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Network Differential in Gaussian Graphical Models from
Multimodal Neuroimaging Data*

Haleh Falakshahi, Hooman Rokham, Robyn Miller, Jean Liu, Vince D. Calhoun

Abstract— Multimodal brain network analysis has the
potential to provide insights into the mechanisms of brain
disorders. Most previous studies have analyzed either unimodal
brain graphs or focused on local/global graphic metrics with
little consideration of details of disrupted paths in the patient
group. As we show, the combination of multimodal brain graphs
and disrupted path-based analysis can be highly illuminating to
recognize path-based disease biomarkers. In this study, we first
propose a way to estimate multimodal brain graphs using static
functional network connectivity (sSFNC) and gray matter
features using a Gaussian graphical model of schizophrenia
versus controls. Next, applying the graph theory approach we
identify disconnectors or connectors in the patient group graph
that create additional paths or cause absent paths compared to
the control graph. Results showed several edges in the
schizophrenia group graph that trigger missing or additional
paths. Identified edges associated with these disrupted paths
were identified both within and between dFNC and gray matter
which highlights the importance of considering multimodal
studies and moving beyond pairwise edges to provide a more
comprehensive understanding of brain disorders.

Clinical Relevance— We identified a path-based biomarker in
schizophrenia, by imitating the structure of paths in a
multimodal (SMIR+fMRI) brain graph of the control group.
Identified cross-modal edges associated with disrupted paths
were related to the middle temporal gyrus and cerebellar
regions.

I. INTRODUCTION

The advent of modern neuroimaging techniques has
provided useful and insightful information regarding different
brain disorders such as schizophrenia (SZ). SZ is a severe
mental illness characterized by symptoms such as delusions,
hallucinations, social withdrawal, and deficits in cognitive
functions. The disconnection hypothesis in SZ was first raised
by Friston and Frith [1] and associated with both structural [2]
and functional [3] brain networks. SZ has varyingly been
reported as a disorder of brain connectivity including hypo-
connectivity [4], hyper-connectivity [5], and some studies
reported as a dysconnectivity syndrome involving both hypo-
connectivity and hyper-connectivity [6], [7].
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The combination of neuroimaging techniques and graph
theoretical approaches has enabled us to examine and
understand these psychiatric brain disorders in a more
quantitative way [8], [9], [10], [11]. Brain network analysis
based on graph theory can offer key new insights into the
structure and function of the brain network in SZ. In brain
networks, nodes indicate brain regions, and the edges are
regarded as some measure of structural or functional
interaction between nodes. Once a brain network is
established, graph theory can be used to describe and compare
the overall topological patterns of the network through graph
metrics such as clustering coefficient, modularity, average
path length, etc. [12]. For example, graph metrics including
path length and global efficiency have been shown to be
disrupted in SZ [13].

However, most previous studies analyzed either unimodal
brain graphs or focused on local/global graphic metrics with
little consideration of details of disrupted paths in the patient
group. In this study, we aim to identify disrupted paths on the
multimodal brain graph of the patient group. Each modality
provides a different but complementary view of brain function
or structure [14]. There is considerable evidence of
multimodal brain differences in SZ versus control groups [15],
[16], [17], [18]. However, there are only a few studies in the
context of a combination of multimodal neuroimaging data
and graphical models and there is more to be studied in this
area that may help to unify disparate findings in SZ. We
leveraged prior work on path analysis [19] to identify edges
associated with absent paths and additional paths in the patient
group graph as the differences between control and patient
groups are presumably the outcome of multilink disruptions in
the paths. We aim to identify multimodal path-based
biomarkers for individuals with SZ using the graph theory
approach.

Moreover, for estimating the structural or functional
connectivity, using Pearson’s correlation coefficient is
common practice in the literature. Although commonly used,
Pearson’s correlation does not distinguish whether two brain
components are directly connected or indirectly connected
through another brain component. To mitigate this, in this
study, we use the Gaussian graphical model (GGM). GGM is
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[Figure 1. Method outline. sMRI and fMRI data were collected. Preprocessing steps were applied and sFNC and GM maps were estimated as input features.
To estimate multimodal nodes for the brain network, pICA was performed as a data fusion algorithm. SENC and gray matter components (nodes of multimodal
brain graph) were calculated using the component matrices. To estimate multimodal edges, precision matrices were estimated for control and patient by
applying the joint graphical lasso. Next, partial correlation matrices were calculated, and adjacency matrices were determined by applying the parametric test
for the statistical significance of the partial correlation. Elements of the adjacency matrix are considered as one only where the corresponding false discovery
rate (FDR) corrected p-value was significant (p < 0.05). Lastly, differential network analysis was performed to estimate edges associated with disrupted paths|

a probabilistic graphical model based on partial correlation
which is a correlation between the time series of two brain
components after adjusting for the time series of all other brain
components. we propose a way to build multimodal GGM for
control and individuals with SZ in a data-driven way to define
nodes and edges. We combine functional MRI (fMRI) and
structural MRI (sMRI) data to improve neuromarker
identification and to take advantage of multimodal cross-
information.

The remainder of the paper is structured as follows. Section
2 describes the details of our proposed method. Section 3
provides the result of applying the path analysis algorithm on
estimated multi-modal graphs of control and patient groups.
We provide concluding remarks in Section 4.

II. MATERIALS AND METHOD

In this section, we first describe our approach to estimating
multimodal brain networks of control and patient groups in a
data-driven manner using GGM. Next, we analyze paths on the
multimodal brain graphs of control versus control. Fig.1
illustrates the method steps in more detail.

A. Data information, preprocessing, and feature extraction

We considered data from the function Biomedical
Informatics Research Network (fBIRN) study [20] that
included sMRI and fMRI collected from 160 controls and 151
SZ patients. Written informed consent was obtained from all
subjects. The fBIRN demographics can be seen in Table 1.
Data preprocessing was performed using the SPMI12,
(http://www.fil.ion.ucl.ac.uk/spm/) toolbox followed by
registration to the standard Montreal Neurological Institute
(MNI) space. Voxel-level gray matter volume maps and fMRI
time series were generated from the structural data and

functional data, respectively. Next, a spatially constrained
group-independent component analysis approach with the
Neuromark pipeline [21] was applied to the functional data to
obtain 53 consistent components corresponding to brain areas
also known as intrinsic connectivity networks (ICNs). Fifty
three ICNs categorized into seven functional domains include
auditory, cerebellar, cognitive-control, default-mode, sub-
cortical, sensorimotor, and visual. Subsequently, we calculated
the static functional network connectivity (SFNC) matrix for
each subject by computing pair-wise correlations using the
entire length of the ICNs time course.

TABLE L DEMOGRAPHICS OF FBIRN COHORT.
Control Schizophrenia
Number 160 151
Age 37.0+£10.9 38.8+11.6
Gender 45F/115M 36F/115M

& F, female; M, male

B. Estimating multimodal graphs using brain imaging data
(GM and sFNC)

To estimate a multimodal brain graph, we need to define
multimodal nodes and edges. To estimate multimodal nodes,
we used parallel ICA (pICA) as a data fusion algorithm. pICA
is a hypothesis-free statistical technique that extends ICA to
analyze two modalities to identify independent components
from each modality and estimates the relationships between
the two modalities [22]. After estimating SFNC and GM maps
as input features, we applied pICA on these two features and
set the number of components to fifteen which is within a
reasonable range of previous studies (implemented in the FIT
toolbox from TReNDS (http:/trendscenter.org/software/fit)).
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pICA generates four matrices including two loading matrices,
one for each modality with the dimension of (number of

Figure 2. Eleven GM components estimated from the ICA analysis.

subjects: 311) x (number of components: 15), and two-
component matrices with the dimension of (number of
components: 15) x (number of GM voxels / sSFNC measures).

Relying on expert knowledge we removed four artifactual
components of GM maps. The plot of the remaining eleven
components of GM maps can be seen in Fig.2. Fig.3 shows the

sFNC maps in component-by-component matrix form
(53x53).

After determining multimodal nodes, we used GGM to
model the multimodal nodes interactions wherein edges
demonstrate a partial correlation between multimodal nodes.
The precision matrix (inverse of the covariance matrix) in
GGM summarizes the conditional dependence of network
structure that is, two nodes are conditionally independent,
given all other nodes if and only if their corresponding off-
diagonal entry of the precision matrix is zero and the graph
structure can be inferred based on nonzero entries.

To estimate the precision matrix, we used the joint
graphical lasso estimator [23] on the loading matrices for the
control and patient group. We chose to use a joint estimation
as growing evidence demonstrates that common structure
across groups enhances the estimation power, especially for
high-dimensional data [24]. Having the precision matrices for
control and groups, we calculated the partial correlation
matrices and applied a parametric test for the statistical
significance of the partial correlation. We considered an edge
between two brain components (nodes) only where the
corresponding false discovery rate (FDR) corrected P-value
was less than 0.05.

C. Differential network analysis

After estimating multimodal GGMs for control and patient
groups, we then compared and analyzed paths between
multimodal nodes of the control and patient group by
leveraging prior work on path analysis [19]. We investigated
cases where there is at least one path between two nodes in the
control group graph, but they are not reachable from each other
in the patient group which means there is no path between
them in the patient group graph. We are looking for edges in
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the patient group whose absence resulted in an absent path. We
call this type of edge, a disconnector. Conversely, we explore
cases where there is no path between two nodes in the control
group graph, however, those two nodes are reachable from
each other which means there is at least one path in the patient
group graph. In this case, we are looking for additional new
edges in the patient group graph that trigger new paths. We call
this type of edge, a connector. In other words, disconnectors
cause disconnection, and connectors cause abnormal
integration in the patient group graph.

To address this, we use the concept of the connected
component in graph theory. In a connected component, it is
possible to get from every node to every other node through a
series of edges, called a path [25]. In a brain graph based on
GGM when two nodes are part of a connected component, we
can conclude that they are conditionally dependent given all
other nodes in a graph.

With reference to the path structure of the control group
graph and using the concept of connected components in graph
theory, we determined the disconnectors associated with
absent paths and new edges (connectors) associated with
additional paths in the patient group graph. First, we identify
all connected components in the control graph, and if any of
them are scattered into multiple connected components in the
patient group, we determine the missing edges associated with
disconnectivity (disconnector) by imitating the path structure
of the control group. In addition, if any connected components
in the patient group graph contain multiple connected
components of the control group, we identify additional new
edges (connectors) with reference to the structure of the path
in the control group graph. Note, not all missing edges in the
patient group trigger disconnection and likewise not all
additional edges in the patient group trigger new connections.
Fig. 4 illuminates the idea of identifying disconnectors and
connectors in more detail.

III. RESULTS

Fig.3 summarizes the results of differential network
analysis and identified disconnectors and connectors in the
estimated multimodal brain graphs of the SZ group.
Disconnectors associated with disconnection are shown as
solid red edges and simple missing edges are shown with the
dashed red line. Two disconnectors and four connectors were
observed, within and between modalities. One disconnector
and two connectors were identified between sFNC and GM
modalities.

The cross-modal disconnector is between sMRI 3 and
sFNC 4, and another one is within the sSFNC modality, that is
between sSFNC 4 and sFNC 3. A cross-modal missing edge is
between the cerebellar component and the sFNC feature which
has a negative correlation between cerebellar and sub-cortical
domains and has high functional connectivity in the
somatomotor domain. Regarding connectors, we identified
two cross-modal connectors (SMRI_9, sFNC _7) and (sMRI 9,
sFNC _8) and two connectors within the modalities which are
(sFNC _1, sFNC 10) and (sMRI_10, sMRI_15).

The connectors are shown with a solid green line in Fig.3.
One of the cross-modal connectors is between the middle
temporal gyrus component and the SFNC _7 feature which has
high functional connectivity between the default mode and the
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Figure 4. The first row is an example of the control group graph that
includes four connected components (Control ccl, Control cc2, Control
cc3, and Control cc4). The second row is an example of the patient group
graph that has a different structure in comparison with the control group
and it includes four connected components. There are some missing and
additional edges in the patient group graph in comparison with the control
group graph. The goal is to identify edges that trigger disconnection or
abnormal integration in the patient group by mimicking the graph structure
in the control group. The nodes of “Control cc1” are {1, 2, 3, 4, 5}and they
are all reachable from each other in the control group graph. However, these
nodes belong to two separated connected components in the patient group
graph: “Patient cc1” and “Patient cc2”. There is no path between the nodes
of two separated connected components. Edge (1,2) as shown with red color
in the third row, will be considered as a disconnector as it creates the
disconnection. On the contrary, nodes {6, 7, 8, 9} belong to the one
connected component in the patient group graph “Patient cc3”. However,
the structure in the control group graph is different and they belong to two
separated connected components. Edge (7,8) which is shown with green
color in the third row, will be considered as a connector as it created an
abnormal integration in the patient group graph. Note, not all missing edges
are associated with disconnection, and not all new additional edges are
associated with an abnormal integration. For example, nodes {10, 11, 12,
13} belong to one connected component in a control group graph which is
“Control cc4”. In the patient group graph, these nodes are still part of one
connected component which is “Patient cc4”. Although edge (10,13) is a
missing edge in a patient group graph it does not create a disconnection as
they are still part of one connected component and reachable from each
other. Edge (11,12) is a new edge in a patient group graph, but it does not
create a new connection in comparison with the control group graph. The
simple missing edge and simple additional edge are shown with a dashed
red line and dashed green line in a third row, respectively.

cerebellar domains and another cross-modal connector is
between the middle temporal gyrus component and the
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Figure 5. Disconnectors associated with disconnection are shown as solid red
edges and additional edges associated with abnormal integration are shown
with solid green edges. The simple missing and additional edges shown with
dashed red and green line, respectively. Results show two disconnectors and
four connectors both within and between modalities. One of disconnectors
and two of connectors were observed between modalities.

sFNC 8 feature which has high functional connectivity
between the visual and subcortical domains and weaker
functional connectivity within the visual domains. Two within
modality connectors are (sSFNC 1, sFNC 10) and (sMRI 10,
SMRI_15).

IV. DISCUSSION

In this study, we presented an approach to assess multi-step
graphical paths that span multimodal neuroimaging data. We
aimed to identify multimodal path-based biomarkers for
individuals with SZ, however, the proposed method can be
applied to any undirected graph estimated from data related to
other conditions as well. We proposed a method to estimate
multimodal graphs of controls and patients with SZ in a data-
driven manner. We defined data-driven nodes and edges. We
used pICA for defining multimodal nodes and applied test
statistics for determining edges. This reduces the bias of
choosing an ad-hoc threshold for edge estimation of graphs.

We used GGM to model the human brain as GGMs are
powerful tools for expressing statistical relationships between
nodes. Bivariate correlation network analysis might result in
many spurious edges as correlation cannot distinguish between
direct and indirect associations. In contrast, relationships
estimated by GGMs reduce the risk of identifying spurious
relationships as it is a key advantage of partial correlations that
reflects conditional independencies [26]. Path analysis on the
estimated multimodal GGMs of control and SZ groups
revealed two disconnectors and four connectors associated
with disconnections and abnormal integrations, respectively.
We identified several missing and additional edges that did not
contribute to disconnections or abnormal integrations (dashed
red and green edges in Fig. 5) that indicate the importance of

analyzing paths than focusing on edges differences between
groups of control and patient.

In this study, we employed two distinct neuroimaging
modalities (SMRI and fMRI) to specifically investigate
function-structure interrelationships. One of the disconnectors
and two connectors were identified between modalities that
demonstrate the importance of considering multimodal
information and moving beyond pairwise edges to provide a
more comprehensive understanding of brain disorders. The
number of studies analyzing multimodal probabilistic
graphical models is remarkably small as it necessitates broader
proficiency in collecting multimodal data, analyzing,
modeling probabilistic graphical models, and interpreting the
outcome in comparison with unimodal studies. The
multimodal study’s findings can be complementary to and
extend the unimodal analysis. Interestingly, two cross-modal
connectors that we identified are related to the middle temporal
gyrus (sMRI_9, sFNC_7) and (sMRI 9, sFNC 8)). sMRI 9
indicates middle temporal gyrus and persistently previous
studies have reported middle temporal gyrus abnormalities in
SZ [27], [28], [29], [30]. The cross-modal disconnector
(sMRI 3, sFNC 4) that was identified as associated with the
cerebellar component (SMRI_3) and the sFNC feature which
has a negative correlation between cerebellar and sub-cortical
domains and has high functional connectivity in the
somatomotor domain. Abnormalities related to cerebellar
dysfunction in SZ have been reported numerously [31], [32],
[33]. Therefore, in light of previous works in SZ, it seems our
result obtained by analysis of the path on multimodal
neuroimaging data is consistent, but we also observed new
relationships that need future work replicating the results in
additional datasets and applying different modalities and
features. There were more identified connectors than
disconnectors, which might be related to a brain compensatory
response in the SZ group. This should be investigated further
in a future study.
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