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ABSTRACT

The high dimensionality and complexity of neuroimaging
data necessitate large datasets to develop robust and high-
performing deep learning models. However, the
neuroimaging field is notably hampered by the scarcity of
such datasets. In this work, we proposed a data augmentation
and validation framework that utilizes dynamic forecasting
with Long Short-Term Memory (LSTM) networks to enrich
datasets. We extended multivariate time series data by
predicting the time courses of independent component
networks (ICNs) in both one-step and recursive
configurations. The effectiveness of these augmented
datasets was then compared with the original data using
various deep learning models designed for chronological age
prediction tasks. The results suggest that our approach
improves model performance, providing a robust solution to
overcome the challenges presented by the limited size of
neuroimaging datasets.

Index Terms— Data Augmentation, LSTM, Dynamic
Forecasting, Attention, Age Prediction, rs-fMRI

1. INTRODUCTION

Deep learning has garnered significant attention in the
domain of neuroimaging for classification and prediction [1].
Given the temporal and spatial complexity of brain activity,
training deep learning models typically requires large
datasets. However, for many neuroimaging tasks, especially
those related to mental disorders, only relatively small
datasets are available. For example, data for Alzheimer's
Disease, the fifth leading cause of death [2], has been
collected in major public datasets like OASIS3 [3] and ADNI
(http://adni.loni.usc.edu), but those datasets have only a few
hundred subjects in disease states. Such small or imbalances
in dataset size and sequence length can lead to model
overfitting [4], resulting in poor generalization. The creation
of large, public datasets for various mental disorders and their
various stages remains a challenge, as does subjecting
individuals to extended scanning sessions to acquire longer
scans.

Data augmentation presents a viable solution for
enhancing the diversity of training datasets without the need
for additional data collection, with the goal of achieving
improved task performance [5]. This process involves

979-8-3503-6011-0/24/$31.00 ©2024 IEEE

applying a series of transformations, such as rotation,
cropping, and noise injection for imaging data, as well as
jittering, scaling, and time-warping for time-series data. [4]
details the application of resampling techniques to a small
functional magnetic resonance imaging (fMRI) dataset.
While such transformations are cost-effective, they may be
constrained by the quality of the training set and may not
preserve the temporal dynamics inherent in time-series data.
Data augmentation can also be facilitated through deep
learning models, such as Generative Adversarial Networks
(GANSs), which are capable of generating synthetic fMRI data
[6], Additionally, training Recurrent Neural Networks
(RNNs) to dynamically predict future states serves as another
method for data augmentation, as demonstrated by this work.
Model-based augmentation through deep learning can
potentially learn and replicate underlying data patterns, with
RNN-based models being particularly effective at capturing
and modeling temporal dependencies for improved
prediction of future states.

In this study, we applied dynamic forecasting to
enhance the multivariate time series data by employing both
one-step and recursive LSTM networks to predict the time
courses of ICNs. We first assessed the efficacy of these
augmented time courses during the augmentation phase.
Subsequently, we performed an empirical comparison of the
augmented dataset, which incorporated dynamic forecasting,
with the original dataset. This comparison utilized various
deep learning models, such as multi-channel CNN, multi-
channel CNNs with attention mechanisms, and Time-
Attention LSTMSs, specifically for a chronological age
prediction task. Our findings indicate that the augmentation
approach improves the performance of the prediction task
when compared to using the original dataset alone. The
overview of the work pipeline is shown in Figure 1.

2. MATERIALS AND METHODS

2.1. Dataset

We evaluated our method on UK Biobank Brain Imaging [7],
which comprises high-quality imaging data from healthy
subjects. We utilized a dataset encompassing 7,025 rs-fMRI
scans, with the participants' ages averaging at 59.17 with a
standard deviation of 4.87 years. Similar to [8], we
preprocessed the rs-fMRI data by employing group
independent component analysis (GICA) wusing the
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Figure 1 provides an overview of the work pipeline. The first step in this work is forecasting future time periods as a means
of temporal dimension augmentation. Two types of models were involved in this step: a stateless LSTM, which forecasts
four time points in one iteration, and a recursive LSTM, which iteratively forecasts one time point at each iteration, with a
recursion depth of four. The second step is the validation of the augmentation stage, which involves three models: a Time
Series CNN, a Time Series CNN with Attention, and a Time-Attention LSTM. These models are used to independently train
on the original and augmented datasets for an age prediction task.
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Figure 2 The sliding window technique segments the time
series data. The full-length time courses for each ICN are
divided into segments of length 24. Of these, T1, which
consists of 20 time points, is used for training the
forecasting model, and T2, which consists of 4 time points,
represents the forecasted results that are compared with the
ground truth. T3, indicated in red, is the final augmented
portion, the length of which depends on the chosen
augmentation model.

NeuroMark pipeline [9] to extract 53 ICNs across seven
functional domains including subcortical, visual, auditory,
sensorimotor, cognitive control, default mode, and cerebellar
networks. Subsequently, the derived time courses of these
ICNs were subject to downsampling. We reduced the
temporal resolution from a 0.735-time repetition (TR) to a
2.94 TR, which resulted in a total of 122 time points for each
of the 53 channels. We adjusted the temporal resolution to
align the 0.735-second TR with those of popular datasets that
have been used in other resting-state fMRI studies [3] and to
which our augmentation approach might conceivably be
applied in the future. We sought to ensure that our pipeline
would be generalizable to other datasets and tasks,
particularly those that most affected by the limitations of
small datasets.

2.2. Sliding Window Prepared for Data Augmentation
The segmentation of preprocessed ICN time courses for data
augmentation was executed using a sliding window approach.
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Each window encompassed a segment length of 24 time
points, with the initial 20 time points serving as the training
data for forecasting, and the subsequent 4 time points acting
as the label for the forecasting model. Figure 2 illustrates the
process. The selection of window size allows for
maximization of data utilization for the available time courses.
The final segment window is used for forecasting the
extended portion of the dataset for purposes of data
augmentation, which highlighted in red within the figure.
2.3. Data Augmentation Model

Stateless LSTM- The model consists of a single LSTM layer
with a hidden size of 50, followed by a linear output layer. A
key implementation detail is the resetting of hidden states to
zero after processing each batch. This strategy is adopted
because our data segments overlap, and it is crucial to ensure
that the model does not retain memory of sequences from
distinct batches, thereby preventing interference between
them. This same configuration is also applied in the training
of the recursive LSTM model.

Recursive LSTM- The model consists a single LSTM layer
with a hidden size of 50, coupled with a linear output layer.
The distinct feature of our approach lies in the forecasting
method: for each forecasting instance, only a single time
point for all the ICNSs is predicted. This prediction, along with
the previous time points excluding the first (T[1:]), is then
utilized to forecast the subsequent time point. This process is
repeated until all four steps of forecasting are completed
during training. Note that the step size for predictions is
adaptable to the needs of the model's forecasting phase.

2.4. Age Prediction Model

Three deep learning models were assessed using baseline and
forecasting-augmented datasets for extending multivariate
time series. We utilized trained stateless LSTM and recursive
LSTM models with various step sizes. The performance was
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evaluated with the Mean Absolute Error (MAE) serving as
the metric for evaluation, which clearly demonstrates the
model's capability in predicting age with respect to error
performance.

Time Series CNN: The model comprises 53 channels. For
each channel, the first layer in each channel is a 1D
convolutional layer with 128 filters, followed by a second 1D
convolutional layer with 64 filters, both having a kernel size
of 3. After each convolutional layer, a rectified linear unit
(ReLU) serves as the activation function, succeeded by a max
pooling with a kernel size of 2, stride of 2, and padding of 1.
Concluding this sequence, two fully connected layers are
concatenated to form the final output of the model.

Time Series CNN with attention- the model uses the time
series CNN as its backbone. A multi-head attention layer
[10], with the head parameter set at 2, is strategically
positioned after the second max pooling layer and before the
first fully connected layer.

Time-Attention LSTM- The model was introduced in [8] and
is very efficient at classifying brain imaging-related
multivariate time series. The model consists of three LSTM
layers, each with a hidden size of 64. The time attention layer
employs scaled dot-product attention [10] with the attention-
weighted output ¢, calculated as shown in equation (1). Let
X be the output of LSTM, with X € R/ * % where ] is the
sequence length and dj, is the dimension of hidden status.
The query vector, q,, interacts with the keys, K, which are
derived from X, to produce a set of attention scores. The
SoftMax function, a, is applied to these scores to obtain the
attention weights. The attention output, ¢, is calculated as the
weighted sum of the X and subsequently reduced to one
element at a time by the time attention layer [8].

() @

2.5. Experiment Settings

During the data augmentation stage, the preprocessed data
were segmented into windows. The segmented data were then
divided into training and test datasets at the subject level,
using an 80:20 ratio. Two augmentation modes, Stateless
LSTM and Recursive LSTM, were trained and tested, and the
model parameters were saved for further validation. During
the age prediction stage, we performed dynamic forecasting
using the trained Stateless LSTM to construct the extended
multivariate time series ICN data. We evaluated both the
original and extended datasets using the Time-series CNN,
Time-series CNN with attention, and Time Attention LSTM
to first assess whether the performance improved with the
extended dataset and to identify the optimal age prediction
model. Following the selection of the optimal model from the
previous step, we utilized the trained Recursive LSTM to
assess the effects of differing extended step sizes, ranging
from 4 to 14 in increments of 2. To ensure robust evaluation,
a ten-fold cross-validation approach was implemented, and
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Figure 3 Loss versus Epoch for Data Augmentation Training:
The left plot corresponds to the stateless LSTM model, and
the right plot to the recursive LSTM model.

the resulting mean and standard deviation of the MAE are
reported as metrics.

3. RESULTS AND DISCUSSIONS
3.1. Training the Dynamic Forecasting Models
Figure 3 displays the training and testing loss curve over 500
epochs, providing insights into the models learning progress
and stability. The left plot shows mean squared error (MSE)
with each epoch for forecasting four-time steps at once using
the Stateless LSTM, whereas the right plot shows the MSE
across epochs for recursive four-step predictions with
Recursive LSTM. The stable and consistent performance
across training and testing datasets implies that the models
have not overlearned from the training data and can be
expected to make reliable predictions on new data.
3.2. Identification of Optimal Age Prediction Model
Table 1 provides a comparative analysis of the Mean
Absolute Error (MAE) across various age prediction models,
including the Time Series CNN, Time Series CNN with
Attention, and the Time-Attention LSTM, evaluating their
performance on both the baseline and augmented datasets.
The findings reported in Table 1 indicate that the models
trained on the augmented dataset achieved superior
performance compared to those trained on the baseline
dataset. Among the three deep learning architectures
evaluated, the Time-Attention LSTM demonstrated the most
proficient performance. It outperformed the other two CNN-
based models in terms of predictive accuracy. This suggests
that the model is particularly adept at handling temporal
dependencies and learning from multivariate time series data
for age prediction.
3.3. Evaluation of Forecasting with Varying Step Size
Subsequent to our primary analysis, we assessed the
performance of the Recursive LSTM across a range of
forecasting steps, the outcomes of which are summarized in
Table 2. The augmented data from this evaluation strongly
suggests that models trained on the augmented dataset
consistently surpassed the performance of those trained on
the baseline dataset, irrespective of the step size utilized.
Notably, it was observed that a step size of 10 yielded the
optimal MAE, marking it as the most effective forecasting
interval among the range tested.
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3.4. Limitations and Future Works

The preliminary outcomes of this study suggest that
generative forecasting models could be a viable strategy for
augmenting deep learning tasks, particularly when there is a
scarcity of training data. Our approach has the potential to
expand datasets by generating extended time courses and to
amplify the data size by segmenting the generated data into
shorter lengths. Although our proposed work offers a solution
of data augmentation with dynamic forecasting, it also opens
up new areas for investigation, such as determining the
optimal segmentation length for training sequences. Future
work in generative modeling could broaden its applications,
filling in missing values or channels and unraveling the
dynamic principles that underpin data behavior, which could
significantly aid interpretability efforts.

Table 1 MAE Comparison of Age Prediction Models
(Timeseries CNN, Timeseries CNN w/att, Time-Attention
LSTM) Performance before and after augmentation with
stateless LSTM.

Timeseries Timeseries Time-Att

CNN CNN w/ Att | LSTM
Pre-Aug. 4.1376 4.1475 4.0303
After-Aug. | 4.1305 4.1334 4.0228

Table 2 MAE Comparison of Age Prediction with model
Time-Att LSTM before and after augmentation with
recursive LSTM with different steps.

Time-Att LSTM | Pre-Aug. After-Aug.
Baseline 4.0303+0.1195 -

Step 4 - 4.0229+0.1164
Step 6 - 4.0214+0.1183
Step 8 - 4.0216+0.1158
Step 10 - 4.0199+0.1159
Step 12 - 4.0240+0.1167
Step 14 - 4.0227+0.1165

4. CONCLUSIONS

In this study, we address the challenge of insufficient
neuroimaging datasets for deep learning training. We
implemented two types of LSTM networks to predict the
future states of ICNs derived from rs-fMRI. The stateless
LSTM offers a cost-efficient forecasting approach by
predicting n time steps at single iteration. The second model,
the recursive LSTM, provides greater flexibility to forecast
one step at once and recursively use the forecasted steps to
process the subsequent iteration. Our findings indicate that
forecasting over longer time courses can enhance the
accuracy of age estimation tasks. Beyond the immediate
application, these findings could potentially be adapted for a
broader range of applications where data availability is a
significant constraint.
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