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Abstract—Human resting-state functional magnetic resonance
imaging data have been broadly studied previously to identify
coherent spatio–temporal patterns of activity in functional brain
networks and their dysfunction in brain disorders. While most
studies focused on spatially static networks, here we developed
an approach to estimate 4D spatially dynamic brain networks,
evaluated systematic voxel-wise changes in such networks and
the joint density distributions between pairs of networks using
two-dimensional (2D) histograms. Clusters of 2D histograms
computed using the k-means algorithm across subjects and
sliding windows for each network pair showed significant group
differences in subject-wise cluster occupancy and dwell time be-
tween healthy controls (CN) and patients with schizophrenia (SZ),
implying altered network dynamics and interactions. This work
provides unique insights into complex network–level relationships
and possible dynamical mechanisms underlying SZ, and could
potentially help in the development of novel diagnostics and
biomarkers.

Index Terms—Resting state fMRI (rsfMRI), dynamic spatial
brain networks, schizophrenia, brain disorders, network interac-
tions

I. INTRODUCTION

Several studies on human resting–state functional magnetic

resonance imaging (rsfMRI) data investigated coherent spatio–

temporal activities of functional brain networks and how such

networks got disrupted in disorders such as SZ [1]–[6]. While

most earlier studies focused on spatially static regions and

looked at their changing relationships over time, recent work

focused on spatially dynamic network features and voxel–

level interactions within and across networks [3], [7]. Data-

driven analytical approaches such as independent component

analysis (ICA) have been successfully applied to fMRI data

for multivariate source separation, with spatial ICA (sICA)

proving helpful to separate fMRI time series data into intrinsic

connectivity networks (ICNs) and their associated time courses

[1]–[3]. Our recent work [8] presented an approach to identify

several spatially dynamic 4D brain networks (with 3D voxels

governing a network changing over time) and showed that

significant volumetric coupling with synchronized shrinkage

and growth existed between pairs of such networks, as well

as that several features of these networks were associated

with cognition. In addition, SZ affected these networks and
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resulted in network expansion or shrinkage, altered focus

of activity within the networks, reduced spatial dynamic

variability within the networks and reduced volumetric cou-

pling between network pairs. As revealed by those findings

[8], studying voxel-level changes of dynamic spatial brain

networks and their interactions are essential to gain unique

insights into the dynamics and mechanisms underlying brain

disorders and to develop relevant diagnostic biomarkers. In

this study, we present an alternative approach via 2D his-

tograms to study the connectivity and interactions between

pairs of dynamic spatial brain networks, their joint density

distributions, and disruptions seen in SZ. 2D histograms count

the number of occurrences of various combinations of voxel–

level intensities/activities and allow for the comparison of two

networks. Our results show that joint density distributions

of brain network pairs are significantly linked to SZ, with

2D histogram clusters showing either higher or lower cluster

occupancy or dwell time in SZ. Our methodology provides

global, voxel–agnostic measures to study complex network–

level relationships.

II. METHODS

We used 3–Tesla rsfMRI data previously obtained in

three different studies - The Functional Imaging Biomedi-

cal Informatics Research Network (fBIRN) [2], the Center

for Biomedical Research Excellence (COBRE) [4], and a

Maryland Psychiatric Research Center (MPRC) [5]. Based

on the inclusion criteria described in [8], [9], we selected

508 subjects with 315 CN and 193 SZ. Data preprocessing

was performed using the statistical parametric mapping tool-

box (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) as described

in [9], [10]. Fig. 1 depicts the analysis pipeline, starting

from group-level spatially constrained independent compo-

nent analysis (sICA) of rsfMRI data. This is performed

with 20 components based on prior research [3], using the

group ICA of fMRI toolbox (GIFT) software package [11]

(https://trendscenter.org/software/gift/). We identified 14 rele-

vant brain networks or intrinsic component networks (ICNs)

and their associated time courses. The mean activity maps

for two such networks are shown in Fig. 2. The second

step employed prior networks from group-level analysis as a

reference to perform spatially constrained ICA across sliding

windows for each subject. This was done using multi-objective

Authorized licensed use limited to: Georgia State University. Downloaded on January 31,2025 at 23:07:16 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. The analysis pipeline started with (1) group–level sICA to identify
intrinsic connectivity networks (ICNs) and their time courses, followed by (2)
subject–level multi–objective optimization ICA with reference (MOO–ICAR)
over sliding windows that employed prior components (ICNs) from step (1)
as reference. For each subject–window and for each brain network pair, 2D
histograms were computed (3) and clustered across all the subject–windows
using k–means algorithm (after subtracting the overall mean 2D histogram
from the window–level data). Further, subject–level cluster occupancies and
dwell times were measured and group differences were investigated using
2–sample t–tests and visualizations (4).

Fig. 2. Mean activity maps (z–scored) across CN group for two example
networks: MTR − S (somatomotor secondary) and CER (cerebellar) –
shown near the voxel with the highest activity, along three planar cross
sections – sagittal, coronal, and transverse. Only regions with z ≥ 2 are
depicted, with anatomical images overlaid in the background.

optimization ICA with reference (MOO-ICAR) [12], [13],

integrated in GIFT. This step ensured the correspondence

of brain networks across subjects and time windows, and

captured the spatial dynamic variability of these networks

across windows for each subject. The length of each sliding

window is 30 × TR (where the repetition time TR = 2s),

falling within the recommended range [11]. See [10] for

further details on the first two steps of the pipeline. In the

third step, 2D histograms were computed at each sliding–

window for each subject using z-scored voxel-level activity

for a brain network pair. The mean 2D histogram across

subjects and windows was computed and subtracted from the

window-level 2D histograms in order to focus solely on the

changing/differential dynamics, as opposed to overall/mean

activity. This was repeated for all 91 possible network pair

combinations of 14 brain networks. In the last step, the

differential 2D histograms were analyzed further by clustering

across subjects and windows using the k-means algorithm

(with k=10). For each cluster, two metrics were computed at

the subject level – cluster occupancy and cluster dwell time.

Cluster occupancy for a given subject and a cluster was defined

as the ratio of the number of windows of that subject that

fall within the cluster to the total number of windows for the

subject. On the other hand, dwell time for a subject and a

cluster was defined as the number of consecutive windows on

average that fall within the cluster before moving out of the

cluster. 2–sample t–tests were performed using subject–level

cluster occupancy and dwell time to study CN vs. SZ group

differences. We employed a 5% false discovery rate (FDR)

[14] correction for multiple comparisons across clusters and

network–pairs.

III. RESULTS

Across 20 components used for sICA, we identified 14

relevant brain networks, labeled as V IS − P (visual pri-

mary), SUB (subcortical), MTR−P (somatomotor primary),

CER (cerebellar), ATN (attention - dorsal), FRNT (frontal),

MTR−S (somatomotor secondary), FPN−R (frontoparietal

right), V IS − S (visual secondary), pDMN (default mode

posterior), FPN − L (frontoparietal left), SN (salience),

TEMP (temporal), and aDMN (default mode - anterior)

networks. Mean activity maps for two of these networks

(MTR − S and CER) are shown in Fig. 2. These networks

show voxel-level spatial dynamics, and expand or shrink over
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Fig. 3. 2D histogram clusters for joint density distributions, cluster-wise group differences, and mean maps for the network pair CER vs. MTR − S

are shown. (A-E) reveal five example k–means clusters (out of k=10) of 2D histograms for the network pair. For each cluster, bar plots show mean cluster
occupancies and dwell times for CN and SZ groups (* implies significant group differences). Futhermore, the mean activity maps within each cluster for
both the networks are also shown along three orthogonal cross sections (after subtracting the overall network mean map from the cluster mean map). Results
reveal dynamical variability and significant group differences across clusters (see also Table. I).

time. See [8] for further details on spatial dynamics of these

networks, their coupling, link to cognition, and the effects of

Schizophrenia.

For each combination of a pair of networks, 2D histograms

were computed at the subject level for each sliding-window

and clustered across windows and subjects using k-means

algorithm, with k = 10. Subject level cluster metrics – cluster

occupancy and dwelling time – were measured, and further

investigated using 2–sample t–tests for group differences.

Table I reveals that several clusters show significant CN vs.

SZ group differences in cluster occupancy (purple) and dwell

time (green) as revealed by 2–sample t–tests (after 5% FDR

correction for multiple comparisons). On the whole, for 91

possible network pairs chosen across 14 brain networks, with

10 k–means clusters per network pair, we find that 291 and

126 of these clusters (out of a maximum of 91*10=910

clusters), respectively, show significant group differences in

cluster occupancy and dwell time.

The results for one of these network pairs, CER vs.

MTR− S, are elaborated further in Fig. 3, which shows five

different clusters (out of k=10 clusters, overall) and the corre-

sponding CN vs. SZ bar plots for cluster occupancy and dwell

time. Clusters A,B,E show significant group differences in

cluster occupancy, while clusters B,D show significant group

differences in dwell time, with either higher/lower values

possibly seen in SZ compared to CN. The cluster–level mean

maps (differential) for both the networks (after subtracting

the overall mean maps for the corresponding networks) are

also shown, which reveal the network-level dynamic variability

across clusters.

IV. CONCLUSIONS

We investigated voxel-level changes in dynamic spatial

brain networks and their interactions via 2D histograms.

This effectively provides a global, voxel–agnostic approach

focused on distributional changes among 4D brain networks.

We identified 14 relevant brain networks (and 91 possible

combinations of network pairs). We employed k–means algo-

rithm (with k=10) to cluster 2D histograms across subjects and

sliding–windows. Results showed significant CN vs. SZ group

differences in cluster occupancy for 291 clusters and in cluster

dwell time for 126 clusters (out of a maximum of 91*10=910
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VIS-P SUB MTR-P CER ATN FRNT MTR-S FPN-R VIS-S pDMN FPN-L SN TEMP aDMN

VIS-P 0 , 0 3 , 2 3 , 0 8 , 3 7 , 2 6 , 0 5 , 3 4 , 0 5 , 0 5 , 3 4 , 4 4 , 2 5 , 3 5 , 2

SUB 3 , 2 0 , 0 3 , 0 3 , 2 2 , 1 4 , 0 3 , 1 5 , 0 3 , 2 3 , 4 3 , 2 2 , 1 3 , 1 3 , 2

MTR-P 3 , 0 3 , 0 0 , 0 4 , 3 0 , 1 5 , 3 4 , 2 1 , 0 3 , 0 3 , 1 0 , 0 1 , 0 3 , 1 1 , 0

CER 8 , 3 3 , 2 4 , 3 0 , 0 3 , 1 3 , 1 5 , 4 5 , 3 2 , 0 6 , 3 3 , 3 2 , 2 5 , 2 2 , 0

ATN 7 , 2 2 , 1 0 , 1 3 , 1 0 , 0 2 , 1 7 , 5 2 , 1 2 , 0 3 , 2 0 , 0 1 , 0 2 , 1 1 , 0

FRNT 6 , 0 4 , 0 5 , 3 3 , 1 2 , 1 0 , 0 3 , 3 4 , 2 2 , 2 5 , 3 3 , 1 2 , 2 5 , 1 2 , 1

MTR-S 5 , 3 3 , 1 4 , 2 5 , 4 7 , 5 3 , 3 0 , 0 4 , 2 2 , 2 6 , 4 3 , 1 4 , 2 5 , 1 3 , 1

FPN-R 4 , 0 5 , 0 1 , 0 5 , 3 2 , 1 4 , 2 4 , 2 0 , 0 2 , 1 1 , 0 3 , 0 0 , 0 4 , 1 2 , 1

VIS-S 5 , 0 3 , 2 3 , 0 2 , 0 2 , 0 2 , 2 2 , 2 2 , 1 0 , 0 0 , 1 0 , 0 4 , 1 4 , 0 1 , 0

pDMN 5 , 3 3 , 4 3 , 1 6 , 3 3 , 2 5 , 3 6 , 4 1 , 0 0 , 1 0 , 0 2 , 2 3 , 2 4 , 1 2 , 0

FPN-L 4 , 4 3 , 2 0 , 0 3 , 3 0 , 0 3 , 1 3 , 1 3 , 0 0 , 0 2 , 2 0 , 0 2 , 1 7 , 1 1 , 0

SN 4 , 2 2 , 1 1 , 0 2 , 2 1 , 0 2 , 2 4 , 2 0 , 0 4 , 1 3 , 2 2 , 1 0 , 0 5 , 2 4 , 1

TEMP 5 , 3 3 , 1 3 , 1 5 , 2 2 , 1 5 , 1 5 , 1 4 , 1 4 , 0 4 , 1 7 , 1 5 , 2 0 , 0 5 , 3

aDMN 5 , 2 3 , 2 1 , 0 2 , 0 1 , 0 2 , 1 3 , 1 2 , 1 1 , 0 2 , 0 1 , 0 4 , 1 5 , 3 0 , 0
TABLE I

NUMBER OF K-MEANS CLUSTERS (OUT OF K=10) OF 2D HISTOGRAMS FOR EACH NETWORK PAIR WITH SIGNIFICANT CN VS. SZ GROUP DIFFERENCES

IN CLUSTER OCCUPANCY (PURPLE) AND DWELL TIME (GREEN) (WITH 5% FDR CORRECTION)

clusters). This work provides unique insights into the dynamics

and mechanisms of brain function and dysfunction by studying

voxel-level changes within and between brain networks, and

their joint density distributions. This could potentially help

in the development of novel biomarkers, diagnostics, and

pharmacological modulators for SZ in the future.
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