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Deep learning algorithms for predicting neuroimaging data have shown considerable promise in various appli-
cations. Prior work has demonstrated that deep learning models that take advantage of the data’s 3D structure
can outperform standard machine learning on several learning tasks. However, most prior research in this area
has focused on neuroimaging data from adults. Within the Adolescent Brain and Cognitive Development (ABCD)
dataset, a large longitudinal development study, we examine structural MRI data to predict gender and identify
gender-related changes in brain structure. Results demonstrate that gender prediction accuracy is exceptionally
high (>97%) with training epochs > 200 and that this accuracy increases with age. Brain regions identified as the
most discriminative in the task under study include predominantly frontal areas and the temporal lobe. When
evaluating gender predictive changes specific to a two-year increase in age, a broader set of visual, cingulate, and
insular regions are revealed. Our findings show a robust gender-related structural brain change pattern, even
over a small age range. This suggests that it might be possible to study how the brain changes during adolescence

by looking at how these changes are related to different behavioral and environmental factors.

1. Introduction

Deep learning (DL) has steadily risen to become the mainstream
technique for analyzing big data for complex problems over the last
decade, owing to its outstanding performance on a wide range of chal-
lenging tasks and the rapid growth in computing resources available
(Hinton, 2018; Krizhevsky et al., 2017; Shen et al., 2017). Also
demonstrated is the ability of DL models to improve the prediction and
analysis of specific biomedical imaging data modalities, including
computed tomography (CT), magnetic resonance imaging (MRI), mag-
netoencephalography (MEG), and positron emission tomography (PET)
(Miller et al.), to name a few examples (Yan et al., 2022). As medical
imaging data is very high-dimensional and complex, automated ap-
proaches are needed to identify the relevant information for a given
task. Therefore, it is critical to continue developing and evaluating the
efficacy of DL models. Initial work suggests that deep learning on neu-
roimaging data shows promise for accelerating the identification of
diagnostic subtypes in mental disorders (Yan et al., 2021), with the
potential for expanding into clinically relevant tasks such as prediction
of medication class response (Osuch et al., 2018). U-Net (Ronneberger
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et al., 2015), one of the most successful deep learning architectures for
medical image segmentation, is an important starting point for utilizing
deep learning models in medical image analysis. Other applications
include the ability to classify different chest illnesses using X-ray im-
aging datasets that have been compiled from thousands of patient re-
cords and physician diagnoses(Wang et al., 2017).

The human brain is a highly complex organ that is not fully under-
stood through research in medical imaging data. It is critical for re-
searchers to develop a more effective method of identifying brain
disorders (Liu et al., 2020). Deep learning has performed well for image
classification and segmentation tasks in brain imaging as a sophisticated
and highly flexible artificial intelligence system (Shahamat and Saniee
Abadeh, 2020; Zhang et al., 2020a). When using T;-weighted MRI, also
known as structural MRI, one can visualize specific brain areas and
structures, which can help diagnose a problem or potentially predict
how a person will respond or behave in the future. For image classifi-
cation problems, especially in datasets of natural image examples,
various common machine learning methods, such as support vector
machine (SVM), have historically been used. However, the SVM’s per-
formance for medical imaging subjects suffers under some
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circumstances, especially when working with high-resolution
T1l-weighted MRI images (Chato and Latifi, 2017). Deep learning
models have shown great promise for neuroimaging data (Plis et al.,
2014; Varatharajah et al., 2018; Yan et al., 2022). It has recently been
demonstrated that deep learning models outperform traditional ma-
chine learning approaches in a wide range of classification and regres-
sion tasks (Abrol et al., 2021). For example, a fully convolutional
network (FCN) is a tool that is particularly well-suited for image seg-
mentation tasks, such as distinguishing brain tumors from normal brain
tissues (Chen et al., 2021; Justin et al., 2017). Various prediction and
regression tasks, such as brain age and gender prediction (Brennan et al.,
2021), have been efficiently and effectively performed by deep learning
approaches, such as 3-D convolutional neural networks (CNNs). Deep
learning models like auto-encoders, deep belief networks (DBN), and
generative adversarial networks (GAN) have also been very important to
the development of Al and medical image analysis (Reddy et al., 2020;
Sorin et al., 2020).

In this work, we explore a large longitudinal development study (the
Adolescent Brain and Cognitive Development (ABCD) dataset) to
examine structural MRI data to predict gender and identify gender-
related changes in brain structure. The ABCD study is a prospective
longitudinal neuroimaging study that recruits children with 9-10 years
old and follows them for ten years (Casey et al., 2018; Karcher and
Barch, 2021). There are 21 research sites across the country partici-
pating in the study, which includes a diverse sample of nearly 12,000
subjects. For this study, we used T;-weighted MRI data from the ABCD
dataset, which contains (N > 11 K) subjects at baseline and 3 K subjects
at a year two follow-up, to evaluate gender prediction and to visualize
the predictive brain regions in the context of multiple learning tasks on
the dataset. We use 3D CNN models to allow the model to leverage the
3D information in brain structural MRI data. We are particularly inter-
ested in determining whether or not we can accurately and reliably
predict gender from neuroimaging data collected from developing ad-
olescents. In our research, we used 3D AlexNet as the CNN backbone to
predict gender, and we found that it performed exceptionally well in
terms of accuracy and robustness when applied to the ABCD baseline
dataset. Meanwhile, we investigated prediction on data collected two
years later and discovered that the accuracy of gender prediction was
slightly, but significantly, higher than baseline in these subjects. More-
over thirdly, we performed a longitudinal prediction on gray matter
differences over two years. We present the findings in the form of
ROI-based brain saliency maps averaged within the automated
anatomical labeling (AAL) atlas(Gupta et al., 2019), which demonstrates
brain regions that are highly relevant in gender prediction and how
these regions change longitudinally between the baseline and two-year
follow scans.

Below is a list of the contributions we include in this paper:

1. We developed an effective and light-weighted 3-D deep learning
model for analyzing gender prediction problems in adolescent in-
dividuals using structural MRI data, and the model’s performance
was outstanding and robust in the real world.

2. We verified gender prediction cross-sectionally and longitudinally,
and new findings have occurred.

3. Brain regions most salient to the baseline and two-year prediction
and the prediction from the differences are visualized. We highlight
differences in brain structure between males and females and lon-
gitudinal changes between baseline and the two-year follow-up.

Our initial questions for this work were three-fold: 1) could deep
learning of gray matter data with 3D CNNs provide higher accuracy for
predicting M vs F in adolescent data than previous studies? 2) would the
single image prediction (not difference) increase between baseline and
year two?, and 3) how predictive are the changes between baseline and
year 2? In addition, a key component for all three of these questions was
also to visualize the relevant brain regions.
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The remaining text is organized as follows: Section II introduces the
underlying methodologies that correspond to CNN architectures and
pipelines, methods used for ROI-based brain visualization; Section III
displays experimental results, including gender prediction performance
matrices and longitudinal results; saliency maps that show different
weights in each ROI; and Section IV concludes the experimental mean-
ings, future research directions, and some limitations of this paper.

2. Methods

Our previous work on adults from the UK Biobank demonstrated that
DL models could extract powerful brain representations from 3D brain
data, significantly outperforming traditional machine learning ap-
proaches (Abrol et al., 2021). This project uses the same pipeline with
the 3D CNN model as the previous study to predict gender from struc-
tural MRI data in the ABCD dataset. We perform the gender classifica-
tion task using two time points from this longitudinal study: the baseline
and the two-year follow-up. In order to determine exciting brain regions
relevant to gender prediction and longitudinal changes, we built sa-
liency maps based on our DL model and selected ROIs of the brain. Fig. 1
provides an overview of the primary pipeline used in our project.

We work with three datasets: D;(N = 11700) for the baseline cohort
(ages 9-10 years old), Do(N = 2928 of 11700) for the follow-up cohort
(ages 11-12 years old), and D3(N = 2928 of 11700) for the difference
cohort (within-subject difference between baseline and two-year follow-
up voxel-wisely). More precisely, we created a variety of datasets to be
used for training, validation, and testing. We divided the datasets D;
into a training set DY of subjects (N* = 9220), a validation set D} of
subjects (N** = 972), and a testing set DY of subjects (N* = 972).
Because we did not use D, dataset for model training, it contains only a
testing dataset D§ with (N* = 2928) subjects. For D, It consists of a
training set D§ (N = 2048) and validation set D}* (N"* = 434) sub-
jects, as well as testing set D§ (N* = 434) subjects.

2.1. Data pre-processing

This work analyzes structural MRI data from the ABCD study at
baseline and two years later. ABCD is one of the largest ongoing studies
of adolescents, following over 11,000 youth recruited at the age of 9-10
through late adolescence to increase our understanding of the
emotional, genetic, neurological, and behavioral factors associated with
an increased risk of physical and mental health problems in adolescents:
http://abedstudy.org. The baseline (D;) and two-year follow-up (D3)
datasets were segmented using the unified approach in the statistical
parametric mapping (SPM) software. The difference dataset (D3) was
generated by subtraction between two-year and baseline in each subject
for every voxel. We use SPM12 to jointly segment and normalize the
sMRI data tissue probability maps for gray matter, white matter, and
cerebral spinal fluid (CSF). The Montreal Neuroimaging Institute (MNI)
space gray matter images used in this study had a dimensionality of
(121 x 145 x 121) voxels after the pre-processing, with a voxel size of
1.5 x 1.5 x 1.5mm?. Tables 1 and 2.

2.2. CNN architecture

Our deep learning model is based on an updated three-dimensional
AlexNet  architecture (Krizhevsky et al, 2017) with a
three-dimensional input size of (121 x 145 x 121). We created five
blocks of 3-D convolutional layers with batch normalization. Each
convolutional layer has a channel width of 64, 128, 192, 192, and 128.
Following each batch normalization layer, the ReLU function was
applied, followed by pooling layers. Finally, we created two fully con-
nected layers with sizes of 256 and 64. After the first fully connected
layer, we set the drop-out rate to 0.5. After the second fully connected
layer, the number of output nodes was set to the number of classes
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Fig. 1. General pipeline for gender prediction and estimating brain region saliency maps. The sMRI data were preprocessed using SPM12. The deep learning model
was trained and tested using the preprocessed sMRI data, and brain saliency maps were generated using the AAL atlas.

Table 1
3-D AlexNet architecture details.

Table 2
All gender prediction tasks and their corresponding brain regions.

Layer Feature kernel Stride Activation Gender Predictions Conditions Active Brain Regions
Map Size Baseline Dataset General Inferior, middle, and superior frontal
Convolution 64 (5, 5, 5) 22,2 Batchnorn+ReLU Gender Prediction and inferior temporal gyri
MaxPooling 3,3,3) 3,3,3) M>F Lingual gyrus (R), the supplementary
Convolution 128 3,3,3) 1,1,1) Batchnorn+ReLU motor area (R), Heschl’s gyrus (R), and
MaxPooling (3,3,3) 1,1,1) the cerebellum (L)
Convolution 192 3,3,3) 1,1, 1) Batchnorn+ReLU F>M Caudate nucleus (R), the putamen (L),
Convolution 192 (3,3,3) 1,1,1) Batchnorn+ReLU the precuneus (L), and the middle
Convolution 128 (3,3,3) 1,1,1) Batchnorn+ReLU temporal gyrus (L & R)
MaxPooling 3,3,3) 1,1,1) Two-year follow-up General Inferior, middle, and superior frontal
Fully- 256 Drop-out rate ReLU dataset gender and inferior temporal gyri
Connected 0.5 prediction M>F Lingual gyrus (R), the supplementary
Fully- 64 ReLU motor area (R), Heschl’s gyrus (R), and
Connected the cerebellum (L)
Output 2 F>M Caudate nucleus (R), the putamen (L),
the precuneus (L), and the middle
temporal gyrus (L & R)
(n = 2) required for the gender classification task. All experiments were Related longitudinal Baseline Cuneus (L & R), insular cortex (R),
conducted using the PyTorch machine learning framework on the NVI- Comparison > Two-year cingulum posterior (L), and I{ngual
DIA CUDA platform on NVIDIA Tesla V100 32 GB GPUs. Fig. 2. Byrus (1) e some of the regions
Two-year Caudate nucleus (R), the orbital section
.. > Baseline of the inferior frontal gyrus (R),
2.3. Model training cingulum anterior (L), and postcentral
gyrus (L)
For the gender prediction tasks, we designed three main experiments Difference dataset General Inferior, middle, and superior frontal
based on pre-processed datasets in ABCD. Firstly, we use DY as a training gender prediction and inferior temporal gyri .
set (N — 9220) to train 3-D AlexNet for first model M; (batch size — 32, M>F Precentral gyrus (L), superior temporal
gyrus (L), middle temporal gyrus (L),
learning rate = le-3, training algorithm = Adam, number of epochs = superior frontal gyrus (L) and operculum
200) and then use testing set in DY to obtain results on baseline gender ®
F>M Hippocampus (R), superior temporal

prediction. To obtain a robust performance measure, we employed a
repeated (n = 5), stratified k-fold (k = 5) cross-validation strategy to
create five different repetitions of training, validation, and testing
datasets (same size as above), which were used for training five models.
Then we record the average testing performance on the held-out test
partitions. The Adam optimizer was employed with a le-3 initial
learning rate that adapts as the epochs pass. An early stopping procedure

gyrus (R), middle temporal gyrus (R),
ParaHippocampal (R) and Inferior
temporal gyrus (R)
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Fig. 2. Updated 3-D AlexNet CNN architecture. We trained model 1 and model 3 using same CNN architecture, which includes modified light-weighted 3-D AlexNet

with batch normalizations and drop-out.

with a patience level of 20 epochs was used to avoid data overfitting.
The accuracy (Acc), balanced accuracy (Bal-Acc), AUC score, F1 score,
and Matthew’s correlation coefficient (MCC) classification metrics were
used to evaluate performance. Secondly, after training the CNN model
with Dy tr dataset, we evaluated the CNN model’s generalization ability
by testing on a two-year follow-up dataset D¥ using Acc, Bal-Acc, AUC,
F1, and MCC. Finally, to determine the features and gender prediction
sensitivity related specifically to longitudinal changes over two years,
we re-trained the second model M3 using D (N" = 2048) and tested it
by D (N* = 434). The validated model hyper-parameters include batch-
size = 16, learning rate = 1e-3, training algorithm = Adam, number of
epochs = 150. We reduced the batch size and number of epochs because
the training set’s size is significantly smaller than D, dataset.

2.4. Brain region visualization

We also perform DL model introspection to identify the most
discriminative brain regions for the gender classification tasks. We
compute voxel-wise saliency maps using the area occlusion approach
(Abrol et al., 2021). This method used the AAL atlas as the occlusion
template. The brain regions were occluded one at a time, and the class
probabilities were then recomputed post-occlusion. The saliency was
then estimated to be proportional to the reduction in the class proba-
bilities after occlusion. Saliency maps were made by applying the CNN
model to each test dataset and then using a region-wise t-test to fill each
voxel with the right t-statistic.

Training Loss

100 150 200
Training Epochs

3. Results
3.1. Gender prediction results

For gender prediction tasks, we test the performance of baseline
gender prediction on the model M; using DY by 5-fold cross-
validation, resulting in an average balanced accuracy of 97.3%. The
accuracy on D¥ for longitudinal data (two-year) is 0.3-0.5% above the
baseline performance. For the longitudinal changes, we test model M3
accuracy by DY using the same strategy as previous experiments and
obtained an average balanced accuracy of 71%. To demonstrate the
difference in accuracy between two-year and baseline, we used a paired
t-test to compare the accuracy between the two. The results showed a t-
value of 3.4 and a p-value of 0.0325, indicating a significant improve-
ment in two-year gender prediction over the baseline. Fig. 3 shows the
loss and accuracy curves during the training and validation process.
Fig. 4 shows the detailed results (Acc, Bal-Acc, AUC, F1 score, and MCC)
for our three main experiments.

Meanwhile, we used scatterplots and the t-distributed stochastic
neighbor embedding (t-SNE) (Hinton and Roweis, 2002) algorithm to
visualize the gender prediction results obtained by mapping the
high-dimensional subjects to the two-dimensional space x and y. The
tSNE algorithm is a nonlinear dimensionality reduction technique for
visualizing large amounts of data by assigning each data point a location
on a two- or three-dimensional map. The t-SNE algorithm can visualize
clusters, which illustrate the classification model’s performance. We use
latent encodings estimated for the Df  (N® = 972), Dy (N® = 2928) and

Training and Validation Accuracy

o
©
']

Accuracy
o
]

0.6 1
0.5 —
—— Training Accuracy
—— Validation Accuracy
0.4 1 1 L J
0 50 100 150 200

Training Epochs

Fig. 3. Deep learning model training learning curves: training loss (left) and training and validation accuracy (right). The training and validation curves converge
after 60 epochs with an average training time of 12.5 h with Nvidia Tesla V100 32 GB GPU.
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Fig. 4. Boxplots for baseline gender prediction accuracy, longitudinal gender prediction accuracy and the accuracy of gender prediction based on longitudinal
changes show test data results based on a 5-fold cross-validation approach. P-value of 0.0325 in accuracies comparison indicates significant improvement in two-year

follow-up data over baseline data.

D§ (N = 434) datasets as inputs to three distinct t-SNE plots to
evaluate prediction performance for baseline, two-year, and difference
datasets. We pass Df (N, = 972) and DY (N = 972) datasets through a
trained model M; and extract the 64-dimension features at the output of
the first fully-connected layer as the input to the t-SNE algorithm. For D
(N* = 434), we pass it through model M3 and extract the same features
as for DY and Df5. Using t-SNE, we can reduce the 64-dimensional

Baseline dataset T-SNE projection

Two-year dataset T-SNE projection

features to two dimensions and visualize two male and female data
points clusters. Fig. 5.

3.2. Brain saliency maps
Saliency maps can be used for brain region visualization to identify

brain areas that are particularly predictive for gender classification.
Using the test datasets, including DY (N* = 972), D5(N* = 2928) and

Difference dataset T-SNE projection
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Fig. 5. Scatterplots for baseline, two-year and difference datasets based on t-SNE algorithm. Prediction from the full gray matter maps is highly accurate and in-
creases significantly between baseline and two years. In addition, the two-year change in gray matter is also predictive well above chance. Focusing on the predictive
regions relevant to longitudinal change can provide additional insights into the developing brain.
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Df (N = 434), we generated three groups S1, Sz and S of saliency maps
for each subject (N =972, 2928 and 434, respectively). The results
include a one-sample t-test on the baseline and two-year testing datasets,
which can be used to determine which brain regions are more significant
and predictive in gender prediction tasks; a two-sample t-test on the
baseline and two-year testing datasets that compare male and female
subjects, which can be used to determine which brain regions are more
significant in male subjects and which brain regions contribute more to
female subject prediction. Meanwhile, to get more advanced and accu-
rate results, we analyzed the brain areas that are most informative for
the prediction from the longitudinal difference between two-year and
baseline; we also computed one-sample t-tests to evaluate the most
relevant brain areas for baseline and two-year. Figs. 6-9.

By analyzing saliency maps, baseline and two-year showed broadly
similar patterns, including inferior, middle, and superior frontal and
inferior temporal gyri. Meanwhile, the parts of the brain that predict a
person’s gender based on a difference dataset are also strongly linked to
baseline and two-year datasets.

In addition, we performed a two-sample t-test on the test data to
estimate t-values for each ROI Parts of the brain where men are more
predictive than women (M > F) are represented by positive t-values;
areas of the brain where men are less predictive than women (M > F) are
represented by negative t-values (M < F). When we looked at the
baseline dataset, we discovered that M > F brain areas included the
Lingual gyrus (R), the supplementary motor area (R), Heschel’s gyrus
(R), and the cerebellum (L); M < F brain areas included the caudate
nucleus (R), the putamen (L), the precuneus (L), and the middle tem-
poral gyrus (L & R). The brain regions studied for the two-year dataset
are similar to those studied at baseline, although some have a different ¢-
value and a different order. We also discovered a t-test related to lon-
gitudinal data, and the positive t-values signify regions of the brain
where baseline predictability is greater than two-year predictive val-
idity. Cuneus (L & R), insular cortex (R), cingulum posterior (L), and
lingual gyrus (L) are some of the regions involved (L). The findings, on
the other hand, show that parts of the brain like the caudate nucleus (R),

Baseline
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the orbital section of the inferior frontal gyrus (R), the cingulum anterior
(L), and the postcentral gyrus (L) are more accurate predictors in the two
years than they were in the baseline period. Finally, we were able to
predict gender using the differential data accurately. The cingulum
posterior, angular gyrus, fusiform gyrus, and supramarginal gyrus were
all identified in these findings. More crucially, we identified and mapped
different locations associated with M > F and F > M, located in different
brain hemispheres. Relevant regions in the right hemisphere are pro-
duced by the M > F condition, and relevant regions in the left hemi-
sphere are produced by the M > F condition.

4. Discussion and conclusion

In conclusion, our work achieves a high degree of accuracy in brain
gender analysis tasks, and our model was effectively evaluated using
longitudinal data and a specific dataset to demonstrate its efficacy.
Using structural MRI data from adolescents, our work delivers two
unique contributions to the area of gender prediction. First, we begin by
comparing recent findings from baseline data to longitudinal data from
the ABCD dataset, which includes patients two years older than at
baseline. We demonstrate that the testing accuracy of the two-year
follow-up data is comparable to but substantially greater than that of
the baseline data (0.3-0.5% higher than baseline). Brain saliency maps
were also identified, which depict the essential brain areas for the pre-
diction tasks, including gender and longitudinal comparison. Second, we
employ an upgraded 3D-CNN model with great prediction accuracy
performance.

Reviewing previous research, we discover that (Adeli et al., 2020;
Adeli et al., 2020) conducted gender prediction trials on the ABCD
dataset and reached an accuracy of 89.6%, which is lower than our re-
sults. In addition, they did not compare outcomes over times using
follow-up data. Using a cutting-edge deep learning model, they
compared deep learning to a conventional machine learning SVM
model, reviewed the performance, and found morphological drivers in
gender prediction using saliency mapping. Brennan et al. (2021) utilized

Fig. 6. Saliency maps generated from the baseline D;, two-year D5, and difference D3 datasets. Figure 6.1(a) depicts one sample t-test on subject-level saliency maps
from the D; testing datasets, which can reveal which brain regions are significantly more predictive than others for gender prediction; Figures 6.1(b) and (c) depict

two-sample t-tests on male and female subject-based saliency maps from the D,
and female subjects.

testing datasets (M > F and M < F) depict the brain areas that are predictive in male
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Two-year Follow-up
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Fig. 7. (a) shows one sample t-test on subject-based saliency maps from the D, testing datasets; Figures 6.2(b) and (c) show two t-tests on male and female subject-

based saliency maps from the D, testing datasets (M > F and M < F).

Baseline > Two-year

Baseline < Two-year

Fig. 8. (a) and (b) show saliency maps from related t-tests between baseline and two-year subjects, indicating that brain regions are highly predictive in baseline and

two-year.

the standard SVM model to identify gender in the ABCD dataset
(N = 8325) and discovered both positive and negative categories be-
tween male and female brain areas.

The t-test results from baseline and two-year datasets indicate that
multiple brain regions with high t-values have a statistically significant
relationship with gender prediction tasks. The brain regions identified at
baseline and two years of saliency maps are highlight similar. These
brain regions include inferior, middle, and superior frontal gyri as well
as the inferior temporal gyrus. The main difference between the baseline

and two-year saliency maps is that the middle frontal and inferior
temporal gyri intensities are different. This finding indicates that
important brain regions associated with gender remain relatively stable
over time. We utilize the t-test to identify discrete brain areas with
diverse meanings across multiple datasets and revealed that these brain
regions are substantially comparable across the baseline and two-year
time points. In contrast, when we analyze the different brain regions
of male and female subjects with a focus on gray matter changes, we
observe that the results were informative and distinctive in comparison
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Fig. 9. (a) depicts one sample t-test using subject-based saliency maps from the D3 datasets, which includes brain regions that are significantly relevant in voxel-
wised differences between two-year and baseline data; Figure 9 (b) and (c) depict two-sample t-test using male and female subject-based saliency maps from the

D3 datasets, which can depict distinct brain regions oriented to males and females.

to baseline and two-year data. Furthermore, our research analyzes
gender differences in adolescent brain structures; these brain areas are
distinct between males and females and may have therapeutic applica-
tions and implications for illnesses and brain development in this age
group. Choleris et al. (1873) presented several clinical research paths
pertaining to gender differences that motivate us to consider potential
clinical applications employing deep learning models to predict gender
differences from multiple brain imaging datasets.

Additionally, we a review of studies focused on gender difference in
brain structures both in adults and adolescents revealed that several
research that have calculated the gender differences in adults suggest
potential concordance in particular brain regions with our analysis on
the adolescence dataset. For example, Zhang et al. (2020b) shows that
the caudate is a distinctive part for females over males both in adults and
adolescents; Ruigrok et al. (2014) shows additional brain areas that have
gray matter volume differences in male and female groups, including the
cerebellum in males over females, and the precuneus in females over
males, consistent with our study. Other studies that concentrate on the
young adult and adolescent populations also show several brain regions
that are consistent with our most recent analysis of the ABCD dataset.
For example, according to (Witte et al., 2010), the precuneus is a special
part of the brain where females have bigger gray matter volumes than
males. In contrast, the right and left cerebellum have different gray
matter volumes, with females having less than males. While these
studies are consistent, our is the first to highlight the salient regions in a
predictive deep learning model focus solely on gray matter changes over
a two-year period.

There are some limitations to our study. First, the large-scale struc-
tural MRI dataset Miller et al. (2016) is beneficial for delving further into
the longitudinal study and the difference in and of itself. Since we only
have 2000 more individuals for a two-year follow-up, we may not have
enough data to draw firm conclusions. As additional data is released for
the ABCD study, we should be able to address this in future work. Sec-
ondly, we used ROI-based saliency maps rather than voxel-wise saliency
maps. We can instead leverage a voxel-wise saliency map (Taki et al.,
2004), to increase spatial resolution and detail in the baseline and
two-year datasets. In addition, we can use additional model

introspection approaches to highlight additional information captured
by the deep learning model. The third limitation is that we did not
compare different deep learning models and machine learning algo-
rithms with ours to determine whether there was a difference in per-
formance, including training time and FLOPs (Schulz et al., 2020). In the
current study, we show our model achieved a statistically significant
high accuracy on baseline gender prediction. In future work, we plan to
compare it to results from other state-of-the-art deep learning models
applied to similar situations.
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