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ABSTRACT

The last decade of rich data-driven research on functional
magnetic resonance imaging (fMRI) has provided novel in-
sights into human brain function and aberrant behavior in
brain disorders. Independent component analysis (ICA) is
a widely-used technique for data-driven analysis of fMRI
data. Spatial ICA is the most prominent variation of ICA and
provides replicable and interpretable intrinsic connectivity
network (ICN). It assumes common spatial activation across
time. However, very recent studies indicate that there is utility
in adopting a dynamic spatial activation modeling approach.
Characterizing dynamics for both temporal and spatial do-
mains means we have a multitude of decompositions of the
already high-dimensional, multi-dataset, and multi-subject
fMRI data. Hence making sense of the derived data becomes
a significant issue. Here we use topological data analy-
sis (TDA) to identify topological descriptors of the windowed
spatially dynamic components of fMRI data. We discover
and summarize differences in the spatial dynamics of con-
trols and schizophrenia patients (SZs). We discover that SZs
generally have lower Betti numbers and higher Wasserstein
distance between spatiotemporal brain states, which provide
intuitive summaries of the reduced dynamism SZs exhibit in
resting-state fMRI studies.

Index Terms— fMRI, brain dynamics, spatial dynam-
ics, schizophrenia, topological data analysis, Betti number,
Wasserstein distance

1. INTRODUCTION

fMRI is a noninvasive imaging method extensively used to
study human brain function. Seed-based and data-driven ap-
proaches are two widely used methods of analyzing fMRI
data. Group ICA is a popular data-driven method for multi-
subject fMRI studies [1]. In this method, the spatial ICA
algorithm decomposes the data into a linear combination of
spatially and statistically independent components (ICs) and

associated time courses (TCs). The coherence of TCs from
distant brain regions, or networks, show functionally synchro-
nized low-frequency blood-oxygen-level-dependent (BOLD)
activity [2, 3] This synchronism is referred to as functional
network connectivity (FNC) or dynamic functional network
connectivity (dFNC) when resolved into time windows [4].

Recent studies by Iraji et al. challenge the assumption
of the static nature of the brain networks and show that these
vary spatially in time at the voxel level [5]. By focusing on the
variation of networks coupling at the voxel level, the authors
reveal features that are spatially dynamic, and brain networks
that transiently integrate and segregate.

Topological data analysis (TDA) is an emerging field mo-
tivated by the application of algebraic topology and compu-
tational geometry to complex data analysis [6]. The goal is
to build higher-dimensional generalizations of neighboring
graphs on the data. This can be done via proposed mathemat-
ical theories and computational tools for analysis, with many
recent promising and successful results in many fields.

In this work, we ask how dynamic the resting-state brain
networks in the human brain are in the spatial domain. We
turn to TDA for some concise and objective answers. Fig.
1 shows a simple overview of the analysis. We reduce the
temporally evolving brain networks into a few tractable brain
states. We then quantify the topological descriptors of those
states, specifically state Betti numbers and Wasserstein dis-
tance between the state pairs.

2. METHODS

2.1. Data

We used resting-state fMRI data from three datasets in this
study: Function Biomedical Informatics Research Net-
work (FBIRN), Centers of Biomedical Research Excel-
lence (COBRE) and Maryland Psychiatric Research Cen-
ter (MPRC). The population information and acquisition
parameters of each dataset are listed in Table. 1.
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Fig. 1: Flowchart of the analysis. 11 resting state networks (RSNs) were
estimated from each time window (of duration 30 TR) of the preprocessed
fMRI data of each subject. k-means clustering (k = 4) was used to la-
bel each windowed intrinsic connectivity network (ICN), and each cluster’s
mean network/state was estimated. The mean state spatial maps (SMs) were
put through TDA analysis, and the topological descriptors were calculated.
Finally, statistical comparisons between controls and patients were made on
the descriptors.

2.2. Preprocessing

We used Statistical Parametric Mapping (SPM) (https://www.
fil.ion.ucl.ac.uk/spm/) and Analysis of Functional NeuroIm-
ages (AFNI) (https://afni.nimh.nih.gov/) to preprocess the
raw fMRI data. We performed the following steps as part of
preprocessing: brain extraction, motion correction using the
INRIAlign toolbox, slice-timing correction using the middle
slice as a reference, despiking using AFNI 3dDespike tool,
warping to the Montreal Neurological Institute (MNI) tem-
plate, resampling to 3mm? isotropic voxels, spatial smooth-
ing using a Gaussian kernel with 6mm full width at half
maximum (FWHM), and variance-normalization (z-scoring)
each voxel time course.

2.3. Group-level Network Estimation

We estimated the group-level brain networks from the prepro-
cessed data using the group spatial ICA approach [1]. For this
purpose, we used the Group ICA of fMRI Toolbox (GIFT)
software (https://trendscenter.org/software/gift/) [7]. We re-

Table 1: Population information & acquisition parameters

Dataset FBIRN COBRE MPRC
Population info

Controls 88 75 152
Schizophrenia patients 60 51 82
Total 148 126 234
Mean age 37.59 38.09 39.26
S.D. of age 10.88 13.27 13.92
Acquisition parameters (3 sites)

Scanner type

Siemens 3 T

Siemens 3 T

Siemens 3 T

TR 2 sec. 2 sec. 2/2.21/2 sec.
TE 30 ms 29 ms 27/30/30 ms
Slices 32 33
Slice thickness 4 mm 3.5 mm
Slice gap 1 mm 1.05 mm
Flip angle e 75°°
FOV 220mm? 240mm? 220mm?
Matrix size 64 X 64 64 X 64
Scan duration 5 min. 5 min.
Volumes 162 149 150/140/444
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Fig. 2: Spatially dynamic windowed ICN estimation. Spatially constrained
ICA (scICA) algorithm was applied to each subject’s fMRI volumes in slid-
ing windows of duration 30 TR. Resultant components show spatio-temporal
variation in the 5-dimensional space.

duced the preprocessed fMRI data a subject-level principal
component analysis (PCA), followed by a group-level PCA,
and finally an ICA step to identify the spatial independent
components (ICs) using the infomax algorithm [8]. We used
a low model order ICA to estimate 20 group-level ICs to limit
the number of group comparison, although higher model or-
der . We identified 11 RSNs from these ICs using their spa-
tial and temporal properties and our prior knowledge of brain
anatomy and function [4].

2.4. Spatially Dynamic Network Estimation

We used a sliding window approach and the group information-
guided ICA (GIG-ICA) framework to estimate the spatially
dynamic brain networks for each subject. This constrained
ICA based approach has been proven to be robust in fMRI-
based group analyses [9]. Fig. 2 shows how this approach was
implemented. In the sliding window approach, we took the
preprocessed subject fMRI data and applied sliding windows
of size 30T'R on it, with a step size of 1T R. At each win-
dow, we estimated the ICs of the subject using the GIG-ICA
approach. This approach allows us to estimate correspond-
ing networks at each window and thus observe the spatial
alternations in such networks. GIG-ICA computes the ICs of
individual subjects by re-optimizing the independence among
them while still preserving the correspondence of networks
across subjects [10]. This results in greater independence of
components and improved accuracy of the ICs and TCs.

2.5. Spatial States of Brain Networks

Spatial dynamics operates in a large space in this dataset. So
we used k-means clustering to reduce the dimension of the
data along the time/window dimension. For each windowed
ICN, we applied k-means clustering on a total of 78374 win-
dows across 508 subjects. We implemented the k-means clus-
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Fig. 3: Group-level reference networks used for feature extraction in the
scICA step

tering using python scikit-learn package with k¥ = 4 and 10
replicates. To justify the choice of k, we evaluated k-means
clustering using a range of k between [3 — 8] and found that
for most of the ICs, k¥ = 4 minimized the Davis-Bouldin cri-
terion [11].

2.6. Topological Data Analysis

TDA of spatially dynamic networks involves estimating three
steps from every state of the windowed ICN for each subject:
1. cubical complex, 2. filtration, and 3. persistence diagrams.
We performed the TDA analysis using the Python GUDHI
toolbox (https://gudhi.inria.fr/). An fMRI volume is already
preprocessed into a grid of dimensions 53 x 63 x 52. There-
fore, the conversion to the cubical complex is straightforward
[12]. Each vertex of the cubical complex is a voxel in the
fMRI volume. The regular 3D grid defines the edges between
the vertices, and each vertex has six neighbors. These neigh-
borhoods define the higher-dimensional elements of the cu-
bical complex, such as squares and cubes. Low-dimensional
topological features such as Betti numbers arise as a result.
0-dimensional, 1-dimensional, and 2-dimensional topologi-
cal features are known as connected components, “circular”
holes, and “voids” or “cavities”, respectively. In this work,
we looked at the Betti number of 1-dimensional holes (by) in
the windowed ICNs as a potentially informative topological

€ aeIs AN L aieis
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Fig. 4: The 4 spatially dynamic states of the IC#18 (anterior default mode
network) across subjects/time windows. The connected square blocks indi-
cate some of the regional differences in intensity of different states of the
same ICN across subjects.

descriptor. We also transformed the voxel intensities to ab-
solute values and thresholded them at the intensity value of
1. The voxel intensity values can be treated as the activation
function that allows us to apply filtration on the cubical com-
plex. Topological features such as connected components are
created and destroyed at various levels of filtration. Finally,
the persistence diagram summarizes the topological activities
at level of filtration. Wasserstein distance measures the sim-
ilarity between two persistence diagram and it is the other
metric of interest in our work.

2.7. Statistical Comparison

We intended to compare two metrics: state-wise Betti num-
bers in 1-dimension and Wasserstein distance between each
state pair for each windowed ICN between the two groups,
controls and SZ. For this purpose, we first regressed out the
effect of age and gender variables on the above metrics using
ordinary least squares regression. The residuals had a right-
tailed distribution. Next we examined the effect of the di-
agnosis variable on the log residuals of the models using a
two-sample T-test.

3. RESULTS

Fig. 3 shows the 11 group-level networks estimated from the
data. These are labeled according to their function based on
prior knowledge. Fig. 4 shows each cluster or spatial state
mean across all subjects from one windowed ICN (IC#3, vi-
sual primary). Here we show the four spatial states of the
same IC, demonstrating considerable spatial variation in time.
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Fig. 5: Difference in log Betti numbers in 1-dimension between controls
and SZ. The three instances where a significant difference was observed are
shown. Solid dots and lines indicate mean and 95% CI respectively. SZ
generally has higher Betti numbers than controls, indicating more holes in
the IC topology.

3.1. Group Difference in Betti Numbers

In total, across all IC/state combinations, we made a total of
43 comparisons in the log Betti numbers in 1-dimension be-
tween controls and SZ. Note that for some IC/state combi-
nations, some subjects may not have any data because they
do not spend any time in that state. Moreover, for different
ICN the experiments are independent. SZs show lower Betti
numbers in 1-dimension compared to controls in 15 of the 43
experiments. The three instances where a significant differ-
ence was observed are shown in Fig. 5. Solid dots and lines
indicate mean and 95% confidence interval respectively. The
significant differences are located in subcortical, secondary
somatomotor and left frontoparietal regions. SZ generally has
lower Betti numbers than controls, indicating a lower number
of holes in the IC topology of the patients. We do not correct
the p-values for multiple comparisons because the number of
experiments is small enough for each ICN.

3.2. Group Difference in Wasserstein Distance

Across all IC/state combinations, we made a total of 63 com-
parisons in the log Wasserstein distance between state win-
dowed ICN pairs between controls and SZ. Similar to the
experiments with Betti numbers, some subjects may not have
any data for a particular IC/state-pair combination. SZs show
higher Wasserstein distance than controls in 36 of the 63 ex-
periments. The eight instances where a significant difference
was observed are shown in Fig. 6. Three of the differences
are observed in the left and right frontoparietal regions, two in
the visual primary region, and the rest are in the salience, lan-
guage and anterior default mode networks. SZ generally has
higher pairwise Wasserstein distance than controls, indicating
reduced dynamism in the spatial dynamic space.

4. DISCUSSION

Recent work highlights the importance of studying brain spa-
tial dynamics to understand brain function [13]. In this work,
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Fig. 6: Difference in log pairwise Wasserstein distance between states be-
tween controls and SZ. The eight instances where a significant difference
was observed are shown. Solid dots and lines indicate mean and 95% CI re-
spectively. SZ generally has a higher Wasserstein distance than controls.

we used TDA to develop novel summary metrics to express
brain function in the spatial dynamics space. We found dis-
tinct topological descriptors in the windowed ICNs of SZs
that discriminate them from the controls. Considering the
number of windowed ICN and state or state-pair combina-
tion, we saw that patients generally have lower Betti numbers
in 1-dimension and higher Wasserstein distance between
state-pairs in the windowed ICN. Increased Betti number in
1-dimension indicates the presence of more “circular holes”
in the IC maps of the controls. Wasserstein distance is also
known as “earth mover’s distance” or “optimal transport
cost.” Our results indicate that it incurs a higher cost for SZs
to switch brain states in the spatial dynamic space. When we
put our findings in light of previous literature [14, 15], it can
explain the reason for reduced dynamism in SZ in terms of
the topological properties of the brain networks.

Spatial dynamics is a novel approach to understanding
brain function using resting-state fMRI, and our work is the
first TDA-based approach in this space. As such, our work
has both limitations and many promising future directions.
The cubical complex transformation can be improved with
some preprocessing steps. It can be helpful to min-max scale
the voxel intensities between values [0 — 1], and then apply
sub-level set filtration on the complement of the intensity val-
ues because it can result in more meaningful Betti numbers.
We used k-means clustering for identifying the spatially dy-
namic brain states. However, a topological clustering method
based on the Wasserstein distance matrix between pair-wise
volumes can be more helpful. Future work may focus on the
trajectory of the persistence diagrams across time windows
and applying a different complex function on the brain sur-
face.
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