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Abstract—Human resting-state functional magnetic resonance
imaging data have been broadly studied previously to identify
coherent spatio—temporal patterns of activity in functional brain
networks and their dysfunction in brain disorders. While most
studies focused on spatially static networks, here we developed
an approach to estimate 4D spatially dynamic brain networks,
evaluated systematic voxel-wise changes in such networks and
the joint density distributions between pairs of networks using
two-dimensional (2D) histograms. Clusters of 2D histograms
computed using the k-means algorithm across subjects and
sliding windows for each network pair showed significant group
differences in subject-wise cluster occupancy and dwell time be-
tween healthy controls (CN) and patients with schizophrenia (SZ),
implying altered network dynamics and interactions. This work
provides unique insights into complex network-level relationships
and possible dynamical mechanisms underlying SZ, and could
potentially help in the development of novel diagnostics and
biomarkers.

Index Terms—Resting state fMRI (rsfMRI), dynamic spatial
brain networks, schizophrenia, brain disorders, network interac-
tions

I. INTRODUCTION

Several studies on human resting—state functional magnetic
resonance imaging (rsfMRI) data investigated coherent spatio—
temporal activities of functional brain networks and how such
networks got disrupted in disorders such as SZ [1]-[6]. While
most earlier studies focused on spatially static regions and
looked at their changing relationships over time, recent work
focused on spatially dynamic network features and voxel-
level interactions within and across networks [3], [7]. Data-
driven analytical approaches such as independent component
analysis (ICA) have been successfully applied to fMRI data
for multivariate source separation, with spatial ICA (sICA)
proving helpful to separate fMRI time series data into intrinsic
connectivity networks (ICNs) and their associated time courses
[1]-[3]. Our recent work [8] presented an approach to identify
several spatially dynamic 4D brain networks (with 3D voxels
governing a network changing over time) and showed that
significant volumetric coupling with synchronized shrinkage
and growth existed between pairs of such networks, as well
as that several features of these networks were associated
with cognition. In addition, SZ affected these networks and
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resulted in network expansion or shrinkage, altered focus
of activity within the networks, reduced spatial dynamic
variability within the networks and reduced volumetric cou-
pling between network pairs. As revealed by those findings
[8], studying voxel-level changes of dynamic spatial brain
networks and their interactions are essential to gain unique
insights into the dynamics and mechanisms underlying brain
disorders and to develop relevant diagnostic biomarkers. In
this study, we present an alternative approach via 2D his-
tograms to study the connectivity and interactions between
pairs of dynamic spatial brain networks, their joint density
distributions, and disruptions seen in SZ. 2D histograms count
the number of occurrences of various combinations of voxel—
level intensities/activities and allow for the comparison of two
networks. Our results show that joint density distributions
of brain network pairs are significantly linked to SZ, with
2D histogram clusters showing either higher or lower cluster
occupancy or dwell time in SZ. Our methodology provides
global, voxel-agnostic measures to study complex network—
level relationships.

II. METHODS

We used 3-Tesla rsfMRI data previously obtained in
three different studies - The Functional Imaging Biomedi-
cal Informatics Research Network (fBIRN) [2], the Center
for Biomedical Research Excellence (COBRE) [4], and a
Maryland Psychiatric Research Center (MPRC) [5]. Based
on the inclusion criteria described in [8], [9], we selected
508 subjects with 315 CN and 193 SZ. Data preprocessing
was performed using the statistical parametric mapping tool-
box (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) as described
in [9], [10]. Fig. 1 depicts the analysis pipeline, starting
from group-level spatially constrained independent compo-
nent analysis (sICA) of rsfMRI data. This is performed
with 20 components based on prior research [3], using the
group ICA of fMRI toolbox (GIFT) software package [11]
(https://trendscenter.org/software/gift/). We identified 14 rele-
vant brain networks or intrinsic component networks (ICNs)
and their associated time courses. The mean activity maps
for two such networks are shown in Fig. 2. The second
step employed prior networks from group-level analysis as a
reference to perform spatially constrained ICA across sliding
windows for each subject. This was done using multi-objective
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1. Group-level sICA to identify ICNs and time courses
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2. Subject-level MOO-ICAR with prior ICNs (from step 1)
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3. Window-level 2D histograms for each network pair
(minus overall mean 2D histogram)
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4. Analysis and hypothesis testing

For each network pair ICN2/ICN®;

* window level 2D histograms clustered across subjects
using k-means (with k=10)

* 2-sample t-tests for CN vs. SZ group differences in
subject-level cluster occupancy and dwell times

* mean voxel-wise maps for each cluster visualized

Fig. 1. The analysis pipeline started with (1) group-level sICA to identify
intrinsic connectivity networks (ICNs) and their time courses, followed by (2)
subject—level multi—objective optimization ICA with reference (MOO-ICAR)
over sliding windows that employed prior components (ICNs) from step (1)
as reference. For each subject—window and for each brain network pair, 2D
histograms were computed (3) and clustered across all the subject-windows
using k—-means algorithm (after subtracting the overall mean 2D histogram
from the window—level data). Further, subject—level cluster occupancies and
dwell times were measured and group differences were investigated using
2—sample t—tests and visualizations (4).

Fig. 2. Mean activity maps (z—scored) across CN group for two example
networks: MTR — S (somatomotor secondary) and CER (cerebellar) —
shown near the voxel with the highest activity, along three planar cross
sections — sagittal, coronal, and transverse. Only regions with z > 2 are
depicted, with anatomical images overlaid in the background.

optimization ICA with reference (MOO-ICAR) [12], [13],
integrated in GIFT. This step ensured the correspondence
of brain networks across subjects and time windows, and
captured the spatial dynamic variability of these networks
across windows for each subject. The length of each sliding
window is 30 x T'R (where the repetition time TR = 2s),
falling within the recommended range [11]. See [10] for
further details on the first two steps of the pipeline. In the
third step, 2D histograms were computed at each sliding—
window for each subject using z-scored voxel-level activity
for a brain network pair. The mean 2D histogram across
subjects and windows was computed and subtracted from the
window-level 2D histograms in order to focus solely on the
changing/differential dynamics, as opposed to overall/mean
activity. This was repeated for all 91 possible network pair
combinations of 14 brain networks. In the last step, the
differential 2D histograms were analyzed further by clustering
across subjects and windows using the k-means algorithm
(with k=10). For each cluster, two metrics were computed at
the subject level — cluster occupancy and cluster dwell time.
Cluster occupancy for a given subject and a cluster was defined
as the ratio of the number of windows of that subject that
fall within the cluster to the total number of windows for the
subject. On the other hand, dwell time for a subject and a
cluster was defined as the number of consecutive windows on
average that fall within the cluster before moving out of the
cluster. 2—-sample t-tests were performed using subject—level
cluster occupancy and dwell time to study CN vs. SZ group
differences. We employed a 5% false discovery rate (FDR)
[14] correction for multiple comparisons across clusters and
network—pairs.

III. RESULTS

Across 20 components used for sICA, we identified 14
relevant brain networks, labeled as VIS — P (visual pri-
mary), SU B (subcortical), MT R— P (somatomotor primary),
CER (cerebellar), AT'N (attention - dorsal), FRNT (frontal),
MTR-—S (somatomotor secondary), F'PN — R (frontoparietal
right), VIS — S (visual secondary), pDM N (default mode
posterior), FPN — L (frontoparietal left), SN (salience),
TEMP (temporal), and aDM N (default mode - anterior)
networks. Mean activity maps for two of these networks
(MTR — S and CER) are shown in Fig. 2. These networks
show voxel-level spatial dynamics, and expand or shrink over
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Fig. 3. 2D histogram clusters for joint density distributions, cluster-wise group differences, and mean maps for the network pair CER vs. MTR — S
are shown. (A-E) reveal five example k—means clusters (out of k=10) of 2D histograms for the network pair. For each cluster, bar plots show mean cluster
occupancies and dwell times for CN and SZ groups (* implies significant group differences). Futhermore, the mean activity maps within each cluster for
both the networks are also shown along three orthogonal cross sections (after subtracting the overall network mean map from the cluster mean map). Results
reveal dynamical variability and significant group differences across clusters (see also Table. I).

time. See [8] for further details on spatial dynamics of these
networks, their coupling, link to cognition, and the effects of
Schizophrenia.

For each combination of a pair of networks, 2D histograms
were computed at the subject level for each sliding-window
and clustered across windows and subjects using k-means
algorithm, with £ = 10. Subject level cluster metrics — cluster
occupancy and dwelling time — were measured, and further
investigated using 2-sample t—tests for group differences.
Table I reveals that several clusters show significant CN vs.
SZ group differences in cluster occupancy (purple) and dwell
time (green) as revealed by 2—sample t-tests (after 5% FDR
correction for multiple comparisons). On the whole, for 91
possible network pairs chosen across 14 brain networks, with
10 k-means clusters per network pair, we find that 291 and
126 of these clusters (out of a maximum of 91*10=910
clusters), respectively, show significant group differences in
cluster occupancy and dwell time.

The results for one of these network pairs, CER vs.
MTR — S, are elaborated further in Fig. 3, which shows five
different clusters (out of k=10 clusters, overall) and the corre-

sponding CN vs. SZ bar plots for cluster occupancy and dwell
time. Clusters A, B, ' show significant group differences in
cluster occupancy, while clusters B, D show significant group
differences in dwell time, with either higher/lower values
possibly seen in SZ compared to CN. The cluster—level mean
maps (differential) for both the networks (after subtracting
the overall mean maps for the corresponding networks) are
also shown, which reveal the network-level dynamic variability
across clusters.

IV. CONCLUSIONS

We investigated voxel-level changes in dynamic spatial
brain networks and their interactions via 2D histograms.
This effectively provides a global, voxel-agnostic approach
focused on distributional changes among 4D brain networks.
We identified 14 relevant brain networks (and 91 possible
combinations of network pairs). We employed k—means algo-
rithm (with k=10) to cluster 2D histograms across subjects and
sliding—windows. Results showed significant CN vs. SZ group
differences in cluster occupancy for 291 clusters and in cluster
dwell time for 126 clusters (out of a maximum of 91*%10=910
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VIS-P | SUB | MTR-P | CER | ATN | FRNT | MTR-S | FPN-R | VIS-S | pDMN | FPN-L SN TEMP | aDMN
VIS-P 0,0 3,2 3,0 8,3 7,2 6,0 5,3 4,0 5,0 5,3 4,4 4,2 5,3 5,2
SUB 3,2 0,0 3,0 3,2 2,1 4,0 3,1 5,0 3,2 3,4 3,2 2,1 3,1 3,2
MTR-P | 3,0 3,0 0,0 4,3 0,1 5,3 4,2 1,0 3,0 3,1 0,0 1,0 3,1 1,0
CER 8,3 3,2 4,3 0,0 3,1 3,1 5,4 5,3 2,0 6,3 3,3 2,2 5,2 2,0
ATN 7,2 2,1 0,1 3,1 0,0 2,1 7,5 2,1 2,0 3,2 0,0 1,0 2,1 1,0
FRNT 6,0 4,0 5,3 3,1 2,1 0,0 3,3 4,2 2,2 5,3 3,1 2,2 5,1 2,1
MTR-S | 5,3 3,1 4,2 5,4 7,5 3,3 0,0 4,2 2,2 6,4 3,1 4,2 5,1 3,1
FPN-R | 4,0 5,0 1,0 5,3 2,1 4,2 4,2 0,0 2,1 1,0 3,0 0,0 4,1 2,1
VIS-S 5,0 3,2 3,0 2,0 2,0 2,2 2,2 2,1 0,0 0,1 0,0 4,1 4,0 1,0
pDMN 5,3 3,4 3,1 6,3 3,2 5,3 6,4 1,0 0,1 0,0 2,2 3,2 4,1 2,0
FPN-L | 4,4 3,2 0,0 3,3 0,0 3,1 3,1 3,0 0,0 2,2 0,0 2,1 7,1 1,0
SN 4,2 2,1 1,0 2,2 1,0 2,2 4,2 0,0 4,1 3,2 2,1 0,0 5,2 4,1
TEMP 5,3 3,1 3,1 5,2 2,1 5,1 5,1 4,1 4,0 4,1 7,1 5,2 0,0 5,3
aDMN 5,2 3,2 1,0 2,0 1,0 2,1 3,1 2,1 1,0 2,0 1,0 4,1 5,3 0,0

TABLE 1T

NUMBER OF K-MEANS CLUSTERS (OUT OF K=10) OF 2D HISTOGRAMS FOR EACH NETWORK PAIR WITH SIGNIFICANT CN VS. SZ GROUP DIFFERENCES
IN CLUSTER OCCUPANCY (PURPLE) AND DWELL TIME (GREEN) (WITH 5% FDR CORRECTION)

clusters). This work provides unique insights into the dynamics
and mechanisms of brain function and dysfunction by studying
voxel-level changes within and between brain networks, and
their joint density distributions. This could potentially help
in the development of novel biomarkers, diagnostics, and
pharmacological modulators for SZ in the future.
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