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A B S T R A C T

The responses of the tubular specimens loaded under combined tension and torsion in Part I
exhibited limit load instabilities followed by extensive localized deformation prior to failure. The
present manuscript outlines an analytical framework that aims to establish the extent to which
plasticity can reproduce the measured responses up to the onset of failure without the in-
troduction of damage-induced softening effects. The analysis incorporates a suitably calibrated
non-quadratic anisotropic yield function, a material hardening response extracted to large strains
from a simple shear test, and a finite element model with refined 3-D elements. The analysis
successfully reproduces the shear and axial stress levels during the homogeneous deformation
parts of the response, the stresses and deformations at the load maxima, and the parts with
decreasing stress associated with localized deformation. Furthermore, the geometry of the necked
zones and the rapid growth of strain inside them are reproduced to levels that correspond to the
recorded failure strains. Critical aspects of this successful effort are the non-quadratic anisotropic
yield function and the material hardening adopted. It is concluded that the framework developed,
combined with a suitable failure criterion based on results like those in Part I, constitute a viable
tool for establishing the end of life of structures in engineering practice.

1. Introduction

Part I describes in detail the conduct and the results of a set of tension-torsion experiments on custom Al-6061-T6 thin-walled
tubes used to establish the failure strain in the moderate to low triaxiality regime. The specimen design and the stiff test setup enabled
localization in the form of defuse necking to develop free of constrains until rapture occurred in the deepest part of the neck. High
resolution DIC enabled continuous monitoring of the strain in the test section including the necked zone. The strains measured in the
failure zone follow the classical trend of monotonic decrease with increasing triaxiality, but their values are significantly larger than
previously reported ones. Both of these findings are in agreement with similar results in Scales et al. (2016). The failure surfaces were
found to have the usual dimpled relief suggestive of ductile failure by void growth and coalescence. X-ray tomography and micro-
scopic observations (e.g., Ghahremaninezhad and Ravi-Chandar (2012, 2013); Haltom et al. (2013)) found that this alloy had very
small initial porosity and very limited pore growth away from the failure zone; it was further concluded that in the failure zone void
growth and coalescence occurred very close to the end of life of the material.

Collectively these results prompt the present modeling effort that aims to establish the extent to which plasticity can reproduce
the measured responses and the evolution of localization without the introduction of damage. To this end Part II presents: (a) the
calibration of the anisotropic yield function of Barlat et al. (2005) Yld04-3D based on the tension-torsion and pressure-tension results
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in Part I. (b) The extraction of the material hardening response from a simple shear test using the calibrated Yld04-3D constitutive
model as well as quadratic and non-quadratic isotropic yield functions. (c) The implementation of the constitutive models and the
associated material hardening responses in an appropriately discretized finite element model of the tension-torsion test specimens;
and (d) the use of this framework to simulate numerically the tension-torsion experiments. Particular emphasis is given to the effects
of the constitutive model adopted and material hardening used on the calculated overall nominal stress-deformations responses, and
on the onset and evolution of localization.

2. Constitutive behavior

2.1. Yield functions

It is now well established that the constitutive model used in the analysis of forming and other large deformation processes can
influence the prediction of localization and failure in thin-walled structures. The use of more advanced non-quadratic yield functions
that can account for prevailing anisotropies are thus preferred in modern studies and practices. Thus the main model adopted in this
study is Barlat et al. (2005) Yld04-3D (e.g., see Korkolis and Kyriakides (2008, 2009), Korkolis et al. (2010) who used Yld 2000-2D;
Giagmouris et al. (2010), Tian et al. (2017), Chen et al. (2016, 2018a), Dick and Yoon (2018), Lee et al. (2018), Ha et al. (2018) who
used Yld04-3D, and Gorji and Mohr (2018) who used Yld 2000-3D). For comparison isotropic plasticity is modeled through Hosford's
(1972) non-quadratic yield function, which in terms of the principal values of the stress deviator is given by:

= + +s s s s s s[(| | | | | | )/2] .k k k k
1 2 2 3 3 1

1/ (1)

For completeness the von Mises quadratic yield function, i.e., k=2 in (1), will also be used to simulate the tension-torsion ex-
periments.

Barlat et al. (2005)introduce orthotropic anisotropy into (1) through two linear transformations to construct the tensors S and S
from the Cauchy stress as follows:

= = = = = =S C s C T L S C s C T Land (2a)

where C C T L L, , , , are transformation tensors. T transforms to s and C C, contain the following anisotropy parameters.
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The yield function in terms of the principal values of S and S is then expressed as:
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where again k is assigned the value 8 (Logan and Hosford, 1980). Details about the derivations and the derivatives of the yield
function with respect to the stress components can be found in Barlat et al. (2005) and Yoon et al. (2006) (the model is implemented
in a subroutine developed by Yoon (2011)).

The model is calibrated using the responses of the 7 tension-torsion experiments, a “plane strain” tension test, a simple shear test,
and a uniaxial tension test on an axial strip all extracted from the same batch of tubes. These were supplemented with results from the
7 tension-internal pressure radial path experiments. The state of stress and the strain ratios are evaluated for each experiment at a
chosen value of plastic work ( =W p 1000 psi––6.897MPa). Details of the calibration process followed are given in Appendix A. The
anisotropy parameters determined from the process are listed in Table 1. (Note that the cylindrical coordinate system used is the one
defined in Fig. 1, I and Fig. 2. It is different from the more conventional cylindrical coordinate system used for example in ABAQUS).

As noted by previous researchers, the results of such calibration processes are not unique. To further evaluate the present solution
the calibrated yield function and some of the corresponding experimental points are compared in Fig. 1a (T-T ≡ Tension-Torsion, P-T
≡Pressure-Tension). Plotted are the work contours in the hoop-axial stress plane, 11 22, both normalized by the measured axial
stress w

22 at =W p 1000 psi (6.897MPa) for different values of normalized shear stress 12. The comparison of experimental data and
the calibrated work contours is deemed as satisfactory. A work contour in the 22 12 space, important to the problem at hand, is
compared to measured tension-torsion data in Fig. 1b. The comparison is again favorable providing additional support for the
soundness of the anisotropy calibration procedure. As mentioned in Section 3.1,I in the tension-torsion experiments the test section
develops a small amount of non-uniform radial deformation in the form of bowing, which affects the hoop stress to some degree ( )11 .
The hoop stress is assumed to be uniform and proportional to the axial stress, =11 22. The constant of proportionality varies with
the radial path ratio , and is determined as outlined in Appendix B.

I refers to Sections, Figures and Equations of Part I.
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2.2. Material hardening

The material response is commonly measured in a uniaxial tension test, which usually necks at a strain of a few percent. By
contrast, simple shear tests remain free of instabilities to large strains and thus offer an attractive alternative. Since the present study
involved tension-torsion of tubes, it was convenient to extract the material hardening from a pure torsion experiment on a tube that
originated from the same batch as those of the biaxial specimens. Since the response is influenced by the constitutive model adopted

Table 1
Anisotropy parameters for Yld04-3D model.

c12 c13 c21 c23 c31 c32 c44 c55 c66

1.028 1.150 1.162 0.941 0.679 0.985 1.0 1.0 1.367

c12 c13 c21 c23 c31 c32 c44 c55 c66

0.713 0.683 0.847 1.093 1.056 0.962 1.0 1.0 0.695

Fig. 1. (a) Work contours of the calibrated Yld04-3D constitutive model in the axial and hoop stress space at varying levels of shear. Experimental
data used in calibration are included with solid bullets (T-T≡ tension-torsion, P-T≡ pressure-tension). (b) Work contour in the shear-axial stress
space for =/ 0.211 22 .

Fig. 2. Material element under simple shear; shown are the initial and rotated material axes.
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(e.g., see Tardif and Kyriakides, 2012; Chen et al., 2018a; Kang et al., 2008), it is extracted for each of the three constitutive models
considered. Furthermore, Chen et al. (2018b) showed that in the case of simple shear tests, the material axes rotate during shearing,
and this must be accounted for when the material exhibits plastic anisotropy (see also Ch. XII-1 in Hill, 1950; ABAQUS, 2016). This
section discusses the extraction process.

The specimen overall geometry is the same as in Fig. 1,I but the test section wall thickness was increased to 0.0461 in (1.17mm)
in order to delay buckling. The specimen was twisted under rotation control producing a shear strain rate of approximately ×2 10 4

s−1, while the axial load was prescribed to remain at zero.
The shear stress, τ, is calculated directly from the recorded torque using the thin-walled geometry of the test section. The de-

formation in the test section was monitored using DIC (see Section 2.3,I) with the deformation gradient, F, being provided directly
from the ARAMIS software. The deformation in the test section was found to remain quite uniform, but F was averaged over a zone
0.2×0.4 in (5.1× 10.2mm) in the center of the test section. For the case of simple shear, F is given by

=F
1 0
0 1 0
0 0 1

,
(4)

where γ is defined in Fig. 2. The incremental strain tensor is then given by

= =FFd sym d
d

d( )
0 /2 0
/2 0 0

0 0 0
.1

(5)

Fig. 3 shows the shear stress-plastic shear strain ( p) response measured in this experiment. It extends to a strain of just under
1.2 and exhibits hardening throughout.

The incremental spin tensor is given by

= =FFd skewsym d
d

d( )
0 /2 0

/2 0 0
0 0 0

,1

(6a)

=which integrates to
0 /2 0

/2 0 0
0 0 0 (6b)

Thus, the transformation tensor for the material frame becomes

=A
cos /2 sin /2 0
sin /2 cos /2 0

0 0 1
.

(7)

The stress, when rotated into the material frame, is then:

= =A A
sin cos 0

cos sin 0
0 0 1

.T

(8)

For the anisotropic material in Eqs. (2) and (3), the equivalent stress in the material frame then becomes

= c c( , , ").e e ij ij ij (9a)

By contrast, in the reference frame it is given by

= c c( , , ").e e ij ij ij (9b)

Fig. 3. Measured shear stress-plastic shear strain ( )p response for the Al-6061-T6 tube analyzed.

K. Chen, et al. International Journal of Plasticity 120 (2019) 361–379

364



The equivalent stress is then used to evaluate the work compatible plastic equivalent strain increment at stage n in the incremental
process from

=d d .e
p

n

p

e n (10)

The complete response is assembled by summing the increments over the whole test history (see Eq. (12),I). If the material yields
isotropically, (3) reduces to the Hosford's non-quadratic yield function (1) with exponent 8 (H8). This is invariant to transformation
and, as a result, the simple shear test reduces to:

= +(2 1)e H8
7 1/8 (11a)

and

=
+

d d
(2 1)

,e
p

p

H8 7 1/8 (11b)

which integrates directly.
To facilitate a comparison with a quadratic yield function, we include the equivalent stress for simple shear for von Mises (vM)

= 3 .e vM (12a)

The corresponding equivalent plastic strain increment is

=d d
3

,e
p

p

vM (12b)

which also integrates directly.
The anisotropy parameters in Table 1 and the measured shear stress and strain values were used in Eqs. (9a) and (10) to generate

incrementally the equivalent stress-equivalent plastic strain response of the material. It is referred to as the Material Frame (MF)
response and is plotted in Fig. 4a. Included is the corresponding response when the rotation of the material frame is not accounted
for––referred to as Reference Frame response (RF). Clearly, this particular anisotropy leads to progressive reduction in tangent
modulus for equivalent strains larger than about 0.1. In Section 3.2 it will be demonstrated that such changes in modulus can have a
significant influence on the prediction of localization and other instabilities and the onset of failure (Chen et al. (2018b) examine how
the material frame rotation affects the extraction of the hardening response for the Hill-48 anisotropic yield function.).

Fig. 4b shows the equivalent stress-equivalent plastic strain responses corresponding to the isotropic von Mises and Hosford yield
functions. Included is the Reference Frame response based on the Yld04-3D anisotropic yield function. The three responses exhibit

Fig. 4. (a) The Material and Reference Frame equivalent stress-equivalent plastic strain responses extracted from the measured p response.
Included is the material response from a uniaxial tension test–“Uniax.” (b) Comparison of the Reference Frame equivalent stress-equivalent plastic
strain response with the isotropic von Mises and Hosford responses.
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similar hardening, but trace different stress levels. The difference in stress level between H8 and Yld04-3D is caused by the aniso-
tropy, whereas the difference between vM and H8 is due to the different exponent of the two yield functions.

In order to facilitate a comparison with the response in Fig. 4, the material hardening was also measured in an independent
uniaxial tension test. The test was performed on an axial specimen machined out of tube No. 3. The nominal stress achieved a
maximum at a strain of only 7%; thus the response was extrapolated using the inverse method of Tardif and Kyriakides (2012). The
location of the neck was controlled by machining a large radius into the sides of the test specimen, and the deformation in this zone
was monitored with DIC. Several constitutive models were used in the extrapolation. The response identified as “Uniax.” in Fig. 4a
was evaluated using the Yld04-3D constitutive model as calibrated in Section 2.1 and Appendix A. The data extend to a strain of
about 35% when the specimen failed in the neck. To accommodate the needs of the present study, the response was linearly ex-
trapolated to the same strain level as that of the simple shear test (extrapolation based on the slope of the last 2 points). The uniaxial
response traces a slightly lower stress up to a strain of about 0.12 and overshoots the shear response at higher strains.

3. Numerical simulation of the tension-torsion experiments

3.1. Finite element model

A finite element model of the tubular test specimens and setup shown in Fig. 1,I developed in ABAQUS is now used in conjunction with
the constitutive models outlined in Section 2 to simulate the tension-torsion experiments individually. Symmetry about the center of the test
section is assumed, which allows consideration of only half of the tubular test specimen as illustrated in Fig. 5. It consists of a 0.330 in
(8.38mm) long thicker upper section, a 0.200 in (5.08mm) straight test section, connected with a 0.125 in (3.18mm) radius fillet. The
specimen has an axially uniform inner surface with a radius of 0.815 in (20.5mm); the thicker section has a wall thickness of 0.170 in
(4.32mm) and the test section is assigned the average wall thickness of the specific test specimen analyzed (typically =to 0.039 in–1.0mm).

Fig. 5. Tension-torsion tubular specimen finite element mesh used to simulate the experiments.
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The model is meshed with solid elements (C3D8R) as follows:

• A 0.08 in (2.0mm) long part of the test section adjacent to the symmetry plane has 9 elements through the thickness and 450
elements around the circumference in order to facilitate the development of the expected localization.
• The rest of the straight test section has a courser mesh with 3 elements through the thickness and 150 around the circumference.
• The thick upper section has the same mesh distribution and consequently larger elements.
• The fillet also has the same mesh distribution as the two sections it joins so the element size along the length is adjusted to comply
with the curvature of the fillet.

The measured wall eccentricity of each specimen, listed in Table 1,I is incorporated into the model by shifting the inner cylindrical
surface relative to the outer one by the required amount, which changes slightly the mesh dimensions.

The degrees of freedom of nodes on the symmetry plane are constrained except that they are free to move in the radial direction.
The complex clamping of the specimen used in the experiments was not reproduced in the model. Instead, a reference node was
created which is kinematically coupled to the nodes of the upper surface. The specimen was loaded as follows:

- For < 3 the angle of rotation of the reference node is prescribed incrementally causing a change in the torque, which is
monitored by a “sensor.” An axial force increment is then prescribed through a user subroutine (UAMP) to generate the required
axial force-torque proportionality (similar schemes used in Papasidero et al., 2014; Xue et al., 2013).

- For 3 the axial displacement of the reference node is prescribed incrementally resulting in a force registered by the sensor. A
torque increment is then prescribed through the UAMP to generate the required axial force-torque proportionality.

3.2. Simulation of the = 0.75 tension-torsion radial path experiment

The results of the simulation of the experiment with = 0.75 are now used to illustrate the performance of the numerical
modeling effort. The experiment was simulated using the vM, H8 and Yld04-3D constitutive models, along with the corresponding
material stress-strain response of each (Figs. 3 and 4). Fig. 6 compares the three calculated nominal shear stress-rotation and axial
stress-elongation responses to the experimental ones. As in the experiments, the rotation and elongation are evaluated from the edges
of the test section. The three simulations match the experimental responses closely up to yielding. Subsequently, the numerical
responses trace mildly hardening trajectories that mimic the experimental one, and develop a limit load followed by a decaying
branch, an indication that deformation is localizing (△ limit load). The limit load is the result of tension-induced wall thinning
which is also responsible for the subsequent downturn in the nominal stress responses. It is worth remembering that by contrast,
under pure torsion the test section wall thickness section does not change and deformation does not localize (see Section 3.2,I). The

Fig. 6. Comparison of measured and predicted responses using three different constitutive models for = 0.75. (a) Shear stress-rotation and (b) axial
stress-elongation. The symbols “△” correspond to the nominal stress maxima or “limit loads.”
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H8 and Yld04-3D responses match the experimental one very well up to the limit load whereas vM underestimates both the axial and
shear stress experimental values. Furthermore, the shear maximum of vM occurs at a much smaller rotation.

Because the limit loads correspond to the onset of localization, a critical stress state in manufacturing, it is useful to compare the
limit states obtained using the classical analytical Considère condition with the FE model values. If elastic deformations and the small
radial deflection of the test section are neglected, this condition reduces to:

=d
d

.
c

c
22

22
22

(13a)

(2- is the axial direction). It can be shown that for isotropic yield functions this implies that

=d
d

,e

e
p

c
e

c22 (13b)

where is the yield function, e is the associated equivalent stress, and d e
p the work compatible equivalent plastic strain increment.

For vM (13b) becomes

=
+

d
d

3
2[1 4/ ]

.e

e c

ec
2 1/2 (14)

The equivalent strain at the limit load can be evaluated from (14) using the material response for vM extracted from the simple
shear test in Fig. 4b. For = 0.75, = 0.247ec

p , which compares with 0.244 from the FE model (taken from the mid-thickness at the
symmetry plane). Similar level of agreement was found for all radial paths with 0.5. For even smaller values of , localization
becomes increasingly more difficult to achieve numerically requiring the introduction of a small thickness imperfection in the FE
model.

The critical state for H8 can be similarly derived analytically from (13 b) while Yld04-3D requires numerical treatment. Overall,
the critical strain predicted for all three constitutive models was found to be within a few percent of the values from the full finite
element simulations. This points to the usefulness of the Considère type analysis for estimating the limit states for uniform axial-shear
stress states.

We now compare additional aspects of the numerical simulations to the experimental results in some detail. Fig. 7a compares the
radial deflection across the test section predicted using Yld04-3D with the measured values at the three stations marked on the
experimental responses in Fig. 5,I –– profiles ➂ correspond to the location of the limit load in the experiment. The predicted profiles
are in good agreement with the measured values. This agreement is another indication of the success of the Yld04-3D calibration
scheme used. It is worth pointing out that although for smaller values of the radial deformation is quite small, the stress in-
homogeneity caused by it is sufficient to trigger localization without the need for a geometric imperfection perturbation for all values
of biaxiality ratios considered except for = 0.5. For the smallest the induced radial deformation is too small, so localization was

Fig. 7. (a) Comparison of measured and calculated radial displacement profiles across the length of the test section for = 0.75, for the first three
stations marked in Fig. 6. (b) Measured Mean equivalent plastic strain in the localizing zone vs. rotation for = 0.75 , and corresponding ones
calculated using the vM, H8 and Yld04-3D constitutive models. Included is the strain at t3 o above the localizing zone. Shown also is the response
produced using the stress-strain response from the uniaxial test (see Fig. 4a). The symbols “△” correspond to the nominal stress maxima or “limit
loads.”
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induced by decreasing the wall thickness by 0.1% in a circular band t2 o wide spanning the symmetry plane.
Beyond the limit loads, deformation localizes for all three constitutive models and both the nominal shear and axial stresses in

Fig. 6 start to decrease. The decaying part of the vM shear response occurs early and the downturn is more pronounced. The Yld04-3D
matches the experimental downturn very well and the H8 downturn occurs at a slower rotation rate. A diffuse neck approximately t2 o
wide starts to develop forming a circular band spanning the symmetry plane. Fig. 7b plots the equivalent plastic strain on the outer
surface at the symmetry plane against the rotation angle from the three models (note that the variation in strain across the wall
thickness is quite small). Included for comparison is the corresponding experimental plot. The three calculated trajectories track the
experimental one up to their respective limit loads, and take a significant upturn thereafter. The H8 and Yld04-3D results follow the
nearly exponential growth of the experimental trajectory very well. The vM trajectory on the other hand, although exhibiting a
similar increasing trend, it takes place at a much smaller rotation because of the early development of the load maxima. The
trajectories clearly indicate the significant shearing and axial deformation experienced in the localizing zone.

The evolution of the deformation in the localizing zone produced by the Yld04-3D model, is illustrated in Fig. 8a, which plots ten
profiles of equivalent plastic strain over a t6 o height across the band corresponding to the stations marked on the experimental
responses with “○” symbols. Profiles ➀ and ➁ correspond to the early parts of the stress history so they show the deformation to be
essentially uniform across this zone. Profile ➂, which corresponds to the at the experimental load maxima, is also uniform but
slightly bent upwards due to the radial deformation of the test section in Fig. 7a (note that the predicted load maximum occurs at a
somewhat larger than in the experiment). Beyond this point deformation concentrates in a zone about t2 o wide while outside the
band the deformation remains relatively unchanged. This divergence in the deformation between points within and outside the
localizing band is also illustrated in Fig. 7b, which includes the strain-rotation response outside the localizing zone at =x t3 o2 .

The neck that forms is seen to sharpen with the deformation concentrating in the central few elements. By station ➉ the strain in
the center of the neck has reached a value of about 1.0, which corresponds to the mean strain at failure reported in the experiment.
Fig. 8b shows a cross sectional view of the necked zone at the plane of symmetry of the FE model at station ➉. Superimposed are color
contours corresponding to equivalent plastic strain. The upper edge represents the outer side of the specimen and the arrows indicate
the t6 o length captured in Fig. 8a. It is noteworthy that the localization is in the form of a diffuse neck as seen in experiments by
sectioning. Furthermore, the deformation across the wall thickness is seen to be quite uniform (less than 1% difference between the
center and the outer surface). The small curvature of the section is due to the radial deflection mentioned earlier. This zone was
meshed with 9 nearly cubical elements across the wall thickness (see Fig. 5). This discretization roughly corresponds to that of the
DIC, governed by the facet size and spacing, used to capture the deformation in the experiment (see Section 2.3,I). Increasing the
number of elements in this zone does not change the width of the neck but allows sharper strain gradients to develop leading to an
increase in the peak strain. Furthermore, in the absence of a failure criterion, the FE analysis must be terminated by the operator.
Thus in Fig. 7b each of the three strain trajectories were terminated at a value of about 1.0, which is the mean measure of failure
strain in the experiment.

For comparison purposes the = 0.75 experiment was also simulated using the material hardening response extracted from the
uniaxial tension test for the same constitutive model–shown extrapolated in Fig. 4a. The shear-rotation and axial stress-elongation
responses are compared to the ones based on the simple shear stress-strain response in Fig. 9. The two material models produce

Fig. 8. (a) Calculated equivalent plastic strain profiles across the test section for = 0.75, at rotations corresponding to those on the numbered
stations in Fig. 6. (b) Through-thickness view of the plane of symmetry (mirrored) showing the necked region corresponding station ➉ in Figs. 6 and
8a––arrows are t6 o apart.
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similar responses but the limit loads of the Uniax. material are delayed somewhat, while subsequently the stress drops at a similar
rate. The effect of this difference on the equivalent strain at the symmetry plane, is illustrated in Fig. 7b. The trajectory of “Uniax.” is
similar to that from the Sh-MF model, but the upturn is now delayed moving from 13. 9 to 15. 4 . It must, however, be em-
phasized that the neighborhoods of the limit loads and beyond occur at high enough strains to be influenced by the extrapolation of
the uniaxial response adopted. For completeness Fig. 9 includes responses based on the Reference Frame (RF) hardening curve
(Fig. 4a) which, in the strain regime of interest here, is much stiffer than the Material Frame (MF) response. Consequently, the
localization is delayed to strain levels much higher than those of the experiment.

3.3. Simulation of the = 2.0 tension-torsion radial path experiment

We now examine in some detail the results of the numerical simulations for = 2.0, which is representative of the more axial
stress dominant stress paths considered. Figs. 10–13 present similar sets of results as those presented for = 0.75. Fig. 10 compare the
shear-rotation and axial stress-elongation responses calculated using the three constitutive models with the experimental ones. The
shear response is predicted very well by Yld04-3D including the limit load and the decaying part after it. H8 is very good up to the
limit load, which however occurs slightly earlier causing the post-limit load response to start its downward trajectory somewhat
earlier. The vM underpredicts the complete response for this case also. The axial stress responses for Yld04-3D and H8 follow each
other closely. Their limit loads occur somewhat earlier and the decaying trajectories occur somewhat earlier than in the experimental
response. The vM response underpredicts the complete experimental one again.

Fig. 11a compares the radial deflection across the test section predicted by the Yld04-3D analysis for three stations, with station ➂
corresponding to the limit load in the experiment. The predicted deflections follow those measured very well. Higher axial stress is of
course expected to result in deeper necking. However, the maximum value of the radial displacement at ➂ is smaller than that in
Fig. 7a, because here the limit load occurs at smaller overall strains.

Fig. 11b draws the evolution of strain with on the outer surface at the symmetry plane together with the corresponding
experimental result. The Yld04-3D trajectory matches the experimental one very well in all respects. The H8 trajectory starts on the
upward path earlier than the experiment, this despite producing stress responses that are close to those of Yld04-3D in Fig. 10. The
vM trajectory is between those of Yld04-3D and H8. The results demonstrate that accurate prediction of the structural responses is not
sufficient for evaluating the performance of each constitutive model.

Fig. 12a shows the evolution of deformation in the localization zone produced by Yld04-3D. Plotted are ten profiles of equivalent
plastic strain that correspond to the stations marked on the measured stress-deformation responses in Fig. 10 with open symbols – ∧.
Following the load maxima deformation localizes becoming progressively more concentrated in a zone about t3 o tall while outside

Fig. 9. Measured and predicted responses using the shear and uniaxial stress-strain responses for = 0.75. (a) Shear stress-rotation and (b) axial
stress-elongation.
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this zone deformation remains essentially unchanged. In configuration ➉, which corresponds to the last station before rupture
occurred in the experiment, the strain in the neck is just under 0.6. This is significantly lower than the 1.0 strain achieved for = 0.75
at the point of rupture. A cross section of the necked region in this configuration is shown in Fig. 12b. Despite the smaller maximum
strain, the neck is deeper and more defuse. Furthermore, the strain varies more across the wall thickness than for = 0.75 with the

Fig. 10. Comparison of measured and predicted responses using three different constitutive models for = 2.0. (a) Shear stress-rotation and (b)
axial stress-elongation.

Fig. 11. (a) Comparison of measured and calculated radial displacement profiles across the length of the test section for = 2.0, for the first three
stations marked in Fig. 10. (b) Measured Mean equivalent plastic strain in the localizing zone vs. rotation for = 2.0 , and corresponding ones
calculated using three different constitutive models. Included is the equivalent plastic strain predicted using the uniaxial stress-strain response.
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maximum being in the center where the strain is about 20% higher than on the outer surface. It's worth pointing out that in this
configuration, the row of elements at the symmetry plane are rather elongated, which may affect the accuracy of the local strain.
Further refinement of the mesh can improve the accuracy of the local strain when they are implemented in a failure criterion. Such a
refinement has small influence on the calculated responses in Fig. 10.

Fig. 13 compares the shear stress-rotation and axial stress elongation responses produced using the simple shear (Sh-MF) and
uniaxial (Uniax.) stress-strain responses, both based on Yld04-3D. The limit load of theT response based on the Uniax. Material
is delayed compared to the experimental one and so is the decaying part. The same is the case for the response. This limit load
occurs at a relative small strain (∼0.12) where the Uniax. has a higher tangent modulus than the Sh-MF stress-strain response,

Fig. 12. (a) Calculated equivalent plastic strain profiles across the test section for = 2.0, at rotations corresponding to those on the numbered
stations in Fig. 10. (b) Through-thickness view of the plane of symmetry (mirrored) showing the necked region corresponding station ➉ in Figs. 10
and 12a––arrows are t6 o apart.

Fig. 13. Measured and predicted responses using the shear and uniaxial stress-strain responses for = 2.0. (a) Shear stress-rotation and (b) axial
stress-elongation.
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causing the observed difference in the limit load. The delay in the downturns of the two responses results in a significant delay in the
rotation angle at which the upturn in the equivalent strain takes place in Fig. 11b.

3.4. Summary of simulation of all tension-torsion radial path experiments

All seven radial path tension-torsion experiments were simulated numerically and the same sets of results as those presented for
= 0.75 and 2.0 were generated. For brevity here we present the predictions using Yld04-3D and limit discussion about the other two

sets of predictions to general trends. Fig. 14 compares the calculated shear-rotation and axial stress-elongation responses using Yld04-
3D with the experimental responses. The shear responses are uniformly in very good agreement with the measurements. The re-
sponses track the experimental ones very closely. The rotations at the limit loads are also in good agreement with those of the
measured responses, except for = 0.5 where the predicted limit load is somewhat delayed. The decaying shear stress trajectories are
also in very good agreement with the experimental ones. The corresponding H8 predictions follow the responses up to the limit loads.
The limit loads tend to be somewhat delayed for low values of causing a delay in localization, while for the axial stress dominant
paths the responses are close to those of Yld04-3D. By contrast, the vM responses uniformly underpredict the experimental ones, and
in most cases the limit load and the subsequent downturns are also missed.

The axial stress-elongation predicted using Yld04-3D track the experimental ones well up to the limit loads with the elongations at
the limit load predicted adequately also. The localization parts of the responses that follow the stress maxima agree with the ex-
perimental ones for the three lower values of , but undershoot them for the four higher stress ratios. The H8 responses follow the
Yld04-3D ones closely and produce limit loads that are also close except for lower values of . The post-limit load responses are close
to those of Yld04-3D for higher stress ratios, but tend to localize early for the lower ones. The vM responses are also lower than the
measured ones, the limit loads are mostly off, and the localizing sections occur either early or late.

Fig. 15 plots the equivalent plastic strain at the symmetry plane vs. rotation from the Yld04-3D predictions together with the
corresponding results from the seven experiments. The predictions track the measured trajectories very well for the higher stress
ratios. For the two lower values of the trajectories undershoot the experimental ones up to the limit load but follow the experi-
mental trend during the localization upturn. The ends of the experimental trajectories correspond to rupture, so the predictions were
terminated at the same strain. It is noteworthy that the evolution of necking was captured with the same degree of success as in the
two examples shown in Figs. 8b and 12b. Interestingly, the upturn of the strain-rotation for the H8 predictions occurs at a smaller
value of than in the experimental results, much like the = 2.0 case in Fig. 11b. The predicted trajectory for the 0.5 stress ratio is an
exception as here the upturn occurs well after the experimental one. The corresponding vM results are uniformly poor, particularly so
for lower values of . In summary, from these results we can conclude that use of a suitably calibrated non-quadratic yield function,

Fig. 14. Measured and predicted responses using the Yld04-3D constitutive model for the full set of radial path tension-torsion experiments per-
formed. (a) Shear stress-rotation and (b) axial stress-elongation.
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together with a suitably extracted and calibrated material hardening response are essential for reproducing the response and loca-
lization that precedes failure. The introduction of anisotropy through the Yld04-3D model generally improves the predicted results
particularly so for the evolution of localization.

3.5. Simulation of the corner path experiments

The = 1.0 and 2.0 families of corner paths reported in Part I were also simulated numerically and the predictions based on the
Yld04-3D constitutive model is illustrated in Figs. 16–18. Fig. 16 compare the calculated and measured shear-rotation and axial
stress-elongation responses for the radial, T andT paths for = 1.0. As reported earlier, the two calculated responses for
the radial path reproduce the experimental trajectories but at somewhat lower stress levels. The predictions for the T compare
very well with the experimental responses. For the T path the shear response is reproduced well but the axial response is
underpredicted rather significantly. This may be related to the fact that the work contour of the calibrated Yld04-3D model corre-
sponding to = 0.496 w

12 22 (i.e., = 1.0) undepredicted the experimental data point (see Fig. 1a) and this results in earlier yielding for
this value of . The equivalent strain-rotation results are compared to the measurements in Fig. 17a. Here the radial path trajectory is
reasonably close to the measured one; the upswing of the T response occurs somewhat earlier than the experiment, while the
trajectory for theT path is delayed compared to the experimental one.

Fig. 15. Comparison of measuredMean equivalent plastic strain vs. rotation for full set of radial path experiments, and corresponding one calculated
using Yld04-3D constitutive model.

Fig. 16. Comparison of measured and calculated responses using Yld04-3D for the set of radial and corner path experiments with = 1.0. (a) Shear
stress-rotation and (b) axial stress-elongation.
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Fig. 17. Comparison of measured Mean equivalent plastic strain vs. rotation for the radial and corner paths and corresponding one calculated using
Yld04-3D constitutive model.
(a) = 1.0 and (b) = 2.0.

Fig. 18. Comparison of measured and calculated responses using Yld04-3D for the set of radial and corner path experiments with = 2.0. (a) Shear
stress-rotation and (b) axial stress elongation.
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Fig. 18 compares the calculated and measured stress responses for the three = 2.0 paths. The radial path predictions follow the
measured responses very well for shear while for the axial stress the downturn occurs somewhat earlier. The equivalent strain
trajectory in Fig. 17b matches the experimental one very well. Both of the T stress responses are reproduced with similar level
of agreement to the radial results and so is the equivalent strain-rotation trajectory in Fig. 17b. For the T path the shear
response traces a somewhat lower trajectory than the experimental one. The equivalent strain in Fig. 17b follows the trend of the
measured results but the upswing occurs earlier. The predictions for the vM and H8 constitutive model were much worse and are not
included here.

Overall the performance of the analysis in the corner paths is reasonably good but not as good as for the radial paths. The
agreement with the measured results can be improved by including data from the corner paths in the calibration of the anisotropic
yield function.

4. Summary and conclusions

Part II of this study presented an analytical framework for predicting the set of tension-torsion responses reported in Part I all of
which exhibited limit load instabilities followed by extensive localized deformation that eventually resulted in failure. Motivated
by the limited damage observed in Al-6061-T6 at high strains, the experiments are simulated using a customized constitutive
model free of the “softening effects” of damage often used in failure predictions. The analysis incorporates a non-quadratic ani-
sotropic yield function, a material hardening response extracted to large strains from a simple shear test, and appropriate finite
element models.

The analysis successfully reproduced the measured biaxial stress-deformation responses starting from the onset of yielding; the
stress levels in the extended branches that follows where the deformation in the test sections is homogeneous; the stress and de-
formation levels at which the load maxima occur; and the stress decaying branches associated with localized deformation. The
analysis captured the geometry of the localization zones, the nearly exponential growth of strain in them and the associated sharp
strain gradients to strain levels that correspond to the recorded failure strains. Most importantly, this level of success was achieved
without the artificial introduction of any softening features to the constitutive model adopted (for alternate approaches to the
modeling of tension-torsion experiments see for example Xue et al. (2013); Papasidero et al. (2014; 2015)). Following are ob-
servations, comments and conclusions derived from this analysis effort.

• An essential aspect of this successful performance of the analysis is first the adoption of a non-quadratic yield function suitable for
Al-alloys, coupled to an accurate representation of the anisotropy induced to the tubes used in the experiments by the extrusion
process. This was achieved using the Yld04-3D yield function with exponent 8, calibrated using the radial path biaxial stress states
of the tension-torsion experiments of Part I together with the tension-pressure results presented in Appendix A,I.
• A second essential component of such analyses that is often difficult to adhere to, is a stress-strain response that captures the
hardening of the material to the strain levels reached in the experiments simulated. Because of the high strains recorded in the
experiments, the material hardening was established from a pure torsion test on a tubular specimen. This test produced a stress-
strain response to a much higher strain level than, for example, the value obtained from the necked zone of a tensile test using an
inverse method. It was further demonstrated that the extraction of the material hardening must be accomplished using the
constitutive model adopted in the simulation of the structural responses, which in this study meant the Yld04-3D yield function. In
the simple shear test used the material frame rotates, which must be accounted for in the extraction of the material hardening
when using an anisotropic yield function.
• The test specimen design allows the state of stress and strain in the test section to remain essentially uniform up to the attainment
of the load maxima––the small amount of radial deflection in the test section can be neglected. Thus, the onset of the load
maxima, important in structural design, can be evaluated from simple Considère-type considerations. The accuracy of such cal-
culations is decisively dependent on the availability of an accurate representation of material hardening. This of course is equally
applicable to the prediction of the load maxima by the numerical model.
• Localization is best modeled numerically using solid elements. Reproducing the high strain gradients that develop in the necked
zones to the levels achieved in the experiments requires a very fine mesh in these zones.
• The aluminum alloy used in the experiments had very small initial porosity and very limited pore growth was observed outside the
failure zone. Since the failure surfaces exhibited the dimpled relief associated with void growth, this must have occurred very
close to the end of life of the material. This material characteristic is at least partly responsible for the successful reproduction of
the local deformations to strain levels at which rupture occurred without the introduction of damage.
• The simulations reproduced the localized deformations that developed in the experiments at rupture. Termination of such ana-
lyses requires a failure criterion. A properly generated failure locus such as the one in Part I can be used to calibrate one of several
existing expressions for failure strain vs. triaxiality and Lode parameters. Such expressions can then be used in large-scale cal-
culations of structures under extreme loadings to terminate the life of material points and follow the progression of failure in the
structure. For example, the exponential relationship of failure strain to triaxility of Johnson and Cook (1985) or the Hosford-
Coulomb expression in Mohr and Marcadet (2015) lend themselves for such calculations.
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Appendix A. Calibration of Yld04-3D

The calibration follows broadly the procedure in Appendix B of Barlat et al. (2005) but using the tension-torsion, pressure-axial
load, pure shear and uniaxial tension experiments presented in Part I (see also the calibrations in Tardif & Kyriakides (2012); Chen
et al. (2016)). Through-thickness shear measurements are not available thus the anisotropy constants c c c c{ , , " , " }44 55 44 55 in Eq. (3) are
assigned the value 1.0. The rest of the constants are determined by minimizing the error function that is developed below. The test
sections in the experiments are assumed to be under plane stress represented by the vector:

= ( , , ) .T
11 22 12 (A1)

(i) Uniaxial Tension Test

The plastic work is determined from the measured response as follows:

=W dp p
0 22 22

w
22

(A2a)

where w
22 is the plastic strain at the chosen value of plastic work of 1000 psi (6.9 MPa) and w

22 is the corresponding stress. The uniaxial
stress state is introduced in the current yield function (3) resulting in

= ( )e u (A2b)

Using (A2) the following error function is established:

(A3)

The R-value is determined by fitting linearly the measured p p
11 22 data to obtain =r d d/ ,p p

11 22 and then

= =R d
d

r
r1uex

p

p
11

33 (A4)

Use the flow rule to evaluate

=d dij
p

ij (A5a)

at = (0, , 0)w T
22 and establish the strain ratio predicted through (3),

=R d d/ .u
p p

11 33 (A5b)

Then form the error function

(A6)

(ii) Pure Torsion Test

Let w
12 be the shear strain corresponding to the chosen value of plastic work evaluated from

= =W d2 1000 psip p
0 12 12

w
12

(A7a)

and w
12 be the corresponding stress. This pure shear stress-state is introduced into the current yield surface (3) resulting in

= ( )e s (A7b)

The following error function is then established

(A8)

(iii) Pressure-Tension Tests

For each of the seven 11 22 radial paths performed, let ( , )w w
11 22 be the strains corresponding to
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= + =W d d 1000 psi,p p p
0 11 11 0 22 22

w w
11 22

(A9a)

and ( , )w w
11 22 be the corresponding stresses. This biaxial stress is introduced in the current yield surface (3) to produce

= ( )e PT (A9b)

and the following error function is developed:

(A10)

The flow rule (A5a) is used to evaluate the strain increments for ( , , 0)w w T
11 22 and develop the predicted strain ratio =R d d/PT

p p
11 22.

The following error function is then constructed:

(A11)

(iv) Tension-Torsion Tests

In these experiments the axial-to-shear stress ratio is prescribed to be:
=22 12 (A12a)

while the hoop-to-axial ratio is

=11 22 (A12b)

The constant is evaluated for each value of as outline in Appendix B.
For each of the seven 22 12 radial paths, let ( , , )w w w

11 22 12 be the strains corresponding to

= + + =W d d d2 1000 psi,p p p p
0 11 11 0 22 22 0 12 12

w w w
11 22 12

(A13a)

and ( , , )w w w
11 22 12 the corresponding stresses. This state of stress is introduced in the current yield surface (3) to produce

= ( )e TT (A13b)

which is then used to generate the following error function:

(A14)

The flow rule (A5a) is used to evaluate the strains for ( , , )w w w T
11 22 12 and develop the strain ratios =R d d/TT

p p
1 11 22 and

=R d d/TT
p p

2 12 22, which are used to form the following error function:

(A15)
Finally, the optimal values of the anisotropy coefficients c c( , )ij ij are then chosen by minimizing the following weighted sum of these
error functions:

(A16)

In (A16) the first series represents the errors from the m flow stresses, the second the errors from the n strain ratios developed above.
The variables ( , )m n are weight functions that represent the confidence level assigned to each particular experiment. The mini-
mization was performed using the routine NMinimize in Mathematica.

Appendix B. Estimation of

In the tension-torsion radial path experiments, the test section develops a small amount of curvature that depends on the level of
tension applied, or the ratio . The hoop stress is assumed to be proportional to the axial stress through

= .11 22 (B1)

For values of 1.5, the curvature developed in the axial direction is quite small. Thus is estimated using Hosford's isotropic
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yield function (1) in the flow rule to determine the following strain ratio:

= = =R d
d

f/ ( , ).
p

p
H H11

22

8

11

8

22 (B2)

f ( , ) is assigned the hoop-axial strain ratio measured in the experiment in the crest of the axial curvature––at the stress levels
associated with =W 1000p psi (6.9MPa) Since is known, is evaluated from (B2) numerically.

For > 1.5, the axial curvature that develops is more significant. Let 2 and 1 be the measured radii of curvature in the axial and
hoop direction respectively at the test section mid-height. We assume that this part of the test section is in membrane state of stress,
which then satisfies the membrane equilibrium equation

= 0.11

1

22

2 (B3)

Eq. (B3) readily yields

= = .11

22

1

2 (B4)

The estimated values of for the seven tension-torsion radial paths and the “plane-strain” experiments are listed in Table B1.

Table B1
Estimated values of the hoop-to-axial stress ratio, β for various values of α

0.5 0.75 1.0 1.5 2.0 3.0 4.0 ∞
0.60 0.47 0.39 0.32 0.25 0.23 0.21 0.19
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