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ARTICLE INFO ABSTRACT

Keywords: Alzheimer’s Disease (AZD) is a neurodegenerative disease for which there is now no known effective treatment.
rs-fMRI Mild cognitive impairment (MCI) is considered a precursor to AZD and affects cognitive abilities. Patients with
LSTM

MCI have the potential to recover cognitive health, can remain mildly cognitively impaired indefinitely or
eventually progress to AZD. Identifying imaging-based predictive biomarkers for disease progression in patients
presenting with evidence of very mild/questionable MCI (qQMCI) can play an important role in triggering early
dementia intervention. Dynamic functional network connectivity (dFNC) estimated from resting-state functional
magnetic resonance imaging (rs-fMRI) has been increasingly studied in brain disorder diseases. In this work,
employing a recent developed a time-attention long short-term memory (TA-LSTM) network to classify multi-
variate time series data. A gradient-based interpretation framework, transiently-realized event classifier acti-
vation map (TEAM) is introduced to localize the group-defining “activated” time intervals over the full time
series and generate the class difference map. To test the trustworthiness of TEAM, we did a simulation study to
validate the model interpretative power of TEAM. We then applied this simulation-validated framework to a
well-trained TA-LSTM model which predicts the progression or recovery from questionable/mild cognitive
impairment (QMCI) subjects after three years from windowless wavelet-based dFNC (WWAFNC). The FNC class
difference map points to potentially important predictive dynamic biomarkers. Moreover, the more highly time-
solved dFNC (WWAFNC) achieves better performance in both TA-LSTM and a multivariate CNN model than
dFNC based on windowed correlations between timeseries, suggesting that better temporally resolved measures
can enhance the model’s performance.

Explainable Al
Mild cognitive impairment
Dynamic functional network connectivity

1. Introduction Therefore, predicting how MCI progresses and investigating the bio-

markers related to cognitive decline are strongly needed for early de-

Alzheimer’s Disease (AZD) is an age-related leading cause of de-
mentia and is listed as the fifth cause of death in elderly Americans [1].
People with AZD experience different levels of difficulties in cognitive
skills, including memory, language, and problem-solving. To date, there
is no effective treatment for curing or stopping the progression of de-
mentia due to AZD. Mild cognitive impairment (MCI) is a precursor
stage of AZD. An individual with MCI has experienced a faster cognitive
decline than normal aging. Unlike AZD, MCI is reversible, and people
with MCI have a chance to recover their normal cognitive ability [2].

mentia intervention, such as lifestyle changes [3] and cognitive training
[4] to prevent progression in patients with strong risk indicators.
Blood oxygenation level-dependent (BOLD) functional magnetic
resonance imaging (fMRI) continuously measures the changes of blood
flow as a proxy for localized neuronal brain activation. Resting-state
fMRI (rs-fMRI) measures the activity under the task-free paradigm,
representing the default brain signal. Resting state fMRI has been widely
used for studying the evolving brain configuration related to mental
disorders, such as MCI [5,6], AZD [7], and schizophrenia [8]. The
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high-dimensionality and complexity of rs-fMRI has created a rich envi-
ronment of transformations to study in connection with function and
disease. One multi-stage transformation of the fMRI signal that has been
of increasing interest to fMRI researchers is dynamic functional network
connectivity (dFNC) [9], which represents the dynamic coupling be-
tween functional brain networks by computing the Pearson correlation
on successive sliding windows through the scan (SWCAFNC) [10].
Windowless wavelet-based dFNC (WWAFNC) [11] computes the con-
nectivity at each scan timepoint using time-varying frequency domain
information from the continuous wavelet transform. The coupling
measured in this way has higher temporal and spectral resolution than
sliding window correlations, which functions as a low-pass filter on the
dynamics and blurs the base of information [11].

Deep learning has made significant advances using neuroimaging
data for classification [12,13] and prediction [14] tasks. A number of
previous studies have applied machine learning, e.g. support vector
machines (SVMs) [14] or deep learning methods to identify MCI patients
who will develop AZD based on neuroimaging data, including rs-fMRI.
In one previous study, a deep learning network with random forest
feature selection was built to perform a four-class classification: healthy
control (HC), MCI patients who remain diagnosed with MCI (MCI--
stable), MCI patients who develop AZD (MCI-converters) and patients
who start the study with AZD and remain with that diagnosis (AZD)
[15]. Multimodal fusion deep learning models have also used to predict
the MCI conversion to AZD using magnetic resonance imaging (MRI)
and positron emission tomography (PET) data [16,17]. However, there
is much less research attention on the group of patients exhibiting milder
cognitive deficits falling into the questionable/mild MCI category
(gQMCI) who recover healthy cognitive function (QMCI-R). That MCI
patients can recover is confirmed in several research studies; the re-
covery rate is 8% in clinical studies and 25% in population studies [18].
The existing research investigates the qMCI-R predictors mainly in
lifestyle activity [3], and other diseases’ affect [19,20], but is very
limited in neuroimaging. To fill the research gap, it is worth more
attention to develop classification/prediction methods involving
gMCI-R group.

The problem of understanding “why deep learning models predict
what they predict” has been attracting more attention recently, with an
increased emphasis being placed on building interpretable and reliable
models [21]. Explainable AI (XAI) allows us to explain the model’s result
by highlighting the most contributed input features. We can evaluate the
XAT’s interpretive power by comparing with prior knowledge. In turn,
the reliable XAI method can help us to uncover unknown class-defining
features. In the neuroimaging domain, deploying a comprehensive
meta-analysis regarding the biomarkers related to brain disorders, such
as functional or structural biomarkers, is not easy and sometimes not
consistent because of the individual differentiation in complex brain
systems, the limited size of the analyzed dataset, and the diversified
analytical approaches. Reliable XAl is particularly important in domains
of such as this, where the science is still poorly understood, and can
broaden our understanding of class-relevant features. Numerous inter-
pretability methods have been developed, including gradient-based [22,
23], perturbation-based [24,25] and SHAP [26]. The saliency map
approach [22] is a gradient-based black-box decoding approach that
allows visualization of each input’s contribution. The
perturbation-based method recursively eliminates or substitutes the
input to generate feature importance maps based on the change in the
predicted score. Perturbation can produce out-of-distribution samples
and also requires substantial computational power. These and other XAI
approaches help provide explanations of prediction scores based on
input features and can be visualized as intensity maps on the input
space. However, model interpretation for multivariate time series data
remains challenging because of the conflation between time and features
[27]. Temporal Saliency Rescaling (TSR) [27], a similar approach to our
work, calculates the time and feature relevance scores separately. But
TSR is evaluated each at each timepoint via perturbation, which does
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not consider the time-dependency of time series data.

Another critical concern impacting the practical utility of interpre-
tation methods centers on the trustworthiness and human interpret-
ability of the resulting model explanations. We argue that the model’s
interpretive trustworthiness is built on the ability to identify at least a
subset [28] of ground-truth class-defining predictors. Deep learning
architectures are often underspecified [28,29] and can achieve equiva-
lent performance focusing on different features under random reiniti-
alization. Understandable mappings of predictor importance allows
humans using these models to learn critical relationships between pre-
dictors and predictive targets that can inform subsequent domain
modeling, and also makes it easier for human domain experts to gauge
model trustworthiness. A good interpretation should provide a qualita-
tive representation of the relationship between the input and the model
prediction [29] and be displayed in low-level dimensionality. For
example, while image classification models use a tensor representation
per pixel in each color channel to make the final prediction, a good
interpretation result may be one channel map showing each pixel’s
contribution. Likewise, for time series classification, the interpretation
needs to translate the tensor representation of time-dependency and cell
status used by the model into a qualitative representation with each time
point.

1.1. Our contributions

To tackle the challenges outlined above, we introduce a gradient-
based interpretation framework, Transiently-realized Event Classifier
Activation Map (TEAM). This framework is capable of interpreting
transiently-realized class-defining features of multivariate time series
from time-attention LSTM (TA-LSTM) classifier. We systematically
evaluated TEAM’s interpretation power in simulation studies to test the
trustworthiness, which is a rare practice in other XAI studies. The results
demonstrated that the TA-LSTM with TEAM efficiently learned from the
multivariate time series data and was able to interpret the class-defining
pattern occurrences (TPO) and class difference features with at least
moderate correlation when compared to the ground truth, and it ach-
ieved 100% sensitivity and 98.13% mean specificity in interpreting the
class difference features. The interpretive power-validated TEAM was
then applied to a real neuroimaging dataset, the latest release in the
Open Access Series of Imaging Studies (OASIS-3). Our objective was to
train and interpret the classifier to predict the deterioration or recovery
of the qMCI subjects. Furthermore, we studied the recovery qMCI
groups, which has not been extensively explored in neuroimaging
studies. The TEAM CDM interpretation results expanded our knowledge
of potential biomarkers for predicting qMCI progression. Moreover, we
find that our models are more accurate when trained on higher temporal
resolution WWAFNCs vs. the more slowly varying SWCdFNCs: accuracy
was 79.3% with TA-LSTM and 72.6% with multivariate CNN (refer to M-
CNN below) trained with WWAFNCs in contrast with accuracies of
72.9% with TA-LSTM and 70.2% with M-CNN trained on SWCdFNCs
suggests that better temporally resolved measures of dynamic brain
connectivity can enhance the model’s performance. Furthermore, the
TA-LSTM model outperformed the baseline model M-CNN on training
with two types of dFNCs.

2. Materials and methods
2.1. Overall procedure

In the initial phase of this study, six simulation studies were con-
ducted to evaluate the interpretive capabilities of the TEAM framework.
Multivariate time series data with predetermined class-defining features
for each group were generated and evaluated using a train-test split
approach. The TEAM interpretation framework was utilized to analyze
the temporal pattern occurrences (TPO) and class difference map (CDM)
of the class-defining features, which were then compared to the
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synthetic data’s ground truth to assess the TEAM’s trustworthiness.
Upon validating the TEAM’s efficacy, the same methodology was
applied to a neuroimaging study to predict the qMCI group’s progression
or recovery in the next three-year timeframe after f{MRI scanning. The rs-
fMRI data underwent preprocessing and GICA decomposition to
generate fifty-three independent components’ time courses in seven
domains, as detailed in section 2.2.3. The time courses were transformed
into Windowless wavelet-based dFNC (WWAFNC), as depicted in Fig. 1,
and conventional successive sliding windows through the scan
(SWCAFNC) was also generated for comparison purposes. TA-LSTM was
employed to train and evaluate the dFNCs in a ten-fold cross-validation
manner, and the multivariate CNN (M-CNN) model was also trained and
evaluated using the same procedure for comparison. Finally, the trained
models were interpreted using the simulation-validated TEAM to
generate CDM. The overall procedure is depicted in Fig. 1.

2.2. Materials and data processing

2.2.1. Synthetic data

To assess the trustworthiness of the interpretation results obtained
from TEAM, we generated synthetic data, train it using a TA-LSTM
model. We then interpreted the classifier using TEAM, and assessed
the interpretation results. We simulated samples of multivariate time
series data where each class is defined by transiently-realized feature
patterns. Through TEAM, time points where these class-defining fea-
tures occur should at least partially be identified as important, and those
features are expected to be at least partially identified and displayed in
the class difference map. We created six synthetic experiments. Each

I. Generate synthetic data

Datatype: Multivariate time series

Number of simulation: 6 (S-A ~ S-F)

Number of pre-defined features per class: 0~2

5. Evaluate the TEAM interpretation power
with comparing the interpreted results to
the ground truth of synthetic data

a. TPO: similarity score w/p-value

b. CDM: sensitivity and specificity

Raw rs-fMRI

|. Preprocessing &

GICA Decomposition Wavelet Transform

Time courses @ 159 x 53

l 2. Continuous AV e S N
A ATNALAL R A A
> AN ===

Power(a), Phase(b) @ 159 x 53 x 20
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experiment consists of n (=26) multivariate time series samples. Each
sample A, € RT*X is a K (=20)-dimensional time series of length T
(=30) timepoints. In the synthetic experiments, every class contains 0 ~
2 class-defining features. Each class-defining pattern consists of two
selected features occur in randomly selected five consecutive time
points; and it follows the normal distribution with specified mean.

To be specific, we simulated the multivariate time series data
following the base distribution, which is a Gaussian distribution with o
= 0.5 and 6¢ = 0.1 except the class-defining feature patterns. Each class-
defining feature pattern consists of two contiguous features ks, ks;1 that
occur at non-repeating five consecutive time points following a distri-
bution with a mean of p. To avoid the repetition of time block selection,
we chose the start time point for the “random” time block sequentially
from the first time point to T-5 (or reversely). A simplified example is
shown in Fig. 2, which contains five samples in the positive class of S-A.
Two features (shown in red and green) act as class-defining features for
the positive class of S-A, following a distribution with a mean of p; that is
higher than the base distribution and lasts in random five consecutive
time points. Once the TA-LSTM model finished training on the synthetic
data, we expect that TEAM interprets the time blocks with class-defining
feature patterns occurrences, which are the time points highlighted in
the light grey blocks in Fig. 2, as well as the class-defining features
represented by red and green lines. To investigate if TEAM is merely
enhancing the global-wise attributes of class difference, in S-C, we
balanced out the selected features by assigning value in non-selecting
time points with a determined mean (as shown in the second black
box in Fig. 3 S-C). As a result, no feature demonstrates a class-level
difference in the average statistics of full-time series between classes.

2. Train-Test split evaluation
— Split ratio: 80%: 20%
Classification: TA-LSTM

* Random shuffle before data splitting

3. Evaluate the model
performance in accuracy

)

P

4. Apply the TEAM
framework to interpret
the trained TA-LSTM and
generate TPO and CDM

~ ——

3. Windowless Wavelet-based dFNC

Feature Construction
WWJFNC @ 159 x 53 x 53

)

6. Apply the validated TEAM
framework to interpret the trained
TA-LSTM model and generate the
CDM

5. Compare the
model performance in
- mean accuracy, AUC, —

sensitivity, specificity

4. Ten-fold cross validation (repeat
five times with different data shuffle)
Classification: TA-LSTM / M-CNN

Other dFNC: SWAFNC

Fig. 1. The figure illustrates the overall procedure used in this study that uses a rigorous methodology involving simulation and validation to develop and apply TA-
LSTM model and TEAM interpretation work for predicting the conversion of QMCI using rs-fMRI data. The upper diagram illustrates the steps for conducting a
simulation study, which involves generating synthetic data, training and evaluating the deep learning model, and validating the interpretation power of the TEAM
model. The lower diagram outlines the steps for predicting the conversion of QMCI using rs-fMRI data, including generating WWdAFNC data, evaluating deep learning
models (TA-LSTM, M-CNN) on WWAFNC and SWCAFNC data, and interpreting the results using the TEAM model.
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Fig. 2. This figure visualizes a subset of simulated
multivariate time series from one class (S-A positive
class) that contains five samples a;,ay,aio, @16, a26-
All samples in this class have assigned the same class-
defining feature set [ks, k3] (as shown in the green and
red time series), and the statistics followed the
normal distribution with a different mean and lasted
for five consecutive time points. We referred to two
selected class-defining features that follow a different
statistic and last for five consecutive time points, as a
class-defining pattern. The temporal occurrences of
class-defining pattern for various samples begin at
random time points, and the ground truth of temporal
pattern occurrences are highlighted in light grey
blocks.

S-D
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100
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Fig. 3. This visualization displays six groups of synthetic data, denoted as S-A to S-F. Each simulation is divided into two columns, with the left column representing
the negative class and the right column representing the positive class. Each block within a simulation represents a multivariate data sample, with only one sample
visualized for the null (negative) class. The x-axis in each block corresponds to the features, while the y-axis corresponds to time. The class-defining patterns for each

class are highlighted in a small black box in the first displayed sample.

More distinct feature patterns were simulated in S-D, S-E, and S-F in one
or both classes. Table 1 displays all the parameters for the statistics of
the synthetic data, while a comprehensive synthetic data set can be seen
in Fig. 3. In each simulation within the figure, each block represents a
multivariate data sample, with only one sample visualized for the null
(negative) class, and the first four and the last sample visualized for the
class with predefined class-sharing pattern(s). The color bar for each
simulation is shown on the left side, and the predefined feature patterns
for each non-null class are circled in small black boxes in the first dis-
played sample.

2.2.2. Resting-state fMRI data

We used data from OASIS-3 [30] which is a longitudinal dataset of
participants at various stages of cognitive decline related to Alzheimer’s
Disease collected in Washington University Knight Alzheimer Disease
Research Center with Institutional Review Board approval. The clinical
dementia rating (CDR) scale score distinguish a questionable demen-
tia/mild cognitive impairment (CDR 0.5) with cognitively health (CDR
0) and dementia (CDR > 1). We use the CDR scale score at and three
years after the MR imaging acquired session to identify the progression
direction of gQMCI patients. The gMCI recovery (QMCI-R) subjects had a
CDR of 0.5 prior to the final scan, and returned to 0 within three years.
The gMCI progression (QMCI-P) subjects had a CDR of 0.5 at the scan
time and progressed to a CDR of greater than 0.5 in the three-year

Table 1

Table of statistical parameters defining classes in the synthetic data. The base
multivariate time series follow a normal distribution where A, ~ N (g, 00)
(4o = 0.5 and 69 = 0.1). Each pair of x and s shown in the table represents one
feature pattern. For example, the positive class in S-A, the feature k,, and k;, 1
(ko and ks3) follows the normal distribution with y = y; and ¢ = gy in selected
five consecutive time points. All other features except k,, and ks, 11 in entire T as
well as k,, and k, 11 in time points except selected five consecutive time points
follow the base distribution if no other parameters specified. For better visual-
ized evaluation, the selected five consecutive time points (refer as time blocks
below) starts at T = 0 for Ag, T = 1 for A, and so on. Such pattern applied to all
the simulations except the second pattern of positive class in S-F, which the
second pattern starts in reverse order (start at T =T - 5 for Ag, T =T - 6 for A,
and so on). All index used in the table is O-indexing.

Negative Class Positive Class

S-A - p=18s=2

S-B - Hp=0.2,8 =2

S-C - pp=1s=2
Hbalance = 0.4, 81 = 2

S-D P2 =0.2,5 =2 p2=0.8,5,=8

S-E p=1s,=8 pp=185=2

S-F - p=1s=2
mp=15=8

Base Distribution: p, = 0.5,60 = 0.1.
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timeframe. We used one rs-fMRI session per participant in our final
sample dataset, and the final dataset consists of 94 rs-fMRI scans (50
qMCI-R, 44 qMCI-P) with age and gender-balanced. The demographic
information is summarized in Table 2.

We excluded the QMCI subjects with a CDR of 0.5 at and three years
after the MR session. Based on the available longitudinal clinical de-
mographic records, the stable gMCI participants have the potential to
recover or to progress within the 3 year timeframe of the study. Subjects
who neither recover nor progress within this timeframe, so-called “sta-
ble QMCI” subject, are on indeterminate future paths, with prospective
intermediate-horizon futures ranging from recovery of normal to
persistent QMCI to development of AZD. In this group will be a mix of
features that relate to disparate unmeasured future outcomes, including
possible recovery or progression, so the “stable qMCI” cohort cannot be
treated as the disjoint third class.

2.2.3. Data preprocessing and dFNC feature representation

We preprocessed the rs-fMRI using statistical parametric mapping
(SPM12, http://www.fil.ion.ucl.ac.uk/spm/) by removing first five time
points and performing the rigid body motion correction and slice timing
correction. We used an echo-planar imaging (EPI) template to fit the rs-
fMRI data into standard Montreal Neurological Institute (MNI) space
and resampled to 3 x 3 x 3 mm?® voxels. The data were smoothed using a
Gaussian kernel (FWHM = 5 mm), and were normalized to finalize the
preprocessing. Next, we decomposed the preprocessed rs-fMRI with
group independent component analysis (GICA) to the independent
components (ICs) and the corresponding timecourses (TCs) by adopting
the NeuroMark pipeline [32]. Fifty-three pairs of ICs and TCs were
selected and arranged into seven functional domains based on the
spatial location, and seven domains include subcortical (SC), auditory
(AU), sensorimotor (SM), visual (VI), cognitive control (CC), default
mode (DM), and cerebellar (CB). The fifty-three independent component
network labels and peak coordinates are shown in Table 3. In this work,
we use z-scored TCs in the analysis.

We used a windowless wavelet-based functional network connec-
tivity measure as detailed in Ref. [11] to investigate time-varying con-
nectivity between brain networks. The coupling status of networks at
each timepoint t€ 1,2 ...,T} is represented using WWAFNC, a
wavelet-based measure. The WWAFNC starts by performing a contin-
uous wavelet transform of each univariate network timeseries s (t) using
the complex Morlet wavelet at J = 20 evenly spaced frequencies. For
each univariate network timeseries, this results in a complex-valued
multivariate time-frequency domain timeseries (mTFTs), Si(t) € C’.
Assuming we have N samples and k TCs for each sample as input S = [s1,
2, ...,5k], we decompose k — th network’s time-courses s into Py € C/*T

and let P;(‘t € C denote the wavelet coefficient that represents the power
and phase at frequency j in network k at time t. The network connectivity
was then calculated by taking both power and phase synchrony into
account. Power-weighted phase synchrony is used to compute the
WWdAFNC between k — th and [ — th at t:

20 ¢ 2
Connl, = chos(ei —0)) e))
j=1

Table 2

Demographic and Clinical Information (Table reproduced from Ref. [31]) SD,
Standard Deviation; gMCI, questionable Mild Cognitive Impairment; CDRY,,
n-year after MR scan session; *Two sampled T-test.

Mean + SD Recovery gMCI Progressive qMCI P value
Number 50 44 -

Age 73.81 £ 6.77 75.23 +£7.15 0.33%
Gender (M/F) 27/23 27/17 0.47%
CDRyp 0.5 0.5 -

CDRy3 0+0 1.13 £ 0.38 -
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Table 3

Independent Component Network labels and peak coordinates.
ICNs X Y Z
Subcortical (SC)
Caudate (69) 6.5 10.5 5.5
Subthalamus/hypothalamus (53) -2.5 —13.5 -1.5
Putamen (98) —26.5 1.5 —0.5
Caudate (99) 21.5 10.5 -3.5
Thalamus (45) -12.5 —18.5 11.5
Auditory (AU)
Superior temporal gyrus ([STG], 21) 62.5 —22.5 7.5
Middle temporal gyrus ([MTG], 56) —42.5 —6.5 10.5
Sensorimotor (SM)
Postcentral gyrus ([PoCG], 3) 56.5 —4.5 28.5
Left postcentral gyrus ([L PoCG], 9) —38.5 —-22.5 56.5
Paracentral lobule ([ParaCL], 2) 0.5 —22.5 65.5
Right postcentral gyrus ([R PoCG], 11) 38.5 —19.5 55.5
Superior parietal lobule ([SPL], 27) —18.5 —43.5 65.5
Paracentral lobule ([ParaCL], 54) —18.5 -9.5 56.5
Precentral gyrus ([PreCG], 66) —42.5 -7.5 46.5
Superior parietal lobule ([SPL], 80) 20.5 —63.5 58.5
Postcentral gyrus ([PoCG], 72) —47.5 —-27.5 43.5
Visual (VI)
Calcarine gyrus ([CalcarineG], 16) -12.5 —66.5 8.5
Middle occipital gyrus ([MOG], 5) —23.5 —-93.5 -0.5
Middle temporal gyrus ([MTG], 62) 48.5 —60.5 10.5
Cuneus (15) 15.5 —91.5 22,5
Right middle occipital gyrus ([R MOG], 12) 38.5 -73.5 6.5
Fusiform gyrus (93) 29.5 —42.5 -12.5
Inferior occipital gyrus ([I0G], 20) -36.5 -76.5 —4.5
Lingual gyrus ([LingualG], 8) -85 —81.5 —4.5
Middle temporal gyrus ([MTG], 77) —44.5 —-57.5 -7.5
Cognitive control (CC)
Inferior parietal lobule ([IPL], 68) 45.5 —61.5 43.5
Insula (33) -30.5 22.5 -3.5
Superior medial frontal gyrus ([SMFG], 43) -0.5 50.5 29.5
Inferior frontal gyrus ([IFG], 70) —48.5 34.5 -0.5
Right inferior frontal gyrus ([R IFG], 61) 53.5 22.5 135
Middle frontal gyrus ([MiFG], 55) —41.5 19.5 26.5
Inferior parietal lobule ([IPL], 63) —53.5 —49.5 43.5
Left inferior parietal lobue ([R IPL], 79) 44.5 —34.5 46.5
Supplementary motor area ([SMA], 84) —6.5 13.5 64.5
Superior frontal gyrus ([SFG], 96) —24.5 26.5 49.5
Middle frontal gyrus ([MiFG], 88) 30.5 41.5 28.5
Hippocampus ([HiPP], 48) 23.5 -9.5 —-16.5
Left inferior parietal lobue ([L IPL], 81) 45.5 —61.5 43.5
Middle cingulate cortex ([MCC], 37) -15.5 20.5 37.5
Inferior frontal gyrus ([IFG], 67) 39.5 44.5 —-0.5
Middle frontal gyrus ([MiFG], 38) —26.5 47.5 5.5
Hippocampus ([HiPP], 83) —24.5 —-36.5 1.5
Default mode (DM)
Precuneus (32) —8.5 —66.5 35.5
Precuneus (40) -12.5 —54.5 14.5
Anterior cingulate cortex ([ACC], 23) —-2.5 35.5 2.5
Posterior cingulate cortex ([PCC], 71) -5.5 —28.5 26.5
Anterior cingulate cortex ([ACC], 17) -9.5 46.5 -10.5
Precuneus (51) -0.5 —48.5 49.5
Posterior cingulate cortex ([PCC], 94) -2.5 54.5 31.5
Cerebellar (CB)
Cerebellum ([CB], 13) -30.5 —54.5 —42.5
Cerebellum ([CB], 18) —-32.5 -79.5 -37.5
Cerebellum ([CB], 4) 20.5 —48.5 —40.5
Cerebellum ([CB], 7) 30.5 —63.5 —40.5

where p! and 6 are the power and phase coefficient for network k at
time t, respectively. The pipeline of construction of WWAFNC is shown
in Fig. 1.

Another dFNC representation used in this work for evaluation and
comparison is computed as a set of network-pair correlations on the
successive sliding windows through the scan (SWCAFNC) [10].
SWCAFNC was computed from the rs-fMRI and underwent the same data
preprocessing and GICA decomposition NeuroMark pipeline. The pre-
processed TCs were segmented by a tapered window generated by
convolving a rectangle (window size = 20, TR = 44s) with a Gaussian (¢
= 3). The window was slid in the step of 1 TR resulting in 139 windows
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in total.

2.3. Methodology

2.3.1. Long short-term memory (LSTM)

In this work, we used the LSTM-based model, TA-LSTM, which fea-
tures a model architecture starting with three LSTM layers. Long short-
term memory was initially proposed in Ref. [33], and has proved its
performance in multiple domains while dealing with sequential data.
Compared to recurrent neural networks, the LSTM architecture can
more effectively manage and preserve the long-term dependencies. The
repeating module, known as unit or cell, is the fundamental building
block of the LSTM layer. Each unit includes three computation gates,
namely forget f;, input i;, and output o,. These gates work together to
regulate the flow of information into, storage within, and output from
each memory unit. The forget, input and output gate have a sigmoid
layer o to regulate the new information x;, previous hidden state h; 1
and long-term memory C; 1, and the input and output gate have the
elementwise multiplication followed after the sigmoid function to pro-
duce the cell state candidate E‘t and cell output h;. The new cell state, C,
is updated by the previous cell status C; 1, E‘t, i;, and f;. The gates
computation and the calculation of the corresponding state formula are
shown in equations (2)-(7), in which W and b are model parameters
optimized during the training process.

i = 6(Wilh,_1,x] + b;) (2)
C, = tanh(W¢lh,_, x,] + bc) (3)
fo = o(Wylh1, x] + by) “
0, = 6(W,[h_1,%] +b,) 5)
By = o, % tanh(C,) (6)
C, =f+Cr i +i,*C, ()

2.3.2. Time attention layer

The attention mechanism proposed in Ref. [34] represents a
state-of-art approach that offers more accurate and efficient perfor-
mance when compared to conventional convolutional and recurrent
models. Furthermore [35], highlights the attention mechanism’s capa-
bility to resolve the vanishing gradient issue while on the interpretation
work with an additive attention mechanism, as demonstrated in
Ref. [36]. In this work, we incorporated a scaled dot-product layer after
LSTM layers, integrating the self-attention key, query, and value
mechanisms. To map the output of the attention layer to the class
probabilities for the classification task, a common approach involves
applying global pooling. Global pooling reduces the dimensionality and
summarizes the features in one-cut at each hidden neuron level when
applied in the LSTM-based model. Considering the context of time series
data where the “event” occur at unknown and random time, such as
rs-fMRI data, we have designed the time summarization approach that
better extracts the high-level feature and represent them in the time
representation vector. The time attention layer comprises a scaled
dot-product and time  summarization  mechanism. The
attention-weighted output c,; calculated from time attention layer is
computed by:

J ) T
c,:H:_H Za,,xv,j and a,,_a<M> ®
il = el

where the query g;;, key ey, and value vj is the feature representation
learned from the last LSTM layer. It is to be noted that query g; is
generated by half random dropout to avoid overfitting. The scaled dot-
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product allow each time position connect to all of the position to
compute the attention score first, then the attention output is computed
by attention score weighted sum of the value v;. The attention output
further be reduced to the dimensionality of one element at one time
through the time pooling layer. After the time attention layer, a fully
connected layer is connected to produce the class probability output.
The overview of TA-LSTM architecture is shown in Fig. 4.

2.3.3. Transiently-realized event classifier activation map (TEAM)

XAI mechanisms have been proposed to provide an explanation for
how the model arrives at its predictions [37], enhancing its trustwor-
thiness and transparency. Additionally, when the interpretation mech-
anism is effective in explaining the data, it can be utilized to expand our
understanding of data that is not yet fully understood. In this study, we
first trained the TA-LSTM model, as described in previous sections, in
this section, we introduced an interpretation framework -called
Transiently-realized Event classifier Activation Map (TEAM), to under-
stand the reasoning, to be specific, the transiently-realized class-defining
patterns, behind the predictions made by TA-LSTM model. TEAM
framework is first tested on the simulation data, the interpretation
power is evaluated by comparing the results to ground truth of synthetic
data. Then we applied TEAM framework to understand the neuro-
imaging data, which in this study, was transformed rs-fMRI data used to
predict the deterioration or recovery of QMCI subjects.

The proposed TEAM framework aims to capture transient time in-
tervals that correspond to the occurrence of class-defining patterns, with
the purpose of localizing short time intervals across the entire time
period; and analyze the selected time intervals from input between
classes to identify class difference features. To accomplish this, the sa-
liency map approach [22] is employed to obtain the contribution of each
input from the trained model. It computes the gradients of the predicted
class score with respect to the input by finding the derivative via the
backpropagation. The saliency map for input A, € R{T*K} is S, € RIT*K},
The values are averaged across all K features to obtain the temporal
pattern occurrences (TPO), which shows the contribution of time points
with class-defining patterns occurrences, as shown in Fig. S5A. Subse-
quently, we apply the statistical test to the original time series input
corresponding to the positioning of highly contributing intervals ac-
quired from TPO map. To select the highly contributing intervals, time
points with value in TPO greater than 0.9 percentile threshold T; and
lower than 0.1 percentile threshold T, in each class are extracted, as
shown in Fig. 5B, as the red blocks and blue blocks represent the upper
and lower salient time points, respectively. The T; and T, are separately
mapped the corresponding position to the original input for each class,
and four multivariate time series lists are acquired: TP;, TPz, TN;, and
TN,. (TP; is a collection of multivariate time series that includes the
positions of the positive class corresponding to T;, TN, represents the set
where T» maps to the negative class, and so forth.) The statistics t-test
(p < 0.05) with false discovery rate (FDR) correction (g < 0.05) is per-
formed on each pair of salient time intervals and the class difference
results are shown in Fig. 5D. The sign between two maps were unified by
taking the sign of the maximum class-defining difference at each feature
location to have the CDM, as shown in Fig. 5E.

2.4. Evaluation

2.4.1. Model training and performance evaluation

The simulation data is tested in the train-test split evaluation
manner, in which 70% of the randomly selected simulation data is used
for training and the remaining 30% hold-out dataset for testing.
Considering the low dimensionality and small sample size in the simu-
lation data, the TA-LSTM consists of one LSTM layer with 16 hidden
units, the time attention layer, one fully connected layer, and one
SoftMax output layer to produce the class probabilities. The optimizer is
Adam.

As for the model used to predict the recovery vs. progression from
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Fig. 4. Time-Attention LSTM (TA-LSTM) model architecture includes LSTM layer(s) connected with time attention unit and fully connected layer. The hidden status
of the n-th hidden units in the last layer of the model is represented by hg,hy,...,h,. H, is a matrix that contains the hidden status of all the hidden units for each time
point. The blue box on the left side of the diagram represents a single LSTM unit. The output of the LSTM layer(s), denoted as H,, is then utilized as the input of the
time attention unit. The detailed formulation of the time attention unit is presented in Section 2.3.2. FC block in the right side stands for fully connected layer.
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Fig. 5. The pipeline of Transiently-realized Event classifier Activation Map (TEAM) interpretation framework. The temporal pattern occurrences (TPO) that define
the class were analyzed in the time saliency map generated from the trained TA-LSTM model, as depicted in Fig. 5A. Subsequently, the TPO saliency map was
thresholded, and the time intervals that made a high contribution were extracted for calculating the class difference map (CDM). The negative and positive high-
contributing time intervals were then separately evaluated using a t-test with false discovery rate (FDR) correction between the positive and negative classes, as
shown in Fig. 5D. The final interpretation result of the CDM was calculated by determining the sign of the maximum class difference between the two maps in Fig. 5D.
In the t-test with FDR (q < 0.05) correction plot, the red means the class average of positive class is significantly greater than the negative class (p < 0.05(FDR)); the
index is 0-index, consistent with the index in Table 1. The sample data results shown in the figure is from S-A result.

gMCI, the TA-LSTM consists of three LSTM layers with 64 hidden units Adam optimizer (Ir = 1e-4) is used for training the models. We tested the

in each layer, followed by the time attention, fully connected, and model in a ten-fold cross-validation manner. The ninety-four data were
output layers. The multivariate CNN model trained as the baseline divided into 90% for training and 10% for testing in each fold. The cross-
consists of three convolutional layers with 32 filters in each layer (filter validation evaluation was repeated five times with different random
length = 3), one fully connected layer and one SoftMax output layer. shuffles. A total of fifty trials were averaged and used to report the model
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Fig. 6. The figure shows the results of TEAM interpreting the temporal pattern occurrence (TPO) and their corresponding expected (ground truth) for simulation S-A
through S-F. The left and right plots represent the negative and positive classes, respectively, for each representation. The upper plots show the heatmap are the mean
gradient of the saliency map representing the interpreted TPO. The x-axis represents time, and the y-axis corresponds to each sample. The lower plots display the
expected TPO, where each highlighted row in the y-axis represents five consecutive time points. For the null class, the expected TPO is null. It should be noted that
the subject display sequence in y-axis is the sequence utilized for initializing simulation, and used for better visualization, the shuffled dataset is used for training,

evaluation, and interpretation.

performance, and the evaluation metrics include area under the curve
(ROQ), accuracy, sensitivity, and specificity.

2.4.2. TEAM interpretation power evaluation
MIP of TEAM is evaluated by comparing the interpreted results ac-

quired from TEAM with the ground truth described in Table 1 for syn-
thetic data. We evaluated MIP from two aspects: recognition of the
Temporal Pattern Occurrence (MIP-TPO) and class difference map (MIP-
CDM). We adapt Pearson correlation coefficient r [38] to evaluate the
MIP-TPO. The r calculates the similarity between the mean saliency map
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and the pre-defined (ground truth) time stamp of the patterns. We
believe that the hard threshold extracts the top relevant time points but
has limitations since the ratio of the pattern occurrences’ stamp at each
direction may not be 0.1. In this case, we measure the MIP-TPO to
provide a global representation regardless of the duration of the event
and the ratio of events over the entire time. The MIP-TPO includes
Pearson correlation coefficient r (equation (9)) with p — value, in which
p — value is for testing whether the correlation is significant.

n

> =X)(y; - V)
n 9

The MIP-CDM evaluation metrics include sensitivity and specificity.
The sensitivity measures the correctly interpreted features (with the
correct direction) over the pre-defined manipulated features, and the
ground truth can refer in Table 1 (parameter s). The specificity measures
the percentage of correctly interpreted non-manipulated features over
all nonmeaningful features.

3. Results
3.1. TA-LSTM model performance on synthetic data

The TA-LSTM model achieved 100% classification accuracy on
evaluating the held-out dataset of Simulation A-F.

3.2. TEAM MIP on synthetic data

From the observation of simulation results shown in Fig. 6, the mean
saliency maps generated from the interpretation framework show
consistent activation with the ground truth. The MIP-TPO evaluation r
assess the similarity, and are shown in Table 4. The S-A, S-B, S-C, S-D
(negative class), and S-E achieve the at least moderate correlation based
on the rubrics of Dancey & Reidy interpretation [39]. The S-F shows a
weak correlation (r = 0.22),but we can observe the mean saliency map
interpret the transient intervals in first half time period clear. We also
conclude that the signs of values in mean saliency map are consistent
with the designed features’ sign with the relationship of null initializa-
tion. The designed pattern for positive class in simulation A has a higher
value than the mean of the base distribution, and the corresponding
interpretation shows the positive activation. The same relationship can
be observed in other results. The positive class in S-D is the only one that
shows a negative correlation. Remind its ground truths: two different
patterns are designed and assigned for each class. The activation map
correctly identified the negative class’s pattern but missed the pattern in
the positive class. For all simulations, the p-value was also evaluated. All
acquired p -value is less than 1e~3, which suggests the mean saliency
maps have a statistically significant correlation with the ground truth.

For the evaluation of MIP-CDM, the interpreted CDM obtained from

Table 4

Interpretation evaluation for Simulation A-F. The correlation score and p-value
for calculating the MIP-TPO is Pearson correlation coefficient, the p value for all
simulation is lower than 1e~3. MIP, model interpretation power; TPO, temporal
pattern occurrences; CDM: class difference map.* p — value < le™3.

Simulation No. MIP-TPO MIP-CDM
Negative Class Positive Class Sensitivity Specificity

S-A - 0.40* 100% 94.4%
S-B - 0.89* 100% 100%

S-C - 0.59* 100% 94.4%

S-D 0.53* —0.35* 100% 100%

S-E 0.57* 0.80* 100% 100%

S-F - 0.22* 100% 100%
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t-test with FDR correction for S-A through S-F is shown in Fig. 7, and
sensitivity and specificity metrics are shown in Table 4. The interpre-
tation framework achieves 100% sensitivity in all simulation datasets,
which means all designed features are correctly interpreted. At most one
feature is incorrectly recognized across all non-relevant features. Two
simulations achieved 94.4% specificity, and four simulations achieves
100% specificity.

3.3. Model performance on prediction of recovery vs. progression from
qMCI

We evaluated WWAFNC and SWCAFNC feature representations by
training with TA-LSTM model and multivariate CNN in the ten-fold
cross-validation manner. For every ten-fold cross-validation, each scan
was tested once. We repeated ten-fold cross-validation five times with
different shuffle parameters, resulting in 50 trials. We used the mean of
50 trials’ AUC (Area Under the Curve), accuracy, sensitivity, and spec-
ificity as the evaluation metrics. The performance is shown in Table 5.
The WWAFNC trained by the TA-LSTM achieved 0.789 of AUC and
79.3% accuracy, increasing an average of 0.06 on the AUC metric, and
3.1% on accuracy compared to SWCAFNC. The TA-LSTM outperforms an
average of 0.1 in ROC metric than the multivariate CNN model in
training both types of dFNC feature representations.

3.4. Analysis of class-defining connectivity patterns and discriminative FC
biomarkers

We performed the statistical analysis on the cellwise properties on
the strongly-contributing time intervals. Based on the observations re-
ported in the preceding section, we selected all the T; and T, greater
than or equal to 3 since we aim to dive into the intervals instead of the
single or very short time. The independent samples t-test with multiple
comparison correction results shown in two middle plots of Fig. 8. We
also performed an additional statistical analysis for validation tests by
applying no thresholding. The global (no thresholding) cellwise plot
shows few levels of significant difference; and no significant cells after
FDR correction. The validation tests elucidate that the model is not
strengthening the global-wise attributes of class difference for feature
learning and show the discriminative temporal patterns that extracted in
the saliency maps. The final plot was constructed by unifying the middle
two plots and shown in left most plot in Fig. 8.

A number of previous studies have investigated the neuroimaging
biomarkers for the HC, MCI (QMCI), AZD groups. However, to our best
knowledge, very few studies have been conducted on the recovery qMCI
group and the related biomarkers, and there is limited comprehensive
meta-analysis of QMCI-P. To better consolidate our result and expand the
comparison to the existing research work, we compared some of our
final elementwise group FC biomarkers of qMCI-P to the existing AZD-
related biomarkers. We believe qMCI-P should have a higher similar-
ity to AZD than gMCI-R, and the same for gMCI-R, which should have a
higher similarity to HC than qMCI-P. This kind of qMCI transition bio-
markers between HC and AZD reflect activity brain networks also noted
in Ref. [40].

In the left most plot in Fig. 8, we can observe that there is significant
higher functional network connectivity (FNC) between the lingual gyrus
and calcarine gyrus in the VI domain shown in gMCI-P compared with
qMCI-R, which is consistent with the study that reported significant

Table 5
Model performance of prediction of Recovery vs. Progression from qMCI.
Accuracy AUC Sensitivity Specificity
SWCAFNC M-CNN 0.702 0.659 0.528 0.852
TA-LSTM 0.729 0.762 0.706 0.808
WWAFNC M-CNN 0.726 0.693 0.645 0.796
TA-LSTM 0.793 0.789 0.748 0.836
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Fig. 7. The figure shows the results of TEAM interpreting the class difference map (CDM) and their corresponding expected (ground truth) for simulation S-A through
S-F. The top two plots are the statistical test result with FDR correction (p = 0.05, and q = 0.05) for T;- and T,- corresponded input, respectively. The sign of the
maximum class difference was retained in the final CDM result. The bottom is the ground-truth feature difference plot. The red cell in feature k represent the average
of positive class for k-th feature is significantly greater than negative class, blue cell represents the negative class is significantly greater than the positive class.
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Fig. 8. T-test for differences between qMCI-R and gMCI-P in mean cellwise WWAFNC connectivity: all samples (left-most); within intervals exceeding the 90% upper
thresholding for saliency (second from the left); within intervals under the 10% lower saliency thresholding (second from the right). For the leftmost panel, we
applied the no thresholding, for the second from the left plot, we used intervals of length at least 3 exceeding the 90% upper saliency threshold, and for the second
from the right, we used intervals of length at least 3 with saliency under the 10% bottom saliency threshold computed from all WWdFNC. We averaged the con-
nectivity features within time intervals and performed the 2-sample T-test with multiple comparison correction (False Discovery Rate Correction q = 0.05). Red
means the class-level average of gMCI-R is significantly greater than gMCI-P (p < 0.05 (FDR)), blue means the class-level average of gMCI-P is significantly greater
than gMCI-R p < 0.05 (FDR). The right most plot takes the sign of the maximum class level difference to unified the upper salient and lower salient class difference

plot as the final interpretation result.

changes associated with AZD [41]. In addition, there are significant
higher FNC between several occipital and temporal regions in the VI
domain as well, which is consistent with the amplitude of low-frequency
fluctuations (ALFF) study that reported the biomarkers related to the
MCI group when compared with HC [42]. In the DMN, we found that
gMCI-P group has significant lower FC between anterior cingulate cortex
(ACC) and precuneus, as well as between anterior cingulate cortex and
posterior cingulate cortex (PCC), which is consistent with findings in
Ref. [40]. The PCC in qMCI-P group shows lower FNC with caudate and
thalamus in the SC domain; frontal gyrus and frontal gyrus in the CC
domain; and PCC shows an overall lower FNC with other networks. Our
findings of PCC are consistent with [43] which states the decreased FNC
is shown in MCI compared to HC as early cognition decline biomarkers,

10

and [44] which concludes the lower FNC is shown in amnestic MCI and
AD.

4. Discussion and conclusion

In this work, we introduce TEAM to capture transiently-realized
class-defining features by exploiting the TA-LSTM model. This frame-
work is applicable in many domains involving time series data. The
interpretation ability was evaluated on the aspects of a) performance of
capturing the transient intervals and b) the performance of identification
of class-defining feature in highly contributing intervals, and achieves
high model interpretation power on the synthetic data. The simulation-
validated interpretation framework was applied on the WWdFNC and
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captured the transiently-realized connectivity biomarkers expands our
knowledge of dynamic biomarkers for the future recovery or progression
from the QMCI. Furthermore, the additional accuracy achieved by using
“instantaneous” WWAFNCs in this model suggests that greater temporal
resolution of the input data can be productively exploited by LSTMs for
improved performance relative to coarser-grained SWCAFNCs, high-
lighting the importance of continuing to refine our measures of time-
varying connectivity. The accuracy achieved by training the two types
of dFNC in TA-LSTM model outperformed the baseline mode multivar-
iate CNN suggests the sequence learning helps the feature learning
compared with convolutional-based model.

4.1. gMCI-R group

Prior research has centered on predicting qMCI conversion using
machine learning techniques. The linked biomarkers connected to qMCI-
P have been evaluated using sMRI, PET, rs-fMRI, age, and cognition
scores, among other data types. The stable QMCI class representing the
subject’s continued presence in the QMCI stage across the investigation
is mostly studied as the contrast class in the prediction task. As we
discussed before, stable qMCI subjects who neither recover nor progress
are on indeterminate future paths. This group will be a mix of features
that relate to disparate unmeasured future outcomes, and cannot be
treated as a disjoint class. The qMCI-R group, which recovers to a
healthier cognitive stage within three years, is on the opposite and
definitive path as the gMCI-P group, but has received little attention in
the neuroimaging data. We worked on tasks on the gMCI subject to
predict the recovery or progress after the initial diagnosis of qMCI and
investigated the potentially important predictors of the transition to fill
the knowledge gap. Due to the limited studies on the QMCI-R group and
considering the progression stage of AZD, we compared our findings
with studies involving QMCI-P, cognitive health, and AZD groups. Our
findings agreed with previous qMCI-P studies. Furthermore, our results
agreed that the connectivity biomarkers interpreted for the gMCI-R
group are more consistent with the cognitive health group reported in
other studies, whereas the qMCI-P group is more consistent with the
AZD group reported in previous works.

4.2. Trustworthiness and human interpretability of TEAM

Building the trustworthiness of both model and interpretation is vital
for humans to take advantage of machine learning tools. When using
model to assist with critical societal functions, such as medical diag-
nosis, the model’s predictions cannot be implemented as part of a de-
cision process without assessing their trustworthiness. Furthermore, we
can study the important features/predictors from the trustworthy model
when domain knowledge is still weak. As a result, assessing trustwor-
thiness is critical to convincing humans who are experts to trust the
model and in getting humans who are not experts in such domains to
learn the domain and potential predictors. As discussed, trustworthiness
is built on the ability to interpret a subset of ground truth predictors. The
reason for not requiring the entire set of predictors is based on the
underspecification model [28], which states that the model with random
parameter initialization may focus on different predictors that are suf-
ficient for the model to converge. We argued that if the interpretation
can learn a set of predictors can build trustworthiness. However, many
domains lack feature/predictor importance ground truth to validate
trustworthiness. In this study, we designed six simulation studies with
pre-defined predictors that served as ground truth to quantify the
trustworthiness of the interpretation framework TEAM. Two metrics are
evaluated for the model interpretation power for multivariate time se-
ries data input. We observed the underspecification model scenario in
the S- D and S-F. In S-D, where the TA-LSTM learned the pattern for the
negative class, which is indicated by the symbol in the TPO map. And in
the S-F, the TPO map mainly concentrated and correctly marked the
“activated” time intervals in the first half time period. And in other
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simulations, TEAM interprets the almost entire set of ground truth
predictors. Our simulation study results support that TEAM interprets at
least a subset of ground truth predictors (and in more than half of the
simulations, interprets the entire set of ground truth predictors) to
confirm its trustworthiness. Considering the high dimensionality of
multivariate time series data, the interpreted results must also be human
interpretable. TEAM interprets the “activated” time intervals from the
full-time axis first and class difference map in the selected time intervals.
The interpretation result is shown in each dimension (time and feature);
such low dimensional representation is human interpretable. Besides,
two metrics, TPO and CDM, are proposed to quantify the model inter-
pretation power on multivariate time series data input.

4.3. Why rs-fMRI and recurrent-based model

To the best of our knowledge, no studies have compared qMCI-R and
gMCI-P in a prediction task. We conducted a literature search on the
most pertinent task, which is the prediction of progressive MCI from
stable MCI. Some studies are use one or two types of neuroimaging data:
sMRI and PET data with multimodal fusion and deep neural network
models [16,17], sMRI data with semi-supervised learning [45], and
SMRI and rs-fMRI feature fusion with SVM [46]. Others combined the
neuroimaging data with clinical ratings and age [45], age-adjusted [471],
or cognitive function and longitudinal cerebrospinal fluid (CSF) [48] to
make such prediction task. We found that characterization of the dy-
namics, which has been actively studied in other neurological diseases,
attracted less attention in the existing qQMCI studies. The average accu-
racy of mentioned studies’ predictions of progressive MCI against stable
MCI is 0.836 with learning from images and 0.863 with learning from
images, demographic data, and clinical scores combined. Despite our
result of the average AUC 0.789 show slightly lower than the average of
the mentioned previous studies 0.836 with only using the images, is not
the most competitive. The TA-LSTM’s sequence learning and time
attention unit both emphasizing the active intervals which are vital for
the post-hoc TEAM interpretation. We believe that our study filled one of
the small missing pieces of the qMCI study in both involving the re-
covery group as well as the brain dynamics perspective in rs-fMRI.

4.4. Limitation and future works

We conducted studies on OASIS-3 to explore the prediction of qMCI
progression and potential dynamic biomarkers related to patient dete-
rioration or recovery from qMCI. Since at least three years of longitu-
dinal information is required to recognize qMCI-R and qMCI-P subjects,
we retrieved less than 100 subjects from OASIS-3. In addition to the
present study, it is crucial to investigate the performance of the TA-
LSTM and TEAM interpretation framework on larger and more diverse
datasets in the future works. This would allow us to assess the scalability
of the model and its adaptability to datasets that are more extensive and
varied, such as ADNI or combinations of multiple public datasets.
Additionally, it would be valuable to examine how the framework’s
performance changes with variations in dataset size when presented a
larger dataset. This would provide insights into the optimal dataset size
required to achieve optimal results and identify any potential limitations
that may arise when working with datasets of different sizes [49]. It is
also essential to interpret the results on other datasets to identify
reproducible biomarkers, including shared group dynamic biomarkers
or biases in the interpretation process.

The existing studies regarding QMCI-R mainly focused on the lifestyle
activity factors but lacked support from the neuroimaging domain. In
this work, we employ a purely data-driven methodology on the two
transition groups that the subject diagnosis with qMCI would convert
after three years. Unlike other studies that compare the QMCI-P to Stable
gqMCI, we built the model for the gqMCI-R and qMCI-P class since the
stable QMCI will be a combination of attributes related to two conversion
outcomes as we discussed in II.B. We believed it is important to bring
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attention on the recover group in triggering early dementia intervention.
The future works could be to study neuroimaging data and other diverse
factors, such as lifestyle, eating habits, and clinical treatment, which
could influence such longitudinal study outcomes. All future works as
well as this work, can extend our understanding of the potentially pre-
dictors relates to the conversion outcome of qMCI patients and provide
important risk indicators.
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Appendix A
Abbreviation Definition
AZD Alzheimer’s Disease
MCI/qMCI (questionable) mild cognitive impairment
dFNC dynamic functional network connectivity
TA-LSTM time-attention long short-term memory
WWAJFNC windowless wavelet-based dFNC
SWCAFNC sliding window dFNC
MIP model interpretation power
TPO temporal pattern occurrence
CDM class difference map
M-CNN multivariate convolutional neural network
CDR clinical dementia rating
qMCI-R recovery questionable mild cognitive impairment
qMCI-P progressive questionable mild cognitive impairment
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