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ABSTRACT

While analysis of temporal signal fluctuations has long been
a fixture of blood oxygenation-level dependent (BOLD)
functional magnetic resonance imaging (fMRI) research, the
role of spatially localized directional diffusion in both signal
propagation and emergent large-scale functional integration
remains almost entirely neglected. We are proposing an
extensible framework to capture and analyze spatially
localized fMRI directional signal flow dynamics. The
approach is validated in a large resting-state fMRI
schizophrenia study where it uncovers significant and novel
relationships between hyperlocal spatial dynamics and subject
diagnostic status.

1. INTRODUCTION

The patterns of activated brain space measured by BOLD
fMRI are typically investigated via pairwise correlations
between timeseries corresponding to a fixed collection of
functionally-identifiable brain regions or distributed networks
[1-3]. This reduced representation of the BOLD signal is
referred to static functional network connectivity (sFNC)
when the entire scan-length timeseries are employed and
dynamic functional network connectivity (dFNC) when the
correlations are evaluated on successive shorter sliding
windows through the scan. Dynamic functional network
connectivity can capture large scale patterns of brainwide
coactivation that change with time, but entirely neglects the
role of localized spatial signal flows in producing — or, in
various clinical disorders, impeding — familiar large-scale
patterns of resting-state functional integration. Our
understanding of the brain based on fMRI is still limited by a
critical information gap between standard connectivity-based
analyses and the processes of activation propagation through
chains of voxel-scale neuronal populations that underpin such
high-level imaging measures.

2. METHODS
2.1 Data
We use data from a large, eyes-closed resting-state functional
magnetic resonance imaging (fMRI) study with

approximately equal numbers of schizophrenia patients (SZs)
and healthy controls (HCs) (n=314, nSZ=151). Scans were
preprocessed according to a standard, previously published
pipeline [4], with an additional stage of spatial and temporal
smoothing to control noise in the estimated spatial
derivatives. This extra processing consisted of smoothing
preprocessed scans with a 3D Gaussian kernel (o = 3) and
1D temporal moving average with windows of length 3. The
gray matter mask for this data contained 60303 voxels: the x-

dimension (coronal) has length 53; the y-dimension (sagittal)
has length 63; the z-dimension (axial) has length 46. There
are 158 sampled timepoints in each scan. All subjects in the
study signed informed consent forms.

2.2 Group ICA on Scan Data

As described in previously published work [4] the
scan data for this study was decomposed with group
independent component analysis (GICA) into 100
group-level functional network spatial maps (SMs)
and corresponding subject-specific timecourses (TCs).
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Figure 1 Condensed schematic for group ICA (top) and the
components identified in this data from previous work (bottom)

Through a combination of automated and manual pruning,
N=47 functional networks were retained (see Figure 1).
2.3 Spatiotemporal Gradients (STGs)

To diminish confounding of spatiotemporal gradients by
subject differences in global signal amplitude, each
preprocessed fMRI volume is rescaled by its own mean
amplitude. For each voxel v = (x,y,z) € R53%63%46 apd
each TR t € {1,2,...,158} in an fMRI volume, let F(v,t) =
F(x,y,2z,t) denote the amplitude-normalized fMRI signal at
(x,y,2,t). At every voxel and timepoint, we now consider

VeF(,0) = = (£:063, 2,8, f, (69,2, 8), £(2,7,2,1))
where: f, = dF/dx, f, =dF/dy and f, =dF/dz. The
numerical directional and space-time derivatives are
computed via the central difference method, e.g.,
fi(x,y,2,t) = %(F(x +1,y,z,t)—F(x—1,y,21t)) and
5y, 20 =y, 2t +1) - fi(x,y,2,t = 1)).
This yields three new volumes F,=2. fy, Fy, = 2 f, and F, =
% f2» each of the same dimensionality as F.
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Figure 2 Examples of evolving SPF in a single -
axial slice over two disjoint 20TR intervals: t € reduction — step,
[106,125] (left) and t € [8,27] (right) we define the
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scalar-valued spatiotemporal propagative force (SPF) (see
Figure 2) at each voxel and timepoint as the non-negative
directionless summary measure f(v, t) =

max (|Fg (v,t)]), the largest magnitude spatiotemporal
0e{x,y,z}

derivative at each (v, t).
2.5 Group ICA on SPFs

In addition to the group ICA performed on preprocessed scan
data, we also use group ICA (model order 50) to identify
spatially independent components representing the spatially
propagative force measure described above. SPF GICA
spatial maps present mutually independent patterns of high-
intensity voxels that exhibit highly temporally coherent SPF
behavior (see Figure 3).
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Figure 4 Pipeline for creating components and timecourses
representing SPF patterns in the brain: 1. Compute numerical
spatiotemporal gradients; 2. Convert 3D gradients to scalar-valued
SPF measures, i.e., maximum magnitude among the three
directional derivatives; 3. Group ICA on SPFs; (Bottom) Sample
SPF spatial maps.

Following the paradigm typically applied to GICA FN
timecourses for now-standard dynamic functional network
(dFNC) analysis [5-8], we consider windowed correlations
between all timecourses from both the SPF and FN GICAs.
These are measures of global functional integration (FN-FN)
contextualized by the concurrent patterns of localized spatial
propagation strength. Familiar dFNC patterns (Figure 12, [4])
can manifest under different background conditions in
patterned local spatial propagation, potentially highlighting
group differences in measurable brain dynamics that support
or predict commonly reported transient states of functional
integration, i.e. dFNC.

Correlations are computed on rectangular sliding windows of
length 22TRs, advancing 1 TR at a time with the
windowlength selected based on previous work [4]. The

resulting set of nWins*nSubs vectors of length
(Smu)zﬂ= 4656 are then clustered, using the

correlation metric, with k-means into k = 10 spatiofunctional
dynamic connectivity (SFAC) “states” (see Figure 4), with k
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Figure 3 Dynamic hybrid connectivity pipeline: windowed pairwise
correlations between all ngpp + npy component timeseries, followed by
clustering and quantification of subject occupancy patterns.

selected using the elbow criterion.
2.7 Display Conventions

The 4page space constraint has made it difficult to retain
readable figure text. In general, displays of the whole brain
(e.g. Figure 3 (bottom row), Figure , Figure ,Figure , Figure
) are shown as successive axial slices from z = 1 (top left) to
z =46 (bottom right). Displays of hybrid SPF-FN
connectivity have SPF components first along each axis,
followed by FN components. The bottom right block, more
familiar FN connectivity is sometimes gridded with respect to
network functional domain (subcortical (SC), auditory
(AUD), visual (VIS), sensorimotor (SM), cognitive control
(CC), default mode network (DMN), cerebellum (CB)). Color
maps are fixed and symmetric about zero, except in cases
where the measure itself, e.g., SPF (e.g. Figure 2), is non-
negative.

2.8 Statistical Analysis

The effects of SZ diagnosis reported here are obtained
through a multiple regression model on SZ diagnosis, gender,
age and motion. Displayed effects are significant (p < 0.05)
after correction for multiple comparisons, unless otherwise
indicated. Colormaps are symmetric about zero, with cooler
(resp. warmer) colors indicating negative (resp. positive) SZ
effects.

3. RESULTS

We present here a variety of preliminary results that paint a
complex picture in which the local spatial flow strengths, both
directional and directionless, average out in structured
patterns that also carry structured effects of SZ (Figure 5,
Figure 6, Figure 7, Figure 8, Figure 9). The group ICAs on
SPFs and on preprocessed fMRIs produce very different
representations of the brain. Group-level spatial maps in the
two GICAs are negligibly spatially correlated (Figure 11
(middle)) and the subject-specific component timecourses
from both ICAs also exhibit representations of the brain.
Group-level spatial maps in the two GICAs are negligibly
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spatially correlated (Figure 11 (middle)) and the subject-
specific component timecourses from both ICAs also exhibit
negligible temporal correlations (Figure 11 (right)). Although
the independent patterns of spatiotemporal flow strength, i.e.,
the SPF GICA component maps (examples in Figure 3
(bottom row)), and their temporal contributions to subject
SPFs are not tractably related to FN GICA component maps
or their temporal contributions to subject scan data, the two
decompositions show evidence (Figure 10, Figure 13) of
transient concurrencies that may distinguish the ways that
different subjects and, e.g. conical groups, pass through dFNC
states that are regularly reported upon. Group differences in
dFNC trajectories may be partly driven by local spatially
propagative “subprocesses” that aggregate to constrain or
support the larger scale functional reorganization reflected in
dFNCs. In particular the highly modularized dFNC state in
which the auditory-visual-sensorimotor networks (AVSN)
are tightly intercorrelated whilst simultaneously being
strongly anticorrelated with cognitive control and default
mode networks is realized in slightly different forms and
against different SPF backgrounds in SZ patients and healthy
controls (Figure 10, Figure 12, Figure 13)

31 Direction-Specific Spatiotemporal Derivative
Magnitudes Present Structured Patterns Impacted by SZ
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Flgure 5 Coronal Direction: Absolute x-Derivative w.r.t time (|F,]|).
Population means (left) and significant SZ effects (right). Consult Sections

2.7 and 2.8 for details on display and statistical modeling.
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Figure 6 Sagittal Dimension: Absolute y-Derivative w.r.t time (|F,|).

Population means (left) and significant SZ effects (right). Consult Sections
2.7 and 2.8 for details on display and statistical modeling. ‘
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Figure 7 Axial Dimension: Absolute z-Derivative w.r.t time (|F,]|).
Population means (left) and significant SZ effects (right). Consult Sections 2.7
and 2.8 for details on display and statistical modeling.

3.2 Directionless Summaries of Spatiotemporal Derivative
Magnitudes
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Figure 8 Sum of Absolute x,y and z-Derivatives w.r.t time
(|F,| + |Fy| + |F,|). Population means (left) and significant SZ
effects (right). Consult Sections 2.7 and 2.8 for details on display
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Figure 9 Max of Absolute x,y and z-Derivatives w.r.t time (|F,| + |F y| +
|F,|), i.e. SPF Population means (left) and significant SZ effects (right).
Consult Sections 2.7 and 2.8 for details on display and statistics. This is the
measure that SPF group ICA is performed upon.
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Figure 5 Hybrid Spatlofunctlonal Dynamlc Connectivity States
(SFdC) States. SPF-SPF in upper left block of each heatmap and FN-FN
in the lower right. Note that in many states, the FN-FN blocks share
patterning with the clusters obtained using just functional networks, as in
the dFNC Cluster Centroids figure below and Demaraju et al (2016). For
example FN-FN in ({SFdC states}, dFNC state) as follows are very
similar: ({2},1); ({6,10},2) ({3,5},3); ({7,9},4). In particular, for SFdC
state 10 which is significantly more occupied by SZ patients, the FN-FN
block exhibits the modular pattern of strong intra-sensory connectivity and
strong negative coupling between sensory and both cognitive control and
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4. DISCUSSION

We present here preliminary evidence that analyses based on
hyperlocal measures of fMRI spatial dynamics, including
patterns of directional propagation strength (Figure 5, Figure
6, Figure 7) and directionless spatial propagation force
(Figure 8, Figure 9) that distribute in structured ways over
the brain, differentially for schizophrenia patients and

Figure 6 SPF and FN GICAs (Left) Correlations between the 50 SPF
GICA component subject-specific TCs: averaged over all subjects;
(Middle) Similarity, measured via correlation, between SPF group-level
component spatial maps and the FN group-level component spatial
maps. The 95™ percentile bound on correlation between SPF and FN
maps is 0.04; the largest correlation is 0.2. The GICA decompositions
based on SPFs and FNs result in very different spatial mappings of the
brain. (Right: esp. note off-diagonal blocks) Moreover, the relationship
between the temporal contributions of SPF spatial maps to SPF data and
the temporal contributions of FN spatial maps to preprocessed fMRI
data are also almost entirely uncorrelated. Taken together these results
suggest that the spatiotemporal principles governing of localized
directional flow strengths and large-scale functional integration are
fundamentally different.

force into independent components creates a representation of
the brain that is highly independent of the standard

Figure 7 dFNC Cluster Centroids from published work (Damaraju et al
(2016)) on this dataset. The FN-FN connectivity, i.e. functional
connectivitv is in the lower right block of the hvbrid SPAC states shown
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Figure 8 SFAC Transition Probabilities The transition probabilities
most significantly mediated by SZ diagnosis (left) involve the two
SFdCs whose FN-FN blocks most resemble HC-dominant dFNC
cluster 2. SZs are much more likely to stay in SFAC state 10 than HCs,
possibly based on the underlying SPF conditions, and SZs are less likely
to transition from SFAC state 10 to SFAC state 6 than HCs.

decomposition of preprocessed fMRI into functional
networks (Figure 11). Evaluating correlations between SPF
GICA and FN GICA timecourses concurrently on sliding

windows through the scan (Figure 4, Figure 10)
paradoxically suggests that the transient patterns of
integrative concurrency manifesting jointly over these very
different ways of organizing brain space and time can help
produce a dynamic characterization of the brain that provides
new insights into the base spatial conditions that support large
scale patterns of functional integration, and can function as a
novel biomarker differentiating schizophrenia patients from
controls.
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