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Abstract—Functional and structural magnetic resonance imag-
ing (fMRI/sMRI) are extensively used modalities for studying
brain development. While individual modalities may overlook
crucial aspects of brain analysis, combining multiple modalities
allows us to leverage the benefits of revealing hidden brain
connections. To analyze multivariate change patterns in brain
function and structure with increasing age across the entire
brain, we employ a symmetric multimodal fusion approach
that combines multiset canonical correlation analysis and joint
independent component analysis. In this study, we present a
novel approach to analyze linked longitudinal change patterns
in functional network connectivity (FNC) and gray matter (GM)
data derived from the large-scale Adolescent Brain and Cognitive
Development dataset. Our approach uncovers significant pattern
changes in both modalities. Specifically, we identify highly struc-
tured functional change patterns and structural change patterns
that include increased brain functional connectivity between the
visual and sensorimotor domains in the fMRI data, as well as
changes in the bilateral sensorimotor cortex in the sMRI data.
Overall, our study demonstrates the strength of our approach
in uncovering longitudinal changes in FNC and GM, provides
valuable insights into the dynamic nature of brain connectivity
and structure during adolescence, and sheds light on potential
gender-related differences in these processes.

Index Terms—Delta FNC, Longitudinal study, mCCA+jICA,
MRI, Gray matter
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I. INTRODUCTION

Magnetic resonance imaging (MRI) is a widely utilized

method for acquiring valuable brain information and one of the

only modalities that can visualize brain structure and function.

Structural neuroimaging modalities, such as structural MRI

(sMRI) and diffusion MRI (dMRI), provide insights into the

anatomical structure and tissue composition of the brain. In

contrast, functional neuroimaging modalities, such as fMRI

based on blood-oxygenation-level-dependent (BOLD) signal,

indirectly measure brain function and activity [1], [2]. Previous

studies have predominantly examined functional and structural

measures independently when analyzing the brain. However,

there has been a rapid increase in the utilization of combined

structural and functional MRI data [3]. Multimodal fusion

of neuroimaging data is a technique that integrates data

acquired from multiple imaging modalities and techniques.

This approach aims to overcome the inherent limitations of

individual modalities and gain a deeper understanding of brain

dynamics [4]–[6]. The primary objective of multimodal fusion

is to enhance the analytical power of each modality through

joint analysis, rather than separate analyses of each modality.

In order to analyze the shared information among the fea-

tures found in different imaging modalities, we used multiset

canonical correlation analysis + joint independent component
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analysis (mCCA+jICA) method, a widely recognized and ex-

tensively used multimodal fusion approach [7]. mCCA+jICA,

is a data-driven multivariate fusion technique [8], [9] that si-

multaneously analyzes multimodal data by combining mCCA

and jICA in a two-step process [4]. In the first step, mCCA

is utilized to identify highly correlated components between

multiple modalities [7], [10]. This is followed by the applica-

tion of jICA in the second step to decompose these correlated

components into spatially independent components, known as

ICs. The mCCA+jICA algorithm has been employed [7] to

combine fMRI contrast maps and diffusion tensor imaging

(DTI) fractional anisotropy (FA) maps for examining group

differences among healthy controls (HCs), schizophrenia pa-

tients (SPs), and bipolar patients (BPs). Importantly, that study

found that the combined algorithm yielded increased accuracy

in group classification compared to using the constituent algo-

rithms individually. Ouyang et al. have used the mCCA+jICA

approach to identify patterns of gray matter (GM) and white

matter (WM) covariance in patients with Alzheimer’s disease

[11]. Similarly, Kim et al. utilized mCCA+jICA with mul-

timodal sMRI and DTI data from patients with obsessive-

compulsive disorder and HCs, revealing significant alterations

in the interconnected networks of GM and WM [12]. But,

to the best of our knowledge, no previous studies have been

conducted to estimate the changes in sex-related multivariate

patterns coupling in FNC and GM associated with age pro-

gression using the mCCA+jICA multimodal fusion analysis

method.

In this study, we propose a novel approach to investigate

the relationship between within subject age-related changes in

whole-brain structure and function at an individual level. For

each participant, we calculate cell-wise differences (∆FNC

and ∆GM) and then estimate covarying multivariate patterns

(functional change patterns (FCPs) and structural change

patterns (SCPs)) using the mCCA+jICA multimodal fusion

method. By performing a one-sample t-test on the loading pa-

rameters of the resulting multimodal components, we identify

several FCPs and SCPs that exhibit significant longitudinal

differences. Furthermore, we explore the interaction between

functional and structural changes in both males and females.

The rest of this paper is structured as follows: the method

section describes the data preprocessing steps, workflow, and

analysis procedures. In the results section, we present the

findings related to functional and anatomical brain changes

associated with age. Lastly, we discuss the significant impli-

cations of our findings in the conclusion section.

II. MATERIALS AND METHODS

A. Adolescent Brain Cognitive(ABCD) Data Summary

In this investigation, the dataset from the Adolescent

Brain Cognitive Development (ABCD) (https://abcdstudy.org/)

study, which was conducted to monitor the changes occurring

in the human brain as individuals transition from childhood to

adolescence, has been utilized. The ABCD project involved

more than 11,800 children, aged 9 to 10 at the baseline

session, who had multiple MRI scans, and their health and

demographic information was collected as well. The ABCD

dataset is accessible through the National Institute of Mental

Health Data Archive (NDA) website (https://nda.nih.gov/). The

NDA gathers data from various research endeavors across

diverse scientific disciplines and shares the ABCD data as

an open-source dataset, fostering collaborative research and

exploration. To ensure data quality, the fMRI data was pre-

processed using a robust independent component analysis

(ICA)-based framework known as Neuromark. This framework

compares data across subjects to identify brain networks while

accommodating individual variations within the networks [13].

In this study, a subset of 2,734 participants with both baseline

and two-year follow-up scanned data for both functional net-

work connectivity (FNC) and gray matter volume was selected.

B. Preprocessing of fMRI Data and Functional Feature Ex-

traction

The data preprocessing steps involved a combination of

the FMRIB Software Library v6.0 (FSL) toolbox and the

Statistical Parametric Mapping 12 (SPM) toolbox in MATLAB

2020b. To correct for subject head motion, the FSL MCFLIRT

tool was employed to perform rigid body motion correction.

Following the motion correction, the distortion in the fMRI

images was addressed using field map files. These field maps

were obtained by capturing volumes with phase encoding in

the anterior-posterior (AP) and posterior-anterior (PA) direc-

tions using the FSL tool topup. By utilizing the output field

map coefficients obtained from the FSL tool applytopup, the

distortion in the fMRI volume was corrected. Subsequently,

the fMRI data were smoothed using a Gaussian kernel with

a full width at half maximum (FWHM) of 6 mm and warped

to the standard Montreal Neurological Institute (MNI) space

with a spatial resolution of 3× 3× 3.

After preprocessing, we utilized a fully automated spatially

constrained ICA technique to extract intrinsic connectivity

networks (ICNs) and their corresponding time courses (TCS)

from the ABCD dataset. The extraction was performed using

the Neuromark fMRI 1.0 template [13]. This template was

created by calculating replicated networks from two datasets of

HCs: the Human Connectome Project (HCP) dataset, consist-

ing of 823 selected individuals, and the Genomics Super Struct

Project (GSP) dataset, consisting of 1005 selected subjects.

Detailed information about the Neuromark template can be

obtained from the website http://trendscenter.org/data and in

the GIFT toolbox. Importantly, the chosen spatial priors have

been demonstrated to exhibit high reliability across different

pipelines, datasets involving both adults and adolescents, and

various populations [14].

C. Preprocessing of sMRI Data

sMRI data was preprocessed using the statistical parametric

mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/), software

which was executed in the MATLAB 2020b environment.

Initially, the structural images were subjected to segmentation

to separate the gray matter, white matter, and cerebrospinal
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fluid (CSF), while also considering modulation by the Jaco-

bian. This process resulted in voxel-wise maps of gray matter

volume (GMV). Subsequently, the GMV maps were smoothed

using a Gaussian kernel with a full width at half maximum

(FWHM) of 6 mm, enhancing the spatial smoothness of the

data.

Fig. 1. Block diagram of the functional and structural change patterns
recognition workflow .

D. Models

In our investigation, we utilized the subject-specific fMRI

and sMRI data from both the baseline and two-year scans.

To characterize changes in functional network connectivity

(FNC) and gray matter (GM), we computed the cell-wise

differences between the baseline and two-year data. These

difference matrices, denoted as ∆FNC and ∆GM, represented

the changes in FNC and GM over time, respectively. Next, we

applied the mCCA+jICA method to deconstruct the ∆FNC

and ∆GM matrices. This approach allowed us to capture co-

varying patterns of change, namely functional change patterns

(FCPs) and structural change patterns (SCPs), respectively. We

estimated five components for both GM and FNC data, where

this optimal number of components were estimated using the

elbow criteria. The mCCA+jICA model equation used in our

experiment is expressed as follows:

Xk = Ak · Sk (1)

In this equation, the dimensionality of the data matrix X

is 2734 (subjects) × cells (for fMRI, the upper triangular

elements of the ∆FNC matrix; for sMRI, the number of

voxels). The dimensions of A are 2734 × 5 (components), S is

5 (components) × cells, and k = 2 is the number of modalities.

This effectively models the input data as following :

Here, ∆FNC represents the difference between the baseline

(F0) and two-year (F2) functional network connectivity (FNC)

data, while ∆GM corresponds to the difference between the

baseline (G0) and two-year (G2) gray matter (GM) data. The

FCPs and SCPs source matrices capture the most independent

patterns of functional and structural changes, respectively. The

terms aF and aG refer to the subject-specific loading parame-

ters for each component in the FNC and GM data, respectively.

These loading parameters quantify the contribution of each

subject to the respective components.

After performing the mCCA+jICA estimation, we pro-

ceeded to assess the loading parameters and source matrix.

To identify FCPs and SCPs exhibiting significant longitudinal

changes compared to zero, we conducted one-sample t-tests

on the loading parameters aF and aG of both modalities.

The statistical significance was evaluated at a 95% confidence

level, adjusted for multiple comparisons. Furthermore, we

separated the male and female loadings of GM and FNC

data. We calculated the correlation between the GM and FNC

loadings, specifically between GM male loadings and FNC

male loadings, as well as between GM female loadings and

FNC female loadings. By calculating the difference between

these correlations (female - male), we evaluated the strength

of coupling between GM and FNC loadings in relation to

gender. A significant positive difference suggests that the

coupling between GM and FNC loadings is stronger in females

compared to males.

III. RESULTS

The Neuromark template included a total of 53 replicable

networks, which were categorized into 7 domains based on

their anatomical and functional characteristics. These domains

include subcortical, auditory, sensorimotor, visual, cognitive

control, default mode, and cerebellar domains [14]. We present

our experimental outcomes in Fig 2, which consists of spatial

maps illustrating the connections between multivariate FCPs

and SCPs. The figure displays 5 components of FCPs along
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Fig. 2. FNC components and spatial map of GM components. Here, Com-
ponent 3 from both functional and structural data exhibits highly structured
changed patterns.

with corresponding spatial maps of SCPs components, along

with their associated T-values. A high negative (or positive)

T-value indicates increased (or decreased) expression of the

specific FCP with age [15]. Furthermore, the associations

of FCPs and SCPs components with increased age are also

depicted by the upper and lower arrow. Here the upper and

lower arrow indicate the increasing and decreasing pattern

changes with age respectively. The results reveal notable

modularity, suggesting structured changes that occur over the

two-year period.

The functional connectivity patterns (FCPs) associated with

components 2 and 3 exhibit significant changes with increased

age in the developing brain. Both components show an increas-

ing trend with age, as indicated by their negative T-values.

Component 3 demonstrates an increased brain functional con-

nectivity between the visual domain (VS) and sensorimotor

domain (SM) in the FNC data. Correspondingly, there are

decreasing changes in the bilateral sensorimotor cortex in the

sMRI data over the two-year period. Furthermore, the FCP

of component 3 reveals a decreasing trend with age in the

functional connectivity between the VS and cerebellar domain

(CB), as well as between the SM and cognitive control domain

(CO).

After applying the multimodal fusion technique, we calcu-

lated the Pearson correlation between the loading parameters

across all FCPs and SCPs (separately for males and females).

The aim was to investigate the gender differences in coupling

(subject expression-level associations). Our analysis revealed

that females showed stronger coupling between SCP compo-

nent 2 and FCP component 1 (∆r = 0.128, FDR-corrected,

P = 2.1895e−11), FCP component 3 (∆r = 0.102, FDR-

corrected, P = 1.0081e−07), and FCP component 4 (∆r =

0.111, FDR-corrected, P = 6.7136e−09) compared to males.

This finding suggests that females who contribute the most

to the structural change pattern (SCP component 2) also

significantly contribute to the FCPs of components 1, 3, and

4. Based on the obtained correlation values, we can conclude

that females exhibit a stronger coupling between the FCPs

and SCPs expressions compared to males. Additionally, we

conducted a two-sample t-test based on gender information

using the loading parameters of both modalities. Our analysis

revealed that males exhibit smaller change pattern expression

in SCP for component 2 compared to females.

IV. DISCUSSION AND CONCLUSIONS

This paper presents a novel approach to examine the rela-

tionship between multivariate brain functional and structural

change patterns using FNC matrices and GM data. The

primary objectives of this study are to investigate whole-

brain structural and functional changes over a two-year period,

explore age-related trends in these changes, and analyze the

coupling between structural and functional changes based on

gender. The analysis utilizes functional and GM data from the

ABCD dataset. The results reveal significant changes in several

FCPs and SCPs over the two-year period. Furthermore, the

study identifies that females exhibit stronger coupling between
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functional change patterns (components 1, 3, and 4) and struc-

tural change patterns (component 2) compared to males. These

findings emphasize the potential of the proposed approach

as a valuable tool for evaluating whole-brain functional and

structural changes and their coupling in longitudinal studies

involving both males and females.
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