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A B S T R A C T   

Deep learning algorithms for predicting neuroimaging data have shown considerable promise in various appli-
cations. Prior work has demonstrated that deep learning models that take advantage of the data’s 3D structure 
can outperform standard machine learning on several learning tasks. However, most prior research in this area 
has focused on neuroimaging data from adults. Within the Adolescent Brain and Cognitive Development (ABCD) 
dataset, a large longitudinal development study, we examine structural MRI data to predict gender and identify 
gender-related changes in brain structure. Results demonstrate that gender prediction accuracy is exceptionally 
high (>97%) with training epochs > 200 and that this accuracy increases with age. Brain regions identi昀؀ed as the 
most discriminative in the task under study include predominantly frontal areas and the temporal lobe. When 
evaluating gender predictive changes speci昀؀c to a two-year increase in age, a broader set of visual, cingulate, and 
insular regions are revealed. Our 昀؀ndings show a robust gender-related structural brain change pattern, even 
over a small age range. This suggests that it might be possible to study how the brain changes during adolescence 
by looking at how these changes are related to different behavioral and environmental factors.   

1. Introduction 

Deep learning (DL) has steadily risen to become the mainstream 
technique for analyzing big data for complex problems over the last 
decade, owing to its outstanding performance on a wide range of chal-
lenging tasks and the rapid growth in computing resources available 
(Hinton, 2018; Krizhevsky et al., 2017; Shen et al., 2017). Also 
demonstrated is the ability of DL models to improve the prediction and 
analysis of speci昀؀c biomedical imaging data modalities, including 
computed tomography (CT), magnetic resonance imaging (MRI), mag-
netoencephalography (MEG), and positron emission tomography (PET) 
(Miller et al.), to name a few examples (Yan et al., 2022). As medical 
imaging data is very high-dimensional and complex, automated ap-
proaches are needed to identify the relevant information for a given 
task. Therefore, it is critical to continue developing and evaluating the 
ef昀؀cacy of DL models. Initial work suggests that deep learning on neu-
roimaging data shows promise for accelerating the identi昀؀cation of 
diagnostic subtypes in mental disorders (Yan et al., 2021), with the 
potential for expanding into clinically relevant tasks such as prediction 
of medication class response (Osuch et al., 2018). U-Net (Ronneberger 

et al., 2015), one of the most successful deep learning architectures for 
medical image segmentation, is an important starting point for utilizing 
deep learning models in medical image analysis. Other applications 
include the ability to classify different chest illnesses using X-ray im-
aging datasets that have been compiled from thousands of patient re-
cords and physician diagnoses(Wang et al., 2017). 

The human brain is a highly complex organ that is not fully under-
stood through research in medical imaging data. It is critical for re-
searchers to develop a more effective method of identifying brain 
disorders (Liu et al., 2020). Deep learning has performed well for image 
classi昀؀cation and segmentation tasks in brain imaging as a sophisticated 
and highly 昀؀exible arti昀؀cial intelligence system (Shahamat and Saniee 
Abadeh, 2020; Zhang et al., 2020a). When using T1-weighted MRI, also 
known as structural MRI, one can visualize speci昀؀c brain areas and 
structures, which can help diagnose a problem or potentially predict 
how a person will respond or behave in the future. For image classi昀؀-
cation problems, especially in datasets of natural image examples, 
various common machine learning methods, such as support vector 
machine (SVM), have historically been used. However, the SVM’s per-
formance for medical imaging subjects suffers under some 
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circumstances, especially when working with high-resolution 
T1-weighted MRI images (Chato and Lati昀؀, 2017). Deep learning 
models have shown great promise for neuroimaging data (Plis et al., 
2014; Varatharajah et al., 2018; Yan et al., 2022). It has recently been 
demonstrated that deep learning models outperform traditional ma-
chine learning approaches in a wide range of classi昀؀cation and regres-
sion tasks (Abrol et al., 2021). For example, a fully convolutional 
network (FCN) is a tool that is particularly well-suited for image seg-
mentation tasks, such as distinguishing brain tumors from normal brain 
tissues (Chen et al., 2021; Justin et al., 2017). Various prediction and 
regression tasks, such as brain age and gender prediction (Brennan et al., 
2021), have been ef昀؀ciently and effectively performed by deep learning 
approaches, such as 3-D convolutional neural networks (CNNs). Deep 
learning models like auto-encoders, deep belief networks (DBN), and 
generative adversarial networks (GAN) have also been very important to 
the development of AI and medical image analysis (Reddy et al., 2020; 
Sorin et al., 2020). 

In this work, we explore a large longitudinal development study (the 
Adolescent Brain and Cognitive Development (ABCD) dataset) to 
examine structural MRI data to predict gender and identify gender- 
related changes in brain structure. The ABCD study is a prospective 
longitudinal neuroimaging study that recruits children with 9–10 years 
old and follows them for ten years (Casey et al., 2018; Karcher and 
Barch, 2021). There are 21 research sites across the country partici-
pating in the study, which includes a diverse sample of nearly 12,000 
subjects. For this study, we used T1-weighted MRI data from the ABCD 
dataset, which contains (N > 11 K) subjects at baseline and 3 K subjects 
at a year two follow-up, to evaluate gender prediction and to visualize 
the predictive brain regions in the context of multiple learning tasks on 
the dataset. We use 3D CNN models to allow the model to leverage the 
3D information in brain structural MRI data. We are particularly inter-
ested in determining whether or not we can accurately and reliably 
predict gender from neuroimaging data collected from developing ad-
olescents. In our research, we used 3D AlexNet as the CNN backbone to 
predict gender, and we found that it performed exceptionally well in 
terms of accuracy and robustness when applied to the ABCD baseline 
dataset. Meanwhile, we investigated prediction on data collected two 
years later and discovered that the accuracy of gender prediction was 
slightly, but signi昀؀cantly, higher than baseline in these subjects. More-
over thirdly, we performed a longitudinal prediction on gray matter 
differences over two years. We present the 昀؀ndings in the form of 
ROI-based brain saliency maps averaged within the automated 
anatomical labeling (AAL) atlas(Gupta et al., 2019), which demonstrates 
brain regions that are highly relevant in gender prediction and how 
these regions change longitudinally between the baseline and two-year 
follow scans. 

Below is a list of the contributions we include in this paper:  

1. We developed an effective and light-weighted 3-D deep learning 
model for analyzing gender prediction problems in adolescent in-
dividuals using structural MRI data, and the model’s performance 
was outstanding and robust in the real world.  

2. We veri昀؀ed gender prediction cross-sectionally and longitudinally, 
and new 昀؀ndings have occurred.  

3. Brain regions most salient to the baseline and two-year prediction 
and the prediction from the differences are visualized. We highlight 
differences in brain structure between males and females and lon-
gitudinal changes between baseline and the two-year follow-up. 

Our initial questions for this work were three-fold: 1) could deep 
learning of gray matter data with 3D CNNs provide higher accuracy for 
predicting M vs F in adolescent data than previous studies? 2) would the 
single image prediction (not difference) increase between baseline and 
year two?, and 3) how predictive are the changes between baseline and 
year 2? In addition, a key component for all three of these questions was 
also to visualize the relevant brain regions. 

The remaining text is organized as follows: Section II introduces the 
underlying methodologies that correspond to CNN architectures and 
pipelines, methods used for ROI-based brain visualization; Section III 
displays experimental results, including gender prediction performance 
matrices and longitudinal results; saliency maps that show different 
weights in each ROI; and Section IV concludes the experimental mean-
ings, future research directions, and some limitations of this paper. 

2. Methods 

Our previous work on adults from the UK Biobank demonstrated that 
DL models could extract powerful brain representations from 3D brain 
data, signi昀؀cantly outperforming traditional machine learning ap-
proaches (Abrol et al., 2021). This project uses the same pipeline with 
the 3D CNN model as the previous study to predict gender from struc-
tural MRI data in the ABCD dataset. We perform the gender classi昀؀ca-
tion task using two time points from this longitudinal study: the baseline 
and the two-year follow-up. In order to determine exciting brain regions 
relevant to gender prediction and longitudinal changes, we built sa-
liency maps based on our DL model and selected ROIs of the brain. Fig. 1 
provides an overview of the primary pipeline used in our project. 

We work with three datasets: D1(N = 11700) for the baseline cohort 
(ages 9–10 years old), D2(N = 2928 of 11700) for the follow-up cohort 
(ages 11–12 years old), and D3(N = 2928 of 11700) for the difference 
cohort (within-subject difference between baseline and two-year follow- 
up voxel-wisely). More precisely, we created a variety of datasets to be 
used for training, validation, and testing. We divided the datasets D1 
into a training set Dtr

1 of subjects (Ntr = 9220), a validation set Dva
1 of 

subjects (Nva = 972), and a testing set Dte
1 of subjects (Nte = 972). 

Because we did not use D2 dataset for model training, it contains only a 
testing dataset Dte

2 with (Nte = 2928) subjects. For D3, It consists of a 
training set Dtr

3 (Ntr = 2048) and validation set Dva
3 (Nva = 434) sub-

jects, as well as testing set Dte
3 (Nte = 434) subjects. 

2.1. Data pre-processing 

This work analyzes structural MRI data from the ABCD study at 
baseline and two years later. ABCD is one of the largest ongoing studies 
of adolescents, following over 11,000 youth recruited at the age of 9–10 
through late adolescence to increase our understanding of the 
emotional, genetic, neurological, and behavioral factors associated with 
an increased risk of physical and mental health problems in adolescents: 
http://abcdstudy.org. The baseline (D1) and two-year follow-up (D2) 
datasets were segmented using the uni昀؀ed approach in the statistical 
parametric mapping (SPM) software. The difference dataset (D3) was 
generated by subtraction between two-year and baseline in each subject 
for every voxel. We use SPM12 to jointly segment and normalize the 
sMRI data tissue probability maps for gray matter, white matter, and 
cerebral spinal 昀؀uid (CSF). The Montreal Neuroimaging Institute (MNI) 
space gray matter images used in this study had a dimensionality of 
(121 × 145 × 121) voxels after the pre-processing, with a voxel size of 
1.5× 1.5× 1.5mm

2. Tables 1 and 2. 

2.2. CNN architecture 

Our deep learning model is based on an updated three-dimensional 
AlexNet architecture (Krizhevsky et al., 2017) with a 
three-dimensional input size of (121× 145× 121). We created 昀؀ve 
blocks of 3-D convolutional layers with batch normalization. Each 
convolutional layer has a channel width of 64, 128, 192, 192, and 128. 
Following each batch normalization layer, the ReLU function was 
applied, followed by pooling layers. Finally, we created two fully con-
nected layers with sizes of 256 and 64. After the 昀؀rst fully connected 
layer, we set the drop-out rate to 0.5. After the second fully connected 
layer, the number of output nodes was set to the number of classes 
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(n = 2) required for the gender classi昀؀cation task. All experiments were 
conducted using the PyTorch machine learning framework on the NVI-
DIA CUDA platform on NVIDIA Tesla V100 32 GB GPUs. Fig. 2. 

2.3. Model training 

For the gender prediction tasks, we designed three main experiments 
based on pre-processed datasets in ABCD. Firstly, we use Dtr

1 as a training 
set (Ntr = 9220) to train 3-D AlexNet for 昀؀rst model M1 (batch size = 32, 
learning rate = 1e-3, training algorithm = Adam, number of epochs =
200) and then use testing set in Dte

1 to obtain results on baseline gender 
prediction. To obtain a robust performance measure, we employed a 
repeated (n = 5), strati昀؀ed k-fold (k = 5) cross-validation strategy to 
create 昀؀ve different repetitions of training, validation, and testing 
datasets (same size as above), which were used for training 昀؀ve models. 
Then we record the average testing performance on the held-out test 
partitions. The Adam optimizer was employed with a 1e-3 initial 
learning rate that adapts as the epochs pass. An early stopping procedure 

Fig. 1. General pipeline for gender prediction and estimating brain region saliency maps. The sMRI data were preprocessed using SPM12. The deep learning model 
was trained and tested using the preprocessed sMRI data, and brain saliency maps were generated using the AAL atlas. 

Table 1 
3-D AlexNet architecture details.  

Layer Feature 
Map 

kernel 
Size 

Stride Activation 

Convolution 64 (5, 5, 5) (2, 2, 2) Batchnorn+ReLU 
MaxPooling  (3, 3, 3) (3, 3, 3)  
Convolution 128 (3, 3, 3) (1, 1, 1) Batchnorn+ReLU 
MaxPooling  (3, 3, 3) (1, 1, 1)  
Convolution 192 (3, 3, 3) (1, 1, 1) Batchnorn+ReLU 
Convolution 192 (3, 3, 3) (1, 1, 1) Batchnorn+ReLU 
Convolution 128 (3, 3, 3) (1, 1, 1) Batchnorn+ReLU 
MaxPooling  (3, 3, 3) (1, 1, 1)  
Fully- 

Connected 
256  Drop-out rate 

0.5 
ReLU 

Fully- 
Connected 

64   ReLU 

Output 2     

Table 2 
All gender prediction tasks and their corresponding brain regions.  

Gender Predictions Conditions Active Brain Regions 
Baseline Dataset 

Gender Prediction 
General Inferior, middle, and superior frontal 

and inferior temporal gyri 
M > F Lingual gyrus (R), the supplementary 

motor area (R), Heschl’s gyrus (R), and 
the cerebellum (L) 

F > M Caudate nucleus (R), the putamen (L), 
the precuneus (L), and the middle 
temporal gyrus (L & R) 

Two-year follow-up 
dataset gender 
prediction 

General Inferior, middle, and superior frontal 
and inferior temporal gyri 

M > F Lingual gyrus (R), the supplementary 
motor area (R), Heschl’s gyrus (R), and 
the cerebellum (L) 

F > M Caudate nucleus (R), the putamen (L), 
the precuneus (L), and the middle 
temporal gyrus (L & R) 

Related longitudinal 
Comparison 

Baseline 
> Two-year 

Cuneus (L & R), insular cortex (R), 
cingulum posterior (L), and lingual 
gyrus (L) are some of the regions 
involved (L) 

Two-year 
> Baseline 

Caudate nucleus (R), the orbital section 
of the inferior frontal gyrus (R), 
cingulum anterior (L), and postcentral 
gyrus (L) 

Difference dataset 
gender prediction 

General Inferior, middle, and superior frontal 
and inferior temporal gyri 

M > F Precentral gyrus (L), superior temporal 
gyrus (L), middle temporal gyrus (L), 
superior frontal gyrus (L) and operculum 
(L) 

F > M Hippocampus (R), superior temporal 
gyrus (R), middle temporal gyrus (R), 
ParaHippocampal (R) and Inferior 
temporal gyrus (R)  
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with a patience level of 20 epochs was used to avoid data over昀؀tting. 
The accuracy (Acc), balanced accuracy (Bal-Acc), AUC score, F1 score, 
and Matthew’s correlation coef昀؀cient (MCC) classi昀؀cation metrics were 
used to evaluate performance. Secondly, after training the CNN model 
with D1tr dataset, we evaluated the CNN model’s generalization ability 
by testing on a two-year follow-up dataset Dte

2 using Acc, Bal-Acc, AUC, 
F1, and MCC. Finally, to determine the features and gender prediction 
sensitivity related speci昀؀cally to longitudinal changes over two years, 
we re-trained the second model M3 using Dtr

3 (Ntr = 2048) and tested it 
by Dte

3 (Nte = 434). The validated model hyper-parameters include batch- 
size = 16, learning rate = 1e-3, training algorithm = Adam, number of 
epochs = 150. We reduced the batch size and number of epochs because 
the training set’s size is signi昀؀cantly smaller than D1 dataset. 

2.4. Brain region visualization 

We also perform DL model introspection to identify the most 
discriminative brain regions for the gender classi昀؀cation tasks. We 
compute voxel-wise saliency maps using the area occlusion approach 
(Abrol et al., 2021). This method used the AAL atlas as the occlusion 
template. The brain regions were occluded one at a time, and the class 
probabilities were then recomputed post-occlusion. The saliency was 
then estimated to be proportional to the reduction in the class proba-
bilities after occlusion. Saliency maps were made by applying the CNN 
model to each test dataset and then using a region-wise t-test to 昀؀ll each 
voxel with the right t-statistic. 

3. Results 

3.1. Gender prediction results 

For gender prediction tasks, we test the performance of baseline 
gender prediction on the model M1 using Dte

1 by 5-fold cross- 
validation, resulting in an average balanced accuracy of 97.3%. The 
accuracy on Dte

2 for longitudinal data (two-year) is 0.3–0.5% above the 
baseline performance. For the longitudinal changes, we test model M3 
accuracy by Dte

3 using the same strategy as previous experiments and 
obtained an average balanced accuracy of 71%. To demonstrate the 
difference in accuracy between two-year and baseline, we used a paired 
t-test to compare the accuracy between the two. The results showed a t- 
value of 3.4 and a p-value of 0.0325, indicating a signi昀؀cant improve-
ment in two-year gender prediction over the baseline. Fig. 3 shows the 
loss and accuracy curves during the training and validation process.  
Fig. 4 shows the detailed results (Acc, Bal-Acc, AUC, F1 score, and MCC) 
for our three main experiments. 

Meanwhile, we used scatterplots and the t-distributed stochastic 
neighbor embedding (t-SNE) (Hinton and Roweis, 2002) algorithm to 
visualize the gender prediction results obtained by mapping the 
high-dimensional subjects to the two-dimensional space x and y. The 
tSNE algorithm is a nonlinear dimensionality reduction technique for 
visualizing large amounts of data by assigning each data point a location 
on a two- or three-dimensional map. The t-SNE algorithm can visualize 
clusters, which illustrate the classi昀؀cation model’s performance. We use 
latent encodings estimated for the Dte

1 (Nte = 972), Dte

2 (Nte = 2928) and 

Fig. 2. Updated 3-D AlexNet CNN architecture. We trained model 1 and model 3 using same CNN architecture, which includes modi昀؀ed light-weighted 3-D AlexNet 
with batch normalizations and drop-out. 

Fig. 3. Deep learning model training learning curves: training loss (left) and training and validation accuracy (right). The training and validation curves converge 
after 60 epochs with an average training time of 12.5 h with Nvidia Tesla V100 32 GB GPU. 
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D
te

3 (Nte = 434) datasets as inputs to three distinct t-SNE plots to 
evaluate prediction performance for baseline, two-year, and difference 
datasets. We pass Dte

1 (Nte = 972) and Dte

2 (Nte = 972) datasets through a 
trained model M1 and extract the 64-dimension features at the output of 
the 昀؀rst fully-connected layer as the input to the t-SNE algorithm. For Dte

3 
(Nte = 434), we pass it through model M3 and extract the same features 
as for D

te

1 and D
te

2 . Using t-SNE, we can reduce the 64-dimensional 

features to two dimensions and visualize two male and female data 
points clusters. Fig. 5. 

3.2. Brain saliency maps 

Saliency maps can be used for brain region visualization to identify 
brain areas that are particularly predictive for gender classi昀؀cation. 
Using the test datasets, including Dte

1 (Nte = 972), Dte

2 (Nte = 2928) and 

Fig. 4. Boxplots for baseline gender prediction accuracy, longitudinal gender prediction accuracy and the accuracy of gender prediction based on longitudinal 
changes show test data results based on a 5-fold cross-validation approach. P-value of 0.0325 in accuracies comparison indicates signi昀؀cant improvement in two-year 
follow-up data over baseline data. 

Fig. 5. Scatterplots for baseline, two-year and difference datasets based on t-SNE algorithm. Prediction from the full gray matter maps is highly accurate and in-
creases signi昀؀cantly between baseline and two years. In addition, the two-year change in gray matter is also predictive well above chance. Focusing on the predictive 
regions relevant to longitudinal change can provide additional insights into the developing brain. 
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D
te

3 (Nte = 434), we generated three groups S1, S2 and S3 of saliency maps 
for each subject (N = 972, 2928 and 434, respectively). The results 
include a one-sample t-test on the baseline and two-year testing datasets, 
which can be used to determine which brain regions are more signi昀؀cant 
and predictive in gender prediction tasks; a two-sample t-test on the 
baseline and two-year testing datasets that compare male and female 
subjects, which can be used to determine which brain regions are more 
signi昀؀cant in male subjects and which brain regions contribute more to 
female subject prediction. Meanwhile, to get more advanced and accu-
rate results, we analyzed the brain areas that are most informative for 
the prediction from the longitudinal difference between two-year and 
baseline; we also computed one-sample t-tests to evaluate the most 
relevant brain areas for baseline and two-year. Figs. 6–9. 

By analyzing saliency maps, baseline and two-year showed broadly 
similar patterns, including inferior, middle, and superior frontal and 
inferior temporal gyri. Meanwhile, the parts of the brain that predict a 
person’s gender based on a difference dataset are also strongly linked to 
baseline and two-year datasets. 

In addition, we performed a two-sample t-test on the test data to 
estimate t-values for each ROI. Parts of the brain where men are more 
predictive than women (M > F) are represented by positive t-values; 
areas of the brain where men are less predictive than women (M > F) are 
represented by negative t-values (M < F). When we looked at the 
baseline dataset, we discovered that M > F brain areas included the 
Lingual gyrus (R), the supplementary motor area (R), Heschel’s gyrus 
(R), and the cerebellum (L); M < F brain areas included the caudate 
nucleus (R), the putamen (L), the precuneus (L), and the middle tem-
poral gyrus (L & R). The brain regions studied for the two-year dataset 
are similar to those studied at baseline, although some have a different t- 
value and a different order. We also discovered a t-test related to lon-
gitudinal data, and the positive t-values signify regions of the brain 
where baseline predictability is greater than two-year predictive val-
idity. Cuneus (L & R), insular cortex (R), cingulum posterior (L), and 
lingual gyrus (L) are some of the regions involved (L). The 昀؀ndings, on 
the other hand, show that parts of the brain like the caudate nucleus (R), 

the orbital section of the inferior frontal gyrus (R), the cingulum anterior 
(L), and the postcentral gyrus (L) are more accurate predictors in the two 
years than they were in the baseline period. Finally, we were able to 
predict gender using the differential data accurately. The cingulum 
posterior, angular gyrus, fusiform gyrus, and supramarginal gyrus were 
all identi昀؀ed in these 昀؀ndings. More crucially, we identi昀؀ed and mapped 
different locations associated with M > F and F > M, located in different 
brain hemispheres. Relevant regions in the right hemisphere are pro-
duced by the M > F condition, and relevant regions in the left hemi-
sphere are produced by the M > F condition. 

4. Discussion and conclusion 

In conclusion, our work achieves a high degree of accuracy in brain 
gender analysis tasks, and our model was effectively evaluated using 
longitudinal data and a speci昀؀c dataset to demonstrate its ef昀؀cacy. 
Using structural MRI data from adolescents, our work delivers two 
unique contributions to the area of gender prediction. First, we begin by 
comparing recent 昀؀ndings from baseline data to longitudinal data from 
the ABCD dataset, which includes patients two years older than at 
baseline. We demonstrate that the testing accuracy of the two-year 
follow-up data is comparable to but substantially greater than that of 
the baseline data (0.3–0.5% higher than baseline). Brain saliency maps 
were also identi昀؀ed, which depict the essential brain areas for the pre-
diction tasks, including gender and longitudinal comparison. Second, we 
employ an upgraded 3D-CNN model with great prediction accuracy 
performance. 

Reviewing previous research, we discover that (Adeli et al., 2020; 
Adeli et al., 2020) conducted gender prediction trials on the ABCD 
dataset and reached an accuracy of 89.6%, which is lower than our re-
sults. In addition, they did not compare outcomes over times using 
follow-up data. Using a cutting-edge deep learning model, they 
compared deep learning to a conventional machine learning SVM 
model, reviewed the performance, and found morphological drivers in 
gender prediction using saliency mapping. Brennan et al. (2021) utilized 

Fig. 6. Saliency maps generated from the baseline D1, two-year D2, and difference D3 datasets. Figure 6.1(a) depicts one sample t-test on subject-level saliency maps 
from the D1 testing datasets, which can reveal which brain regions are signi昀؀cantly more predictive than others for gender prediction; Figures 6.1(b) and (c) depict 
two-sample t-tests on male and female subject-based saliency maps from the D1 testing datasets (M > F and M < F) depict the brain areas that are predictive in male 
and female subjects. 
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the standard SVM model to identify gender in the ABCD dataset 
(N = 8325) and discovered both positive and negative categories be-
tween male and female brain areas. 

The t-test results from baseline and two-year datasets indicate that 
multiple brain regions with high t-values have a statistically signi昀؀cant 
relationship with gender prediction tasks. The brain regions identi昀؀ed at 
baseline and two years of saliency maps are highlight similar. These 
brain regions include inferior, middle, and superior frontal gyri as well 
as the inferior temporal gyrus. The main difference between the baseline 

and two-year saliency maps is that the middle frontal and inferior 
temporal gyri intensities are different. This 昀؀nding indicates that 
important brain regions associated with gender remain relatively stable 
over time. We utilize the t-test to identify discrete brain areas with 
diverse meanings across multiple datasets and revealed that these brain 
regions are substantially comparable across the baseline and two-year 
time points. In contrast, when we analyze the different brain regions 
of male and female subjects with a focus on gray matter changes, we 
observe that the results were informative and distinctive in comparison 

Fig. 7. (a) shows one sample t-test on subject-based saliency maps from the D2 testing datasets; Figures 6.2(b) and (c) show two t-tests on male and female subject- 
based saliency maps from the D2 testing datasets (M > F and M < F). 

Fig. 8. (a) and (b) show saliency maps from related t-tests between baseline and two-year subjects, indicating that brain regions are highly predictive in baseline and 
two-year. 
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to baseline and two-year data. Furthermore, our research analyzes 
gender differences in adolescent brain structures; these brain areas are 
distinct between males and females and may have therapeutic applica-
tions and implications for illnesses and brain development in this age 
group. Choleris et al. (1873) presented several clinical research paths 
pertaining to gender differences that motivate us to consider potential 
clinical applications employing deep learning models to predict gender 
differences from multiple brain imaging datasets. 

Additionally, we a review of studies focused on gender difference in 
brain structures both in adults and adolescents revealed that several 
research that have calculated the gender differences in adults suggest 
potential concordance in particular brain regions with our analysis on 
the adolescence dataset. For example, Zhang et al. (2020b) shows that 
the caudate is a distinctive part for females over males both in adults and 
adolescents; Ruigrok et al. (2014) shows additional brain areas that have 
gray matter volume differences in male and female groups, including the 
cerebellum in males over females, and the precuneus in females over 
males, consistent with our study. Other studies that concentrate on the 
young adult and adolescent populations also show several brain regions 
that are consistent with our most recent analysis of the ABCD dataset. 
For example, according to (Witte et al., 2010), the precuneus is a special 
part of the brain where females have bigger gray matter volumes than 
males. In contrast, the right and left cerebellum have different gray 
matter volumes, with females having less than males. While these 
studies are consistent, our is the 昀؀rst to highlight the salient regions in a 
predictive deep learning model focus solely on gray matter changes over 
a two-year period. 

There are some limitations to our study. First, the large-scale struc-
tural MRI dataset Miller et al. (2016) is bene昀؀cial for delving further into 
the longitudinal study and the difference in and of itself. Since we only 
have 2000 more individuals for a two-year follow-up, we may not have 
enough data to draw 昀؀rm conclusions. As additional data is released for 
the ABCD study, we should be able to address this in future work. Sec-
ondly, we used ROI-based saliency maps rather than voxel-wise saliency 
maps. We can instead leverage a voxel-wise saliency map (Taki et al., 
2004), to increase spatial resolution and detail in the baseline and 
two-year datasets. In addition, we can use additional model 

introspection approaches to highlight additional information captured 
by the deep learning model. The third limitation is that we did not 
compare different deep learning models and machine learning algo-
rithms with ours to determine whether there was a difference in per-
formance, including training time and FLOPs (Schulz et al., 2020). In the 
current study, we show our model achieved a statistically signi昀؀cant 
high accuracy on baseline gender prediction. In future work, we plan to 
compare it to results from other state-of-the-art deep learning models 
applied to similar situations. 
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