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Brain network interactions are commonly assessed via functional (network) connectivity, captured as an undi-
rected matrix of Pearson correlation coefficients. Functional connectivity can represent static and dynamic rela-
tions, but often these are modeled using a fixed choice for the data window Alternatively, deep learning models
may flexibly learn various representations from the same data based on the model architecture and the training
task. However, the representations produced by deep learning models are often difficult to interpret and require
additional posthoc methods, e.g., saliency maps. In this work, we integrate the strengths of deep learning and
functional connectivity methods while also mitigating their weaknesses. With interpretability in mind, we present
a deep learning architecture that exposes a directed graph layer that represents what the model has learned about
relevant brain connectivity. A surprising benefit of this architectural interpretability is significantly improved ac-
curacy in discriminating controls and patients with schizophrenia, autism, and dementia, as well as age and
gender prediction from functional MRI data. We also resolve the window size selection problem for dynamic
directed connectivity estimation as we estimate windowing functions from the data, capturing what is needed to
estimate the graph at each time-point. We demonstrate efficacy of our method in comparison with multiple exist-
ing models that focus on classification accuracy, unlike our interpretability-focused architecture. Using the same
data but training different models on their own discriminative tasks we are able to estimate task-specific directed
connectivity matrices for each subject. Results show that the proposed approach is also more robust to confound-
ing factors compared to standard dynamic functional connectivity models. The dynamic patterns captured by our
model are naturally interpretable since they highlight the intervals in the signal that are most important for the
prediction. The proposed approach reveals that differences in connectivity among sensorimotor networks relative
to default-mode networks are an important indicator of dementia and gender. Dysconnectivity between networks,
specially sensorimotor and visual, is linked with schizophrenic patients, however schizophrenic patients show in-
creased intra-network default-mode connectivity compared to healthy controls. Sensorimotor connectivity was
important for both dementia and schizophrenia prediction, but schizophrenia is more related to dysconnectivity
between networks whereas, dementia bio-markers were mostly intra-network connectivity.

1. Introduction

Functional connectivity has emerged as a promising tool for un-
derstanding the brain’s functional architecture and has been widely
used (Greicius et al., 2003; Lee et al., 2013; Rogers et al., 2007; Van
Den Heuvel and Pol, 2010a). Disruptions in the brain’s functional con-
nectivity are often linked to brain disorders evident in patients’ be-
havior (van den Heuvel and Pol, 2010b). For example, schizophrenic
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patients have high level of functional dysconnectivity between brain
networks (Culbreth et al., 2021; Fu et al., 2017; Lynall et al., 2010;
Morgan et al., 2020; van den Heuvel et al., 2010; Yu et al., 2011;
Zhang et al.,, 2019; Zhu et al., 2020) and exhibit dysregulated dy-
namic connectivity across multiple brain networks (Supekar et al.,
2019). Alzheimer’s disease (AD) is also known to disrupt brain dy-
namics leading to wide-spread cognitive dysfunction (Haan et al.,
2011).
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The association of brain disorders with abnormal static or dynamic
functional connectivity highlights the need to develop models that
can identify disorder-specific connectivity aberrations. This observation
guides development of various approaches to brain connectivity analy-
sis (Arslan et al., 2018; Kazi et al., 2021; Kim and Ye, 2020; Ktena et al.,
2017; 2018; Ma et al., 2019; Parisot et al., 2018; Yan et al., 2017). How-
ever in most existing approaches, the functional connectivity matrices
are not informed by the prediction task but instead estimated prior to
training; thus, they depend entirely on the chosen input window of data
samples. The independence from the downstream task results in inflexi-
ble estimation of connectivity matrices as the estimate is unchanged re-
gardless of whether the task is to predict a brain disorder, age, or other
quantity. Kim et al. (2021) proposed a method where the functional con-
nectivity structure is computed based on the learned representations of
the data, but even this method lacks a learnable connectivity estima-
tion method. We argue that task-dependent connectivity matrices can
be estimated by a deep learning (DL) model using learnable weights. DL
models are flexible in their ability to learn a variety of representations
from the same data based on the architecture and ground-truth signal
used in training.

However, using a DL method to estimate a connectivity matrix can
be challenging without the presence of the ground-truth graph during
training. Another problem of many DL models is lack of consistency
and interpretability in the learned representations. Saliency maps com-
monly used to address interpretability of these models (Angelov et al.,
2021; Lewis et al., 2021; Ras et al., 2021; Simonyan et al., 2014) may
be difficult to interpret (Liu et al., 2021). Arguably, the difficulty of
interpreting representations is the reason why studies using DL mod-
els incorporate inflexible but interpretable feature selection steps for
connectivity estimation, for example Pearson correlation coefficients
(PCC) (Freedman et al., 2007).

In most of the current studies, functional connectivity estimates are
either static or dynamically computed using a sliding window approach
dependent on the window size and stride (Armstrong et al., 2016; Dama-
raju et al., 2014; Fu et al., 2020; 2018; Gadgil et al., 2021; Yao et al.,
2020). Unable to capture non-stationarity, static matrices miss essential
information about dynamics. For example, dynamic functional connec-
tivity estimates show re-occurring patterns which cannot be captured
by their static counterparts (Allen et al., 2012; Calhoun et al., 2014;
Hutchison et al., 2013). Using a static graph learning method to capture
a dynamical system may reduce classification performance (Xu et al.,
2020). Kipf et al. (2018) show improved results by just dynamically
re-evaluating the learned static graph during testing. The improved per-
formance for the relevant task is understandable as the dynamic con-
nectivity provides essential information about the system, for instance,
capturing re-occurring patterns. The brain’s functional activity is also
perceived to be highly dynamic and hence cannot be faithfully cap-
tured with a static or even window-based approach (Yaesoubi et al.,
2018).

Furthermore, studies using functional connectivity to measure con-
nectivity between brain regions or networks do not capture the direction
of interaction and only measure undirected statistical dependence such
as correlations, coherence, or transfer entropy. Correlation can arise for
many reasons; for example, due to a common cause when an unobserved
network affects two networks that are observed (Pearl, 2000; Spirtes
etal., 1993). Arguably, dynamics of interaction among brain networks is
beyond simple correlations and correlation may only partially describe
it. Whereas, effective connectivity is a more general way to represent dy-
namic and directed relationships among brain’s intrinsic networks. As
introduced by Friston (2011) effective connectivity falls into a model-
based class of methods while multiple other methods, including those in
the model-free class have been since developed (Bielza and Larranaga,
2014; Chiang et al., 2017; Chickering, 2002a; 2002b; Deshpande et al.,
2011; Goebel et al., 2003; Gorrostieta et al., 2013; Mitra et al., 2014;
Schreiber, 2000; Seth et al., 2015; Spirtes and Glymour, 1991; Ursino
et al., 2020; Vicente et al., 2011).
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Like these approaches, to estimate brain networks’ connectivity that
is 1) directed, 2) interpretable, 3) flexible, and 4) dynamic, we have
developed an approach called the Directed Instantaneous Connectivity
Estimator (DICE): a predictive model to estimate dynamic directed con-
nectivity between brain networks, represented as a dynamically varying
directed graph by predicting the downstream binary label. Our model
may be placed into the category of model-free connectivity methods as it
does not model the data generation process. We defer to using “directed
(network) connectivity” (D(N)C) for the graphs that DICE estimates.

Unlike existing supervised DL models that typically produce difficult-
to-interpret representations, we designed our model primarily with in-
terpretability in mind. Our model reveals what it learned about the
dynamics of brain network connectivity without using post hoc inter-
pretability methods. Effectively, we have built a “glass-box” layer within
a traditionally “black-box” DL model. In contrast to commonly used hid-
den layers, the “glass-box” layer propagates a weighted adjacency ma-
trix of a directed graph, ensuring that it is interpretable in the context of
the classification task. Hence, by estimating DC based on the task and
using only the estimated connectivity structure for classification, our
model learns to capture task-relevant networks and their connectivity,
leading to a flexible estimation of an interpretable DC. By estimating
DC instantaneously (window-size = 1), DICE removes the need for the
window-size parameter used in many dynamic connectivity studies.

To thoroughly validate DICE’s performance, we conduct a series of
experiments on four neuroimaging datasets that span three disorders
(schizophrenia, autism, and dementia) and cover a wide age range. We
train the model on classification tasks for each of these brain disorders,
age prediction, and gender classification, and analyze the resulting DC
of the “glass-box” layer. Surprisingly, our deliberate focus on stable in-
terpretable results has an enhancing side effect on DICE’s predictive per-
formance. As we show, the model’s predictions are better or on par with
state-of-the-art methods that were developed with a focus on classifica-
tion performance rather than interpretability. We show that when learn-
ing to classify subjects based on a specific criterion, DICE estimates in-
terpretable DCs specific to that criterion. For gender and mental disorder
classification, subgraphs emphasized by the learned DCs are discrimina-
tive of gender and mental disorders, respectively. We also demonstrate
that DICE learns interpretable DCs distinct to dementia, gender, and
age prediction for the same subjects by enhancing connectivity for net-
works that pertain to the training signal. Our flexible estimation of DC
structures advances the results of Salehi et al. (2020), which show that
functional parcel boundaries change for an individual based on the cog-
nitive state. We show an increased utility of the inferred directionality
for increasing the precision of explainable group differences. As a re-
sult, DICE can resolve more states in fMRI dynamics than is resolvable
in typical dynamic functional network connectivity analyses. Addition-
ally, DICE incorporates a temporal attention module that highlights cru-
cial time steps relevant to the task, further improving the interpretation
of predictions for the dynamics. The learned DC structures and tempo-
ral attention weights are stable and consistent across randomly-seeded
trials.

2. Materials and methods
2.1. Materials

We use resting state functional magnetic resonance imaging (rs-
fMRI) data as input to our model. fMRI measures blood oxygena-
tion level-dependent (BOLD) signal, which captures the functional
activity of the brain over time. We test our model by classify-
ing three different brain disorders, predict gender and age of sub-
jects. For each brain disorder we perform binary classification of
healthy controls (HC) and patients. Four datasets used in this study
are collected from FBIRN (Function Biomedical Informatics Research
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Table 1
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Details of the datasets used. We tried different number of test folds in our experiments but that did not have a significant
effect on results. Time-points is the number of time-points for each subject in the dataset. Refer to Section Appendix A
for more details. In the paper we report the results with test folds that match comparing studies.

Name Category Preprocessing Parcellation Subjects 0 Class 1 Class Test Folds Time-points
FBIRN Schizophrenia SPM12 ICA 311 151 160 4,6,18 157

OASIS Dementia SPM12 ICA 912 651 261 4,10 157

ABIDE  Autism SPM12 ICA 569 (TR=2) 255 314 5,10 140

ABIDE Autism SPM12 ICA 869 398 471 5,10 140

HCP Gender SPM12 ICA 833 390 443 5,15 980

FBIRN Schizophrenia SPM12 Shaefer 200 311 151 160 18 157

HCP Gender Glasser Shaeffer 200 942 411 531 10 1200
ABIDE  Autism C-PAC Shaeffer 200 871 403 468 10 83-316

Network!) Keator et al. (2016) project, from release 1.0 of ABIDE
(Autism Brain Imaging Data Exchange?) Di Martino et al. (2014) and
from release 3.0 of OASIS (Open Access Series of Imaging Studies®)
Rubin et al. (1998). Healthy controls from the HCP (Human Connec-
tome Project) (Van Essen et al., 2013) are used for gender prediction.
Refer to Table 1 for details of the datasets.

2.1.1. Preprocessing

We use two typical brain parcellation techniques; independent com-
ponent analysis (ICA) and regions of interest (ROIs) based on a pre-
defined atlas. The preprocessing pipeline used depends on the parcella-
tion technique and the pipeline used in state-of-the-art studies for the
dataset. All the preprocessing was done before training the model.

ICA parcellation: For all experiments conducted using ICA as brain
parcellation technique the fMRI data was preprocessed using statistical
parametric mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) un-
der the MATLAB 2021 environment. A rigid body motion correction was
performed to correct subject head motion, followed by the slice-timing
correction to account for timing difference in slice acquisition. The fMRI
data were subsequently warped into the standard Montreal Neurologi-
cal Institute (MNI) space using an echo planar imaging (EPI) template
and were slightly resampled to 3 x 3 x 3 mm?® isotropic voxels. The re-
sampled fMRI images were then smoothed using a Gaussian kernel with
a full width at half maximum (FWHM) = 6 mm.

We selected subjects for further analysis (Fu et al., 2021) if the sub-
jects have head motion < 3° and < 3 mm, and with functional data pro-
viding near full brain successful normalization (Fu et al., 2019). 100
ICA components are estimated using a novel fully automated Neuro-
mark pipeline “neuromark_fmri_1.0”* described in Fu et al. (2019). This
method is capable of capturing robust imaging features that are com-
parable across subjects, datasets, and studies, which is beneficial for
those studies need replication. The Neuromark framework leverages an
adaptive-ICA technique that automates the estimation of comparable
brain markers across subjects, datasets, and studies. A set of component
templates were used as references to guide the estimation of single-scan
components for the data. These component templates were created via
a unified ICA pipeline. They were constructed using an independent
resting-state fMRI data with large samples of healthy subjects from the
genomics superstruct project (GSP). The GSP data include 1005 sub-
jects’ scans that passed the data QC. High model order (order = 100)
group ICA was performed on the GSP data, and then the independent
components (ICs) from the GSP data were used as the references to ex-
tract components for each dataset used for experiment in this study. The
Neuromark framework extracts the components for each subject respec-
tively, which means that the estimation of features of each subject is
not influenced by the others. However, the choice of components (and

1 We use FBIRN phase IIL

2 http://fcon_1000.projects.nitre.org/indi/abide/
3 https://www.oasis-brains.org/

4 https://trendscenter.org/data/

number of components) can influence accuracy, but our study is not fo-
cusing on determining the best number of ICs rather use the available
components and let the model decide the task-dependant components.

Region parcellation: State-of-the-art methods use different prepro-
cessing pipelines for different datasets. For comparison with these meth-
ods on HCP, ABIDE, and FBIRN datasets, we select the same preprocess-
ing pipelines as in the relevant comparing method. We use the HCP
(Van Essen et al., 2013) data which was first minimally pre-processed
following the pipeline described in Glasser et al. (2013). The prepro-
cessing includes gradient distortion correction, motion correction, and
field map preprocessing, followed by registration to T1 weighted im-
age. The registered EPI image was then normalized to the standard
MNI152 space. To reduce noise from the data, FIX-ICA based denois-
ing was applied (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014).
To minimize the effects of head motion subject scans with framewise
displacement (FD) over 0.3mm at any time of the scan were discarded.
The FD was computed with fsl motion outliers function of the FSL
(Jenkinson et al., 2012). There were 152 discarded scans from filter-
ing out with the FD, and 942 scans were left. For all experiments, the
scans from the first run of HCP subjects released under S1200 were
used. ABIDE (Di Martino et al., 2014) was pre-processed using C-PAC
(Aertsen and Preissl, 1991). The preprocessing includes; slice time cor-
rection, motion correction, skull striping, global mean intensity normal-
ization, nuisance signal regression, band pass filtering, and finally func-
tional images were registered to anatomical space (MNI12). After pre-
processing using C-PAC, 871 out of 1112 subjects were chosen based
on the visual quality, inspected by three human experts which looked
for brain coverage, high movement peaks and other artifacts resulted by
scanner (Abraham et al., 2017; Cao et al., 2021; Parisot et al., 2018). To
pre-process FBIRN data, SPM12 pipeline was used as explained in previ-
ous section with few extra steps. After the smoothing using a Gaussian
kernel, the functional images were temporally filtered by a finite im-
pulse response (FIR) bandpass filter (0.01 Hz-0.15 Hz). Then for each
voxel, six rigid body head motion parameters, white matter (WM) sig-
nals, and cerebrospinal fluid (CSF) signals were regressed out using lin-
ear regression.

We used two atlases for brain parcellation; Schaefer et al. (2017),
and Harvard Oxford (HO) (Desikan et al., 2006) with 200, and 111 re-
gions respectively. For each region, average value is computed for all
the voxels falling inside a region, thus resulting into a single time-series
for each region. After dividing data into regions, each time-series was
standardized by their zscore having zero mean and unit variance.

2.2. Method

Our DICE model recieves the time-courses of the ICA components
or ROIs represented as a matrix of size N =7 (Number of compo-
nents/ROIs * Number of time-points) and learns a set of T directed
graphs representing the dynamic DC or DNC between spatial compo-
nents (e.g., ICA-based spatial components, regions from an atlas), which
we designate as nodes of a graph by predicting the binary labels. Let G
represent the set of graphs where G = {g,, g,. ..., gy} where T is the to-
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Fig. 1. DICE architecture using biLSTM, self-
attention and temporal attention. We use self-
attention between the embeddings of all com-
ponents/nodes at each time-point to estimate
the DC W,. Temporal attention is used to cre-
ate a weighted sum of the 7" DC. Architecture
details of temporal attention is shown in Fig. 2.
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tal time-points and g, = (V;, E,), where, V; and E, represent the nodes
and edges present at time-point 7. To create the graph g, we first use
a bidirectional long short-term memory (biLSTM) (Schuster and Pali-
wal, 1997) module to create the embedding h! of node i at time . We
then use a self-attention module (Vaswani et al., 2017) which takes all
such embeddings at each time ¢ and create a weight matrix among nodes
thus providing the DC (graph) between nodes at each time-point. To
create a final graph G/ for downstream classification, we use a tem-
poral attention model that assign a weight to each g, and compute the

intrinsic networks @ @

€im

weighted sum of the set G. We explain the working and purpose of each
module in detail in the following sections. Figure 1 shows the complete
architecture.

2.2.1. biLSTM

The time-point value x! for node i at time 7 can be effected by many
different factors and relations. Capturing these relations can increase
model interpretability and improve downstream classification perfor-
mance. In a time-series (fMRI data), one of these factors is the val-
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ues/data at previous time-points x"l'_.,_]. In fMRI data, this relationship
is unknown and is hard to capture and hence cannot be computed using
a fixed method/formula (hand-crafted features). The difficulty is further
increased by a) low temporal resolution of fMRI data and b) the fact that
it is unknown how farther in time the effects of a time-point remains in
a time-series. These effects are different for each subject and can even
vary among nodes of the same subject. LSTMs have proved to be ex-
tremely effective for time-series/sequence data where the model takes
an input from a sequence at time-point 7 and create representation for
current and also predict representation for future time-courses based on
the representation of previous time-points. LSTMs learn the temporal
relationships between data through the cell’s memory and forget gate.
These gates are optimized on the data and downstream task (ground-
truth signal) and the relationships between data are learned instead of
computed. The working of the LSTMs can be explained by the following
set of equations. o represents sigmoid activation, and ® is the Hadamard
product (Million, 2007).

i = o(W;x, + b + Wyh,_| +by)

f = o(Wirx, +bip+ Wy b +byp)
g = tanh(W,-gx, +big + Whgh,,l + bhg)
0, = U(Wiaxt + biu + whahr—l + bha)
c,=f0c_1+i,0g

h, = o, © tanh(c,)

()]

In the above equations, i,, f;, and o, represent the input, forget and
output gates at time ¢ respectively. ¢, represents the cell state (mem-
ory), g, represents candidate for the cell state, and h, represents the
representation/embedding for the input at . W;, and W, represent
the weights for the input and hidden vectors for the respective gate
x € {i-input, f-forget, o-output}. Similarly b,, b, are the biases for the
respective gate x € {i, f,o}. We use a biLSTM to create representation
h, for each node i. Thus h,f = LSTM(x,,h,_,), h® = LSTM(x,.h,,) and
h, = concatenate(htf ,hf’). Here h,f and hf are representation for forward
and backward pass. We use LSTM for each node (component/region)
individually, sharing weights of LSTM among the nodes. As shown in
Eq. (1), LSTM’s usually take a vector x, as input at each step, how-
ever, we give x/ (scalar value) as input to the LSTM along with hid-
den vector and receive h! for the node i at time-point ¢, which solves
the window size problem occurring in dynamic-FNC studies. To make
it easier to understand, one can assume that in our model the window
size is 1. This allows us to later instantaneously compute connectivity
matrix (links/edges) between the nodes at each time-point. The biLSTM
receives temporal values of each component/region separately but share
the weight matrices across regions. This allows the biLSTM to learn the
temporal connections by looking at multiple nodes but does not learn
spatial dependencies among nodes. For this exact reason we use self-
attention across nodes.

2.2.2. Self-Attention

A node in a graph can be linked with other nodes represented as
the edge connectivity between them. The connectivity between nodes
influence the value of a node (x;) at a certain time-point. Thus it is im-
portant to measure the connectivity between nodes for the construction
and interpretation of the graph. In our fMRI data where each x' is a brain
region/component, capturing the DC or DNC between nodes shows how
brain networks are linked with each other and the direction of flow of
information between brain networks. The estimated matrices can then
be used to explain brain working and brain disorders. Connectivity be-
tween brain regions is independent of the structural connectivity and
thus is unknown. To capture the directed connectivity between brain
regions, we use a self-attention module.

Self-attention module captures the weights between » inputs of a
sequence. Since in a dynamic system (brain network), the connectivity
between nodes can change at any instance, therefore, at each time-point
1 we pass a sequence of n vectors h! ... h", n = total nodes, as input to
the self-attention module and create the weight matrix W,, where each
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W, € R™" is the connectivity weight matrix of input nodes at time-point
t.

The self-attention module creates three embeddings, namely, key (k),
value (v), and query (q) and creates new embeddings for each input
using these embeddings. The following set of equations can sum up the
whole process. For simplicity, we omit the 7 from these equations. T
represents transpose and @ represents concatenation.

ki — hiTw(k)’ vi — hiTw(U)’ qi — hiTw(q)
K= @?:lk”, w' = softmax(q'K) )
W=g" w

Here W € R™" is the connectivity matrix between n nodes in the
graph. As brain disorder are associated with disruptions in the connec-
tivity of brain’s intrinsic network, we only use our learned directed con-
nectivity matrices W for downstream classification and not the features,
thus forcing the model to estimate the differences in connectivity be-
tween the two classification groups (e.g., HC and patients). As DICE is
tuned to estimate the DC or DNC for the groups of subjects and output
the it, DICE captures and shows the basis of downstream classification.
The DC or DNC estimated by the model can be easily represented as a
graph which are extremely easy to interpret. The self-attention glass-box
layer shows task-dependant nodes (brain regions) and their connectiv-
ity.

The features that represent time-courses are used to learn/estimate
the DC or DNC structure. As the true connectivity/graph structure is
never available in many applications to directly compare with, we pro-
pose that a connectivity matrix leading to state-of-the-art classifica-
tion performance makes it more reliable than using the representa-
tions/embeddings for classification.

2.2.3. Temporal attention

As we use only the connectivity matrices learned by the model for
downstream classification. For this purpose, we need to create a single
weight matrix W/ based on the W,_; matrices. For the downstream
classification task, not all the time-points are equally important, hence
it is crucial to incorporate a temporal attention module which assigns
weight to each W, and calculate a weighted average of all the weight
matrices. We introduce a novel temporal attention module which we
call global temporal attention (GTA).

GTA: To give the attention module a global view of the graph, we
present GTA. The global view allows the model to learn how each DC
contributes to the global graph or structure of the data in the down-
stream task. We create an average of all the T DC and call it Ws/°ba!
representing the global view. We then compare the similarity of each
local W, with the global view and use them to create the temporal at-
tention vector a. Figure 2 shows the architecture details.

yglvbal — % ZZ;] Wt
W, = W, @ Wslobal (3)
a = (@ (Flat(W))WMLE yWMLP2yWMLEs)

Here © is the Hadamard product (Million, 2007) between matrices.
W/ is computed as:

T

W/ =3 W, )
=1

2.3. Training

We used GTX 2080 with PyTorch as ML framework for our experi-
ments. The hidden dimensions for the biLSTM was set to 100, whereas,
self-attention including key, query, and value modules, were all set to
48. The dimensions of multi-layer perceptron (MLP) layers for calculat-
ing temporal attention vector were #; * len(flat(W,)), n, * len(flat(W,)),
and 1 with #; =5, = 0.05. We noticed in our experiments that multiple
heads of self-attention increases stability of the estimated DC. We used
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Fig. 2. GTA architecture for temporal attention. W,_; matrices are summed to
create W&/t Using W#'! and W, attention score a; is created for each time-
point. Refer to equations in 3 and 4 for working details. Here f denotes the
average function.

batch normalization after the first MLP layer. ReLU activation was used
in our model between the MLP layers. A final two-layer MLP was used
to get logits for binary classification problem with W/ as input with di-
mensions 64 and 2. We used cross-entropy loss with Adam optimizer.
Let 6 represent the parameters of the entire architecture, y being the
predictions and y the true labels, the loss is calculated as:

loss = CrossEntropy(y,y) + (16|l 5)

0* = argming(loss) (6)

We also experimented with additional loss terms to encourage the
model to estimate connectivity matrices where the values of the main
diagonal are closer to 1. Please refer to Section Appendix B for details.
We used L1-regularization to get a sparser solution. A (regularization
weight) was set as le~ and learning rate was 2¢~*. Based on the experi-
ment, we reduced the learning rate either when validation loss reached
plateau by a factor of 0.5 or exponentially with y = 0.99. Early stop-
ping was used to stop training the model based on validation loss and
patience of 25. For each dataset (ICA components or ROIs), to have a
fair result, we perform n-fold testing where the value of n depended
on the dataset and methods we compared against. For each test fold
we performed experiments with 10 randomly-seeded trials. We report
the mean AUC-ROC (Area Under Curve - Receiver Operating Charac-
teristic) across the n test folds and the 10 randomly-seeded trials as
it is a more reliable metric than simple accuracy for binary classifica-
tion tasks. For example, for FBIRN data we had 18 test folds and for
each fold we performed 10 trials, which gives us a list of 180 AUC-
ROC values and we report the average of these values. In some cases
we also report other metrics as well, such as accuracy. Due to the size
of the data, we made some hyper-parameter changes for HCP region-
based (ROIs) experiments. The hidden dimension size for bilstm and
self-attention module was set to 64 and 32. n;, was set to 0.005. Further-
more, because of memory constraints encountered during HCP region
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experiments, during both training and testing we divide the total time-
points (1200) into a set of three, each having 400 time-points. We create
logits for all and compute the mean to get final logits. Batch size was set
to 32.

2.3.1. Hyper-parameters selection and fine-tuning

All the parameters (hidden dimensions, number of layers, #,, #,, 4,
learning rate, y, patience, batch size) mentioned in Section 2.3 were
set as hyper-parameters. We fine-tuned these hyper-parameters based
on the average performance of the model on validation dataset across
all the folds. We did not perform hyper-parameters tuning based on
the test folds and we report only test-set results. We also want to note
here that we permuted the order of subjects for each dataset and per-
formed the experiments using the permuted order. This was done to
avoid imbalance of subjects in the folds. On the same lines, when di-
viding the data into n-folds (test folds) we tried to balance the number
of subjects of both classes in each fold. For example, in case of FBIRN
data with 311 subjects and 151 and 160 subjects in class O and 1 re-
spectively. When performing 18 fold testing, each test fold consisted
of L%] subjects from class 0 and [%] subjects from class 1 and the
rest of the data was used for training and validation, where we kept
the validation set size same as the test set size. The validation set was
used for hyper-parameters tuning, early stopping during training and
selecting the model to apply on the test data. We made sure that no
subject (or sessions of a subject) repeated across training, validation
and test sets. The exact size of training, validation and test set can be
calculated using the criteria mentioned above and the total number of
subjects and number of folds mentioned in Table 1. In some of the ex-
periments keeping the same number of subjects in each fold created
a small data leakage at the end. For the results reported, the maxi-
mum leakage was for FBIRN dataset with 18 test folds. For this pur-
pose, we performed another experiment on FBIRN dataset where the
last fold had all the left out subjects to prevent any data leakage. This
had no effect on the performance of the model. Refer to Table A.11 for
results.

3. Experiments

To test if DICE accomplishes all the goals, we perform detailed ex-
periments by classifying three brain disorders, classify male and female
groups for HCP and OASIS subjects, and predict age for OASIS subjects.
We perform experiments for all datasets using ICA time-courses and per-
form experiments on FBIRN, ABIDE and HCP data using regions-based
(ROIs) data as well. In this paper we refer to matrices capturing func-
tional connectivity between networks at a whole-brain level as func-
tional network connectivity (FNC) (Allen et al., 2011b; Jafri et al., 2008)
and when operating on ROIs — as FC. We report the average results
for all the trials. Depending on the experiment, we compare our clas-
sification results with state-of-the-art DL methods (Arslan et al., 2018;
Gadgil et al., 2021; Kim and Ye, 2020; Mahmood et al., 2021; 2019;
2020; Weis et al., 2019; Zhang et al., 2018a) and ML methods (Sup-
port Vector Machine (SVM), Logistic Regression (LR)). To avoid any
discrepancy we report the results of the DL methods directly from the
published studies, even though some studies use test data instead of
validation data for selecting the best performing model/parameters.
For ML methods we used the python package Polyssifier> which se-
lects the best model/parameters based on the performance on validation
data.

To show the efficacy of our model, we divide our results into three
broad categories. In the following sections we show a) classification per-
formance of our model, b) learned DC and DNC and c) the effects of
temporal attention module.

5 https://github.com/alvarouc/polyssifier



U. Mahmood, Z. Fu, S. Ghosh et al.

Schizophrenia Autism

0.95
0.90

0.85

0.80 %
0.75 . H
O
350.70
<

0.65

0.60 =+

0.55

0.50

0.45

0.40

D\CE N\\\’O S—(D\N\ \R S\'N\ D\Qg D\OE\\J\\\*GS‘(O\M \R g,\l‘\h D\C’E \\|\\\,O S—(D\N\ g\l\\'\ \R

0
cuoed®

Neurolmage 264 (2022) 119737

Dementia Gender

-

DIcE

Fig. 3. AUC comparision of DICE model with four different methods (MILC Mahmood et al. (2020), STDIM Mahmood et al. (2019), logistic regression (LR), support
vector machine (SVM)), over four different datasets using ICA time-courses (Ref to Section 2.1.1). Our method significantly outperforms SOTA methods. We performed
Autism experiments with 869 subjects (all TRs) as well. As we do not have a pre-training step we compare with not-pre-trained (NPT) version of MILC and STDIM.
Input to ML methods were the same ICA time-courses, not the FNC matrices. We did not find any notable studies for gender classification of HCP subjects using ICA
components as notable methods used ROIs based data. We compare the results using ROIs in Table 2.

Table 2

Classification performance comparison of DICE with other DL methods on region-based (ROIs) data of HCP and FBIRN datasets (Ref to Section 2.1.1). Our DICE
model outperforms all other methods in almost every metric. The best two scores are shown as bold and italic respectively. Note: As we use all the regions in the
atlas we report the mean accuracy for SVM-RBF (Weis et al., 2019). The results for GCN (Arslan et al., 2018) on HCP data are reported by GIN (Kim and Ye, 2020).
GIN (Kim and Ye, 2020) and ST-GCN (Gadgil et al., 2021) use test data as validation data for choosing the best performing model. We would also like to point here
a newer version of GIN (Kim and Ye, 2020), named STAGIN (Kim et al., 2021) reports AUC and ACC score of 92.96 and 88.20 respectively using 1093 subjects,
and 5-fold testing. STAGIN (Kim et al., 2021) reports much lower ACC for GIN and ST-GCN (81.34 and 76.95 respectively) when not using test data as validation
data and keeping other parameters (data, preprocessing, parcellation etc.) same. NA: Not Available.

HCP - Gender Classification FBIRN

DICE GIN SVM-RBF GCN ST-GCN PLS DICE BrainGNN
AUC 0.935 NA NA NA NA 0.881 0.825 0.788
ACC (%) 85.8 84.6 68.7 83.98 83.7 79.9 NA NA
Precision (%) 85.7 86.19 NA 84.59 NA NA NA NA
Recall (%) 90.2 86.81 NA 87.78 NA NA NA NA
Parcellation Shaefer 200 Shaefer 400 Shaefer 400 + Fan Shaefer 400 Multi-modal 22 Dosenbach 160 Shaefer 200 AAL 116

39

Test Folds 10 10 10 10 5 10 18 18
Subjects 942 942 434 942 1091 820 311 311
Study Our Kim and Ye (2020) Weis et al. (2019) Arslan et al. (2018) Gadgil et al. (2021) Zhang et al. (2018a) Our Mahmood et al. (2021)

3.1. Classification

Figure 3 shows the classification performance of our model using
ICA data, Table 2 shows the performance using region-based (ROIs) data
of FBIRN and HCP, and Table 3 shows results on ABIDE region-based
(ROIs) data.

Our model beats every state-of-the-art method used for compari-
son in this study in almost every metric for both ICA and region-based
(ROIs) fMRI data across all datasets when using similar input data
(fMRI). As our model does not use phenotypic information about sub-
jects, it lacks behind (Cao et al., 2021; Parisot et al., 2018) on ABIDE.

Parisot et al. (2018) reports a decrease of ~ 2.5 AUC by using a different
phenotypic information which clearly shows the dependence on pheno-
typic data. Whereas, Ktena et al. (2018) reports much lower AUC score
by using only fMRI data. ML methods fail completely even on ICA data,
We attribute this failure to two reasons. 1) The number of dimensions
(m) being much higher than the number of subjects (n), thus creating
the curse of dimensionality (m >> n) and 2) The ML methods do not
compute a graph structure for estimating the connectivity between the
networks/components and instead mostly work with independent net-
works/components. According to our knowledge, no other model gives
such high classification score across four neuroimaging datasets. The
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Comparison of AUC score on ABIDE region-based (ROIs) dataset. Existing methods use Harvard
Oxford (HO) parcellation with 111 brain regions, therefore we tested DICE using two atlases.
Unlike Parisot et al. (2018), Cao et al. (2021) we use only fMRI data. We also show that DICE
model doesn’t depend on the region atlas and gives similar performance using different atlases

for region parcellation of the brain.

Method Parcellation  Input n_regions  AUC

DICE Shaefer fMRI data 200 0.70

DICE HO fMRI data 111 0.69

GCN (Parisot et al., 2018) HO fMRI + phenotypic data 111 0.75

DeepGCN (Cao et al., 2021) HO fMRI + phenotypic data 111 0.75

Metric Learning (Ktena et al., 2018) HO fMRI data 111 0.58
high classification score of the model computed using only the learned Table 4

DC structure increases the confidence in the correctness of the learned
DC structures.

3.2. Directed connectivity

The learned interpretable, task-dependent (flexible) directed connec-
tivity structures by our model is the most important contribution of our
work. As this is a novel work, we show in detail, different aspects of the
learned connectivity structures. We a) compare our learned DNC with
FNC computed via PCC, b) compare the differences in DC and DNC be-
tween multiple classification groups, c¢) show how direction matters in
connectivity, something which is not captured by FC and FNC, d) dive
into the fact mentioned in introduction that unlike computed FNC (us-
ing PCC) our learned DNC is task dependent and changes based on the
downstream task (ground-truth signal) and e) show the dynamic con-
nectivity states for FBIRN data for HC and schizophrenia (SZ) subjects.
All the aspects (a-e) discussed in detail in following sections show the
correctness and interpretability of the learned DC and DNC. The inter-
pretability of the connectivity matrices estimated by our model give
insight into how brain networks are linked with each other and with
the downstream classification task. This is very crucial to understand
brain disorders and relevant brain networks. Unlike typical FC and FNC
which ranges from -1 to 1, our learned matrices are based on attention
and hence ranges from O to 1. More information on this in Appendix B.

3.2.1. DNC vs FNC

As the true connectivity between brain networks is not known, we
compare our learned DNC with FNC. Figure 4 shows the DNC learned
by our model and the FNC computed using PCC using ICA components
for FBIRN dataset. The DNC is W/ explained in Section 2.2.3. Both
DNC and FNC is the mean matrix for highest performing fold of FBIRN
dataset with 16 subjects. The 100 ICA components are divided into in-
formative (53) and noise (47). We show the connectvity between 53
non-noise components. These components are further divided into 7 do-
mains/networks following (Allen et al., 2011a). Both matrices clearly
show high intra-domain connectivity. The learned DNC shows similar
pattern of FNC which increases the confidence in the DNC learned by our
model but there are very important differences between the two. Inter-
network connectivity: We see that our estimated DNC finds much more
inter-network connectivities than the FNC which is mostly intra-network
and has very low scores between networks. Directionality: Regarding
the direct influence, DNC estimated by our model is directed and shows
components in visual affecting components through out the domains,
such information is not present in the FNC which is un-directed (sym-
metric across main diagonal) and does not show the direction of con-
nectivity. Refer to Section 3.2.2 for more detail on this.

To compare the connectivity matrices in terms of classification re-
sults, we use an LR model and perform classification by first training
and testing the model using PCC-based FNC and then by our estimated
DNC as input. Refer to Table 4 for comparison.

We compare the D/FNCs on the basis of AUC score on
FBIRN dataset. We train and test a logistic regression (LR)
model using FNCs computed by PCC, and using DNCs es-
timated by DICE. Performance using estimated DNCs is
in reaching distance of ML methods using hand-crafted
features (FCs). Appendix A show some experiment details
that lead to an even improved classification results.

Method  Input Mean Max  Min Std Dev
LR PCCFNC 0.883 1 0.72  0.085
LR Our DNC  0.86 1 0.62  0.096

3.2.2. Directed connectome

Capturing directed connectivity is one of the methods to understand
the direction and flow of information in the brain. Learning the direction
of connectivity is one of the main advantages of our model as it might ex-
plain the direct influence of brain networks upon each other. To show
the direction between components, we divide the DNC of FBIRN sub-
jects into two connectomes showing the direction. Figure 5 left shows
the edges from a to b where a > b. For example the edge between (8,23)
shows the edge from 23 to 8, whereas, Fig. 5 right shows the oppo-
site. It is clear from the figure that direction matters and the connec-
tivity between brain regions is beyond simple statistical dependence.
For example, Fig. 5 shows that the components in visual network (VIN)
affect components in other networks and the edges in the opposite di-
rection are relatively much fewer. We also see direction of connectiv-
ity from cognitive control (CC) to sensorimotor (SM). Existing studies
(Breukelaar et al., 2017; Cole and Schneider, 2007; Tsai et al., 2019)
show that cognitive control is responsible for activities like attention,
remembering and execution, things which are required when doing a
motor task controlled by sensorimotor. Such directionality is important
to study brain’s working in more detail and is not present in FNC used
by existing methods. The results are further discussed in Section 4.1

3.2.3. Connectivity differences among groups

As hypothesized that brain disorders are linked with the connec-
tivity of brain’s intrinsic networks, we show how the learned DC and
DNC changes for subjects belonging to different groups. Figure 6a shows
the DNC estimated by our model of HC and SZ subjects for FBIRN
data whereas Fig. 6b shows DNC of male and female groups for OASIS
dataset. Both results are computed using ICA pre-processed data. For
ICA based DNC, there are similarity between the two matrices as they
come from the same joint ICA. However, there are visible difference be-
tween the two for multiple networks like visual (VI), cognitive control
(CQ), default-mode (DM) and cerebellum (CB). The biggest difference
between HC and SZ groups seems to be in the connectivity strength for
VIN. For OASIS results 6 b we see that females show high connectiv-
ity scores in default-mode network (DMN) compare to males and low
sensori-motor network (SMN) connectivity compare to males, this has
been verified by existing studies (Filippi et al., 2013; Kim et al., 2021;
Mak et al., 2016; Ritchie et al., 2018). To verify this by numbers, we
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Fig. 4. We compare our estimated DNC with computed FNC using PCC method. 4 a is the connectivity matrix generated by our model for FBIRN dataset. We used
a test fold of 16 subjects and computed mean FNC for all subjects (10 trials per subject). 4 b is the mean connectivity matrix of the same subjects generated by PCC.
Both figures show similar intra-network connectivity patterns, which verifies the correctness of the connectivity matrix learned by our model. Our estimated DC is
directed and captures more inter-network connectivity than FNC. To match the positive weights of our model, we have normalized the FNC from 0 to 1 instead of
-1to 1.
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Fig. 5. We show the top 10% directed edges of FBIRN DNC. The numbers represent the 53 non-artifact components. The figure clearly shows the high intra-domain
connectivity which matches the existing literature. Direction clearly matters as visual components affect other components but not the opposite way. The direction
of edges between CC and SM networks is also of significance.

use statistical testing to compare the two groups (male, female) and
compare average connectivity for male and female in DMN and SMN.
Table 5 shows the statistical results.

Figure 7 performs the same experiment for region-based (ROIs) data.
Here the regions for both sides of the brain (left and right) are di-

vided into 7 domains following shaefer (Schaefer et al., 2017). Again,
in Fig. 7b for HC we see high connectivity score between regions of the
same network. We also see connectivity between regions of same net-
work across left and right side of the brain. The diagonals on top and
bottom of the main diagonal shows this. Whereas the DC of SZ sub-
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Fig. 6. We compare the estimated DNC across the binary classification groups using ICA data. Figure 6a is the estimated DNC on FBIRN data for HC and SZ patients.
We see high inter and intra-connectivity in SM and VI networks for HC, which is missing in SZ patients. Figure 6b compares DNC between male and female groups
using OASIS data. Female group shows hyper-connectivity in DMN and hypo-connectivity in SMN when comparing to male groups.

jects is weakly connected compared to HC and is mostly shows intra-
network connectivity. The sparsity explains and support the existing lit-
erature explaining SZ as functional dysconnectivity between brain net-
works (Culbreth et al., 2021; Lynall et al., 2010; Morgan et al., 2020;
van den Heuvel et al., 2010; Yu et al., 2011; Zhang et al., 2019; Zhu
et al., 2020).

Figure 7 b compares male and female groups based on region-based
(ROIs) HCP data. We see similar patterns of hyper-connectivity of DMN
and hypo-connectivity of SMN in females as compared to males. As the
region-based (ROIs) parcellation divides the brain into left and right, we
also see that females have high intra-network connectivity between left
and right side of the brain as compared to males.

10

To verify the visual results, we use statistical testing to compare the
DMN and SMN between males and females. The stats confirm the visual
results with 1) female DMN showing higher connectivity than female
SMN and male DMN, and 2) male SMN showing higher connectivity
than male DMN and female SMN. We also see that the networks are
highly statistically different. Refer to Table 7.

3.2.4. Task dependent DNC

Human brain can be divided into multiple parts/regions where each
region is linked with a set of tasks. For example, the hippocampus
is associated with memory. Thus it is important to know which re-
gion/network(s) are linked with the downstream task (e.g. disorder
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Shows stats between male and female DNCs (6 b) estimated using ICA time-courses of OASIS.
We see that the estimated DNCs for male and female subjects are highly significantly different.
For females DMN is hyper-connected than SMN whereas for male SMN has higher average con-
nectivity score than DMN. This shows that the model accurately captures the group differences
among male and female subjects and uses the connectivity difference in DMN and SMN to clas-
sify male and female subjects. F - Female, M - Male, All - All networks/complete matrix. Results
of classification performance is shown in Table 9. Table 6 shows the p-value significance ranges.

Network 1 Network 2 Test Type P-value  Avg. Connectivity 1 Avg. Connectivity 2
t-test le-250

F Al M_All manwhitneyu le-256 0.353 0.311
t-test 0.15

F_.DM F_SM manwhitneyu 0.12 0.536 0.510
t-test 5e-5

M_DM M_SM manwhitneyu 4e-5 0.417 0.575
t-test 6e-4

F_DM M_DM manwhitneyu 4e-4 0.536 0.417
t-test 3e-4

F.SM M_SM manwhitneyu 5e-5 0.510 0.575

Table 6

Ranges of p-value and the corresponding significance level. ns (no significance).

P-value p>0.10 0.05 < p <0.10

0.01 < p < 0.05

0.005 < p < 0.01 0.0001 < p < 0.005 p < 0.0001

Significance  ns * o

o s P

Table 7

Shows stats between male and female DCs (7 b) estimated using region-based (ROIs) HCP dataset. We clearly see that females have hyper-
connectivity in DMN and hypo-connectivity in SMN as compare to males. Female group has higher connectivity scores in DMN compared to
SMN and male DMN whereas male group has higher connectivity in SMN compared to DMN and female SMN. This shows that our learned
model accurately captures the differences in DMN and SMN connectivity among males and females and uses that for classification. F - Female,
M - Male, L - Left, R - Right. Table 6 shows the p-value significance ranges.

Network 1 Network 2 Test Type P-value Avg. Connectivity 1 Avg. Connectivity 2
t-test le-14

FAl M_Al o c 0.455 0.533
manwhitneyu le-25
t-test 2e-

F L DM temp FLSM est e-3 0.689 0.632
manwhitneyu 4e-3

F_R_DM_temp F.R_SM ptest 7e4 0.671 0.593
manwhitneyu 4e-4

M_L_DM._temp M.L.SM prest 2e7 0.567 0.622
manwhitneyu le-3

M_R_DM temp M_R_SM wtest de-4 0.558 0.611
manwhitneyu 2e-4
t-test 4e-5

F L DM_t M_L DM_t .689 .

DN temp --ontemp manwhitneyu 6e-5 0.68 0.567
t-test -

F_R_DM_temp M_R_DM_temp et 8e-5 0.671 0.558
manwhitneyu 3e-5

F_L_DM_pCunPCC F L SM test . Ze-4 0.718 0.632
manwhitneyu le-3
t-test le-5

F_R_DM_pCunPCC F.R.SM et € 0.758 0.593
manwhitneyu 5e-5
. 2e-

M_L_DM_pCunPCC ML SM wtest e7 0.548 0.622
manwhitneyu 3e-4

M_R_DM_pCunPCC M_R_SM test . le-2 0.547 0.611
manwhitneyu le-2
t-test 2e-4

F_L_DM_pCunPCC M_L_DM_pCunPCC et ¢ 0718 0.548
manwhitneyu 3e-4
t-test 3e-4

F_R_DM_pCunPCC M_R_DM_pCunPCC es . ¢ 0.758 0.547
manwhitneyu 7e-4

FLSM M.L.SM prest lel 0.632 0.622
manwhitneyu 4e-1
- le-2

FRSM MR SM prest ¢ 0.593 0.611
manwhitneyu 2e-3

classification). Finding the linked regions/networks would help us un-
derstand the disorder and allow to study the association of these re-
gions/network(s) with the disorder in more detail. In this section, we
see how the DNC structure learned by our model changes and identifies
different networks for the same subjects based on the downstream task.
For this purpose, we perform an experiment, where we compare the esti-

11

mated DNC for OASIS data when predicting dementia, age and gender of
the same subjects. The number of subjects were balanced with both HC
and patients equalling 50% of the total subjects but had ~ 62% female
subjects. Figure 8 shows that our model produces task dependent DNC
and the networks/domains showing high connectivity for each task ad-
heres to the existing literature. The Fig. 8a shows the DNC learned when
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Fig. 7. We compare the estimated DCs of HC with SZ and male with female using region-based (ROIs) FBIRN and HCP data. 7 a show high weakly connected brain
networks for SZ subjects whereas 7 b show hyper-connectivity of DMN and hypo-connectivity for SMN for females as compared to females. The black and grey color
denotes the regions in left and right side of the brain. Refer to Table 7 for a statistical comparison between female and male DCs.

classifying subjects for dementia. We see high connectivity for compo-
nents in the SM, DM, and CB networks. These networks are linked with
dementia in existing literature, which support the results of our method.
Whereas when classifying gender of same subjects, the estimated DNC is
different and show high connectivity for components in DM and reduced
connectivity for SMN. Figure 8d shows the FNC computed via PCC for
the same subjects. As FNC computed using PCC is only data dependent,
the FNC would remain same for all the tasks and shows the inflexibility
of the method. Figure 8 therefore shows a) our model learns task depen-
dent DNC and b) our model accurately finds networks linked with the
downstream classification task. We see this as a significant advantage

12

over studies which compute a fixed/static FNC using PCC and hence is
independent of the downstream task. We see that Fig. 8b which is the
learned connectivity structure when predicting age does not show high
connectivity between networks and the connectivity values for SMN and
DMN are almost same. This could be a reason of small age variance in
the dataset.

We use statistical scores to verify the visual results. Table 8 shows
the statistical difference between the three DCs as a whole and between
DMN and SMN. We also compare the estimated DCs with FC 8 d.

We see that all three DNCs are extremely statistically different. It
is also proven that DMN is given higher connectivity scores for gender
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Fig. 8. We show how our model estimates flexible DNC structures based on the ground-truth signal. We train our model for different classification tasks and use
same test subjects to compare the estimated DNC for the subjects. All figures are mean DNC estimated for the same subjects with 5 randomly-seeded trials. 8 a is the
mean connectivity matrix estimated by our model when trained to classify dementia. We see high connectivity values for SC, SM, and CB networks. 8 ¢ is the mean
DNC for the same subjects when the model is trained for gender prediction. We notice lower SM network connectivity and higher connectivity for DM network when
predicting gender of OASIS subjects. 8 d is the FNC computed using PCC. The FNC is independent of the task and would remain fixed (inflexible).

Table 8

We compute the statistical difference of the learned connectivity matrices for OASIS ICA when predicting dementia, age
and gender. The results show that the learned connectivity matrices are highly statistically different and SMN gets higher
connectivity scores than DMN for dementia prediction whereas the opposite is seen for gender prediction.

Network 1 Network 2 Test Type P-value Avg. Connectivity 1 Avg. Connectivity 2
Dementia_All Age All prest >e-22 0.323 0.168
manwhitneyu le-38
Dementia All Gender All ptest 2e3 0.323 0.311
manwhitneyu 8e-4
t-test 2e-301
Age Gender manwhitneyu 1e-301 0.168 0.311
. . t-test le-7
Dementia_DM Dementia_SM . 0.478 0.645
manwhitneyu 8e-8
t-test 6e-1
Age DM A M .2 .
ge- ge.S manwhitneyu 6e-2 0.294 0.308
Gender DM Gender SM ttest . de-l 0.527 0.555
manwhitneyu le-1
FNC_DM FNC_SM ptest 3e-2 0.487 0.580
manwhitneyu 7e-3
Dementia DM Age DM btest oe6 0.478 0.294
manwhitneyu 5e-7
. t-test 2e-1
Dementia_DM Gender DM . 0.478 0.527
manwhitneyu le-1
Age DM Gender DM wtest Se7 0.294 0.527
manwhitneyu Se-8
. t-test 8e-34
Dementia_SM Age SM manwhitneyu 3623 0.645 0.308
Dementia_SM Gender SM ptest de-d 0.645 0.555
manwhitneyu le-4
t-test le-18
Age SM Gender SM manwhitneyu 4e-17 0.308 0.555
Table 9

Dementia, gender classification and age prediction results on OASIS dataset. We compare our results with ML methods using
FC computed via PCC. Even with hand-crafted features ML methods perform similarly as our model. We believe the same
input because of FC being only data dependent is one of the reasons of ML methods performing lower than DICE for Dementia
and age prediction.

Dataset Model Task N_Folds Input Metric Score
OASIS DICE Dementia classification 10 ICA AUC 0.752
OASIS Logistic Regression Dementia classification 10 FNC AUC 0.745
OASIS DICE Gender classification 10 ICA AUC 0.906
OASIS Logistic Regression Gender classification 10 FNC AUC 0.948
OASIS DICE Age prediction 10 ICA MAE 6.14
OASIS Linear Regression Age prediction 10 FNC MAE 7.17
OASIS Lasso Age prediction 10 FNC MAE 6.89
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(a) Dementia prediction
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BN T

(b) Gender prediction

Fig. 9. We map on the brain, the nodes and top 10% edges of the DCs, estimated for dementia and gender classification tasks, performed on OASIS dataset (same
subjects). The size of the nodes is the sum of the outgoing and incoming edge weights. The arrows shows the direction of connectivity. We see a high number and
size of nodes and edges for SMN and VIN for dementia 9 a, whereas for gender 9 b we see high node and edge size for DMN. Compare the red (DM) nodes and edges
in Fig. 9a with b in the left side figures. Figure 9a also shows high connectivity between SM and VI networks which is missing in Fig. 9b (right side figures). This
reveals the networks and edges (graphs and subgraphs) relevant to the classification signal (e.g disorder) without need of comparison with other data. The results

and their impact are further discussed in Section 4.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 10. Five states computed using k-means on the DCs estimated by our model for FBIRN dataset. First row shows the k means of the estimated DCs, second row
shows the percentage time spent by both groups in each state, with the total time points being 155. Time spent in each state by SZ and HC differ significantly and
matches the existing literature. We see that a) time spent in each state is different by HC and SZ, b) SZ spend much more time in state 3 (weakly connected) than
HC, ¢) HC spend more time than SZ in states (2,4, 5) which show high connectivity for VI, and SM networks, and d) Standard deviation of time for SZ is much higher
(320.47) than HC (206.26) which shows that SZ stay in one state much more than HC which tend to change state more often. The stars denote the significance of
difference in time spent in each state by the two groups. Table 6 shows the p-value significance ranges.

prediction whereas, SMN connectivity is much higher when predicting
dementia comparing to gender and age prediction tasks. To clear how
the connectivity values change for DMN and SMN we point out the av-
erage connectivity scores of the networks for dementia and gender clas-
sification and compare it with the values of DMN and SMN computed
via PCC. The connectivity values in FC for SMN and DMN are 0.580 and
0.487 respectively (and would remain same irrespective of the classifi-
cation task). Whereas, when classifying dementia our model show much
higher SMN average value of 0.64 and a little decreased value of 0.478
for DMN showing a focus on SMN despite having more female subjects
in the test set. When predicting gender for the same subjects the DNC
estimated by our model has a decreased SMN value of 0.555 and in-
creased value of 0.527 for DMN hence focusing less on SMN and more
on DMN when compared to the dementia classifying task thus verifying
that our estimated DCs are task-dependent and not only data dependent.
We discuss the meaning and significance of this result in Section 4.3.

To see the matrices as graph of nodes (regions) and edges (connec-
tivity), we plot Fig. 8a and c on the brain and show the results in Fig. 9.
The figure shows high number of nodes and edges among components
of VIN and SMN and among the two networks for dementia classifica-
tion 9 a, and high number of nodes and edges among components in
DMN for gender classification 9 b.

3.2.5. Dynamic connectivity states

Studies like (Allen et al., 2012; Calhoun et al., 2014; Hutchison et al.,
2013; Sakoglu et al., 2010) show that human’s brain FC is dynamic and
can be used to find patterns which are not visible in static FC studies.
These studies show that dynamic FC show re-occuring patterns. To study
these patterns, dynamic connectivity of the human brain is divided into
distinct k states (Damaraju et al., 2014; Fu et al., 2021; Rashid et al.,
2014). There are multiple methods proposed to find the k states with
k-means being one of the most used methods. These studies show that
the transition and time spent in each state is different for patients (SZ,
dementia, autism) and HC. To validate our results and to find such pat-
terns we use k-means to find k (5) such states using the DCs estimated
by DICE for FBIRN dataset. We calculate and compare the time spent by
both groups (SZ and HC) per state.
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Figure 10 shows that SZ subjects spend more time in weakly con-
nected states (1,3) than HC which stay in states which show high con-
nectivity score for visual (VI) and sensorimotor (SM). We also see that
HC tend to change state more often than SZ which spend ~ 66% time
in one state (number 3). Existing studies (Miller and Calhoun, 2020a;
2020b; Yaesoubi et al., 2018) show that window-less approach can find
dynamic patterns that are not captured by the vastly used window-based
approach. As DICE is an instantaneous model, we investigate if DICE
can capture more dynamic states than the window-based dynamic-FNC
studies. For this purpose, using elbow method (Marutho et al., 2018),
we found that the best k for the estimated DCs is not 5, and set k = 10
and show the resultant states in Fig. 11. We see the model captures ad-
ditional states that were not visible with k = 5. The additional states
found show the pattern of directionality, specially in the states where
HC spend more time than SZ. For example, in Fig. 10, state 2 show
dense connectivity for components in VIN and the direction is from VI
to other states, and state 5 show similar direction but with sparse con-
nectivity. Figure 11 captures the additional state (9) which shows the op-
posite direction, that is, VIN has mostly incoming edges. We believe this
state represents the brain activity when different networks (e.g. SMN)
are giving input to VIN to control the vision. We discuss this result in
Section 4.4.

3.3. Temporal attention

Our temporal attention module finds the important time-points that
are relevant for the downstream task (e.g. gender prediction). As not all
time-points are equally important for the downstream task, and fMRI
data has low temporal resolution, the temporal attention is an effective
way of finding important bio-markers for neuroimaging dataset. Finding
the relevant time-points can help reduce the data and allow to focus on
activities at specific points. Figure 12 shows the weights assigned to the
subjects of FBIRN.

We show weights for 16 subjects (8 per class) with 10 randomly-
seeded trials. The results show that the temporal attention module is
very stable and assign similar weights to the time-points for every trial.
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Fig. 11. We show 10 states captured by k-means on the temporal DCs estimated by DICE on FBIRN complete dataset. The rows shows the means and the percentage
of time spent by HC and SZ subjects in each state. We see that DICE can capture more states than the standard (4-5) states captured by window-based approaches.
The additional states not present in Fig. 10 show the change of direction in connectivity. State 9 shows the opposite direction of connectivity between VIN and other
networks, where VIN has mostly incoming edges. The ratio of time spent by HC and SZ subject in different states is similar to the results of Fig. 10.
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Fig. 12. Temporal Attention weights for one of the test folds (16 subjects) of
FBIRN. Attention weights are computed using GTA module. X and y axis repre-
sent time-points and subject number respectively. We show that for each sub-
ject, the attention weights remain stable across multiple randomly-seeded trials
(10). The values of the 10 trials are used to create the confidence interval for
each subject. The consistency is greatly increased with an increase in number
of training subjects. Note: For each subject we added the subject number to the
attention weights to separate the weights, as for each subject the weights have a
range of 0 — 1. Dark and light colors represent SZ and HC subjects respectively.

Table 10

AUC score comparison on brain datasets with ICA
components by using all, top 5% and bottom 5%
time-points only. We train and test a logistic regres-
sion (LR) model using the time-points identified by
DICE and compare the results when using top and
bottom 5% time-points. We see that using only top
5% time-points are enough to almost reach the AUC
using all time-points.

Method FBIRN OASIS ABIDE
100% DICE 0.86 0.752 0.722
Top 5% LR 0.85 0.743 0.706
Bottom 5% LR 0.566 0.548 0.532

To further check the correctness of the time-points selected by our
model and how these time-points are useful in terms of classification per-
formance, we perform an experiment where after training the model, we
use W, of the top 5% values to train an LR model and then use the top 5%
time-points of the test data to test the model. Similarly we perform ex-
periments for bottom 5% values as well. Table 10 shows the comparison
for the three brain disorder dataset. The results show that the LR model
provides high AUC score by just using 5% of the important time-points.
Thus, it proves that a) not all time-points are important for classification
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of the downstream task and b) our model accurately finds the important
time-points. We use an LR model for this experiment to show that the
learned top and bottom 5% values are not limited to our DICE model but
is generalized such that an independent LR module gives high classifi-
cation performance using the top 5% data identified by our model and
does not learn on the low 5% data. Finally, our experiments also show
that not using the temporal attention reduces the model classification
performance by upto 10% A.12.

4. Discussion

Our experiments revealed a number of interesting properties of DICE
and uncovered some interpretable directed connectivity graphs that we
feel are of high utility for the neuroimaging field. As supported by re-
sults, models with glass-box layer like DICE have a high potential for
studying resting-state dynamics of the brain. In the following, we dis-
cuss the most pertinent results.

4.1. Inter-network and directed connectivity

Results in Sections 3.2.1 and 3.2.2 show that DICE infers DNC that
agrees with the essential findings of the FC studies (Arslan et al., 2018;
Kawahara et al., 2016; Kazi et al., 2021; Kim and Ye, 2020; Ktena et al.,
2017; 2018; Ma et al., 2019; Parisot et al., 2018; Yan et al., 2017) and
provides two additional aspects: inter-network connectivity and direc-
tion of connectivity. The inter-network connectivity is of great signifi-
cance as the brain is not made up of isolated networks and many tasks
require information passing and neurons firing through multiple net-
works. Thus making it crucial to find how these networks are connected
to each other if connected at all for patients and controls. Capturing the
dysconnectivity between networks for patients can lead to knowledge
discovery about the functionality of the human brain and the effects of
brain disorders on it. Furthermore, finding directionality between net-
works is also of great significance. We showed in experiments that our
model captures the direction of connectivity between networks. The di-
rection of connectivity from VI to other networks, and from CC to SM
networks is justifiable. Existing studies (Breukelaar et al., 2017; Cole
and Schneider, 2007; Tsai et al., 2019) show that cognitive control is
responsible for functions like attention, remembering, and execution.
These functions are often required when doing a motor task controlled
by sensorimotor, which hints at the direct effect of the CC network on
the SM network, captured by DICE. Regarding VI and other networks,
we know that VI is mostly a means of input (visuals) to our brain, which
is then processed by different parts of the brain. Thus, most of the flow
of information is from VI to other networks and few in the opposite
direction, which is required to control VI for accomplishing different
motor tasks controlled by SM. Therefore, our experiments also show
that most incoming connections to VI are through the SM network, thus
accurately capturing the flow of information between networks. This
flow of information is not captured in simple correlations. We believe
these two aspects are crucial to understanding brain working and are
currently missed in connectivity estimation methods such as FNC.
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Directed connectivity directed influence of an intrinsic brain network
on other networks. Estimating the direction of connectivity may simplify
targeted interventions that are instrumental in establishing causal rela-
tions. Capturing causality between networks further helps to understand
complex systems and answer counter-factual questions (Scholkopf et al.,
2021), and is left to future work. Our model finds non-negative relations
between components/nodes, which we consider dependencies or rele-
vance rather than correlations. However, we understand that the nega-
tive correlations in FC and FNC are also helpful and provide descriptive
information. We think it might be an easy fix to incorporate negative
relations in connectivity matrices estimated by DICE. We discuss this in
Section Appendix B.

4.2. Interpretability

Section 3.2.3 shows how the DC and DNC estimated by DICE are in-
terpretable in how accurately they capture the difference in connectivity
between 1) schizophrenia patients and controls and, 2) male and female
groups. In classifying schizophrenia patients from controls, our model
learned the most significant differences were in the VI, SM, and DM net-
works. Controls show robust connectivity of VI and SM with each other
and with other networks, which is missing for SZ patients. The finding
of dysconnectivity and/or lower connectivity scores for VI and SM net-
works for SZ patients is not surprising as there exists ample evidence
in prior studies of schizophrenia leading to multiple abnormalities re-
lated to visual and motor functions such as perception of contrast and
motion, detection of visual contours, and control of eye movements to
name a few (Butler et al., 2008; Chen et al., 1999; Kéri et al., 2002;
Silverstein and Rosen, 2015). These abnormalities certainly affect mo-
tor skills which we feel is a reason for the low connectivity for SM and
VI networks captured by our model for SZ patients. DICE also captures
hyper-connectivity in DMN for SZ patients which is reported by existing
studies (Guo et al., 2017).

Whereas in classifying gender in the same dataset, DICE emphasized
hyper-connectivity in the DM network and hypo-connectivity for the SM
network for females compared to males. The differences captured in the
DC and DNC for both tasks are supported by existing studies (Culbreth
et al., 2021; Filippi et al., 2013; Kim et al., 2021; Lynall et al., 2010;
Mak et al., 2016; Morgan et al., 2020; Ritchie et al., 2018; van den
Heuvel et al., 2010; Yu et al., 2011; Zhang et al., 2019; Zhu et al,,
2020) that show the role of the DMN in gender classification and VI
dysconnectivity for schizophrenic patients. Similarly to existing stud-
ies (Ingalhalikar et al., 2014; Zhang et al., 2018b), DICE shows that
female subjects have higher connectivity between the contralateral ho-
mologue brain networks relative to males.

DL models are commonly viewed as black-box models because of the
difficulty of interpretation and not easily explained performance on the
tasks they are trained on. These models can show excellent performance
on tasks such as classification based on the reasons that are not substan-
tially revealing about the input data nor their dynamics. One reason is
shortcut learning (Geirhos et al., 2020): a DL model can classify images
with or without airplanes with high accuracy by paying attention exclu-
sively to the background (blue sky). Although predictive, such models
cannot help in knowledge discovery. To control for shortcut learning
we would like to be able to see why predictions are made. One ap-
proach is making DL model interpretable. For that a posthoc method
is often used, e.g., saliency maps (Angelov et al., 2021; Lewis et al.,
2021; Ras et al., 2021; Simonyan et al., 2014). Such methods explain
the input data by finding which part(s) of the input the model is most
sensitive to. Saliency maps have shown some good results in computer
vision tasks in 2d images. The use of saliency maps in neuroimaging and
temporal data has different challenges (Liu et al., 2021) as the output
maps are noisy, difficult to interpret and does not provide good bound-
aries nor the connection between different salient regions. Selection of
the method for obtaining saliency maps is also something to consider
as some of the methods are architecture based. Hence, using saliency
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maps to get task-specific brain’s connectivity graph is not feasible using
current methods. To overcome the black-box nature of DL models and
avoid using a posthoc method, we focused on the interpretability of the
model’s results. For this purpose, as brain disorders are commonly asso-
ciated with disruptions in the connectivity pattern of brain networks, we
use only the learned connectivity matrices by our model for the down-
stream classification or prediction tasks, thus making the model extract
the abnormality in connectivity relevant to the ground-truth signal. One
way to conceptualize about our approach is to think of the generated DC
and DNC as a “glass-box layer” (clear and interpretable) layer as noted
in Fig. 1. This approach combines flexibility (the layer is trainable) with
interpretability and enables the model to capture differences in the con-
nectivity of the groups in classification task. Regression is also possible
with our approach, although we leave it for the future work. Our “glass-
box layer” approach enables learning the essential networks and their
connection to other networks relevant to the training signal and directly
output that without using a posthoc method. As the DC and DNCs esti-
mated by our model are based on learnable functions, the output ma-
trices can have slightly different values when the model is retrained,
which is an attribute of DL models. Therefore, all the connectivity ma-
trices shown in the paper are averaged over several randomly-seeded
trials.

4.3. Task-dependent flexible DNC

We fully utilize the flexibility of our DL model to learn task-
dependent (ground-truth signal) directed connectivity structures. We
show in Section 3.2.4 that our model estimates DNC structures for the
same subjects that are distinct to the ground-truth task of dementia, age,
or gender. Hence our model can show the networks and their connec-
tivity crucial for specific downstream tasks. The networks identified by
the model through the learned DNC for dementia classification (SM, CB,
VI) match the results of prior studies (Albers et al., 2015; Filippi et al.,
2017; Grant et al., 2014; Ingalhalikar et al., 2014; Jacobs et al., 2017).
Whereas, for gender prediction, the most prominent network identified
by the network was DM, which again matches existing literature (Filippi
et al., 2013; Kim et al., 2021; Mak et al., 2016; Ritchie et al., 2018). We
feel this is a strong validation of the ability of DICE to find disorder-
dependent networks and connectivity patterns. We showed in Fig. 8a
that our model focused more on SMN than DMN despite having almost
two-thirds of female subjects in the test set. This result is significant
because the model learned that the SMN connectivity, is more impor-
tant than DMN for the downstream task of dementia classification and
hence enhances the signals for SMN. This eliminates the need to acquire
strictly matched subjects with only the difference(s) for which you want
to find the relevant networks and connectivity. For example, when try-
ing to find the networks related to schizophrenia using PCC, one needs to
find two groups (schizophrenia patients and controls) that do not have
any other differences. Extraneous differences would create ambiguity
regarding whether the networks identified are related to the disorder
(schizophrenia) or some other difference, e.g., gender. Instead of ex-
plicitly confronting the confounding factors by regressing them out or
taking equivalent measures, DICE performs the “de-confounding” im-
plicitly based on the training labels.

Another notable property of our model is that it finds the relevant
networks and the connectivity structures (sub-graphs) without receiv-
ing them during training, making DICE a self-supervised graph learning
model.

4.4. Dynamic DNC and temporal-attention

As hypothesized, and shown in previous studies (Allen et al., 2012;
Calhoun et al., 2014; Hutchison et al., 2013; Sakoglu et al., 2010) results
in Section 3.2.5 show that connectivity between brain’s intrinsic net-
work is dynamic, and dynamic connectivity can capture patterns which
are missed by static models. Notably, controls and SZ patients spend
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different amounts of time in each state 10. Controls spend more time
than SZ patients in strongly connected states, especially for visual and
sensorimotor networks. On the other hand, SZ patients spend time in
weakly connected states and do not often spend time in other states.
Similar patterns were observed in FNC studies (Damaraju et al., 2014;
Rabany et al., 2019; Rashid et al., 2014; Wang et al., 2014; Yang et al.,
2022).

Moreover, using all subjects in the FBIRN (Keator et al., 2016), our
model finds additional states doubling the state resolution. We explain
this temporal resolution increase by instantaneity of directed connectiv-
ity estimation in DICE in contrast to using a sliding window. Therefore,
estimating connectivity instantaneously makes the model robust and
finds patterns that are missed when using a window-based approach.
Another explanation and an additional factor is the increased richness
of representation via a directed graph - the connectivity matrices of DICE
have twice the number of parameters compared to FC and FNC. Our ex-
periment with k=10 states show similar patterns of strongly and weakly
connected states but they now vary in the direction of the connectiv-
ity. This result shows that both the connectivity strength and direction
of connectivity are dynamic (changes over time). As this state is rare
(based on time spent), it would be harder for window-based approaches
to capture it. It would be interesting to see when and how the direction
of connectivity changes and how external factors like performing a task
can trigger these changes. This, however, is a topic of the future work.

Finally, we show that not all time-points of the fMRI data are equally
important to the downstream prediction task and discriminative con-
nectivity matrices exhibit temporal dynamics. Using temporal attention,
our model finds important time-points relevant to the ground-truth sig-
nal used in training. This further helps in interpretability as our model
finds the time-points where the brain activity shows signals relevant to
the task. Potentially, this would also be important in task data where
the subject is asked to perform different tasks, and the DICE model can
be used to find out which task revealed the symptoms of the under-
lying disorder. Our experiments show that temporal attention assigns
stable and consistent weights to time-points across different randomly-
seeded tasks. We also notice that a) just 5% of time-points are sufficient
for achieving high classification performance and b) exclusion of tem-
poral attention (assigning the same weight to every time-point) nega-
tively affects classification performance. Consistent temporal attention
values across randomly-seeded trials further strengthens the evidence
of temporally dynamic discriminative DCs and the value of attention
mechanism. As our experiments show, our attention module is indeed
reliable per the definitions and potential issues discussed by Jain and
Wallace (2019) and Wiegreffe and Pinter (2019). As a learnable method,
DICE and other “glass-box layer” models need to be able to consistently
across training runs assign temporal attention values and estimate con-
nectivity between nodes, whereas inflexible methods computing corre-
lations such as PCC do not have this property. In a way, flexibility of
the learnable model comes with an additional requirement of stability
of learned interpretations. Even though our DICE model works well by
showing high classification performance and assigning consistent self
and temporal attention values on relatively small datasets, as we show,
having more subjects for training leads to an even more consistent as-
signment of temporal weights in our experiments.

5. Conclusions

Our work demonstrates importance of learnable interpretable esti-
mators of dynamic, directed, and task-dependent connectivity graphs
from fMRI data. DICE learns to estimate interpretable dynamic and di-
rected graphs that represent the directed connectivity among brain net-
works. The end-to-end training process removes the need for existing
external methods such as PCC and K-means, which are interpretable
but inflexible and strictly depend on the input data. Implementing DICE
with glass-box layer allowed us to bypass the need for a posthoc method
for interpreting learned model representations.
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Connectivity matrices estimated by DICE show how brain connec-
tivity changes across disorders, genders, and age. The learned connec-
tivity matrices help understand the human brain and its disorders as
the actual ground-truth connectivity matrix is not available. Further-
more, we moved from FC and FNC to DC and DNC to learn the direc-
tion of connectivity and simultaneously removed the issue of window
sizing of input data by making the model instantaneous. The learned
connectivity matrices provide knowledge that adheres to existing stud-
ies. Utilizing flexibility of DL models in learning data representations,
we show that using the same data, distinct connectivity structures can
be learned based on the downstream task and the ground-truth signal.
This flexibility allows acquiring more information from the data by us-
ing different training labels, which would require a much more involved
process of data selection and manual filtering out of confounding factors
for methods that are fully determined by the data, like PCC. Our model
highlights different networks linked with the downstream classification
task, e.g., the default mode network for gender prediction. Unlike other
interpretable models that may pay for it with a decrease in classification
performance (Dhurandhar et al., 2018; Johansson et al., 2011; Luo et al.,
2019; Shukla and Tripathi, 2012), DICE beats state of the art methods
in multiple classification problems on four neuroimaging datasets.

For classification DICE uses the learned connectivity structures. To-
gether with the temporal weights these structures are reasonably con-
sistent across varying seeds. Notably, DICE’s performance drops with-
out the use of temporal attention. The temporal attention module of the
model finds interpretable bio-markers crucial to performing the classifi-
cation task and shows that only a small fraction of time-points is enough
for attaining maximum performance. Notably, not all time points are
discriminative, as evident from the sparse distribution of temporal at-
tention weights in Fig. 12 and high predictive power of just the top 5%
of the attention weights of Table 10.

As the ground truth for the dynamic graph structure in resting state
fMRI is unavailable, we believe there is a need for models with “glass-
box layer“ like DICE that can estimate this structure based only on the
data and classification labels.

In future work, we would like to omit pre-processing with a dimen-
sionality reduction method—Ilike the used here ICA or region-based par-
cellation—and train a model end-to-end on the voxel-level data. This,
however, may require substantially larger datasets and may not be as
useful as the current model for an average sized research dataset. As
DICE estimates the direction of connectivity, for future work, we would
like to examine how the direction of connectivity changes through time
and during tasks for HC and patients.
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Appendix A. Ablation study

In this section, we show the stability of our DICE model in terms of
classification performance by changing different hyper-parameters. We
also show that as we did not extensively fine-tune the model for different
experiments, it is possible to achieve better classification performance
than reported in the paper. In Table A.11 we show the effect of number
of test folds on classification performance. Table A.12 shows the effect
on performance when changing the size of hidden dimensions. Also, as
FBIRN experiments with 18 fold testing created the biggest leakage, the
experiment without leakage was necessary for completeness and shows
model performs similarly. All other experiments had leakage of 1-2 sub-
jects whose effect should be insignificant. In Table A.13, we show that it
is possible to get a bit different classification results than ones reported
in the main body by permuting the subjects in different order.

Table Al

We show the effect of the different number of test folds on
the classification performance of the model using ICA data.
We also do an experiment (18, no leakage) where the last fold
had all the remaining subjects to prevent any data leakage.
We see that the model shows similar performance on different
number of test folds with an increase in performance with a
greater number of folds.

Dataset Number of test folds Mean AUC Median AUC
FBIRN 4 0.859 0.861
FBIRN 18 0.86 0.861
FBIRN 18, no leakage 0.86 0.861
ABIDE 5 0.705 0.71

ABIDE 10 0.722 0.732
OASIS 5 0.741 0.749
OASIS 10 0.752 0.758
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Table A2

We show how hidden dimensions of different modules of the model affect clas-
sification performance. As we do not fine-tune the hyper-parameters rigorously
for each experiment, it is possible to get better results than ones reported in the
main body of the paper. Similar results were seen for other datasets as well. We
also show how removing the temporal attention reduces the model’s classifica-
tion performance. None means the final connectivity matrix W/ was just the
average of each W,.

biLSTM  Self-attention Temporal Mean Median

Dataset  dim. dim. 7> Attention AUC AUC

FBIRN 100 48 0.05 GTA 0.86 0.861
FBIRN 100 48 0.05 None 0.733 0.764
FBIRN 100 64 0.05 GTA 0.858 0.861
FBIRN 128 64 0.025 GTA 0.865 0.875
FBIRN 128 64 0.025 None 0.761 0.778
FBIRN 64 32 0.05 GTA 0.849 0.858

Table A3

We show how permuting the order of the subjects can lead to a small variation
in the classification performance.

biLSTM Self-attention Mean  Median

Dataset dimension dimension 7 Permutation AUC AUC

FBIRN 100 48 0.05 Randomly 0.86 0.861
done

FBIRN 128 64 0.025 Randomly 0.865 0.875
done

FBIRN 100 48 0.05 Default order 0.86 0.889

FBIRN 128 64 0.025  Default order 0.858  0.875

Appendix B. Added loss term and DNC with negative weights

Connectivity of a node with itself equal to one is the only known
and correct bias we can use while estimating connectivity matrix be-
tween nodes. Therefore we experimented by adding a new loss term in
Eq. (5) and create following two variations.

loss = CrossEntropy(y,y) + f(1 — % tr(tanh(W/))) + A6l (B.1)

loss = CrossEntropy(y,y) + f(1 — % tr(sigmoid(Wf))) + Al61l, (B.2)

The second term in Egs. (B.1) and (B.2) is used to encourage the
model to produce connectivity matrices with the average value of the
main diagonal closer to 1. tr represents the trace of a matrix. g is
a regularization coefficient and we kept it at 0.75. § equal to 1 does
push the diagonal closer to 1 but leads to reduction in classification
performance. We found in our experiments that the second term re-
sults in more stable and easier to visualize matrices across multiple tri-
als. The added term did not significantly affect the classification per-
formance as shown in Table B.14 with tanh and sigmoid activation.
Figure B.13 shows the same matrix as Fig. 6a created with the new loss
Eq. (B.1).

We also re-create Fig. 4 using the new loss Egs. (B.1) and (B.2) and
show the estimated DNC in Fig. B.14. The added loss terms noticeably
increase the values on the diagonal of the connectivity matrices closer

Table B1

We compare the classification performance on FBIRN ICA
data with the new term added in the loss function. There
is not a significant difference in performance, though
marginal improvement is seen with sigmoid activation.

Dataset ~ Added loss term Mean AUC Median AUC
FBIRN None 0.86 0.861
FBIRN tanh 0.859 0.861
FBIRN sigmoid 0.862 0.875
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Fig. B2. Comparison of the DNCs learned with the additional regularization terms in the loss function against the DNC created using original loss and PCC FNC. As
expected, regularization pushes the diagonal closer to 1. Also the difference between values of diagonal and non-diagonal elements is higher in tanh based DNC B.14 b
as compared to sigmoid based DNC B.14 c. Similarly to Fig. 4 these matrices are averaged across multiple tries.

to 1. Notably, the difference between diagonal and non-diagonal values
is higher in DNC with tanh loss term than sigmoid based DNC. We expect
that this is probably because the output value for non-negative input (0)
in sigmoid is 0.5 and not 0 as in tanh. Hence, the loss for sigmoid is in
the range [0-0.5] and not [0-1]. The choice of the function depends on
the application and factors such as the presence of self edges, negative
edges, the range of the edge weights etc.

As FC and FNC are computed using PCC method to measure the cor-
relations, it has negative correlations as well. These negative correla-
tions are used in different studies and have meaningful interpretations.
Therefore, we try to accommodate negative values in the DC and DNC
estimated by our model. This can be done easily by making a small
tweak in the self-attention part of the model. Equation (2) uses softmax
function to get the weights and forces them in the range 0-1. Negative
weights can be achieved by replacing the softmax function with tanh.
We recreate Fig. 4a by estimating negative weights as well. We see in
Fig. B.15 that DICE can capture the negative weights by making a small
tweak in the self-attention part but detail experiments are required to
check the classification performance, stability, and interpretation if neg-
ative weights are incorporated. Also, incorporating negative weights re-
quire some hyper-parameter changes as well. We leave this for future
work.
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