
  

  

Abstract4 Multimodal brain network analysis has the 

potential to provide insights into the mechanisms of brain 

disorders. Most previous studies have analyzed either unimodal 

brain graphs or focused on local/global graphic metrics with 

little consideration of details of disrupted paths in the patient 

group. As we show, the combination of multimodal brain graphs 

and disrupted path-based analysis can be highly illuminating to 

recognize path-based disease biomarkers. In this study, we first 

propose a way to estimate multimodal brain graphs using static 

functional network connectivity (sFNC) and gray matter 

features using a Gaussian graphical model of schizophrenia 

versus controls. Next, applying the graph theory approach we 

identify disconnectors or connectors in the patient group graph 

that create additional paths or cause absent paths compared to 

the control graph. Results showed several edges in the 

schizophrenia group graph that trigger missing or additional 

paths. Identified edges associated with these disrupted paths 

were identified both within and between dFNC and gray matter 

which highlights the importance of considering multimodal 

studies and moving beyond pairwise edges to provide a more 

comprehensive understanding of brain disorders. 

 
Clinical Relevance4 We identified a path-based biomarker in 

schizophrenia, by imitating the structure of paths in a 

multimodal (sMIR+fMRI) brain graph of the control group. 

Identified cross-modal edges associated with disrupted paths 

were related to the middle temporal gyrus and cerebellar 

regions. 

I. INTRODUCTION 

The advent of modern neuroimaging techniques has 
provided useful and insightful information regarding different 
brain disorders such as schizophrenia (SZ). SZ is a severe 
mental illness characterized by symptoms such as delusions, 
hallucinations, social withdrawal, and deficits in cognitive 
functions. The disconnection hypothesis in SZ was first raised 
by Friston and Frith [1] and associated with both structural [2] 
and functional [3] brain networks. SZ has varyingly been 
reported as a disorder of brain connectivity including hypo-
connectivity [4], hyper-connectivity [5], and some studies 
reported as a dysconnectivity syndrome involving both hypo-
connectivity and hyper-connectivity [6], [7].  
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The combination of neuroimaging techniques and graph 
theoretical approaches has enabled us to examine and 
understand these psychiatric brain disorders in a more 
quantitative way [8], [9], [10], [11]. Brain network analysis 
based on graph theory can offer key new insights into the 
structure and function of the brain network in SZ. In brain 
networks, nodes indicate brain regions, and the edges are 
regarded as some measure of structural or functional 
interaction between nodes. Once a brain network is 
established, graph theory can be used to describe and compare 
the overall topological patterns of the network through graph 
metrics such as clustering coefficient, modularity, average 
path length, etc. [12]. For example, graph metrics including 
path length and global efficiency have been shown to be 
disrupted in SZ [13]. 

However, most previous studies analyzed either unimodal 
brain graphs or focused on local/global graphic metrics with 
little consideration of details of disrupted paths in the patient 
group. In this study, we aim to identify disrupted paths on the 
multimodal brain graph of the patient group. Each modality 
provides a different but complementary view of brain function 
or structure [14]. There is considerable evidence of 
multimodal brain differences in SZ versus control groups [15], 
[16], [17], [18]. However, there are only a few studies in the 
context of a combination of multimodal neuroimaging data 
and graphical models and there is more to be studied in this 
area that may help to unify disparate findings in SZ. We 
leveraged prior work on path analysis [19] to identify edges 
associated with absent paths and additional paths in the patient 
group graph as the differences between control and patient 
groups are presumably the outcome of multilink disruptions in 
the paths. We aim to identify multimodal path-based 
biomarkers for individuals with SZ using the graph theory 
approach.  

Moreover, for estimating the structural or functional 
connectivity, using Pearson9s correlation coefficient is 
common practice in the literature. Although commonly used, 
Pearson9s correlation does not distinguish whether two brain 
components are directly connected or indirectly connected 
through another brain component. To mitigate this, in this 
study, we use the Gaussian graphical model (GGM). GGM is 
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a probabilistic graphical model based on partial correlation 
which is a correlation between the time series of two brain 
components after adjusting for the time series of all other brain 
components. we propose a way to build multimodal GGM for 
control and individuals with SZ in a data-driven way to define 
nodes and edges. We combine functional MRI (fMRI) and 
structural MRI (sMRI) data to improve neuromarker 
identification and to take advantage of multimodal cross-
information. 

The remainder of the paper is structured as follows. Section 
2 describes the details of our proposed method. Section 3 
provides the result of applying the path analysis algorithm on 
estimated multi-modal graphs of control and patient groups. 
We provide concluding remarks in Section 4. 

II. MATERIALS AND METHOD 

In this section, we first describe our approach to estimating 
multimodal brain networks of control and patient groups in a 
data-driven manner using GGM. Next, we analyze paths on the 
multimodal brain graphs of control versus control. Fig.1 
illustrates the method steps in more detail. 

A. Data information, preprocessing, and feature extraction 

We considered data from the function Biomedical 
Informatics Research Network (fBIRN) study [20] that 
included sMRI and fMRI collected from 160 controls and 151 
SZ patients. Written informed consent was obtained from all 
subjects. The fBIRN demographics can be seen in Table 1. 
Data preprocessing was performed using the SPM12, 
(http://www.fil.ion.ucl.ac.uk/spm/) toolbox followed by 
registration to the standard Montreal Neurological Institute 
(MNI) space. Voxel-level gray matter volume maps and fMRI 
time series were generated from the structural data and 

functional data, respectively. Next, a spatially constrained 
group-independent component analysis approach with the 
Neuromark pipeline [21] was applied to the functional data to 
obtain 53 consistent components corresponding to brain areas 
also known as intrinsic connectivity networks (ICNs). Fifty 
three ICNs categorized into seven functional domains include 
auditory, cerebellar, cognitive-control, default-mode, sub-
cortical, sensorimotor, and visual. Subsequently, we calculated 
the static functional network connectivity (sFNC) matrix for 
each subject by computing pair-wise correlations using the 
entire length of the ICNs time course.  

TABLE I.  DEMOGRAPHICS OF FBIRN COHORT. 

 Control Schizophrenia 

Number 160 151 

Age 37.0±10.9 38.8±11.6 

Gender 45Fa/115M 36F/115M 

a.  F, female; M, male  

B. Estimating multimodal graphs using brain imaging data 

(GM and sFNC) 

To estimate a multimodal brain graph, we need to define 
multimodal nodes and edges. To estimate multimodal nodes, 
we used parallel ICA (pICA) as a data fusion algorithm. pICA 
is a hypothesis-free statistical technique that extends ICA to 
analyze two modalities to identify independent components 
from each modality and estimates the relationships between 
the two modalities [22]. After estimating sFNC and GM maps 
as input features, we applied pICA on these two features and 
set the number of components to fifteen which is within a 
reasonable range of previous studies (implemented in the FIT 
toolbox from TReNDS (http://trendscenter.org/software/fit)). 

 
Figure 1. Method outline. sMRI and fMRI data were collected. Preprocessing steps were applied and sFNC and GM maps were estimated as input features. 

To estimate multimodal nodes for the brain network, pICA was performed as a data fusion algorithm. sFNC and gray matter components (nodes of multimodal 

brain graph) were calculated using the component matrices. To estimate multimodal edges, precision matrices were estimated for control and patient by 
applying the joint graphical lasso. Next, partial correlation matrices were calculated, and adjacency matrices were determined by applying the parametric test 

for the statistical significance of the partial correlation. Elements of the adjacency matrix are considered as one only where the corresponding false discovery 

rate (FDR) corrected p-value was significant (p < 0.05). Lastly, differential network analysis was performed to estimate edges associated with disrupted paths 
in the patient group. 
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pICA generates four matrices including two loading matrices, 
one for each modality with the dimension of (number of 

subjects: 311) × (number of components: 15), and two-
component matrices with the dimension of (number of 
components: 15) × (number of GM voxels / sFNC measures). 

Relying on expert knowledge we removed four artifactual 
components of GM maps. The plot of the remaining eleven 
components of GM maps can be seen in Fig.2. Fig.3 shows the 
sFNC maps in component-by-component matrix form 
(53×53).  

After determining multimodal nodes, we used GGM to 
model the multimodal nodes interactions wherein edges 
demonstrate a partial correlation between multimodal nodes. 
The precision matrix (inverse of the covariance matrix) in 
GGM summarizes the conditional dependence of network 
structure that is, two nodes are conditionally independent,  
given all other nodes if and only if their corresponding off-
diagonal entry of the precision matrix is zero and the graph 
structure can be inferred based on nonzero entries. 

To estimate the precision matrix, we used the joint 
graphical lasso estimator [23] on the loading matrices for the 
control and patient group. We chose to use a joint estimation 
as growing evidence demonstrates that common structure 
across groups enhances the estimation power, especially for 
high-dimensional data [24]. Having the precision matrices for 
control and groups, we calculated the partial correlation 
matrices and applied a parametric test for the statistical 
significance of the partial correlation. We considered an edge 
between two brain components (nodes) only where the 
corresponding false discovery rate (FDR) corrected P-value 
was less than 0.05. 

C. Differential network analysis 

After estimating multimodal GGMs for control and patient 
groups, we then compared and analyzed paths between 
multimodal nodes of the control and patient group by 
leveraging prior work on path analysis [19]. We investigated 
cases where there is at least one path between two nodes in the 
control group graph, but they are not reachable from each other 
in the patient group which means there is no path between 
them in the patient group graph. We are looking for edges in 

Figure 2. Eleven GM components estimated from the ICA analysis. 

Figure 3. Fifteen sFNC in component-by-component matrix form.  

(AU: auditory, CB: cerebellar, CC: cognitive-control, DM: default-mode, SC: sub-cortical, SM: somatomotor, VI: visual) 
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the patient group whose absence resulted in an absent path. We 
call this type of edge, a disconnector. Conversely, we explore 
cases where there is no path between two nodes in the control 
group graph, however, those two nodes are reachable from 
each other which means there is at least one path in the patient 
group graph. In this case, we are looking for additional new 
edges in the patient group graph that trigger new paths. We call 
this type of edge, a connector. In other words, disconnectors 
cause disconnection, and connectors cause abnormal 
integration in the patient group graph. 

To address this, we use the concept of the connected 
component in graph theory. In a connected component, it is 
possible to get from every node to every other node through a 
series of edges, called a path [25]. In a brain graph based on 
GGM when two nodes are part of a connected component, we 
can conclude that they are conditionally dependent given all 
other nodes in a graph. 

With reference to the path structure of the control group 
graph and using the concept of connected components in graph 
theory, we determined the disconnectors associated with 
absent paths and new edges (connectors) associated with 
additional paths in the patient group graph. First, we identify 
all connected components in the control graph, and if any of 
them are scattered into multiple connected components in the 
patient group, we determine the missing edges associated with 
disconnectivity (disconnector) by imitating the path structure 
of the control group. In addition, if any connected components 
in the patient group graph contain multiple connected 
components of the control group, we identify additional new 
edges (connectors) with reference to the structure of the path 
in the control group graph. Note, not all missing edges in the 
patient group trigger disconnection and likewise not all 
additional edges in the patient group trigger new connections. 
Fig. 4 illuminates the idea of identifying disconnectors and 
connectors in more detail. 

III. RESULTS 

Fig.3 summarizes the results of differential network 
analysis and identified disconnectors and connectors in the 
estimated multimodal brain graphs of the SZ group. 
Disconnectors associated with disconnection are shown as 
solid red edges and simple missing edges are shown with the 
dashed red line. Two disconnectors and four connectors were 
observed, within and between modalities. One disconnector 
and two connectors were identified between sFNC and GM 
modalities.  

The cross-modal disconnector is between sMRI_3 and 
sFNC_4, and another one is within the sFNC modality, that is 
between sFNC_4 and sFNC_3. A cross-modal missing edge is 
between the cerebellar component and the sFNC feature which 
has a negative correlation between cerebellar and sub-cortical 
domains and has high functional connectivity in the 
somatomotor domain. Regarding connectors, we identified 
two cross-modal connectors (sMRI_9, sFNC_7) and (sMRI_9, 
sFNC_8) and two connectors within the modalities which are 
(sFNC_1, sFNC_10) and (sMRI_10, sMRI_15). 

The connectors are shown with a solid green line in Fig.3. 
One of the cross-modal connectors is between the middle 
temporal gyrus component and the sFNC _7 feature which has 
high functional connectivity between the default mode and the 

cerebellar domains and another cross-modal connector is 
between the middle temporal gyrus component and the 

Figure 4. The first row is an example of the control group graph that 

includes four connected components (Control cc1, Control cc2, Control 
cc3, and Control cc4). The second row is an example of the patient group 

graph that has a different structure in comparison with the control group 

and it includes four connected components. There are some missing and 
additional edges in the patient group graph in comparison with the control 

group graph. The goal is to identify edges that trigger disconnection or 

abnormal integration in the patient group by mimicking the graph structure 
in the control group. The nodes of <Control cc1= are {1, 2, 3, 4, 5}and they 

are all reachable from each other in the control group graph. However, these 

nodes belong to two separated connected components in the patient group 
graph: <Patient cc1= and <Patient cc2=. There is no path between the nodes 

of two separated connected components. Edge (1,2) as shown with red color 
in the third row, will be considered as a disconnector as it creates the 

disconnection. On the contrary, nodes {6, 7, 8, 9} belong to the one 

connected component in the patient group graph <Patient cc3=. However, 
the structure in the control group graph is different and they belong to two 

separated connected components. Edge (7,8) which is shown with green 

color in the third row, will be considered as a connector as it created an 
abnormal integration in the patient group graph. Note, not all missing edges 

are associated with disconnection, and not all new additional edges are 

associated with an abnormal integration. For example, nodes {10, 11, 12, 
13} belong to one connected component in a control group graph which is 

<Control cc4=. In the patient group graph, these nodes are still part of one 

connected component which is <Patient cc4=. Although edge (10,13) is a 
missing edge in a patient group graph it does not create a disconnection as 

they are still part of one connected component and reachable from each 

other. Edge (11,12) is a new edge in a patient group graph, but it does not 
create a new connection in comparison with the control group graph. The 

simple missing edge and simple additional edge are shown with a dashed 

red line and dashed green line in a third row, respectively. 
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sFNC_8 feature which has high functional connectivity 
between the visual and subcortical domains and weaker 
functional connectivity within the visual domains. Two within 
modality connectors are (sFNC_1, sFNC_10) and (sMRI_10, 
sMRI_15). 

IV. DISCUSSION 

In this study, we presented an approach to assess multi-step 
graphical paths that span multimodal neuroimaging data. We 
aimed to identify multimodal path-based biomarkers for 
individuals with SZ, however, the proposed method can be 
applied to any undirected graph estimated from data related to 
other conditions as well. We proposed a method to estimate 
multimodal graphs of controls and patients with SZ in a data-
driven manner. We defined data-driven nodes and edges. We 
used pICA for defining multimodal nodes and applied test 
statistics for determining edges. This reduces the bias of 
choosing an ad-hoc threshold for edge estimation of graphs. 

We used GGM to model the human brain as GGMs are 
powerful tools for expressing statistical relationships between 
nodes. Bivariate correlation network analysis might result in 
many spurious edges as correlation cannot distinguish between 
direct and indirect associations. In contrast, relationships 
estimated by GGMs reduce the risk of identifying spurious 
relationships as it is a key advantage of partial correlations that 
reflects conditional independencies [26]. Path analysis on the 
estimated multimodal GGMs of control and SZ groups 
revealed two disconnectors and four connectors associated 
with disconnections and abnormal integrations, respectively. 
We identified several missing and additional edges that did not 
contribute to disconnections or abnormal integrations (dashed 
red and green edges in Fig. 5) that indicate the importance of 

analyzing paths than focusing on edges differences between 
groups of control and patient. 

In this study, we employed two distinct neuroimaging 
modalities (sMRI and fMRI) to specifically investigate 
function-structure interrelationships. One of the disconnectors 
and two connectors were identified between modalities that 
demonstrate the importance of considering multimodal 
information and moving beyond pairwise edges to provide a 
more comprehensive understanding of brain disorders. The 
number of studies analyzing multimodal probabilistic 
graphical models is remarkably small as it necessitates broader 
proficiency in collecting multimodal data, analyzing, 
modeling probabilistic graphical models, and interpreting the 
outcome in comparison with unimodal studies. The 
multimodal study9s findings can be complementary to and 
extend the unimodal analysis. Interestingly, two cross-modal 
connectors that we identified are related to the middle temporal 
gyrus (sMRI_9, sFNC_7) and (sMRI_9, sFNC_8)). sMRI_9 
indicates middle temporal gyrus and persistently previous 
studies have reported middle temporal gyrus abnormalities in 
SZ [27], [28], [29], [30]. The cross-modal disconnector 
(sMRI_3, sFNC_4) that was identified as associated with the 
cerebellar component (sMRI_3) and the  sFNC feature which 
has a negative correlation between cerebellar and sub-cortical 
domains and has high functional connectivity in the 
somatomotor domain. Abnormalities related to cerebellar 
dysfunction in SZ have been reported numerously [31], [32], 
[33]. Therefore, in light of previous works in SZ, it seems our 
result obtained by analysis of the path on multimodal 
neuroimaging data is consistent, but we also observed new 
relationships that need future work replicating the results in 
additional datasets and applying different modalities and 
features. There were more identified connectors than 
disconnectors, which might be related to a brain compensatory 
response in the SZ group. This should be investigated further 
in a future study. 
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