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A B S T R A C T   

Alzheimer’s Disease (AZD) is a neurodegenerative disease for which there is now no known effective treatment. 
Mild cognitive impairment (MCI) is considered a precursor to AZD and affects cognitive abilities. Patients with 
MCI have the potential to recover cognitive health, can remain mildly cognitively impaired indefinitely or 
eventually progress to AZD. Identifying imaging-based predictive biomarkers for disease progression in patients 
presenting with evidence of very mild/questionable MCI (qMCI) can play an important role in triggering early 
dementia intervention. Dynamic functional network connectivity (dFNC) estimated from resting-state functional 
magnetic resonance imaging (rs-fMRI) has been increasingly studied in brain disorder diseases. In this work, 
employing a recent developed a time-attention long short-term memory (TA-LSTM) network to classify multi
variate time series data. A gradient-based interpretation framework, transiently-realized event classifier acti
vation map (TEAM) is introduced to localize the group-defining “activated” time intervals over the full time 
series and generate the class difference map. To test the trustworthiness of TEAM, we did a simulation study to 
validate the model interpretative power of TEAM. We then applied this simulation-validated framework to a 
well-trained TA-LSTM model which predicts the progression or recovery from questionable/mild cognitive 
impairment (qMCI) subjects after three years from windowless wavelet-based dFNC (WWdFNC). The FNC class 
difference map points to potentially important predictive dynamic biomarkers. Moreover, the more highly time- 
solved dFNC (WWdFNC) achieves better performance in both TA-LSTM and a multivariate CNN model than 
dFNC based on windowed correlations between timeseries, suggesting that better temporally resolved measures 
can enhance the model’s performance.   

1. Introduction 

Alzheimer’s Disease (AZD) is an age-related leading cause of de
mentia and is listed as the fifth cause of death in elderly Americans [1]. 
People with AZD experience different levels of difficulties in cognitive 
skills, including memory, language, and problem-solving. To date, there 
is no effective treatment for curing or stopping the progression of de
mentia due to AZD. Mild cognitive impairment (MCI) is a precursor 
stage of AZD. An individual with MCI has experienced a faster cognitive 
decline than normal aging. Unlike AZD, MCI is reversible, and people 
with MCI have a chance to recover their normal cognitive ability [2]. 

Therefore, predicting how MCI progresses and investigating the bio
markers related to cognitive decline are strongly needed for early de
mentia intervention, such as lifestyle changes [3] and cognitive training 
[4] to prevent progression in patients with strong risk indicators. 

Blood oxygenation level-dependent (BOLD) functional magnetic 
resonance imaging (fMRI) continuously measures the changes of blood 
flow as a proxy for localized neuronal brain activation. Resting-state 
fMRI (rs-fMRI) measures the activity under the task-free paradigm, 
representing the default brain signal. Resting state fMRI has been widely 
used for studying the evolving brain configuration related to mental 
disorders, such as MCI [5,6], AZD [7], and schizophrenia [8]. The 
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high-dimensionality and complexity of rs-fMRI has created a rich envi
ronment of transformations to study in connection with function and 
disease. One multi-stage transformation of the fMRI signal that has been 
of increasing interest to fMRI researchers is dynamic functional network 
connectivity (dFNC) [9], which represents the dynamic coupling be
tween functional brain networks by computing the Pearson correlation 
on successive sliding windows through the scan (SWCdFNC) [10]. 
Windowless wavelet-based dFNC (WWdFNC) [11] computes the con
nectivity at each scan timepoint using time-varying frequency domain 
information from the continuous wavelet transform. The coupling 
measured in this way has higher temporal and spectral resolution than 
sliding window correlations, which functions as a low-pass filter on the 
dynamics and blurs the base of information [11]. 

Deep learning has made significant advances using neuroimaging 
data for classification [12,13] and prediction [14] tasks. A number of 
previous studies have applied machine learning, e.g. support vector 
machines (SVMs) [14] or deep learning methods to identify MCI patients 
who will develop AZD based on neuroimaging data, including rs-fMRI. 
In one previous study, a deep learning network with random forest 
feature selection was built to perform a four-class classification: healthy 
control (HC), MCI patients who remain diagnosed with MCI (MCI-
stable), MCI patients who develop AZD (MCI-converters) and patients 
who start the study with AZD and remain with that diagnosis (AZD) 
[15]. Multimodal fusion deep learning models have also used to predict 
the MCI conversion to AZD using magnetic resonance imaging (MRI) 
and positron emission tomography (PET) data [16,17]. However, there 
is much less research attention on the group of patients exhibiting milder 
cognitive deficits falling into the questionable/mild MCI category 
(qMCI) who recover healthy cognitive function (qMCI-R). That MCI 
patients can recover is confirmed in several research studies; the re
covery rate is 8% in clinical studies and 25% in population studies [18]. 
The existing research investigates the qMCI-R predictors mainly in 
lifestyle activity [3], and other diseases’ affect [19,20], but is very 
limited in neuroimaging. To fill the research gap, it is worth more 
attention to develop classification/prediction methods involving 
qMCI-R group. 

The problem of understanding “why deep learning models predict 
what they predict” has been attracting more attention recently, with an 
increased emphasis being placed on building interpretable and reliable 
models [21]. Explainable AI (XAI) allows us to explain the model’s result 
by highlighting the most contributed input features. We can evaluate the 
XAI’s interpretive power by comparing with prior knowledge. In turn, 
the reliable XAI method can help us to uncover unknown class-defining 
features. In the neuroimaging domain, deploying a comprehensive 
meta-analysis regarding the biomarkers related to brain disorders, such 
as functional or structural biomarkers, is not easy and sometimes not 
consistent because of the individual differentiation in complex brain 
systems, the limited size of the analyzed dataset, and the diversified 
analytical approaches. Reliable XAI is particularly important in domains 
of such as this, where the science is still poorly understood, and can 
broaden our understanding of class-relevant features. Numerous inter
pretability methods have been developed, including gradient-based [22, 
23], perturbation-based [24,25] and SHAP [26]. The saliency map 
approach [22] is a gradient-based black-box decoding approach that 
allows visualization of each input’s contribution. The 
perturbation-based method recursively eliminates or substitutes the 
input to generate feature importance maps based on the change in the 
predicted score. Perturbation can produce out-of-distribution samples 
and also requires substantial computational power. These and other XAI 
approaches help provide explanations of prediction scores based on 
input features and can be visualized as intensity maps on the input 
space. However, model interpretation for multivariate time series data 
remains challenging because of the conflation between time and features 
[27]. Temporal Saliency Rescaling (TSR) [27], a similar approach to our 
work, calculates the time and feature relevance scores separately. But 
TSR is evaluated each at each timepoint via perturbation, which does 

not consider the time-dependency of time series data. 
Another critical concern impacting the practical utility of interpre

tation methods centers on the trustworthiness and human interpret
ability of the resulting model explanations. We argue that the model’s 
interpretive trustworthiness is built on the ability to identify at least a 
subset [28] of ground-truth class-defining predictors. Deep learning 
architectures are often underspecified [28,29] and can achieve equiva
lent performance focusing on different features under random reiniti
alization. Understandable mappings of predictor importance allows 
humans using these models to learn critical relationships between pre
dictors and predictive targets that can inform subsequent domain 
modeling, and also makes it easier for human domain experts to gauge 
model trustworthiness. A good interpretation should provide a qualita
tive representation of the relationship between the input and the model 
prediction [29] and be displayed in low-level dimensionality. For 
example, while image classification models use a tensor representation 
per pixel in each color channel to make the final prediction, a good 
interpretation result may be one channel map showing each pixel’s 
contribution. Likewise, for time series classification, the interpretation 
needs to translate the tensor representation of time-dependency and cell 
status used by the model into a qualitative representation with each time 
point. 

1.1. Our contributions 

To tackle the challenges outlined above, we introduce a gradient- 
based interpretation framework, Transiently-realized Event Classifier 
Activation Map (TEAM). This framework is capable of interpreting 
transiently-realized class-defining features of multivariate time series 
from time-attention LSTM (TA-LSTM) classifier. We systematically 
evaluated TEAM’s interpretation power in simulation studies to test the 
trustworthiness, which is a rare practice in other XAI studies. The results 
demonstrated that the TA-LSTM with TEAM efficiently learned from the 
multivariate time series data and was able to interpret the class-defining 
pattern occurrences (TPO) and class difference features with at least 
moderate correlation when compared to the ground truth, and it ach
ieved 100% sensitivity and 98.13% mean specificity in interpreting the 
class difference features. The interpretive power-validated TEAM was 
then applied to a real neuroimaging dataset, the latest release in the 
Open Access Series of Imaging Studies (OASIS-3). Our objective was to 
train and interpret the classifier to predict the deterioration or recovery 
of the qMCI subjects. Furthermore, we studied the recovery qMCI 
groups, which has not been extensively explored in neuroimaging 
studies. The TEAM CDM interpretation results expanded our knowledge 
of potential biomarkers for predicting qMCI progression. Moreover, we 
find that our models are more accurate when trained on higher temporal 
resolution WWdFNCs vs. the more slowly varying SWCdFNCs: accuracy 
was 79.3% with TA-LSTM and 72.6% with multivariate CNN (refer to M- 
CNN below) trained with WWdFNCs in contrast with accuracies of 
72.9% with TA-LSTM and 70.2% with M-CNN trained on SWCdFNCs 
suggests that better temporally resolved measures of dynamic brain 
connectivity can enhance the model’s performance. Furthermore, the 
TA-LSTM model outperformed the baseline model M-CNN on training 
with two types of dFNCs. 

2. Materials and methods 

2.1. Overall procedure 

In the initial phase of this study, six simulation studies were con
ducted to evaluate the interpretive capabilities of the TEAM framework. 
Multivariate time series data with predetermined class-defining features 
for each group were generated and evaluated using a train-test split 
approach. The TEAM interpretation framework was utilized to analyze 
the temporal pattern occurrences (TPO) and class difference map (CDM) 
of the class-defining features, which were then compared to the 
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synthetic data’s ground truth to assess the TEAM’s trustworthiness. 
Upon validating the TEAM’s efficacy, the same methodology was 
applied to a neuroimaging study to predict the qMCI group’s progression 
or recovery in the next three-year timeframe after fMRI scanning. The rs- 
fMRI data underwent preprocessing and GICA decomposition to 
generate fifty-three independent components’ time courses in seven 
domains, as detailed in section 2.2.3. The time courses were transformed 
into Windowless wavelet-based dFNC (WWdFNC), as depicted in Fig. 1, 
and conventional successive sliding windows through the scan 
(SWCdFNC) was also generated for comparison purposes. TA-LSTM was 
employed to train and evaluate the dFNCs in a ten-fold cross-validation 
manner, and the multivariate CNN (M-CNN) model was also trained and 
evaluated using the same procedure for comparison. Finally, the trained 
models were interpreted using the simulation-validated TEAM to 
generate CDM. The overall procedure is depicted in Fig. 1. 

2.2. Materials and data processing 

2.2.1. Synthetic data 
To assess the trustworthiness of the interpretation results obtained 

from TEAM, we generated synthetic data, train it using a TA-LSTM 
model. We then interpreted the classifier using TEAM, and assessed 
the interpretation results. We simulated samples of multivariate time 
series data where each class is defined by transiently-realized feature 
patterns. Through TEAM, time points where these class-defining fea
tures occur should at least partially be identified as important, and those 
features are expected to be at least partially identified and displayed in 
the class difference map. We created six synthetic experiments. Each 

experiment consists of n (=26) multivariate time series samples. Each 
sample An ∈ RT x K is a K (=20)-dimensional time series of length T 
(=30) timepoints. In the synthetic experiments, every class contains 0 ∼
2 class-defining features. Each class-defining pattern consists of two 
selected features occur in randomly selected five consecutive time 
points; and it follows the normal distribution with specified mean. 

To be specific, we simulated the multivariate time series data 
following the base distribution, which is a Gaussian distribution with μ0 
= 0.5 and σ0 = 0.1 except the class-defining feature patterns. Each class- 
defining feature pattern consists of two contiguous features ks, ks+1 that 
occur at non-repeating five consecutive time points following a distri
bution with a mean of μ. To avoid the repetition of time block selection, 
we chose the start time point for the “random” time block sequentially 
from the first time point to T-5 (or reversely). A simplified example is 
shown in Fig. 2, which contains five samples in the positive class of S-A. 
Two features (shown in red and green) act as class-defining features for 
the positive class of S-A, following a distribution with a mean of μ1 that is 
higher than the base distribution and lasts in random five consecutive 
time points. Once the TA-LSTM model finished training on the synthetic 
data, we expect that TEAM interprets the time blocks with class-defining 
feature patterns occurrences, which are the time points highlighted in 
the light grey blocks in Fig. 2, as well as the class-defining features 
represented by red and green lines. To investigate if TEAM is merely 
enhancing the global-wise attributes of class difference, in S–C, we 
balanced out the selected features by assigning value in non-selecting 
time points with a determined mean (as shown in the second black 
box in Fig. 3 S–C). As a result, no feature demonstrates a class-level 
difference in the average statistics of full-time series between classes. 

Fig. 1. The figure illustrates the overall procedure used in this study that uses a rigorous methodology involving simulation and validation to develop and apply TA- 
LSTM model and TEAM interpretation work for predicting the conversion of qMCI using rs-fMRI data. The upper diagram illustrates the steps for conducting a 
simulation study, which involves generating synthetic data, training and evaluating the deep learning model, and validating the interpretation power of the TEAM 
model. The lower diagram outlines the steps for predicting the conversion of qMCI using rs-fMRI data, including generating WWdFNC data, evaluating deep learning 
models (TA-LSTM, M-CNN) on WWdFNC and SWCdFNC data, and interpreting the results using the TEAM model. 
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More distinct feature patterns were simulated in S-D, S-E, and S–F in one 
or both classes. Table 1 displays all the parameters for the statistics of 
the synthetic data, while a comprehensive synthetic data set can be seen 
in Fig. 3. In each simulation within the figure, each block represents a 
multivariate data sample, with only one sample visualized for the null 
(negative) class, and the first four and the last sample visualized for the 
class with predefined class-sharing pattern(s). The color bar for each 
simulation is shown on the left side, and the predefined feature patterns 
for each non-null class are circled in small black boxes in the first dis
played sample. 

2.2.2. Resting-state fMRI data 
We used data from OASIS-3 [30] which is a longitudinal dataset of 

participants at various stages of cognitive decline related to Alzheimer’s 
Disease collected in Washington University Knight Alzheimer Disease 
Research Center with Institutional Review Board approval. The clinical 
dementia rating (CDR) scale score distinguish a questionable demen
tia/mild cognitive impairment (CDR 0.5) with cognitively health (CDR 
0) and dementia (CDR ≥ 1). We use the CDR scale score at and three 
years after the MR imaging acquired session to identify the progression 
direction of qMCI patients. The qMCI recovery (qMCI-R) subjects had a 
CDR of 0.5 prior to the final scan, and returned to 0 within three years. 
The qMCI progression (qMCI-P) subjects had a CDR of 0.5 at the scan 
time and progressed to a CDR of greater than 0.5 in the three-year 

Fig. 2. This figure visualizes a subset of simulated 
multivariate time series from one class (S-A positive 
class) that contains five samples a1, a4, a10, a16, a26.

All samples in this class have assigned the same class- 
defining feature set [k2, k3] (as shown in the green and 
red time series), and the statistics followed the 
normal distribution with a different mean and lasted 
for five consecutive time points. We referred to two 
selected class-defining features that follow a different 
statistic and last for five consecutive time points, as a 
class-defining pattern. The temporal occurrences of 
class-defining pattern for various samples begin at 
random time points, and the ground truth of temporal 
pattern occurrences are highlighted in light grey 
blocks.   

Fig. 3. This visualization displays six groups of synthetic data, denoted as S-A to S–F. Each simulation is divided into two columns, with the left column representing 
the negative class and the right column representing the positive class. Each block within a simulation represents a multivariate data sample, with only one sample 
visualized for the null (negative) class. The x-axis in each block corresponds to the features, while the y-axis corresponds to time. The class-defining patterns for each 
class are highlighted in a small black box in the first displayed sample. 

Table 1 
Table of statistical parameters defining classes in the synthetic data. The base 
multivariate time series follow a normal distribution where An ∼ N (μ0, σ0)

(μ0 = 0.5 and σ0 = 0.1). Each pair of μ and s shown in the table represents one 
feature pattern. For example, the positive class in S-A, the feature ks1 and ks1+1 

(k2 and k3) follows the normal distribution with μ = μ1 and σ = σ0 in selected 
five consecutive time points. All other features except ks1 and ks1+1 in entire T as 
well as ks1 and ks1+1 in time points except selected five consecutive time points 
follow the base distribution if no other parameters specified. For better visual
ized evaluation, the selected five consecutive time points (refer as time blocks 
below) starts at T = 0 for A0, T = 1 for A1, and so on. Such pattern applied to all 
the simulations except the second pattern of positive class in S-F, which the 
second pattern starts in reverse order (start at T = T - 5 for A0, T = T - 6 for A1, 
and so on). All index used in the table is 0-indexing.   

Negative Class Positive Class 

S-A – μ1 = 1, s1 = 2 
S-B – μ2 = 0.2, s1 = 2 
S-C – μ1 = 1, s1 = 2 

μbalance = 0.4, s1 = 2 
S-D μ2 = 0.2, s1 = 2 μ2 = 0.8, s2 = 8 
S-E μ1 = 1, s2 = 8 μ1 = 1, s1 = 2 
S-F – μ1 = 1, s1 = 2 

μ1 = 1, s2 = 8 

Base Distribution: μ0 = 0.5, σ0 = 0.1.  
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timeframe. We used one rs-fMRI session per participant in our final 
sample dataset, and the final dataset consists of 94 rs-fMRI scans (50 
qMCI-R, 44 qMCI-P) with age and gender-balanced. The demographic 
information is summarized in Table 2. 

We excluded the qMCI subjects with a CDR of 0.5 at and three years 
after the MR session. Based on the available longitudinal clinical de
mographic records, the stable qMCI participants have the potential to 
recover or to progress within the 3 year timeframe of the study. Subjects 
who neither recover nor progress within this timeframe, so-called “sta
ble qMCI” subject, are on indeterminate future paths, with prospective 
intermediate-horizon futures ranging from recovery of normal to 
persistent qMCI to development of AZD. In this group will be a mix of 
features that relate to disparate unmeasured future outcomes, including 
possible recovery or progression, so the “stable qMCI” cohort cannot be 
treated as the disjoint third class. 

2.2.3. Data preprocessing and dFNC feature representation 
We preprocessed the rs-fMRI using statistical parametric mapping 

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/) by removing first five time 
points and performing the rigid body motion correction and slice timing 
correction. We used an echo-planar imaging (EPI) template to fit the rs- 
fMRI data into standard Montreal Neurological Institute (MNI) space 
and resampled to 3 × 3 × 3 mm3 voxels. The data were smoothed using a 
Gaussian kernel (FWHM = 5 mm), and were normalized to finalize the 
preprocessing. Next, we decomposed the preprocessed rs-fMRI with 
group independent component analysis (GICA) to the independent 
components (ICs) and the corresponding timecourses (TCs) by adopting 
the NeuroMark pipeline [32]. Fifty-three pairs of ICs and TCs were 
selected and arranged into seven functional domains based on the 
spatial location, and seven domains include subcortical (SC), auditory 
(AU), sensorimotor (SM), visual (VI), cognitive control (CC), default 
mode (DM), and cerebellar (CB). The fifty-three independent component 
network labels and peak coordinates are shown in Table 3. In this work, 
we use z-scored TCs in the analysis. 

We used a windowless wavelet-based functional network connec
tivity measure as detailed in Ref. [11] to investigate time-varying con
nectivity between brain networks. The coupling status of networks at 
each timepoint t ∈ 1, 2, …, T} is represented using WWdFNC, a 
wavelet-based measure. The WWdFNC starts by performing a contin
uous wavelet transform of each univariate network timeseries sk(t) using 
the complex Morlet wavelet at J = 20 evenly spaced frequencies. For 
each univariate network timeseries, this results in a complex-valued 
multivariate time-frequency domain timeseries (mTFTs), Sk(t) ∈ CJ. 
Assuming we have N samples and k TCs for each sample as input S = [s1,

s2, …, sk], we decompose k − th network’s time-courses sk into Pk ∈ CJ×T 

and let Pj,t
k ∈ C denote the wavelet coefficient that represents the power 

and phase at frequency j in network k at time t. The network connectivity 
was then calculated by taking both power and phase synchrony into 
account. Power-weighted phase synchrony is used to compute the 
WWdFNC between k − th and l − th at t: 

Connt
k,l =

∑20

j=1

pt
k + pt

l

2
cos

(
θt

k − θt
l

)
(1)  

where pt
k and θt

k are the power and phase coefficient for network k at 
time t, respectively. The pipeline of construction of WWdFNC is shown 
in Fig. 1. 

Another dFNC representation used in this work for evaluation and 
comparison is computed as a set of network-pair correlations on the 
successive sliding windows through the scan (SWCdFNC) [10]. 
SWCdFNC was computed from the rs-fMRI and underwent the same data 
preprocessing and GICA decomposition NeuroMark pipeline. The pre
processed TCs were segmented by a tapered window generated by 
convolving a rectangle (window size = 20, TR = 44s) with a Gaussian (σ 
= 3). The window was slid in the step of 1 TR resulting in 139 windows 

Table 2 
Demographic and Clinical Information (Table reproduced from Ref. [31]) SD, 
Standard Deviation; qMCI, questionable Mild Cognitive Impairment; CDRYn, 
n-year after MR scan session; aTwo sampled T-test.  

Mean ± SD Recovery qMCI Progressive qMCI P value 

Number 50 44 – 
Age 73.81 ± 6.77 75.23 ± 7.15 0.33a 

Gender (M/F) 27/23 27/17 0.47a 

CDRY0 0.5 0.5 – 
CDRY3 0 ± 0 1.13 ± 0.38 –  

Table 3 
Independent Component Network labels and peak coordinates.  

ICNs X Y Z 

Subcortical (SC) 
Caudate (69) 6.5 10.5 5.5 
Subthalamus/hypothalamus (53) −2.5 −13.5 −1.5 
Putamen (98) −26.5 1.5 −0.5 
Caudate (99) 21.5 10.5 −3.5 
Thalamus (45) −12.5 −18.5 11.5 
Auditory (AU) 
Superior temporal gyrus ([STG], 21) 62.5 −22.5 7.5 
Middle temporal gyrus ([MTG], 56) −42.5 −6.5 10.5 
Sensorimotor (SM) 
Postcentral gyrus ([PoCG], 3) 56.5 −4.5 28.5 
Left postcentral gyrus ([L PoCG], 9) −38.5 −22.5 56.5 
Paracentral lobule ([ParaCL], 2) 0.5 −22.5 65.5 
Right postcentral gyrus ([R PoCG], 11) 38.5 −19.5 55.5 
Superior parietal lobule ([SPL], 27) −18.5 −43.5 65.5 
Paracentral lobule ([ParaCL], 54) −18.5 −9.5 56.5 
Precentral gyrus ([PreCG], 66) −42.5 −7.5 46.5 
Superior parietal lobule ([SPL], 80) 20.5 −63.5 58.5 
Postcentral gyrus ([PoCG], 72) −47.5 −27.5 43.5 
Visual (VI) 
Calcarine gyrus ([CalcarineG], 16) −12.5 −66.5 8.5 
Middle occipital gyrus ([MOG], 5) −23.5 −93.5 −0.5 
Middle temporal gyrus ([MTG], 62) 48.5 −60.5 10.5 
Cuneus (15) 15.5 −91.5 22.5 
Right middle occipital gyrus ([R MOG], 12) 38.5 −73.5 6.5 
Fusiform gyrus (93) 29.5 −42.5 −12.5 
Inferior occipital gyrus ([IOG], 20) −36.5 −76.5 −4.5 
Lingual gyrus ([LingualG], 8) −8.5 −81.5 −4.5 
Middle temporal gyrus ([MTG], 77) −44.5 −57.5 −7.5 
Cognitive control (CC) 
Inferior parietal lobule ([IPL], 68) 45.5 −61.5 43.5 
Insula (33) −30.5 22.5 −3.5 
Superior medial frontal gyrus ([SMFG], 43) −0.5 50.5 29.5 
Inferior frontal gyrus ([IFG], 70) −48.5 34.5 −0.5 
Right inferior frontal gyrus ([R IFG], 61) 53.5 22.5 13.5 
Middle frontal gyrus ([MiFG], 55) −41.5 19.5 26.5 
Inferior parietal lobule ([IPL], 63) −53.5 −49.5 43.5 
Left inferior parietal lobue ([R IPL], 79) 44.5 −34.5 46.5 
Supplementary motor area ([SMA], 84) −6.5 13.5 64.5 
Superior frontal gyrus ([SFG], 96) −24.5 26.5 49.5 
Middle frontal gyrus ([MiFG], 88) 30.5 41.5 28.5 
Hippocampus ([HiPP], 48) 23.5 −9.5 −16.5 
Left inferior parietal lobue ([L IPL], 81) 45.5 −61.5 43.5 
Middle cingulate cortex ([MCC], 37) −15.5 20.5 37.5 
Inferior frontal gyrus ([IFG], 67) 39.5 44.5 −0.5 
Middle frontal gyrus ([MiFG], 38) −26.5 47.5 5.5 
Hippocampus ([HiPP], 83) −24.5 −36.5 1.5 
Default mode (DM) 
Precuneus (32) −8.5 −66.5 35.5 
Precuneus (40) −12.5 −54.5 14.5 
Anterior cingulate cortex ([ACC], 23) −2.5 35.5 2.5 
Posterior cingulate cortex ([PCC], 71) −5.5 −28.5 26.5 
Anterior cingulate cortex ([ACC], 17) −9.5 46.5 −10.5 
Precuneus (51) −0.5 −48.5 49.5 
Posterior cingulate cortex ([PCC], 94) −2.5 54.5 31.5 
Cerebellar (CB) 
Cerebellum ([CB], 13) −30.5 −54.5 −42.5 
Cerebellum ([CB], 18) −32.5 −79.5 −37.5 
Cerebellum ([CB], 4) 20.5 −48.5 −40.5 
Cerebellum ([CB], 7) 30.5 −63.5 −40.5  
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in total. 

2.3. Methodology 

2.3.1. Long short-term memory (LSTM) 
In this work, we used the LSTM-based model, TA-LSTM, which fea

tures a model architecture starting with three LSTM layers. Long short- 
term memory was initially proposed in Ref. [33], and has proved its 
performance in multiple domains while dealing with sequential data. 
Compared to recurrent neural networks, the LSTM architecture can 
more effectively manage and preserve the long-term dependencies. The 
repeating module, known as unit or cell, is the fundamental building 
block of the LSTM layer. Each unit includes three computation gates, 
namely forget ft, input it, and output ot . These gates work together to 
regulate the flow of information into, storage within, and output from 
each memory unit. The forget, input and output gate have a sigmoid 
layer σ to regulate the new information xt , previous hidden state ht−1 
and long-term memory Ct−1, and the input and output gate have the 
elementwise multiplication followed after the sigmoid function to pro
duce the cell state candidate C̃t and cell output ht. The new cell state, Ct 

is updated by the previous cell status Ct−1, C̃t , it , and ft . The gates 
computation and the calculation of the corresponding state formula are 
shown in equations (2)–(7), in which W and b are model parameters 
optimized during the training process. 

it = σ(Wi[ht−1, xt] + bi) (2)  

C̃t = tanh(WC[ht−1, xt] + bC) (3)  

ft = σ
(
Wf [ht−1, xt] + bf

)
(4)  

ot = σ(Wo[ht−1, xt] + bo) (5)  

ht = ot ∗ tanh(Ct) (6)  

Ct = ft ∗ Ct−1 + it ∗ C̃t (7)  

2.3.2. Time attention layer 
The attention mechanism proposed in Ref. [34] represents a 

state-of-art approach that offers more accurate and efficient perfor
mance when compared to conventional convolutional and recurrent 
models. Furthermore [35], highlights the attention mechanism’s capa
bility to resolve the vanishing gradient issue while on the interpretation 
work with an additive attention mechanism, as demonstrated in 
Ref. [36]. In this work, we incorporated a scaled dot-product layer after 
LSTM layers, integrating the self-attention key, query, and value 
mechanisms. To map the output of the attention layer to the class 
probabilities for the classification task, a common approach involves 
applying global pooling. Global pooling reduces the dimensionality and 
summarizes the features in one-cut at each hidden neuron level when 
applied in the LSTM-based model. Considering the context of time series 
data where the “event” occur at unknown and random time, such as 
rs-fMRI data, we have designed the time summarization approach that 
better extracts the high-level feature and represent them in the time 
representation vector. The time attention layer comprises a scaled 
dot-product and time summarization mechanism. The 
attention-weighted output ct calculated from time attention layer is 
computed by: 

ct =
1

⃦
⃦ej

⃦
⃦

∑j

j=1
αtt × vtj and αtt = σ

(
qtj × e⊤

tj
⃦̅̅̅̅̅̅̅̅̅
⃦ej

⃦
⃦

√

)

(8)  

where the query qtj, key etj, and value vtj is the feature representation 
learned from the last LSTM layer. It is to be noted that query qtj is 
generated by half random dropout to avoid overfitting. The scaled dot- 

product allow each time position connect to all of the position to 
compute the attention score first, then the attention output is computed 
by attention score weighted sum of the value vtj. The attention output 
further be reduced to the dimensionality of one element at one time 
through the time pooling layer. After the time attention layer, a fully 
connected layer is connected to produce the class probability output. 
The overview of TA-LSTM architecture is shown in Fig. 4. 

2.3.3. Transiently-realized event classifier activation map (TEAM) 
XAI mechanisms have been proposed to provide an explanation for 

how the model arrives at its predictions [37], enhancing its trustwor
thiness and transparency. Additionally, when the interpretation mech
anism is effective in explaining the data, it can be utilized to expand our 
understanding of data that is not yet fully understood. In this study, we 
first trained the TA-LSTM model, as described in previous sections, in 
this section, we introduced an interpretation framework called 
Transiently-realized Event classifier Activation Map (TEAM), to under
stand the reasoning, to be specific, the transiently-realized class-defining 
patterns, behind the predictions made by TA-LSTM model. TEAM 
framework is first tested on the simulation data, the interpretation 
power is evaluated by comparing the results to ground truth of synthetic 
data. Then we applied TEAM framework to understand the neuro
imaging data, which in this study, was transformed rs-fMRI data used to 
predict the deterioration or recovery of qMCI subjects. 

The proposed TEAM framework aims to capture transient time in
tervals that correspond to the occurrence of class-defining patterns, with 
the purpose of localizing short time intervals across the entire time 
period; and analyze the selected time intervals from input between 
classes to identify class difference features. To accomplish this, the sa
liency map approach [22] is employed to obtain the contribution of each 
input from the trained model. It computes the gradients of the predicted 
class score with respect to the input by finding the derivative via the 
backpropagation. The saliency map for input An ∈ R{T×K} is Sn ∈ R{T×K}. 
The values are averaged across all K features to obtain the temporal 
pattern occurrences (TPO), which shows the contribution of time points 
with class-defining patterns occurrences, as shown in Fig. 5A. Subse
quently, we apply the statistical test to the original time series input 
corresponding to the positioning of highly contributing intervals ac
quired from TPO map. To select the highly contributing intervals, time 
points with value in TPO greater than 0.9 percentile threshold T1 and 
lower than 0.1 percentile threshold T2 in each class are extracted, as 
shown in Fig. 5B, as the red blocks and blue blocks represent the upper 
and lower salient time points, respectively. The T1 and T2 are separately 
mapped the corresponding position to the original input for each class, 
and four multivariate time series lists are acquired: TP1, TP2, TN1, and 
TN2. (TP1 is a collection of multivariate time series that includes the 
positions of the positive class corresponding to T1, TN2 represents the set 
where T2 maps to the negative class, and so forth.) The statistics t-test 
(p < 0.05) with false discovery rate (FDR) correction (q < 0.05) is per
formed on each pair of salient time intervals and the class difference 
results are shown in Fig. 5D. The sign between two maps were unified by 
taking the sign of the maximum class-defining difference at each feature 
location to have the CDM, as shown in Fig. 5E. 

2.4. Evaluation 

2.4.1. Model training and performance evaluation 
The simulation data is tested in the train-test split evaluation 

manner, in which 70% of the randomly selected simulation data is used 
for training and the remaining 30% hold-out dataset for testing. 
Considering the low dimensionality and small sample size in the simu
lation data, the TA-LSTM consists of one LSTM layer with 16 hidden 
units, the time attention layer, one fully connected layer, and one 
SoftMax output layer to produce the class probabilities. The optimizer is 
Adam. 

As for the model used to predict the recovery vs. progression from 
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qMCI, the TA-LSTM consists of three LSTM layers with 64 hidden units 
in each layer, followed by the time attention, fully connected, and 
output layers. The multivariate CNN model trained as the baseline 
consists of three convolutional layers with 32 filters in each layer (filter 
length = 3), one fully connected layer and one SoftMax output layer. 

Adam optimizer (lr = 1e-4) is used for training the models. We tested the 
model in a ten-fold cross-validation manner. The ninety-four data were 
divided into 90% for training and 10% for testing in each fold. The cross- 
validation evaluation was repeated five times with different random 
shuffles. A total of fifty trials were averaged and used to report the model 

Fig. 4. Time-Attention LSTM (TA-LSTM) model architecture includes LSTM layer(s) connected with time attention unit and fully connected layer. The hidden status 
of the n-th hidden units in the last layer of the model is represented by h0,h1,…,hn. Hn is a matrix that contains the hidden status of all the hidden units for each time 
point. The blue box on the left side of the diagram represents a single LSTM unit. The output of the LSTM layer(s), denoted as Hn, is then utilized as the input of the 
time attention unit. The detailed formulation of the time attention unit is presented in Section 2.3.2. FC block in the right side stands for fully connected layer. 

Fig. 5. The pipeline of Transiently-realized Event classifier Activation Map (TEAM) interpretation framework. The temporal pattern occurrences (TPO) that define 
the class were analyzed in the time saliency map generated from the trained TA-LSTM model, as depicted in Fig. 5A. Subsequently, the TPO saliency map was 
thresholded, and the time intervals that made a high contribution were extracted for calculating the class difference map (CDM). The negative and positive high- 
contributing time intervals were then separately evaluated using a t-test with false discovery rate (FDR) correction between the positive and negative classes, as 
shown in Fig. 5D. The final interpretation result of the CDM was calculated by determining the sign of the maximum class difference between the two maps in Fig. 5D. 
In the t-test with FDR (q < 0.05) correction plot, the red means the class average of positive class is significantly greater than the negative class (p < 0.05(FDR)); the 
index is 0-index, consistent with the index in Table 1. The sample data results shown in the figure is from S-A result. 
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performance, and the evaluation metrics include area under the curve 
(ROC), accuracy, sensitivity, and specificity. 

2.4.2. TEAM interpretation power evaluation 
MIP of TEAM is evaluated by comparing the interpreted results ac

quired from TEAM with the ground truth described in Table 1 for syn
thetic data. We evaluated MIP from two aspects: recognition of the 
Temporal Pattern Occurrence (MIP-TPO) and class difference map (MIP- 
CDM). We adapt Pearson correlation coefficient r [38] to evaluate the 
MIP-TPO. The r calculates the similarity between the mean saliency map 

Fig. 6. The figure shows the results of TEAM interpreting the temporal pattern occurrence (TPO) and their corresponding expected (ground truth) for simulation S-A 
through S–F. The left and right plots represent the negative and positive classes, respectively, for each representation. The upper plots show the heatmap are the mean 
gradient of the saliency map representing the interpreted TPO. The x-axis represents time, and the y-axis corresponds to each sample. The lower plots display the 
expected TPO, where each highlighted row in the y-axis represents five consecutive time points. For the null class, the expected TPO is null. It should be noted that 
the subject display sequence in y-axis is the sequence utilized for initializing simulation, and used for better visualization, the shuffled dataset is used for training, 
evaluation, and interpretation. 
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and the pre-defined (ground truth) time stamp of the patterns. We 
believe that the hard threshold extracts the top relevant time points but 
has limitations since the ratio of the pattern occurrences’ stamp at each 
direction may not be 0.1. In this case, we measure the MIP-TPO to 
provide a global representation regardless of the duration of the event 
and the ratio of events over the entire time. The MIP-TPO includes 
Pearson correlation coefficient r (equation (9)) with p − value, in which 
p − value is for testing whether the correlation is significant. 

rxy =

∑n

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1
(xi − x)

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)

2

√√
√
√
√

(9) 

The MIP-CDM evaluation metrics include sensitivity and specificity. 
The sensitivity measures the correctly interpreted features (with the 
correct direction) over the pre-defined manipulated features, and the 
ground truth can refer in Table 1 (parameter s). The specificity measures 
the percentage of correctly interpreted non-manipulated features over 
all nonmeaningful features. 

3. Results 

3.1. TA-LSTM model performance on synthetic data 

The TA-LSTM model achieved 100% classification accuracy on 
evaluating the held-out dataset of Simulation A-F. 

3.2. TEAM MIP on synthetic data 

From the observation of simulation results shown in Fig. 6, the mean 
saliency maps generated from the interpretation framework show 
consistent activation with the ground truth. The MIP-TPO evaluation r 
assess the similarity, and are shown in Table 4. The S-A, S-B, S-C, S-D 
(negative class), and S-E achieve the at least moderate correlation based 
on the rubrics of Dancey & Reidy interpretation [39]. The S-F shows a 
weak correlation (r = 0.22),but we can observe the mean saliency map 
interpret the transient intervals in first half time period clear. We also 
conclude that the signs of values in mean saliency map are consistent 
with the designed features’ sign with the relationship of null initializa
tion. The designed pattern for positive class in simulation A has a higher 
value than the mean of the base distribution, and the corresponding 
interpretation shows the positive activation. The same relationship can 
be observed in other results. The positive class in S-D is the only one that 
shows a negative correlation. Remind its ground truths: two different 
patterns are designed and assigned for each class. The activation map 
correctly identified the negative class’s pattern but missed the pattern in 
the positive class. For all simulations, the p-value was also evaluated. All 
acquired p -value is less than 1e−3, which suggests the mean saliency 
maps have a statistically significant correlation with the ground truth. 

For the evaluation of MIP-CDM, the interpreted CDM obtained from 

t-test with FDR correction for S-A through S-F is shown in Fig. 7, and 
sensitivity and specificity metrics are shown in Table 4. The interpre
tation framework achieves 100% sensitivity in all simulation datasets, 
which means all designed features are correctly interpreted. At most one 
feature is incorrectly recognized across all non-relevant features. Two 
simulations achieved 94.4% specificity, and four simulations achieves 
100% specificity. 

3.3. Model performance on prediction of recovery vs. progression from 
qMCI 

We evaluated WWdFNC and SWCdFNC feature representations by 
training with TA-LSTM model and multivariate CNN in the ten-fold 
cross-validation manner. For every ten-fold cross-validation, each scan 
was tested once. We repeated ten-fold cross-validation five times with 
different shuffle parameters, resulting in 50 trials. We used the mean of 
50 trials’ AUC (Area Under the Curve), accuracy, sensitivity, and spec
ificity as the evaluation metrics. The performance is shown in Table 5. 
The WWdFNC trained by the TA-LSTM achieved 0.789 of AUC and 
79.3% accuracy, increasing an average of 0.06 on the AUC metric, and 
3.1% on accuracy compared to SWCdFNC. The TA-LSTM outperforms an 
average of 0.1 in ROC metric than the multivariate CNN model in 
training both types of dFNC feature representations. 

3.4. Analysis of class-defining connectivity patterns and discriminative FC 
biomarkers 

We performed the statistical analysis on the cellwise properties on 
the strongly-contributing time intervals. Based on the observations re
ported in the preceding section, we selected all the T1 and T2 greater 
than or equal to 3 since we aim to dive into the intervals instead of the 
single or very short time. The independent samples t-test with multiple 
comparison correction results shown in two middle plots of Fig. 8. We 
also performed an additional statistical analysis for validation tests by 
applying no thresholding. The global (no thresholding) cellwise plot 
shows few levels of significant difference; and no significant cells after 
FDR correction. The validation tests elucidate that the model is not 
strengthening the global-wise attributes of class difference for feature 
learning and show the discriminative temporal patterns that extracted in 
the saliency maps. The final plot was constructed by unifying the middle 
two plots and shown in left most plot in Fig. 8. 

A number of previous studies have investigated the neuroimaging 
biomarkers for the HC, MCI (qMCI), AZD groups. However, to our best 
knowledge, very few studies have been conducted on the recovery qMCI 
group and the related biomarkers, and there is limited comprehensive 
meta-analysis of qMCI-P. To better consolidate our result and expand the 
comparison to the existing research work, we compared some of our 
final elementwise group FC biomarkers of qMCI-P to the existing AZD- 
related biomarkers. We believe qMCI-P should have a higher similar
ity to AZD than qMCI-R, and the same for qMCI-R, which should have a 
higher similarity to HC than qMCI-P. This kind of qMCI transition bio
markers between HC and AZD reflect activity brain networks also noted 
in Ref. [40]. 

In the left most plot in Fig. 8, we can observe that there is significant 
higher functional network connectivity (FNC) between the lingual gyrus 
and calcarine gyrus in the VI domain shown in qMCI-P compared with 
qMCI-R, which is consistent with the study that reported significant 

Table 4 
Interpretation evaluation for Simulation A-F. The correlation score and p-value 
for calculating the MIP-TPO is Pearson correlation coefficient, the p value for all 
simulation is lower than 1e−3. MIP, model interpretation power; TPO, temporal 
pattern occurrences; CDM: class difference map.* p − value < 1e−3.  

Simulation No. MIP-TPO MIP-CDM  

Negative Class Positive Class Sensitivity Specificity 

S-A – 0.40* 100% 94.4% 
S–B – 0.89* 100% 100% 
S–C – 0.59* 100% 94.4% 
S-D 0.53* −0.35* 100% 100% 
S-E 0.57* 0.80* 100% 100% 
S–F – 0.22* 100% 100%  

Table 5 
Model performance of prediction of Recovery vs. Progression from qMCI.    

Accuracy AUC Sensitivity Specificity 

SWCdFNC M-CNN 0.702 0.659 0.528 0.852 
TA-LSTM 0.729 0.762 0.706 0.808 

WWdFNC M-CNN 0.726 0.693 0.645 0.796 
TA-LSTM 0.793 0.789 0.748 0.836  
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changes associated with AZD [41]. In addition, there are significant 
higher FNC between several occipital and temporal regions in the VI 
domain as well, which is consistent with the amplitude of low-frequency 
fluctuations (ALFF) study that reported the biomarkers related to the 
MCI group when compared with HC [42]. In the DMN, we found that 
qMCI-P group has significant lower FC between anterior cingulate cortex 
(ACC) and precuneus, as well as between anterior cingulate cortex and 
posterior cingulate cortex (PCC), which is consistent with findings in 
Ref. [40]. The PCC in qMCI-P group shows lower FNC with caudate and 
thalamus in the SC domain; frontal gyrus and frontal gyrus in the CC 
domain; and PCC shows an overall lower FNC with other networks. Our 
findings of PCC are consistent with [43] which states the decreased FNC 
is shown in MCI compared to HC as early cognition decline biomarkers, 

and [44] which concludes the lower FNC is shown in amnestic MCI and 
AD. 

4. Discussion and conclusion 

In this work, we introduce TEAM to capture transiently-realized 
class-defining features by exploiting the TA-LSTM model. This frame
work is applicable in many domains involving time series data. The 
interpretation ability was evaluated on the aspects of a) performance of 
capturing the transient intervals and b) the performance of identification 
of class-defining feature in highly contributing intervals, and achieves 
high model interpretation power on the synthetic data. The simulation- 
validated interpretation framework was applied on the WWdFNC and 

Fig. 7. The figure shows the results of TEAM interpreting the class difference map (CDM) and their corresponding expected (ground truth) for simulation S-A through 
S–F. The top two plots are the statistical test result with FDR correction (p = 0.05, and q = 0.05) for T1- and T2- corresponded input, respectively. The sign of the 
maximum class difference was retained in the final CDM result. The bottom is the ground-truth feature difference plot. The red cell in feature k represent the average 
of positive class for k-th feature is significantly greater than negative class, blue cell represents the negative class is significantly greater than the positive class. 

Fig. 8. T-test for differences between qMCI-R and qMCI-P in mean cellwise WWdFNC connectivity: all samples (left-most); within intervals exceeding the 90% upper 
thresholding for saliency (second from the left); within intervals under the 10% lower saliency thresholding (second from the right). For the leftmost panel, we 
applied the no thresholding, for the second from the left plot, we used intervals of length at least 3 exceeding the 90% upper saliency threshold, and for the second 
from the right, we used intervals of length at least 3 with saliency under the 10% bottom saliency threshold computed from all WWdFNC. We averaged the con
nectivity features within time intervals and performed the 2-sample T-test with multiple comparison correction (False Discovery Rate Correction q = 0.05). Red 
means the class-level average of qMCI-R is significantly greater than qMCI-P (p < 0.05 (FDR)), blue means the class-level average of qMCI-P is significantly greater 
than qMCI-R p < 0.05 (FDR). The right most plot takes the sign of the maximum class level difference to unified the upper salient and lower salient class difference 
plot as the final interpretation result. 
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captured the transiently-realized connectivity biomarkers expands our 
knowledge of dynamic biomarkers for the future recovery or progression 
from the qMCI. Furthermore, the additional accuracy achieved by using 
“instantaneous” WWdFNCs in this model suggests that greater temporal 
resolution of the input data can be productively exploited by LSTMs for 
improved performance relative to coarser-grained SWCdFNCs, high
lighting the importance of continuing to refine our measures of time- 
varying connectivity. The accuracy achieved by training the two types 
of dFNC in TA-LSTM model outperformed the baseline mode multivar
iate CNN suggests the sequence learning helps the feature learning 
compared with convolutional-based model. 

4.1. qMCI-R group 

Prior research has centered on predicting qMCI conversion using 
machine learning techniques. The linked biomarkers connected to qMCI- 
P have been evaluated using sMRI, PET, rs-fMRI, age, and cognition 
scores, among other data types. The stable qMCI class representing the 
subject’s continued presence in the qMCI stage across the investigation 
is mostly studied as the contrast class in the prediction task. As we 
discussed before, stable qMCI subjects who neither recover nor progress 
are on indeterminate future paths. This group will be a mix of features 
that relate to disparate unmeasured future outcomes, and cannot be 
treated as a disjoint class. The qMCI-R group, which recovers to a 
healthier cognitive stage within three years, is on the opposite and 
definitive path as the qMCI-P group, but has received little attention in 
the neuroimaging data. We worked on tasks on the qMCI subject to 
predict the recovery or progress after the initial diagnosis of qMCI and 
investigated the potentially important predictors of the transition to fill 
the knowledge gap. Due to the limited studies on the qMCI-R group and 
considering the progression stage of AZD, we compared our findings 
with studies involving qMCI-P, cognitive health, and AZD groups. Our 
findings agreed with previous qMCI-P studies. Furthermore, our results 
agreed that the connectivity biomarkers interpreted for the qMCI-R 
group are more consistent with the cognitive health group reported in 
other studies, whereas the qMCI-P group is more consistent with the 
AZD group reported in previous works. 

4.2. Trustworthiness and human interpretability of TEAM 

Building the trustworthiness of both model and interpretation is vital 
for humans to take advantage of machine learning tools. When using 
model to assist with critical societal functions, such as medical diag
nosis, the model’s predictions cannot be implemented as part of a de
cision process without assessing their trustworthiness. Furthermore, we 
can study the important features/predictors from the trustworthy model 
when domain knowledge is still weak. As a result, assessing trustwor
thiness is critical to convincing humans who are experts to trust the 
model and in getting humans who are not experts in such domains to 
learn the domain and potential predictors. As discussed, trustworthiness 
is built on the ability to interpret a subset of ground truth predictors. The 
reason for not requiring the entire set of predictors is based on the 
underspecification model [28], which states that the model with random 
parameter initialization may focus on different predictors that are suf
ficient for the model to converge. We argued that if the interpretation 
can learn a set of predictors can build trustworthiness. However, many 
domains lack feature/predictor importance ground truth to validate 
trustworthiness. In this study, we designed six simulation studies with 
pre-defined predictors that served as ground truth to quantify the 
trustworthiness of the interpretation framework TEAM. Two metrics are 
evaluated for the model interpretation power for multivariate time se
ries data input. We observed the underspecification model scenario in 
the S- D and S-F. In S-D, where the TA-LSTM learned the pattern for the 
negative class, which is indicated by the symbol in the TPO map. And in 
the S-F, the TPO map mainly concentrated and correctly marked the 
“activated” time intervals in the first half time period. And in other 

simulations, TEAM interprets the almost entire set of ground truth 
predictors. Our simulation study results support that TEAM interprets at 
least a subset of ground truth predictors (and in more than half of the 
simulations, interprets the entire set of ground truth predictors) to 
confirm its trustworthiness. Considering the high dimensionality of 
multivariate time series data, the interpreted results must also be human 
interpretable. TEAM interprets the “activated” time intervals from the 
full-time axis first and class difference map in the selected time intervals. 
The interpretation result is shown in each dimension (time and feature); 
such low dimensional representation is human interpretable. Besides, 
two metrics, TPO and CDM, are proposed to quantify the model inter
pretation power on multivariate time series data input. 

4.3. Why rs-fMRI and recurrent-based model 

To the best of our knowledge, no studies have compared qMCI-R and 
qMCI-P in a prediction task. We conducted a literature search on the 
most pertinent task, which is the prediction of progressive MCI from 
stable MCI. Some studies are use one or two types of neuroimaging data: 
sMRI and PET data with multimodal fusion and deep neural network 
models [16,17], sMRI data with semi-supervised learning [45], and 
sMRI and rs-fMRI feature fusion with SVM [46]. Others combined the 
neuroimaging data with clinical ratings and age [45], age-adjusted [47], 
or cognitive function and longitudinal cerebrospinal fluid (CSF) [48] to 
make such prediction task. We found that characterization of the dy
namics, which has been actively studied in other neurological diseases, 
attracted less attention in the existing qMCI studies. The average accu
racy of mentioned studies’ predictions of progressive MCI against stable 
MCI is 0.836 with learning from images and 0.863 with learning from 
images, demographic data, and clinical scores combined. Despite our 
result of the average AUC 0.789 show slightly lower than the average of 
the mentioned previous studies 0.836 with only using the images, is not 
the most competitive. The TA-LSTM’s sequence learning and time 
attention unit both emphasizing the active intervals which are vital for 
the post-hoc TEAM interpretation. We believe that our study filled one of 
the small missing pieces of the qMCI study in both involving the re
covery group as well as the brain dynamics perspective in rs-fMRI. 

4.4. Limitation and future works 

We conducted studies on OASIS-3 to explore the prediction of qMCI 
progression and potential dynamic biomarkers related to patient dete
rioration or recovery from qMCI. Since at least three years of longitu
dinal information is required to recognize qMCI-R and qMCI-P subjects, 
we retrieved less than 100 subjects from OASIS-3. In addition to the 
present study, it is crucial to investigate the performance of the TA- 
LSTM and TEAM interpretation framework on larger and more diverse 
datasets in the future works. This would allow us to assess the scalability 
of the model and its adaptability to datasets that are more extensive and 
varied, such as ADNI or combinations of multiple public datasets. 
Additionally, it would be valuable to examine how the framework’s 
performance changes with variations in dataset size when presented a 
larger dataset. This would provide insights into the optimal dataset size 
required to achieve optimal results and identify any potential limitations 
that may arise when working with datasets of different sizes [49]. It is 
also essential to interpret the results on other datasets to identify 
reproducible biomarkers, including shared group dynamic biomarkers 
or biases in the interpretation process. 

The existing studies regarding qMCI-R mainly focused on the lifestyle 
activity factors but lacked support from the neuroimaging domain. In 
this work, we employ a purely data-driven methodology on the two 
transition groups that the subject diagnosis with qMCI would convert 
after three years. Unlike other studies that compare the qMCI-P to Stable 
qMCI, we built the model for the qMCI-R and qMCI-P class since the 
stable qMCI will be a combination of attributes related to two conversion 
outcomes as we discussed in II.B. We believed it is important to bring 
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attention on the recover group in triggering early dementia intervention. 
The future works could be to study neuroimaging data and other diverse 
factors, such as lifestyle, eating habits, and clinical treatment, which 
could influence such longitudinal study outcomes. All future works as 
well as this work, can extend our understanding of the potentially pre
dictors relates to the conversion outcome of qMCI patients and provide 
important risk indicators. 
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