entire scan-length timeseries are employed and 

dynamic functional network connectivity (dFNC) when the 

correlations are evaluated on successive shorter sliding 

windows through the scan. Dynamic functional network 

connectivity can capture large scale patterns of brainwide 

coactivation that change with time, but entirely neglects the 

role of localized spatial signal flows in producing 3 or, in 

various clinical disorders, impeding 3 familiar large-scale 

patterns of resting-state functional integration. Our 

understanding of the brain based on fMRI is still limited by a 

critical information gap between standard connectivity-based 

analyses and the processes of activation propagation through 

chains of voxel-scale neuronal populations that underpin such 

high-level imaging measures. 

2. METHODS 

2.1 Data 

We use data from a large, eyes-closed resting-state functional 

magnetic resonance imaging (fMRI) study with 

approximately equal numbers of schizophrenia patients (SZs) 

and healthy controls (HCs) (�=314, nSZ=151). Scans were 

preprocessed according to a standard, previously published 

pipeline [4], with an additional stage of spatial and temporal 

smoothing to control noise in the estimated spatial 

derivatives. This extra processing consisted of smoothing 

preprocessed scans with a 3D Gaussian kernel (� = 3) and 

1D temporal moving average with windows of length 3. The 

gray matter mask for this data contained 60303 voxels: the �-

dimension (coronal) has length 53; the �-dimension (sagittal) 

has length 63; the �-dimension (axial) has length 46. There 

are 158 sampled timepoints in each scan. All subjects in the 

study signed informed consent forms. 

2.2 Group ICA on Scan Data 

As described in previously published work [4] the 

scan data for this study was decomposed with group 

independent component analysis (GICA) into 100 

group-level functional network spatial maps (SMs) 

and corresponding subject-specific timecourses (TCs). 

Through a combination of automated and manual pruning, 

�=47 functional networks were retained (see Figure 1). 

2.3 Spatiotemporal Gradients (STGs) 

To diminish confounding of spatiotemporal gradients by 

subject differences in global signal amplitude, each 

preprocessed fMRI volume is rescaled by its own mean 

amplitude.  For each voxel 	 = 
�, �, �� * =��×��×�� and 

each TR � * �1,2, & ,158� in an fMRI volume, let �
	, �� =
�
�, �, �, �� denote the amplitude-normalized fMRI signal at 


�, �, �, ��. At every voxel and timepoint, we now consider  
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where: !" = &� &�d , !# = &� &�d  and !$ = &� &�d . The 

numerical directional and space-time derivatives are 

computed via the central difference method, e.g., 
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This yields three new volumes �/= ,
,- !", �0 = ,

,- !# and �1 =
,

,- !$, each of the same dimensionality as �.  

2.4 Voxel-

Localized 

Spatially 

Propagative 

Force (SPF) 

As a first-pass 

dimension-

reduction step, 

we define the 

Figure 2 Examples of evolving SPF in a single 

axial slice over two disjoint 20TR intervals: � *
[106,125] (left) and � * [8,27] (right) 

Figure 1 Condensed schematic for group ICA (top) and the 

components identified in this data from previous work (bottom) 
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scalar-valued spatiotemporal propagative force (SPF) (see 

Figure 2) at each voxel and timepoint as the non-negative 

directionless summary measure  �7
	, �� c
max

<*�/,0,1�

|�< 
	, ��|�, the largest magnitude spatiotemporal 

derivative at each 
	, ��.   

2.5 Group ICA on SPFs 

In addition to the group ICA performed on preprocessed scan 

data, we also use group ICA (model order 50) to identify 

spatially independent components representing the spatially 

propagative force measure described above. SPF GICA 

spatial maps present mutually independent patterns of high-

intensity voxels that exhibit highly temporally coherent SPF 

behavior (see Figure 3).     

2.6 Hybrid Spatiofunctional Dynamic Connectivity 

(SFdC) and Clustering 

Following the paradigm typically applied to GICA FN 

timecourses for now-standard dynamic functional network 

(dFNC) analysis [5-8], we consider windowed correlations 

between all timecourses from both the SPF and FN GICAs. 

These are measures of global functional integration (FN-FN) 

contextualized by the concurrent patterns of localized spatial 

propagation strength. Familiar dFNC patterns (Figure 12, [4]) 

can manifest under different background conditions in 

patterned local spatial propagation, potentially highlighting 

group differences in measurable brain dynamics that support 

or predict commonly reported transient states of functional 

integration, i.e. dFNC. 

Correlations are computed on rectangular sliding windows of 

length 22TRs, advancing 1 TR at a time with the 

windowlength selected based on previous work [4]. The 

resulting set of nWins*nSubs vectors of length 

�>?�@�
�>?���

A
= 4656 are then clustered, using the 

correlation metric, with k-means into C = 10 spatiofunctional 

dynamic connectivity (SFdC) <states= (see Figure 4), with C 

selected using the elbow criterion.  

2.7 Display Conventions 

The 4page space constraint has made it difficult to retain 

readable figure text. In general, displays of the whole brain 

(e.g. Figure 3 (bottom row), Figure , Figure ,Figure , Figure 

) are shown as successive axial slices from � = 1 (top left) to 

� = 46 (bottom right). Displays of hybrid SPF-FN 

connectivity have SPF components first along each axis, 

followed by FN components. The bottom right block, more 

familiar FN connectivity is sometimes gridded with respect to 

network functional domain (subcortical (SC), auditory 

(AUD), visual (VIS), sensorimotor (SM), cognitive control 

(CC), default mode network (DMN), cerebellum (CB)). Color 

maps are fixed and symmetric about zero, except in cases 

where the measure itself, e.g., SPF (e.g. Figure 2), is non-

negative. 

2.8 Statistical Analysis 

The effects of SZ diagnosis reported here are obtained 

through a multiple regression model on SZ diagnosis, gender, 

age and motion. Displayed effects are significant (D < 0.05� 

after correction for multiple comparisons, unless otherwise 

indicated. Colormaps are symmetric about zero, with cooler 

(resp. warmer) colors indicating negative (resp. positive) SZ 

effects. 

3. RESULTS 

We present here a variety of preliminary results that paint a 

complex picture in which the local spatial flow strengths, both 

directional and directionless, average out in structured 

patterns that also carry structured effects of SZ (Figure 5, 

Figure 6, Figure 7, Figure 8, Figure 9). The group ICAs on 

SPFs and on preprocessed fMRIs produce very different 

representations of the brain. Group-level spatial maps in the 

two GICAs are negligibly spatially correlated (Figure 11 

(middle)) and the subject-specific component timecourses 

from both ICAs also exhibit representations of the brain. 

Group-level spatial maps in the two GICAs are negligibly 

Figure 4 Pipeline for creating components and timecourses 

representing SPF patterns in the brain: 1. Compute numerical 

spatiotemporal gradients; 2. Convert 3D gradients to scalar-valued 

SPF measures, i.e., maximum magnitude among the three 

directional derivatives; 3. Group ICA on SPFs; (Bottom) Sample 

SPF spatial maps. 

Figure 3 Dynamic hybrid connectivity pipeline: windowed pairwise 

correlations between all �GHI + �IJ component timeseries, followed by 

clustering and quantification of subject occupancy patterns. 
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spatially correlated (Figure 11 (middle)) and the subject-

specific component timecourses from both ICAs also exhibit 

negligible temporal correlations (Figure 11 (right)). Although 

the independent patterns of spatiotemporal flow strength, i.e., 

the SPF GICA component maps (examples in Figure 3 

(bottom row)), and their temporal contributions to subject 

SPFs are not tractably related to FN GICA component maps 

or their temporal contributions to subject scan data, the two 

decompositions show evidence (Figure 10, Figure 13) of 

transient concurrencies that may distinguish the ways that 

different subjects and, e.g. conical groups, pass through dFNC 

states that are regularly reported upon. Group differences in 

dFNC trajectories may be partly driven by local spatially 

propagative <subprocesses= that aggregate to constrain or 

support the larger scale functional reorganization reflected in 

dFNCs. In particular the highly modularized dFNC state in 

which the auditory-visual-sensorimotor networks (AVSN) 

are tightly intercorrelated whilst simultaneously being 

strongly anticorrelated with cognitive control and default 

mode networks is realized in slightly different forms and 

against different SPF backgrounds in SZ patients and healthy 

controls (Figure 10, Figure 12,  Figure 13) 
 

3.1   Direction-Specific Spatiotemporal Derivative 

Magnitudes Present Structured Patterns Impacted by SZ 

3.2 Directionless Summaries of Spatiotemporal Derivative 

Magnitudes 

3.3   Hybrid Spatiofunctional Dynamic Connectivity 

States 

 

Figure 5 Coronal Direction: Absolute x-Derivative w.r.t time (|�/|). 
Population means (left) and significant SZ effects (right). Consult Sections 

2.7 and 2.8 for details on display and statistical modeling. 

Figure 7 Axial Dimension: Absolute z-Derivative w.r.t time (|�1|). 
Population means (left) and significant SZ effects (right). Consult Sections 2.7 
and 2.8 for details on display and statistical modeling. 

Figure 8 Sum of Absolute x,y and z-Derivatives w.r.t time 

(|�/| + K�0K + |�1|). Population means (left) and significant SZ 

effects (right). Consult Sections 2.7 and 2.8 for details on display 

and statistics. 

Figure 6 Sagittal Dimension: Absolute y-Derivative w.r.t time (|�0|). 
Population means (left) and significant SZ effects (right). Consult Sections 
2.7 and 2.8 for details on display and statistical modeling. 

Figure 5 Hybrid Spatiofunctional Dynamic Connectivity States

(SFdC) States. SPF-SPF in upper left block of each heatmap and FN-FN 

in the lower right. Note that in many states, the FN-FN blocks share 

patterning with the clusters obtained using just functional networks, as in 
the dFNC Cluster Centroids figure below and Demaraju et al (2016). For 

example FN-FN in ({SFdC states}, dFNC state) as follows are very 

similar: ({2},1); ({6,10},2) ({3,5},3); ({7,9},4). In particular, for SFdC 
state 10 which is significantly more occupied by SZ patients, the FN-FN 

block exhibits the modular pattern of strong intra-sensory connectivity and 

strong negative coupling between sensory and both cognitive control and 

Figure 9 Max of Absolute x,y and z-Derivatives w.r.t time (|�/| + K�0K +
|�1|), i.e. SPF Population means (left) and significant SZ effects (right). 
Consult Sections 2.7 and 2.8 for details on display and statistics. This is the 

measure that SPF group ICA is performed upon. 
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4. DISCUSSION 

We present here preliminary evidence that analyses based on 

hyperlocal measures of fMRI spatial dynamics, including 

patterns of directional propagation strength (Figure 5, Figure 

6, Figure 7) and directionless spatial propagation force 

(Figure 8, Figure 9) that distribute in structured ways over 

the brain, differentially for schizophrenia patients and 

controls. We find that decomposition of spatial propagation 

force into independent components creates a representation of 

the brain that is highly independent of the standard 

decomposition of preprocessed fMRI into functional 

networks (Figure 11). Evaluating correlations between SPF 

GICA and FN GICA timecourses concurrently on sliding 

windows through the scan (Figure 4, Figure 10) 

paradoxically suggests that the transient patterns of 

integrative concurrency manifesting jointly over these very 

different ways of organizing brain space and time can help 

produce a dynamic characterization of the brain that provides 

new insights into the base spatial conditions that support large 

scale patterns of functional integration, and can function as a 

novel biomarker differentiating schizophrenia patients from 

controls. 
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Figure 7 dFNC Cluster Centroids from published work (Damaraju et al 
(2016)) on this dataset. The FN-FN connectivity, i.e. functional

connectivity is in the lower right block of the hybrid SPdC states shown 

in the figure above. Red (resp. blue) boxes indicate significantly higher 
(resp. lower) occupancies by SZs. 

Figure 8 SFdC Transition Probabilities The transition probabilities 

most significantly mediated by SZ diagnosis (left) involve the two 

SFdCs whose FN-FN blocks most resemble HC-dominant dFNC 
cluster 2. SZs are much more likely to stay in SFdC state 10 than HCs, 

possibly based on the underlying SPF conditions, and SZs are less likely 

to transition from SFdC state 10 to SFdC state 6 than HCs.  

Figure 6 SPF and FN GICAs (Left) Correlations between the 50 SPF  

GICA component subject-specific TCs: averaged over all subjects; 
(Middle) Similarity, measured via correlation, between SPF group-level 

component spatial maps and the FN group-level component spatial 

maps. The 95th percentile bound on correlation between SPF and FN 
maps is 0.04; the largest correlation is 0.2. The GICA decompositions

based on SPFs and FNs result in very different spatial mappings of the 

brain. (Right: esp. note off-diagonal blocks) Moreover, the relationship 
between the temporal contributions of SPF spatial maps to SPF data and 

the temporal contributions of FN spatial maps to preprocessed fMRI 

data are also almost entirely uncorrelated.  Taken together these results 
suggest that the spatiotemporal principles governing of localized 

directional flow strengths and large-scale functional integration are 

fundamentally different.  

Authorized licensed use limited to: Georgia State University. Downloaded on January 31,2025 at 17:00:49 UTC from IEEE Xplore.  Restrictions apply. 


