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a b s t r a c t 

Brain network interactions are commonly assessed via functional (network) connectivity, captured as an undi- 
rected matrix of Pearson correlation coefficients. Functional connectivity can represent static and dynamic rela- 
tions, but often these are modeled using a ûxed choice for the data window Alternatively, deep learning models 
may üexibly learn various representations from the same data based on the model architecture and the training 
task. However, the representations produced by deep learning models are often difficult to interpret and require 
additional posthoc methods, e.g., saliency maps. In this work, we integrate the strengths of deep learning and 
functional connectivity methods while also mitigating their weaknesses. With interpretability in mind, we present 
a deep learning architecture that exposes a directed graph layer that represents what the model has learned about 
relevant brain connectivity. A surprising beneût of this architectural interpretability is signiûcantly improved ac- 
curacy in discriminating controls and patients with schizophrenia, autism, and dementia, as well as age and 
gender prediction from functional MRI data. We also resolve the window size selection problem for dynamic 
directed connectivity estimation as we estimate windowing functions from the data, capturing what is needed to 
estimate the graph at each time-point. We demonstrate efficacy of our method in comparison with multiple exist- 
ing models that focus on classiûcation accuracy, unlike our interpretability-focused architecture. Using the same 
data but training different models on their own discriminative tasks we are able to estimate task-speciûc directed 
connectivity matrices for each subject. Results show that the proposed approach is also more robust to confound- 
ing factors compared to standard dynamic functional connectivity models. The dynamic patterns captured by our 
model are naturally interpretable since they highlight the intervals in the signal that are most important for the 
prediction. The proposed approach reveals that differences in connectivity among sensorimotor networks relative 
to default-mode networks are an important indicator of dementia and gender. Dysconnectivity between networks, 
specially sensorimotor and visual, is linked with schizophrenic patients, however schizophrenic patients show in- 
creased intra-network default-mode connectivity compared to healthy controls. Sensorimotor connectivity was 
important for both dementia and schizophrenia prediction, but schizophrenia is more related to dysconnectivity 
between networks whereas, dementia bio-markers were mostly intra-network connectivity. 

1. Introduction 

Functional connectivity has emerged as a promising tool for un- 
derstanding the brain’s functional architecture and has been widely 
used ( Greicius et al., 2003; Lee et al., 2013; Rogers et al., 2007; Van 
Den Heuvel and Pol, 2010a ). Disruptions in the brain’s functional con- 
nectivity are often linked to brain disorders evident in patients’ be- 
havior ( van den Heuvel and Pol, 2010b ). For example, schizophrenic 
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patients have high level of functional dysconnectivity between brain 
networks ( Culbreth et al., 2021; Fu et al., 2017; Lynall et al., 2010; 
Morgan et al., 2020; van den Heuvel et al., 2010; Yu et al., 2011; 
Zhang et al., 2019; Zhu et al., 2020 ) and exhibit dysregulated dy- 
namic connectivity across multiple brain networks ( Supekar et al., 
2019 ). Alzheimer’s disease (AD) is also known to disrupt brain dy- 
namics leading to wide-spread cognitive dysfunction ( Haan et al., 
2011 ). 
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The association of brain disorders with abnormal static or dynamic 
functional connectivity highlights the need to develop models that 
can identify disorder-speciûc connectivity aberrations. This observation 
guides development of various approaches to brain connectivity analy- 
sis ( Arslan et al., 2018; Kazi et al., 2021; Kim and Ye, 2020; Ktena et al., 
2017; 2018; Ma et al., 2019; Parisot et al., 2018; Yan et al., 2017 ). How- 
ever in most existing approaches, the functional connectivity matrices 
are not informed by the prediction task but instead estimated prior to 
training; thus, they depend entirely on the chosen input window of data 
samples. The independence from the downstream task results in inüexi- 
ble estimation of connectivity matrices as the estimate is unchanged re- 
gardless of whether the task is to predict a brain disorder, age, or other 
quantity. Kim et al. (2021) proposed a method where the functional con- 
nectivity structure is computed based on the learned representations of 
the data, but even this method lacks a learnable connectivity estima- 
tion method. We argue that task-dependent connectivity matrices can 
be estimated by a deep learning (DL) model using learnable weights. DL 
models are üexible in their ability to learn a variety of representations 
from the same data based on the architecture and ground-truth signal 
used in training. 

However, using a DL method to estimate a connectivity matrix can 
be challenging without the presence of the ground-truth graph during 
training. Another problem of many DL models is lack of consistency 
and interpretability in the learned representations. Saliency maps com- 
monly used to address interpretability of these models ( Angelov et al., 
2021; Lewis et al., 2021; Ras et al., 2021; Simonyan et al., 2014 ) may 
be difficult to interpret ( Liu et al., 2021 ). Arguably, the difficulty of 
interpreting representations is the reason why studies using DL mod- 
els incorporate inüexible but interpretable feature selection steps for 
connectivity estimation, for example Pearson correlation coefficients 
(PCC) ( Freedman et al., 2007 ). 

In most of the current studies, functional connectivity estimates are 
either static or dynamically computed using a sliding window approach 
dependent on the window size and stride ( Armstrong et al., 2016; Dama- 
raju et al., 2014; Fu et al., 2020; 2018; Gadgil et al., 2021; Yao et al., 
2020 ). Unable to capture non-stationarity, static matrices miss essential 
information about dynamics. For example, dynamic functional connec- 
tivity estimates show re-occurring patterns which cannot be captured 
by their static counterparts ( Allen et al., 2012; Calhoun et al., 2014; 
Hutchison et al., 2013 ). Using a static graph learning method to capture 
a dynamical system may reduce classiûcation performance ( Xu et al., 
2020 ). Kipf et al. (2018) show improved results by just dynamically 
re-evaluating the learned static graph during testing. The improved per- 
formance for the relevant task is understandable as the dynamic con- 
nectivity provides essential information about the system, for instance, 
capturing re-occurring patterns. The brain’s functional activity is also 
perceived to be highly dynamic and hence cannot be faithfully cap- 
tured with a static or even window-based approach ( Yaesoubi et al., 
2018 ). 

Furthermore, studies using functional connectivity to measure con- 
nectivity between brain regions or networks do not capture the direction 
of interaction and only measure undirected statistical dependence such 
as correlations, coherence, or transfer entropy. Correlation can arise for 
many reasons; for example, due to a common cause when an unobserved 
network affects two networks that are observed ( Pearl, 2000; Spirtes 
et al., 1993 ). Arguably, dynamics of interaction among brain networks is 
beyond simple correlations and correlation may only partially describe 
it. Whereas, effective connectivity is a more general way to represent dy- 
namic and directed relationships among brain’s intrinsic networks. As 
introduced by Friston (2011) effective connectivity falls into a model- 
based class of methods while multiple other methods, including those in 
the model-free class have been since developed ( Bielza and Larranaga, 
2014; Chiang et al., 2017; Chickering, 2002a; 2002b; Deshpande et al., 
2011; Goebel et al., 2003; Gorrostieta et al., 2013; Mitra et al., 2014; 
Schreiber, 2000; Seth et al., 2015; Spirtes and Glymour, 1991; Ursino 
et al., 2020; Vicente et al., 2011 ). 

Like these approaches, to estimate brain networks’ connectivity that 
is 1) directed, 2) interpretable, 3) üexible, and 4) dynamic, we have 
developed an approach called the Directed Instantaneous Connectivity 
Estimator (DICE): a predictive model to estimate dynamic directed con- 
nectivity between brain networks, represented as a dynamically varying 
directed graph by predicting the downstream binary label. Our model 
may be placed into the category of model-free connectivity methods as it 
does not model the data generation process. We defer to using <directed 
(network) connectivity = (D(N)C) for the graphs that DICE estimates. 

Unlike existing supervised DL models that typically produce difficult- 
to-interpret representations, we designed our model primarily with in- 
terpretability in mind. Our model reveals what it learned about the 
dynamics of brain network connectivity without using post hoc inter- 
pretability methods. Effectively, we have built a <glass-box = layer within 
a traditionally <black-box = DL model. In contrast to commonly used hid- 
den layers, the <glass-box = layer propagates a weighted adjacency ma- 
trix of a directed graph, ensuring that it is interpretable in the context of 
the classiûcation task. Hence, by estimating DC based on the task and 
using only the estimated connectivity structure for classiûcation, our 
model learns to capture task-relevant networks and their connectivity, 
leading to a üexible estimation of an interpretable DC. By estimating 
DC instantaneously (window-size = 1), DICE removes the need for the 
window-size parameter used in many dynamic connectivity studies. 

To thoroughly validate DICE’s performance, we conduct a series of 
experiments on four neuroimaging datasets that span three disorders 
(schizophrenia, autism, and dementia) and cover a wide age range. We 
train the model on classiûcation tasks for each of these brain disorders, 
age prediction, and gender classiûcation, and analyze the resulting DC 
of the <glass-box = layer. Surprisingly, our deliberate focus on stable in- 
terpretable results has an enhancing side effect on DICE’s predictive per- 
formance. As we show, the model’s predictions are better or on par with 
state-of-the-art methods that were developed with a focus on classiûca- 
tion performance rather than interpretability. We show that when learn- 
ing to classify subjects based on a speciûc criterion, DICE estimates in- 
terpretable DCs speciûc to that criterion. For gender and mental disorder 
classiûcation, subgraphs emphasized by the learned DCs are discrimina- 
tive of gender and mental disorders, respectively. We also demonstrate 
that DICE learns interpretable DCs distinct to dementia, gender, and 
age prediction for the same subjects by enhancing connectivity for net- 
works that pertain to the training signal. Our üexible estimation of DC 
structures advances the results of Salehi et al. (2020) , which show that 
functional parcel boundaries change for an individual based on the cog- 
nitive state. We show an increased utility of the inferred directionality 
for increasing the precision of explainable group differences. As a re- 
sult, DICE can resolve more states in fMRI dynamics than is resolvable 
in typical dynamic functional network connectivity analyses. Addition- 
ally, DICE incorporates a temporal attention module that highlights cru- 
cial time steps relevant to the task, further improving the interpretation 
of predictions for the dynamics. The learned DC structures and tempo- 
ral attention weights are stable and consistent across randomly-seeded 
trials. 

2. Materials and methods 

2.1. Materials 

We use resting state functional magnetic resonance imaging (rs- 
fMRI) data as input to our model. fMRI measures blood oxygena- 
tion level-dependent (BOLD) signal, which captures the functional 
activity of the brain over time. We test our model by classify- 
ing three different brain disorders, predict gender and age of sub- 
jects. For each brain disorder we perform binary classiûcation of 
healthy controls (HC) and patients. Four datasets used in this study 
are collected from FBIRN (Function Biomedical Informatics Research 
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Table 1 
Details of the datasets used. We tried different number of test folds in our experiments but that did not have a signiûcant 
effect on results. Time-points is the number of time-points for each subject in the dataset. Refer to Section Appendix A 
for more details. In the paper we report the results with test folds that match comparing studies. 

Name Category Preprocessing Parcellation Subjects 0 Class 1 Class Test Folds Time-points 

FBIRN Schizophrenia SPM12 ICA 311 151 160 4,6, 18 157 
OASIS Dementia SPM12 ICA 912 651 261 4, 10 157 
ABIDE Autism SPM12 ICA 569 (TR = 2) 255 314 5, 10 140 
ABIDE Autism SPM12 ICA 869 398 471 5, 10 140 
HCP Gender SPM12 ICA 833 390 443 5, 15 980 
FBIRN Schizophrenia SPM12 Shaefer 200 311 151 160 18 157 
HCP Gender Glasser Shaeffer 200 942 411 531 10 1200 
ABIDE Autism C-PAC Shaeffer 200 871 403 468 10 83–316 

Network 1 ) Keator et al. (2016) project, from release 1.0 of ABIDE 
(Autism Brain Imaging Data Exchange 2 ) Di Martino et al. (2014) and 
from release 3.0 of OASIS (Open Access Series of Imaging Studies 3 ) 
Rubin et al. (1998) . Healthy controls from the HCP (Human Connec- 
tome Project) ( Van Essen et al., 2013 ) are used for gender prediction. 
Refer to Table 1 for details of the datasets. 

2.1.1. Preprocessing 
We use two typical brain parcellation techniques; independent com- 

ponent analysis (ICA) and regions of interest (ROIs) based on a pre- 
deûned atlas. The preprocessing pipeline used depends on the parcella- 
tion technique and the pipeline used in state-of-the-art studies for the 
dataset. All the preprocessing was done before training the model. 

ICA parcellation: For all experiments conducted using ICA as brain 
parcellation technique the fMRI data was preprocessed using statistical 
parametric mapping (SPM12, http://www.ûl.ion.ucl.ac.uk/spm/ ) un- 
der the MATLAB 2021 environment. A rigid body motion correction was 
performed to correct subject head motion, followed by the slice-timing 
correction to account for timing difference in slice acquisition. The fMRI 
data were subsequently warped into the standard Montreal Neurologi- 
cal Institute (MNI) space using an echo planar imaging (EPI) template 
and were slightly resampled to 3 × 3 × 3 mm 3 isotropic voxels. The re- 
sampled fMRI images were then smoothed using a Gaussian kernel with 
a full width at half maximum (FWHM) = 6 mm. 

We selected subjects for further analysis ( Fu et al., 2021 ) if the sub- 
jects have head motion ≤ 3 ◦ and ≤ 3 mm, and with functional data pro- 
viding near full brain successful normalization ( Fu et al., 2019 ). 100 
ICA components are estimated using a novel fully automated Neuro- 
mark pipeline <neuromark_fmri_1.0 =4 described in Fu et al. (2019) . This 
method is capable of capturing robust imaging features that are com- 
parable across subjects, datasets, and studies, which is beneûcial for 
those studies need replication. The Neuromark framework leverages an 
adaptive-ICA technique that automates the estimation of comparable 
brain markers across subjects, datasets, and studies. A set of component 
templates were used as references to guide the estimation of single-scan 
components for the data. These component templates were created via 
a uniûed ICA pipeline. They were constructed using an independent 
resting-state fMRI data with large samples of healthy subjects from the 
genomics superstruct project (GSP). The GSP data include 1005 sub- 
jects’ scans that passed the data QC. High model order (order = 100) 
group ICA was performed on the GSP data, and then the independent 
components (ICs) from the GSP data were used as the references to ex- 
tract components for each dataset used for experiment in this study. The 
Neuromark framework extracts the components for each subject respec- 
tively, which means that the estimation of features of each subject is 
not inüuenced by the others. However, the choice of components (and 

1 We use FBIRN phase III. 
2 http://fcon_1000.projects.nitrc.org/indi/abide/ 
3 https://www.oasis-brains.org/ 
4 https://trendscenter.org/data/ 

number of components) can inüuence accuracy, but our study is not fo- 
cusing on determining the best number of ICs rather use the available 
components and let the model decide the task-dependant components. 

Region parcellation: State-of-the-art methods use different prepro- 
cessing pipelines for different datasets. For comparison with these meth- 
ods on HCP, ABIDE, and FBIRN datasets, we select the same preprocess- 
ing pipelines as in the relevant comparing method. We use the HCP 
( Van Essen et al., 2013 ) data which was ûrst minimally pre-processed 
following the pipeline described in Glasser et al. (2013) . The prepro- 
cessing includes gradient distortion correction, motion correction, and 
ûeld map preprocessing, followed by registration to T1 weighted im- 
age. The registered EPI image was then normalized to the standard 
MNI152 space. To reduce noise from the data, FIX-ICA based denois- 
ing was applied ( Griffanti et al., 2014; Salimi-Khorshidi et al., 2014 ). 
To minimize the effects of head motion subject scans with framewise 
displacement (FD) over 0.3mm at any time of the scan were discarded. 
The FD was computed with fsl motion outliers function of the FSL 
( Jenkinson et al., 2012 ). There were 152 discarded scans from ûlter- 
ing out with the FD, and 942 scans were left. For all experiments, the 
scans from the ûrst run of HCP subjects released under S1200 were 
used. ABIDE ( Di Martino et al., 2014 ) was pre-processed using C-PAC 
( Aertsen and Preissl, 1991 ). The preprocessing includes; slice time cor- 
rection, motion correction, skull striping, global mean intensity normal- 
ization, nuisance signal regression, band pass ûltering, and ûnally func- 
tional images were registered to anatomical space (MNI12). After pre- 
processing using C-PAC, 871 out of 1112 subjects were chosen based 
on the visual quality, inspected by three human experts which looked 
for brain coverage, high movement peaks and other artifacts resulted by 
scanner ( Abraham et al., 2017; Cao et al., 2021; Parisot et al., 2018 ). To 
pre-process FBIRN data, SPM12 pipeline was used as explained in previ- 
ous section with few extra steps. After the smoothing using a Gaussian 
kernel, the functional images were temporally ûltered by a ûnite im- 
pulse response (FIR) bandpass ûlter (0.01 Hz-0.15 Hz). Then for each 
voxel, six rigid body head motion parameters, white matter (WM) sig- 
nals, and cerebrospinal üuid (CSF) signals were regressed out using lin- 
ear regression. 

We used two atlases for brain parcellation; Schaefer et al. (2017) , 
and Harvard Oxford (HO) ( Desikan et al., 2006 ) with 200, and 111 re- 
gions respectively. For each region, average value is computed for all 
the voxels falling inside a region, thus resulting into a single time-series 
for each region. After dividing data into regions, each time-series was 
standardized by their zscore having zero mean and unit variance. 

2.2. Method 

Our DICE model recieves the time-courses of the ICA components 
or ROIs represented as a matrix of size ý ∗ ÿ (Number of compo- 
nents/ROIs ∗ Number of time-points) and learns a set of ÿ directed 
graphs representing the dynamic DC or DNC between spatial compo- 
nents (e.g., ICA-based spatial components, regions from an atlas), which 
we designate as nodes of a graph by predicting the binary labels. Let ÿ
represent the set of graphs where ÿ = { ý 1 , ý 2 , … , ý ÿ } where ÿ is the to- 
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Fig. 1. DICE architecture using biLSTM, self- 
attention and temporal attention. We use self- 
attention between the embeddings of all com- 
ponents/nodes at each time-point to estimate 
the DC ÿ ÿ . Temporal attention is used to cre- 
ate a weighted sum of the ÿ DC. Architecture 
details of temporal attention is shown in Fig. 2 . 

tal time-points and ý ý = ( ý ý , ý ý ) , where, ý ý and ý ý represent the nodes 
and edges present at time-point ý . To create the graph ý ý we ûrst use 
a bidirectional long short-term memory (biLSTM) ( Schuster and Pali- 
wal, 1997 ) module to create the embedding ý ÿ ý of node ÿ at time ý . We 
then use a self-attention module ( Vaswani et al., 2017 ) which takes all 
such embeddings at each time ý and create a weight matrix among nodes 
thus providing the DC (graph) between nodes at each time-point. To 
create a ûnal graph ÿ ÿ for downstream classiûcation, we use a tem- 
poral attention model that assign a weight to each ý ý and compute the 

weighted sum of the set ÿ. We explain the working and purpose of each 
module in detail in the following sections. Figure 1 shows the complete 
architecture. 

2.2.1. biLSTM 

The time-point value ý ÿ ý for node ÿ at time ý can be effected by many 
different factors and relations. Capturing these relations can increase 
model interpretability and improve downstream classiûcation perfor- 
mance. In a time-series (fMRI data), one of these factors is the val- 
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ues/data at previous time-points ý ÿ 
1…ý −1 

. In fMRI data, this relationship 
is unknown and is hard to capture and hence cannot be computed using 
a ûxed method/formula (hand-crafted features). The difficulty is further 
increased by a) low temporal resolution of fMRI data and b) the fact that 
it is unknown how farther in time the effects of a time-point remains in 
a time-series. These effects are different for each subject and can even 
vary among nodes of the same subject. LSTMs have proved to be ex- 
tremely effective for time-series/sequence data where the model takes 
an input from a sequence at time-point ý and create representation for 
current and also predict representation for future time-courses based on 
the representation of previous time-points. LSTMs learn the temporal 
relationships between data through the cell’s memory and forget gate. 
These gates are optimized on the data and downstream task (ground- 
truth signal) and the relationships between data are learned instead of 
computed. The working of the LSTMs can be explained by the following 
set of equations. ÿ represents sigmoid activation, and ⊙ is the Hadamard 
product ( Million, 2007 ). 

ÿ ý = ÿ( ÿ ÿÿ ý ý + ÿ ÿÿ + ÿ ℎÿ ý ý −1 + ÿ ℎÿ ) 

ÿ ý = ÿ( ÿ ÿÿ ý ý + ÿ ÿÿ + ÿ ℎÿ ý ý −1 + ÿ ℎÿ ) 

ý ý = tanh ( ÿ ÿý ý ý + ÿ ÿý + ÿ ℎý ý ý −1 + ÿ ℎý ) 

ý ý = ÿ( ÿ ÿý ý ý + ÿ ÿý + ÿ ℎý ý ý −1 + ÿ ℎý ) 

ý ý = ÿ ý ⊙ ý ý− ÿ + ÿ ý ⊙ ý ý 
ý ý = ý ý ⊙ tanh ( ý ý ) 

(1) 

In the above equations, ÿ ý , ÿ ý , and ý ý represent the input, forget and 
output gates at time ý respectively. ý ý represents the cell state (mem- 
ory), ý ý represents candidate for the cell state, and ý ý represents the 
representation/embedding for the input at ý . ÿ ÿý and ÿ ℎý represent 
the weights for the input and hidden vectors for the respective gate 
ý ∈ { ÿ -input , ÿ -forget , ý -output } . Similarly ÿ ÿý , ÿ ℎý are the biases for the 
respective gate ý ∈ { ÿ, ÿ, ý } . We use a biLSTM to create representation 
ý ý for each node ÿ . Thus ý 

ÿ 
ý = ÿÿÿ ý( ý ý , ý ý −1 ) , ý 

ÿ 
ý = ÿÿÿ ý( ý ý , ý ý +1 ) and 

ý ý = concat enat e ( ý 
ÿ 
ý , ý 

ÿ 
ý ) . Here ý 

ÿ 
ý and ý 

ÿ 
ý are representation for forward 

and backward pass. We use LSTM for each node (component/region) 
individually, sharing weights of LSTM among the nodes. As shown in 
Eq. (1) , LSTM’s usually take a vector ý ý as input at each step, how- 
ever, we give ý ÿ ý (scalar value) as input to the LSTM along with hid- 
den vector and receive ý ÿ ý for the node ÿ at time-point ý , which solves 
the window size problem occurring in dynamic-FNC studies. To make 
it easier to understand, one can assume that in our model the window 

size is 1. This allows us to later instantaneously compute connectivity 
matrix (links/edges) between the nodes at each time-point. The biLSTM 

receives temporal values of each component/region separately but share 
the weight matrices across regions. This allows the biLSTM to learn the 
temporal connections by looking at multiple nodes but does not learn 
spatial dependencies among nodes. For this exact reason we use self- 
attention across nodes. 

2.2.2. Self-Attention 
A node in a graph can be linked with other nodes represented as 

the edge connectivity between them. The connectivity between nodes 
inüuence the value of a node ( ý ÿ ý ) at a certain time-point. Thus it is im- 
portant to measure the connectivity between nodes for the construction 
and interpretation of the graph. In our fMRI data where each ý ÿ is a brain 
region/component, capturing the DC or DNC between nodes shows how 

brain networks are linked with each other and the direction of üow of 
information between brain networks. The estimated matrices can then 
be used to explain brain working and brain disorders. Connectivity be- 
tween brain regions is independent of the structural connectivity and 
thus is unknown. To capture the directed connectivity between brain 
regions, we use a self-attention module. 

Self-attention module captures the weights between ÿ inputs of a 
sequence. Since in a dynamic system (brain network), the connectivity 
between nodes can change at any instance, therefore, at each time-point 
ý we pass a sequence of ÿ vectors ý 1 ý …ý ÿ ý , ÿ = total nodes, as input to 
the self-attention module and create the weight matrix ÿ ý , where each 

ÿ ý ∈ ℝ ÿ ∗ ÿ is the connectivity weight matrix of input nodes at time-point 
ý . 

The self-attention module creates three embeddings, namely, key ( ý ), 
value ( ÿ ), and query ( ÿ ) and creates new embeddings for each input 
using these embeddings. The following set of equations can sum up the 
whole process. For simplicity, we omit the ý from these equations. ⊺

represents transpose and ⊕ represents concatenation. 

ý ÿ = ý ÿ 
⊺
ÿ ( ý ) , ÿ ÿ = ý ÿ 

⊺
ÿ ( ÿ ) , ÿ ÿ = ý ÿ 

⊺
ÿ ( ÿ) 

ÿ = ⊕ÿ 
ÿ =1 

ý ÿ 
⊺
, ý ÿ = sof tmax ( ÿ ÿ ÿ ) 

ÿ = ⊕ÿ 
ÿ =1 

ý ÿ 
(2) 

Here ÿ ∈ ℝ ÿ ∗ ÿ is the connectivity matrix between ÿ nodes in the 
graph. As brain disorder are associated with disruptions in the connec- 
tivity of brain’s intrinsic network, we only use our learned directed con- 
nectivity matrices ÿ for downstream classiûcation and not the features, 
thus forcing the model to estimate the differences in connectivity be- 
tween the two classiûcation groups (e.g., HC and patients). As DICE is 
tuned to estimate the DC or DNC for the groups of subjects and output 
the it, DICE captures and shows the basis of downstream classiûcation. 
The DC or DNC estimated by the model can be easily represented as a 
graph which are extremely easy to interpret. The self-attention glass-box 
layer shows task-dependant nodes (brain regions) and their connectiv- 
ity. 

The features that represent time-courses are used to learn/estimate 
the DC or DNC structure. As the true connectivity/graph structure is 
never available in many applications to directly compare with, we pro- 
pose that a connectivity matrix leading to state-of-the-art classiûca- 
tion performance makes it more reliable than using the representa- 
tions/embeddings for classiûcation. 

2.2.3. Temporal attention 
As we use only the connectivity matrices learned by the model for 

downstream classiûcation. For this purpose, we need to create a single 
weight matrix ÿ ÿ based on the ÿ 1− ÿ matrices. For the downstream 

classiûcation task, not all the time-points are equally important, hence 
it is crucial to incorporate a temporal attention module which assigns 
weight to each ÿ ý and calculate a weighted average of all the weight 
matrices. We introduce a novel temporal attention module which we 
call global temporal attention (GTA). 

GTA: To give the attention module a global view of the graph, we 
present GTA. The global view allows the model to learn how each DC 
contributes to the global graph or structure of the data in the down- 
stream task. We create an average of all the ÿ DC and call it ÿ ýýýÿÿý 

representing the global view. We then compare the similarity of each 
local ÿ ý with the global view and use them to create the temporal at- 
tention vector ÿ. Figure 2 shows the architecture details. 

ÿ ýýýÿÿý = 
1 
ÿ 

∑ÿ 
ý =1 ÿ ý 

ÿ̃ ý = ÿ ý ⊙ÿ ýýýÿÿý 

ÿ = ( ⊕ÿ 
ý =1 

(((( f lat ( ̃ÿ ý )) ÿ ýÿÿ ý1 ) ÿ ýÿÿ ý2 ) ÿ ýÿÿ ý3 ) 

(3) 

Here ⊙ is the Hadamard product ( Million, 2007 ) between matrices. 
ÿ ÿ is computed as: 

ÿ ÿ = 

ÿ ∑

ý =1 

ÿ ý ÿý (4) 

2.3. Training 

We used GTX 2080 with PyTorch as ML framework for our experi- 
ments. The hidden dimensions for the biLSTM was set to 100, whereas, 
self-attention including key, query, and value modules, were all set to 
48. The dimensions of multi-layer perceptron (MLP) layers for calculat- 
ing temporal attention vector were ÿ1 ∗ ý ÿÿ ( ÿý ÿý ( ÿ ý )) , ÿ2 ∗ ý ÿÿ ( ÿý ÿý ( ÿ ý )) , 
and 1 with ÿ1 = ÿ2 = 0 . 05 . We noticed in our experiments that multiple 
heads of self-attention increases stability of the estimated DC. We used 
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Fig. 2. GTA architecture for temporal attention. ÿ 1− ÿ matrices are summed to 
create ÿ ýýýÿÿý . Using ÿ ýýýÿÿý and ÿ ÿ attention score ÿÿ is created for each time- 
point. Refer to equations in 3 and 4 for working details. Here f denotes the 
average function. 

batch normalization after the ûrst MLP layer. ReLU activation was used 
in our model between the MLP layers. A ûnal two-layer MLP was used 
to get logits for binary classiûcation problem with ÿ ÿ as input with di- 
mensions 64 and 2. We used cross-entropy loss with Adam optimizer. 
Let ÿ represent the parameters of the entire architecture, ÿ̂ being the 
predictions and ÿ the true labels, the loss is calculated as: 

ýýýý = CrossEntropy ( ̂ÿ , ÿ) + ÿ‖ÿ‖1 (5) 

ÿ
∗ = arg min ÿ( ýýýý ) (6) 

We also experimented with additional loss terms to encourage the 
model to estimate connectivity matrices where the values of the main 
diagonal are closer to 1. Please refer to Section Appendix B for details. 
We used L1-regularization to get a sparser solution. ÿ (regularization 
weight) was set as 1 ÿ −6 and learning rate was 2 ÿ −4 . Based on the experi- 
ment, we reduced the learning rate either when validation loss reached 
plateau by a factor of 0.5 or exponentially with ÿ = 0 . 99 . Early stop- 
ping was used to stop training the model based on validation loss and 
patience of 25. For each dataset (ICA components or ROIs), to have a 
fair result, we perform n-fold testing where the value of n depended 
on the dataset and methods we compared against. For each test fold 
we performed experiments with 10 randomly-seeded trials. We report 
the mean AUC-ROC (Area Under Curve - Receiver Operating Charac- 
teristic) across the n test folds and the 10 randomly-seeded trials as 
it is a more reliable metric than simple accuracy for binary classiûca- 
tion tasks. For example, for FBIRN data we had 18 test folds and for 
each fold we performed 10 trials, which gives us a list of 180 AUC- 
ROC values and we report the average of these values. In some cases 
we also report other metrics as well, such as accuracy. Due to the size 
of the data, we made some hyper-parameter changes for HCP region- 
based (ROIs) experiments. The hidden dimension size for bilstm and 
self-attention module was set to 64 and 32. ÿ1 was set to 0.005. Further- 
more, because of memory constraints encountered during HCP region 

experiments, during both training and testing we divide the total time- 
points (1200) into a set of three, each having 400 time-points. We create 
logits for all and compute the mean to get ûnal logits. Batch size was set 
to 32. 

2.3.1. Hyper-parameters selection and fine-tuning 
All the parameters (hidden dimensions, number of layers, ÿ1 , ÿ2 , ÿ, 

learning rate, ÿ, patience, batch size) mentioned in Section 2.3 were 
set as hyper-parameters. We ûne-tuned these hyper-parameters based 
on the average performance of the model on validation dataset across 
all the folds. We did not perform hyper-parameters tuning based on 
the test folds and we report only test-set results. We also want to note 
here that we permuted the order of subjects for each dataset and per- 
formed the experiments using the permuted order. This was done to 
avoid imbalance of subjects in the folds. On the same lines, when di- 
viding the data into n-folds (test folds) we tried to balance the number 
of subjects of both classes in each fold. For example, in case of FBIRN 

data with 311 subjects and 151 and 160 subjects in class 0 and 1 re- 
spectively. When performing 18 fold testing, each test fold consisted 
of ⌊ 151 

18 
⌉ subjects from class 0 and ⌊ 160 

18 
⌉ subjects from class 1 and the 

rest of the data was used for training and validation, where we kept 
the validation set size same as the test set size. The validation set was 
used for hyper-parameters tuning, early stopping during training and 
selecting the model to apply on the test data. We made sure that no 
subject (or sessions of a subject) repeated across training, validation 
and test sets. The exact size of training, validation and test set can be 
calculated using the criteria mentioned above and the total number of 
subjects and number of folds mentioned in Table 1 . In some of the ex- 
periments keeping the same number of subjects in each fold created 
a small data leakage at the end. For the results reported, the maxi- 
mum leakage was for FBIRN dataset with 18 test folds. For this pur- 
pose, we performed another experiment on FBIRN dataset where the 
last fold had all the left out subjects to prevent any data leakage. This 
had no effect on the performance of the model. Refer to Table A.11 for 
results. 

3. Experiments 

To test if DICE accomplishes all the goals, we perform detailed ex- 
periments by classifying three brain disorders, classify male and female 
groups for HCP and OASIS subjects, and predict age for OASIS subjects. 
We perform experiments for all datasets using ICA time-courses and per- 
form experiments on FBIRN, ABIDE and HCP data using regions-based 
(ROIs) data as well. In this paper we refer to matrices capturing func- 
tional connectivity between networks at a whole-brain level as func- 
tional network connectivity (FNC) ( Allen et al., 2011b; Jafri et al., 2008 ) 
and when operating on ROIs – as FC. We report the average results 
for all the trials. Depending on the experiment, we compare our clas- 
siûcation results with state-of-the-art DL methods ( Arslan et al., 2018; 
Gadgil et al., 2021; Kim and Ye, 2020; Mahmood et al., 2021; 2019; 
2020; Weis et al., 2019; Zhang et al., 2018a ) and ML methods (Sup- 
port Vector Machine (SVM), Logistic Regression (LR)). To avoid any 
discrepancy we report the results of the DL methods directly from the 
published studies, even though some studies use test data instead of 
validation data for selecting the best performing model/parameters. 
For ML methods we used the python package Polyssiûer 5 which se- 
lects the best model/parameters based on the performance on validation 
data. 

To show the efficacy of our model, we divide our results into three 
broad categories. In the following sections we show a) classiûcation per- 
formance of our model, b) learned DC and DNC and c) the effects of 
temporal attention module. 

5 https://github.com/alvarouc/polyssiûer 
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Fig. 3. AUC comparision of DICE model with four different methods (MILC Mahmood et al. (2020) , STDIM Mahmood et al. (2019) , logistic regression (LR), support 
vector machine (SVM)), over four different datasets using ICA time-courses (Ref to Section 2.1.1 ). Our method signiûcantly outperforms SOTA methods. We performed 
Autism experiments with 869 subjects (all TRs) as well. As we do not have a pre-training step we compare with not-pre-trained (NPT) version of MILC and STDIM. 
Input to ML methods were the same ICA time-courses, not the FNC matrices. We did not ûnd any notable studies for gender classiûcation of HCP subjects using ICA 
components as notable methods used ROIs based data. We compare the results using ROIs in Table 2 . 

Table 2 
Classiûcation performance comparison of DICE with other DL methods on region-based (ROIs) data of HCP and FBIRN datasets (Ref to Section 2.1.1 ). Our DICE 
model outperforms all other methods in almost every metric. The best two scores are shown as bold and italic respectively. Note: As we use all the regions in the 
atlas we report the mean accuracy for SVM-RBF ( Weis et al., 2019 ). The results for GCN ( Arslan et al., 2018 ) on HCP data are reported by GIN ( Kim and Ye, 2020 ). 
GIN ( Kim and Ye, 2020 ) and ST-GCN ( Gadgil et al., 2021 ) use test data as validation data for choosing the best performing model. We would also like to point here 
a newer version of GIN ( Kim and Ye, 2020 ), named STAGIN ( Kim et al., 2021 ) reports AUC and ACC score of 92.96 and 88.20 respectively using 1093 subjects, 
and 5-fold testing. STAGIN ( Kim et al., 2021 ) reports much lower ACC for GIN and ST-GCN (81.34 and 76.95 respectively) when not using test data as validation 
data and keeping other parameters (data, preprocessing, parcellation etc.) same. NA: Not Available. 

HCP - Gender Classiûcation FBIRN 

DICE GIN SVM-RBF GCN ST-GCN PLS DICE BrainGNN 

AUC 0.935 NA NA NA NA 0.881 0.825 0.788 
ACC (%) 85.8 84.6 68.7 83.98 83.7 79.9 NA NA 
Precision (%) 85.7 86.19 NA 84.59 NA NA NA NA 
Recall (%) 90.2 86.81 NA 87.78 NA NA NA NA 
Parcellation Shaefer 200 Shaefer 400 Shaefer 400 + Fan 

39 
Shaefer 400 Multi-modal 22 Dosenbach 160 Shaefer 200 AAL 116 

Test Folds 10 10 10 10 5 10 18 18 
Subjects 942 942 434 942 1091 820 311 311 
Study Our Kim and Ye (2020) Weis et al. (2019) Arslan et al. (2018) Gadgil et al. (2021) Zhang et al. (2018a) Our Mahmood et al. (2021) 

3.1. Classification 

Figure 3 shows the classiûcation performance of our model using 
ICA data, Table 2 shows the performance using region-based (ROIs) data 
of FBIRN and HCP, and Table 3 shows results on ABIDE region-based 
(ROIs) data. 

Our model beats every state-of-the-art method used for compari- 
son in this study in almost every metric for both ICA and region-based 
(ROIs) fMRI data across all datasets when using similar input data 
(fMRI). As our model does not use phenotypic information about sub- 
jects, it lacks behind ( Cao et al., 2021; Parisot et al., 2018 ) on ABIDE. 

Parisot et al. (2018) reports a decrease of ∼ 2 . 5 AUC by using a different 
phenotypic information which clearly shows the dependence on pheno- 
typic data. Whereas, Ktena et al. (2018) reports much lower AUC score 
by using only fMRI data. ML methods fail completely even on ICA data, 
We attribute this failure to two reasons. 1) The number of dimensions 
( ÿ ) being much higher than the number of subjects ( ÿ ), thus creating 
the curse of dimensionality ( ÿ >> ÿ ) and 2) The ML methods do not 
compute a graph structure for estimating the connectivity between the 
networks/components and instead mostly work with independent net- 
works/components. According to our knowledge, no other model gives 
such high classiûcation score across four neuroimaging datasets. The 
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Table 3 
Comparison of AUC score on ABIDE region-based (ROIs) dataset. Existing methods use Harvard 
Oxford (HO) parcellation with 111 brain regions, therefore we tested DICE using two atlases. 
Unlike Parisot et al. (2018) , Cao et al. (2021) we use only fMRI data. We also show that DICE 
model doesn’t depend on the region atlas and gives similar performance using different atlases 
for region parcellation of the brain. 

Method Parcellation Input n_regions AUC 

DICE Shaefer fMRI data 200 0.70 
DICE HO fMRI data 111 0.69 
GCN ( Parisot et al., 2018 ) HO fMRI + phenotypic data 111 0.75 
DeepGCN ( Cao et al., 2021 ) HO fMRI + phenotypic data 111 0.75 
Metric Learning ( Ktena et al., 2018 ) HO fMRI data 111 0.58 

high classiûcation score of the model computed using only the learned 
DC structure increases the conûdence in the correctness of the learned 
DC structures. 

3.2. Directed connectivity 

The learned interpretable, task-dependent (üexible) directed connec- 
tivity structures by our model is the most important contribution of our 
work. As this is a novel work, we show in detail, different aspects of the 
learned connectivity structures. We a) compare our learned DNC with 
FNC computed via PCC, b) compare the differences in DC and DNC be- 
tween multiple classiûcation groups, c) show how direction matters in 
connectivity, something which is not captured by FC and FNC, d) dive 
into the fact mentioned in introduction that unlike computed FNC (us- 
ing PCC) our learned DNC is task dependent and changes based on the 
downstream task (ground-truth signal) and e) show the dynamic con- 
nectivity states for FBIRN data for HC and schizophrenia (SZ) subjects. 
All the aspects (a-e) discussed in detail in following sections show the 
correctness and interpretability of the learned DC and DNC. The inter- 
pretability of the connectivity matrices estimated by our model give 
insight into how brain networks are linked with each other and with 
the downstream classiûcation task. This is very crucial to understand 
brain disorders and relevant brain networks. Unlike typical FC and FNC 
which ranges from -1 to 1, our learned matrices are based on attention 
and hence ranges from 0 to 1. More information on this in Appendix B . 

3.2.1. DNC vs FNC 
As the true connectivity between brain networks is not known, we 

compare our learned DNC with FNC. Figure 4 shows the DNC learned 
by our model and the FNC computed using PCC using ICA components 
for FBIRN dataset. The DNC is ÿ ÿ explained in Section 2.2.3 . Both 
DNC and FNC is the mean matrix for highest performing fold of FBIRN 

dataset with 16 subjects. The 100 ICA components are divided into in- 
formative (53) and noise (47). We show the connectvity between 53 
non-noise components. These components are further divided into 7 do- 
mains/networks following ( Allen et al., 2011a ). Both matrices clearly 
show high intra-domain connectivity. The learned DNC shows similar 
pattern of FNC which increases the conûdence in the DNC learned by our 
model but there are very important differences between the two. Inter- 
network connectivity: We see that our estimated DNC ûnds much more 
inter-network connectivities than the FNC which is mostly intra-network 
and has very low scores between networks. Directionality: Regarding 
the direct inüuence, DNC estimated by our model is directed and shows 
components in visual affecting components through out the domains, 
such information is not present in the FNC which is un-directed (sym- 
metric across main diagonal) and does not show the direction of con- 
nectivity. Refer to Section 3.2.2 for more detail on this. 

To compare the connectivity matrices in terms of classiûcation re- 
sults, we use an LR model and perform classiûcation by ûrst training 
and testing the model using PCC-based FNC and then by our estimated 
DNC as input. Refer to Table 4 for comparison. 

Table 4 
We compare the D/FNCs on the basis of AUC score on 
FBIRN dataset. We train and test a logistic regression (LR) 
model using FNCs computed by PCC, and using DNCs es- 
timated by DICE. Performance using estimated DNCs is 
in reaching distance of ML methods using hand-crafted 
features (FCs). Appendix A show some experiment details 
that lead to an even improved classiûcation results. 

Method Input Mean Max Min Std Dev 

LR PCC FNC 0.883 1 0.72 0.085 
LR Our DNC 0.86 1 0.62 0.096 

3.2.2. Directed connectome 
Capturing directed connectivity is one of the methods to understand 

the direction and üow of information in the brain. Learning the direction 
of connectivity is one of the main advantages of our model as it might ex- 
plain the direct inüuence of brain networks upon each other. To show 

the direction between components, we divide the DNC of FBIRN sub- 
jects into two connectomes showing the direction. Figure 5 left shows 
the edges from ÿ to ÿ where ÿ > ÿ . For example the edge between (8,23) 
shows the edge from 23 to 8, whereas, Fig. 5 right shows the oppo- 
site. It is clear from the ûgure that direction matters and the connec- 
tivity between brain regions is beyond simple statistical dependence. 
For example, Fig. 5 shows that the components in visual network (VIN) 
affect components in other networks and the edges in the opposite di- 
rection are relatively much fewer. We also see direction of connectiv- 
ity from cognitive control (CC) to sensorimotor (SM). Existing studies 
( Breukelaar et al., 2017; Cole and Schneider, 2007; Tsai et al., 2019 ) 
show that cognitive control is responsible for activities like attention, 
remembering and execution, things which are required when doing a 
motor task controlled by sensorimotor. Such directionality is important 
to study brain’s working in more detail and is not present in FNC used 
by existing methods. The results are further discussed in Section 4.1 

3.2.3. Connectivity differences among groups 
As hypothesized that brain disorders are linked with the connec- 

tivity of brain’s intrinsic networks, we show how the learned DC and 
DNC changes for subjects belonging to different groups. Figure 6 a shows 
the DNC estimated by our model of HC and SZ subjects for FBIRN 

data whereas Fig. 6 b shows DNC of male and female groups for OASIS 
dataset. Both results are computed using ICA pre-processed data. For 
ICA based DNC, there are similarity between the two matrices as they 
come from the same joint ICA. However, there are visible difference be- 
tween the two for multiple networks like visual (VI), cognitive control 
(CC), default-mode (DM) and cerebellum (CB). The biggest difference 
between HC and SZ groups seems to be in the connectivity strength for 
VIN. For OASIS results 6 b we see that females show high connectiv- 
ity scores in default-mode network (DMN) compare to males and low 

sensori-motor network (SMN) connectivity compare to males, this has 
been veriûed by existing studies ( Filippi et al., 2013; Kim et al., 2021; 
Mak et al., 2016; Ritchie et al., 2018 ). To verify this by numbers, we 
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Fig. 4. We compare our estimated DNC with computed FNC using PCC method. 4 a is the connectivity matrix generated by our model for FBIRN dataset. We used 
a test fold of 16 subjects and computed mean FNC for all subjects (10 trials per subject). 4 b is the mean connectivity matrix of the same subjects generated by PCC. 
Both ûgures show similar intra-network connectivity patterns, which veriûes the correctness of the connectivity matrix learned by our model. Our estimated DC is 
directed and captures more inter-network connectivity than FNC. To match the positive weights of our model, we have normalized the FNC from 0 to 1 instead of 
-1 to 1. 

Fig. 5. We show the top 10 % directed edges of FBIRN DNC. The numbers represent the 53 non-artifact components. The ûgure clearly shows the high intra-domain 
connectivity which matches the existing literature. Direction clearly matters as visual components affect other components but not the opposite way. The direction 
of edges between CC and SM networks is also of signiûcance. 

use statistical testing to compare the two groups (male, female) and 
compare average connectivity for male and female in DMN and SMN. 
Table 5 shows the statistical results. 

Figure 7 performs the same experiment for region-based (ROIs) data. 
Here the regions for both sides of the brain (left and right) are di- 

vided into 7 domains following shaefer ( Schaefer et al., 2017 ). Again, 
in Fig. 7 b for HC we see high connectivity score between regions of the 
same network. We also see connectivity between regions of same net- 
work across left and right side of the brain. The diagonals on top and 
bottom of the main diagonal shows this. Whereas the DC of SZ sub- 
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Fig. 6. We compare the estimated DNC across the binary classiûcation groups using ICA data. Figure 6 a is the estimated DNC on FBIRN data for HC and SZ patients. 
We see high inter and intra-connectivity in SM and VI networks for HC, which is missing in SZ patients. Figure 6 b compares DNC between male and female groups 
using OASIS data. Female group shows hyper-connectivity in DMN and hypo-connectivity in SMN when comparing to male groups. 

jects is weakly connected compared to HC and is mostly shows intra- 
network connectivity. The sparsity explains and support the existing lit- 
erature explaining SZ as functional dysconnectivity between brain net- 
works ( Culbreth et al., 2021; Lynall et al., 2010; Morgan et al., 2020; 
van den Heuvel et al., 2010; Yu et al., 2011; Zhang et al., 2019; Zhu 
et al., 2020 ). 

Figure 7 b compares male and female groups based on region-based 
(ROIs) HCP data. We see similar patterns of hyper-connectivity of DMN 

and hypo-connectivity of SMN in females as compared to males. As the 
region-based (ROIs) parcellation divides the brain into left and right, we 
also see that females have high intra-network connectivity between left 
and right side of the brain as compared to males. 

To verify the visual results, we use statistical testing to compare the 
DMN and SMN between males and females. The stats conûrm the visual 
results with 1) female DMN showing higher connectivity than female 
SMN and male DMN, and 2) male SMN showing higher connectivity 
than male DMN and female SMN. We also see that the networks are 
highly statistically different. Refer to Table 7 . 

3.2.4. Task dependent DNC 
Human brain can be divided into multiple parts/regions where each 

region is linked with a set of tasks. For example, the hippocampus 
is associated with memory. Thus it is important to know which re- 
gion/network(s) are linked with the downstream task (e.g. disorder 
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Table 5 
Shows stats between male and female DNCs ( 6 b) estimated using ICA time-courses of OASIS. 
We see that the estimated DNCs for male and female subjects are highly signiûcantly different. 
For females DMN is hyper-connected than SMN whereas for male SMN has higher average con- 
nectivity score than DMN. This shows that the model accurately captures the group differences 
among male and female subjects and uses the connectivity difference in DMN and SMN to clas- 
sify male and female subjects. F - Female, M - Male, All - All networks/complete matrix. Results 
of classiûcation performance is shown in Table 9 . Table 6 shows the p -value signiûcance ranges. 

Network 1 Network 2 Test Type P -value Avg. Connectivity 1 Avg. Connectivity 2 

t -test 1e-250 
F_All M_All manwhitneyu 1e-256 0.353 0.311 

t -test 0.15 
F_DM F_SM manwhitneyu 0.12 0.536 0.510 

t -test 5e-5 
M_DM M_SM manwhitneyu 4e-5 0.417 0.575 

t -test 6e-4 
F_DM M_DM manwhitneyu 4e-4 0.536 0.417 

t -test 3e-4 
F_SM M_SM manwhitneyu 5e-5 0.510 0.575 

Table 6 
Ranges of ý -value and the corresponding signiûcance level. ns (no signiûcance). 

ÿ -value ý > 0 . 10 0 . 05 < ý < 0 . 10 0 . 01 < ý < 0 . 05 0 . 005 < ý < 0 . 01 0 . 0001 < ý < 0 . 005 ý < 0 . 0001 

Signiûcance ns ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

Table 7 
Shows stats between male and female DCs ( 7 b) estimated using region-based (ROIs) HCP dataset. We clearly see that females have hyper- 
connectivity in DMN and hypo-connectivity in SMN as compare to males. Female group has higher connectivity scores in DMN compared to 
SMN and male DMN whereas male group has higher connectivity in SMN compared to DMN and female SMN. This shows that our learned 
model accurately captures the differences in DMN and SMN connectivity among males and females and uses that for classiûcation. F - Female, 
M - Male, L - Left, R - Right. Table 6 shows the p -value signiûcance ranges. 

Network 1 Network 2 Test Type P -value Avg. Connectivity 1 Avg. Connectivity 2 

F_All M_All 
t -test 1e-14 

0.455 0.533 
manwhitneyu 1e-25 

F_L_DM_temp F_L_SM 
t -test 2e-3 

0.689 0.632 
manwhitneyu 4e-3 

F_R_DM_temp F_R_SM 
t -test 7e-4 

0.671 0.593 
manwhitneyu 4e-4 

M_L_DM_temp M_L_SM 
t -test 2e-7 

0.567 0.622 
manwhitneyu 1e-3 

M_R_DM_temp M_R_SM 
t -test 9e-4 

0.558 0.611 
manwhitneyu 2e-4 

F_L_DM_temp M_L_DM_temp 
t -test 4e-5 

0.689 0.567 
manwhitneyu 6e-5 

F_R_DM_temp M_R_DM_temp 
t -test 8e-5 

0.671 0.558 
manwhitneyu 3e-5 

F_L_DM_pCunPCC F_L_SM 
t -test 2e-4 

0.718 0.632 
manwhitneyu 1e-3 

F_R_DM_pCunPCC F_R_SM 
t -test 1e-5 

0.758 0.593 
manwhitneyu 5e-5 

M_L_DM_pCunPCC M_L_SM 
t -test 2e-7 

0.548 0.622 
manwhitneyu 3e-4 

M_R_DM_pCunPCC M_R_SM 
t -test 1e-2 

0.547 0.611 
manwhitneyu 1e-2 

F_L_DM_pCunPCC M_L_DM_pCunPCC 
t -test 2e-4 

0.718 0.548 
manwhitneyu 3e-4 

F_R_DM_pCunPCC M_R_DM_pCunPCC 
t -test 3e-4 

0.758 0.547 
manwhitneyu 7e-4 

F_L_SM M_L_SM 
t -test 1e-1 

0.632 0.622 
manwhitneyu 4e-1 

F_R_SM M_R_SM 
t -test 1e-2 

0.593 0.611 
manwhitneyu 2e-3 

classiûcation). Finding the linked regions/networks would help us un- 
derstand the disorder and allow to study the association of these re- 
gions/network(s) with the disorder in more detail. In this section, we 
see how the DNC structure learned by our model changes and identiûes 
different networks for the same subjects based on the downstream task. 
For this purpose, we perform an experiment, where we compare the esti- 

mated DNC for OASIS data when predicting dementia, age and gender of 
the same subjects. The number of subjects were balanced with both HC 
and patients equalling 50 % of the total subjects but had ∼ 62% female 
subjects. Figure 8 shows that our model produces task dependent DNC 
and the networks/domains showing high connectivity for each task ad- 
heres to the existing literature. The Fig. 8 a shows the DNC learned when 
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Fig. 7. We compare the estimated DCs of HC with SZ and male with female using region-based (ROIs) FBIRN and HCP data. 7 a show high weakly connected brain 
networks for SZ subjects whereas 7 b show hyper-connectivity of DMN and hypo-connectivity for SMN for females as compared to females. The black and grey color 
denotes the regions in left and right side of the brain. Refer to Table 7 for a statistical comparison between female and male DCs. 

classifying subjects for dementia. We see high connectivity for compo- 
nents in the SM, DM, and CB networks. These networks are linked with 
dementia in existing literature, which support the results of our method. 
Whereas when classifying gender of same subjects, the estimated DNC is 
different and show high connectivity for components in DM and reduced 
connectivity for SMN. Figure 8 d shows the FNC computed via PCC for 
the same subjects. As FNC computed using PCC is only data dependent, 
the FNC would remain same for all the tasks and shows the inüexibility 
of the method. Figure 8 therefore shows a) our model learns task depen- 
dent DNC and b) our model accurately ûnds networks linked with the 
downstream classiûcation task. We see this as a signiûcant advantage 

over studies which compute a ûxed/static FNC using PCC and hence is 
independent of the downstream task. We see that Fig. 8 b which is the 
learned connectivity structure when predicting age does not show high 
connectivity between networks and the connectivity values for SMN and 
DMN are almost same. This could be a reason of small age variance in 
the dataset. 

We use statistical scores to verify the visual results. Table 8 shows 
the statistical difference between the three DCs as a whole and between 
DMN and SMN. We also compare the estimated DCs with FC 8 d. 

We see that all three DNCs are extremely statistically different. It 
is also proven that DMN is given higher connectivity scores for gender 
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Fig. 8. We show how our model estimates üexible DNC structures based on the ground-truth signal. We train our model for different classiûcation tasks and use 
same test subjects to compare the estimated DNC for the subjects. All ûgures are mean DNC estimated for the same subjects with 5 randomly-seeded trials. 8 a is the 
mean connectivity matrix estimated by our model when trained to classify dementia. We see high connectivity values for SC, SM, and CB networks. 8 c is the mean 
DNC for the same subjects when the model is trained for gender prediction. We notice lower SM network connectivity and higher connectivity for DM network when 
predicting gender of OASIS subjects. 8 d is the FNC computed using PCC. The FNC is independent of the task and would remain ûxed (inüexible). 

Table 8 
We compute the statistical difference of the learned connectivity matrices for OASIS ICA when predicting dementia, age 
and gender. The results show that the learned connectivity matrices are highly statistically different and SMN gets higher 
connectivity scores than DMN for dementia prediction whereas the opposite is seen for gender prediction. 

Network 1 Network 2 Test Type P -value Avg. Connectivity 1 Avg. Connectivity 2 

Dementia_All Age_All 
t -test 5e-22 

0.323 0.168 
manwhitneyu 1e-38 

Dementia_All Gender_All 
t -test 2e-3 

0.323 0.311 
manwhitneyu 8e-4 

Age Gender 
t -test 2e-301 

0.168 0.311 
manwhitneyu 1e-301 

Dementia_DM Dementia_SM 
t -test 1e-7 

0.478 0.645 
manwhitneyu 8e-8 

Age_DM Age_SM 
t -test 6e-1 

0.294 0.308 
manwhitneyu 6e-2 

Gender_DM Gender_SM 
t -test 4e-1 

0.527 0.555 
manwhitneyu 1e-1 

FNC_DM FNC_SM 
t -test 3e-2 

0.487 0.580 
manwhitneyu 7e-3 

Dementia_DM Age_DM 
t -test 9e-6 

0.478 0.294 
manwhitneyu 5e-7 

Dementia_DM Gender_DM 
t -test 2e-1 

0.478 0.527 
manwhitneyu 1e-1 

Age_DM Gender_DM 
t -test 3e-7 

0.294 0.527 
manwhitneyu 5e-8 

Dementia_SM Age_SM 
t -test 8e-34 

0.645 0.308 
manwhitneyu 3e-23 

Dementia_SM Gender_SM 
t -test 4e-4 

0.645 0.555 
manwhitneyu 1e-4 

Age_SM Gender_SM 
t -test 1e-18 

0.308 0.555 
manwhitneyu 4e-17 

Table 9 
Dementia, gender classiûcation and age prediction results on OASIS dataset. We compare our results with ML methods using 
FC computed via PCC. Even with hand-crafted features ML methods perform similarly as our model. We believe the same 
input because of FC being only data dependent is one of the reasons of ML methods performing lower than DICE for Dementia 
and age prediction. 

Dataset Model Task N_Folds Input Metric Score 

OASIS DICE Dementia classiûcation 10 ICA AUC 0.752 
OASIS Logistic Regression Dementia classiûcation 10 FNC AUC 0.745 
OASIS DICE Gender classiûcation 10 ICA AUC 0.906 
OASIS Logistic Regression Gender classiûcation 10 FNC AUC 0.948 
OASIS DICE Age prediction 10 ICA MAE 6.14 
OASIS Linear Regression Age prediction 10 FNC MAE 7.17 
OASIS Lasso Age prediction 10 FNC MAE 6.89 
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Fig. 9. We map on the brain, the nodes and top 10% edges of the DCs, estimated for dementia and gender classiûcation tasks, performed on OASIS dataset (same 
subjects). The size of the nodes is the sum of the outgoing and incoming edge weights. The arrows shows the direction of connectivity. We see a high number and 
size of nodes and edges for SMN and VIN for dementia 9 a, whereas for gender 9 b we see high node and edge size for DMN. Compare the red (DM) nodes and edges 
in Fig. 9 a with b in the left side ûgures. Figure 9 a also shows high connectivity between SM and VI networks which is missing in Fig. 9 b (right side ûgures). This 
reveals the networks and edges (graphs and subgraphs) relevant to the classiûcation signal (e.g disorder) without need of comparison with other data. The results 
and their impact are further discussed in Section 4.3 . (For interpretation of the references to colour in this ûgure legend, the reader is referred to the web version of 
this article.) 
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Fig. 10. Five states computed using k-means on the DCs estimated by our model for FBIRN dataset. First row shows the k means of the estimated DCs, second row 

shows the percentage time spent by both groups in each state, with the total time points being 155. Time spent in each state by SZ and HC differ signiûcantly and 
matches the existing literature. We see that a) time spent in each state is different by HC and SZ, b) SZ spend much more time in state 3 (weakly connected) than 
HC, c) HC spend more time than SZ in states (2,4, 5) which show high connectivity for VI, and SM networks, and d) Standard deviation of time for SZ is much higher 
(320.47) than HC (206.26) which shows that SZ stay in one state much more than HC which tend to change state more often. The stars denote the signiûcance of 
difference in time spent in each state by the two groups. Table 6 shows the p -value signiûcance ranges. 

prediction whereas, SMN connectivity is much higher when predicting 
dementia comparing to gender and age prediction tasks. To clear how 

the connectivity values change for DMN and SMN we point out the av- 
erage connectivity scores of the networks for dementia and gender clas- 
siûcation and compare it with the values of DMN and SMN computed 
via PCC. The connectivity values in FC for SMN and DMN are 0.580 and 
0.487 respectively (and would remain same irrespective of the classiû- 
cation task). Whereas, when classifying dementia our model show much 
higher SMN average value of 0.64 and a little decreased value of 0.478 
for DMN showing a focus on SMN despite having more female subjects 
in the test set. When predicting gender for the same subjects the DNC 
estimated by our model has a decreased SMN value of 0.555 and in- 
creased value of 0.527 for DMN hence focusing less on SMN and more 
on DMN when compared to the dementia classifying task thus verifying 
that our estimated DCs are task-dependent and not only data dependent. 
We discuss the meaning and signiûcance of this result in Section 4.3 . 

To see the matrices as graph of nodes (regions) and edges (connec- 
tivity), we plot Fig. 8 a and c on the brain and show the results in Fig. 9 . 
The ûgure shows high number of nodes and edges among components 
of VIN and SMN and among the two networks for dementia classiûca- 
tion 9 a, and high number of nodes and edges among components in 
DMN for gender classiûcation 9 b. 

3.2.5. Dynamic connectivity states 
Studies like ( Allen et al., 2012; Calhoun et al., 2014; Hutchison et al., 

2013; Sako ğlu et al., 2010 ) show that human’s brain FC is dynamic and 
can be used to ûnd patterns which are not visible in static FC studies. 
These studies show that dynamic FC show re-occuring patterns. To study 
these patterns, dynamic connectivity of the human brain is divided into 
distinct k states ( Damaraju et al., 2014; Fu et al., 2021; Rashid et al., 
2014 ). There are multiple methods proposed to ûnd the k states with 
k-means being one of the most used methods. These studies show that 
the transition and time spent in each state is different for patients (SZ, 
dementia, autism) and HC. To validate our results and to ûnd such pat- 
terns we use k-means to ûnd k (5) such states using the DCs estimated 
by DICE for FBIRN dataset. We calculate and compare the time spent by 
both groups (SZ and HC) per state. 

Figure 10 shows that SZ subjects spend more time in weakly con- 
nected states (1,3) than HC which stay in states which show high con- 
nectivity score for visual (VI) and sensorimotor (SM). We also see that 
HC tend to change state more often than SZ which spend ∼ 66% time 
in one state (number 3). Existing studies ( Miller and Calhoun, 2020a; 
2020b; Yaesoubi et al., 2018 ) show that window-less approach can ûnd 
dynamic patterns that are not captured by the vastly used window-based 
approach. As DICE is an instantaneous model, we investigate if DICE 
can capture more dynamic states than the window-based dynamic-FNC 
studies. For this purpose, using elbow method ( Marutho et al., 2018 ), 
we found that the best k for the estimated DCs is not 5, and set k = 10 

and show the resultant states in Fig. 11 . We see the model captures ad- 
ditional states that were not visible with k = 5 . The additional states 
found show the pattern of directionality, specially in the states where 
HC spend more time than SZ. For example, in Fig. 10 , state 2 show 

dense connectivity for components in VIN and the direction is from VI 
to other states, and state 5 show similar direction but with sparse con- 
nectivity. Figure 11 captures the additional state (9) which shows the op- 
posite direction, that is, VIN has mostly incoming edges. We believe this 
state represents the brain activity when different networks (e.g. SMN) 
are giving input to VIN to control the vision. We discuss this result in 
Section 4.4 . 

3.3. Temporal attention 

Our temporal attention module ûnds the important time-points that 
are relevant for the downstream task (e.g. gender prediction). As not all 
time-points are equally important for the downstream task, and fMRI 
data has low temporal resolution, the temporal attention is an effective 
way of ûnding important bio-markers for neuroimaging dataset. Finding 
the relevant time-points can help reduce the data and allow to focus on 
activities at speciûc points. Figure 12 shows the weights assigned to the 
subjects of FBIRN. 

We show weights for 16 subjects (8 per class) with 10 randomly- 
seeded trials. The results show that the temporal attention module is 
very stable and assign similar weights to the time-points for every trial. 
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Fig. 11. We show 10 states captured by k-means on the temporal DCs estimated by DICE on FBIRN complete dataset. The rows shows the means and the percentage 
of time spent by HC and SZ subjects in each state. We see that DICE can capture more states than the standard (4–5) states captured by window-based approaches. 
The additional states not present in Fig. 10 show the change of direction in connectivity. State 9 shows the opposite direction of connectivity between VIN and other 
networks, where VIN has mostly incoming edges. The ratio of time spent by HC and SZ subject in different states is similar to the results of Fig. 10 . 

Fig. 12. Temporal Attention weights for one of the test folds (16 subjects) of 
FBIRN. Attention weights are computed using GTA module. X and y axis repre- 
sent time-points and subject number respectively. We show that for each sub- 
ject, the attention weights remain stable across multiple randomly-seeded trials 
(10). The values of the 10 trials are used to create the conûdence interval for 
each subject. The consistency is greatly increased with an increase in number 
of training subjects. Note: For each subject we added the subject number to the 
attention weights to separate the weights, as for each subject the weights have a 
range of 0 − 1 . Dark and light colors represent SZ and HC subjects respectively. 

Table 10 
AUC score comparison on brain datasets with ICA 
components by using all, top 5% and bottom 5% 

time-points only. We train and test a logistic regres- 
sion (LR) model using the time-points identiûed by 
DICE and compare the results when using top and 
bottom 5% time-points. We see that using only top 
5% time-points are enough to almost reach the AUC 
using all time-points. 

Method FBIRN OASIS ABIDE 

100% DICE 0.86 0.752 0.722 
Top 5% LR 0.85 0.743 0.706 
Bottom 5% LR 0.566 0.548 0.532 

To further check the correctness of the time-points selected by our 
model and how these time-points are useful in terms of classiûcation per- 
formance, we perform an experiment where after training the model, we 
use ÿ ý of the top 5% values to train an LR model and then use the top 5% 

time-points of the test data to test the model. Similarly we perform ex- 
periments for bottom 5% values as well. Table 10 shows the comparison 
for the three brain disorder dataset. The results show that the LR model 
provides high AUC score by just using 5% of the important time-points. 
Thus, it proves that a) not all time-points are important for classiûcation 

of the downstream task and b) our model accurately ûnds the important 
time-points. We use an LR model for this experiment to show that the 
learned top and bottom 5% values are not limited to our DICE model but 
is generalized such that an independent LR module gives high classiû- 
cation performance using the top 5% data identiûed by our model and 
does not learn on the low 5% data. Finally, our experiments also show 

that not using the temporal attention reduces the model classiûcation 
performance by upto 10% A.12 . 

4. Discussion 

Our experiments revealed a number of interesting properties of DICE 
and uncovered some interpretable directed connectivity graphs that we 
feel are of high utility for the neuroimaging ûeld. As supported by re- 
sults, models with glass-box layer like DICE have a high potential for 
studying resting-state dynamics of the brain. In the following, we dis- 
cuss the most pertinent results. 

4.1. Inter-network and directed connectivity 

Results in Sections 3.2.1 and 3.2.2 show that DICE infers DNC that 
agrees with the essential ûndings of the FC studies ( Arslan et al., 2018; 
Kawahara et al., 2016; Kazi et al., 2021; Kim and Ye, 2020; Ktena et al., 
2017; 2018; Ma et al., 2019; Parisot et al., 2018; Yan et al., 2017 ) and 
provides two additional aspects: inter-network connectivity and direc- 
tion of connectivity. The inter-network connectivity is of great signiû- 
cance as the brain is not made up of isolated networks and many tasks 
require information passing and neurons ûring through multiple net- 
works. Thus making it crucial to ûnd how these networks are connected 
to each other if connected at all for patients and controls. Capturing the 
dysconnectivity between networks for patients can lead to knowledge 
discovery about the functionality of the human brain and the effects of 
brain disorders on it. Furthermore, ûnding directionality between net- 
works is also of great signiûcance. We showed in experiments that our 
model captures the direction of connectivity between networks. The di- 
rection of connectivity from VI to other networks, and from CC to SM 

networks is justiûable. Existing studies ( Breukelaar et al., 2017; Cole 
and Schneider, 2007; Tsai et al., 2019 ) show that cognitive control is 
responsible for functions like attention, remembering, and execution. 
These functions are often required when doing a motor task controlled 
by sensorimotor, which hints at the direct effect of the CC network on 
the SM network, captured by DICE. Regarding VI and other networks, 
we know that VI is mostly a means of input (visuals) to our brain, which 
is then processed by different parts of the brain. Thus, most of the üow 

of information is from VI to other networks and few in the opposite 
direction, which is required to control VI for accomplishing different 
motor tasks controlled by SM. Therefore, our experiments also show 

that most incoming connections to VI are through the SM network, thus 
accurately capturing the üow of information between networks. This 
üow of information is not captured in simple correlations. We believe 
these two aspects are crucial to understanding brain working and are 
currently missed in connectivity estimation methods such as FNC. 
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Directed connectivity directed inüuence of an intrinsic brain network 
on other networks. Estimating the direction of connectivity may simplify 
targeted interventions that are instrumental in establishing causal rela- 
tions. Capturing causality between networks further helps to understand 
complex systems and answer counter-factual questions ( Schölkopf et al., 
2021 ), and is left to future work. Our model ûnds non-negative relations 
between components/nodes, which we consider dependencies or rele- 
vance rather than correlations. However, we understand that the nega- 
tive correlations in FC and FNC are also helpful and provide descriptive 
information. We think it might be an easy ûx to incorporate negative 
relations in connectivity matrices estimated by DICE. We discuss this in 
Section Appendix B . 

4.2. Interpretability 

Section 3.2.3 shows how the DC and DNC estimated by DICE are in- 
terpretable in how accurately they capture the difference in connectivity 
between 1) schizophrenia patients and controls and, 2) male and female 
groups. In classifying schizophrenia patients from controls, our model 
learned the most signiûcant differences were in the VI, SM, and DM net- 
works. Controls show robust connectivity of VI and SM with each other 
and with other networks, which is missing for SZ patients. The ûnding 
of dysconnectivity and/or lower connectivity scores for VI and SM net- 
works for SZ patients is not surprising as there exists ample evidence 
in prior studies of schizophrenia leading to multiple abnormalities re- 
lated to visual and motor functions such as perception of contrast and 
motion, detection of visual contours, and control of eye movements to 
name a few ( Butler et al., 2008; Chen et al., 1999; Kéri et al., 2002; 
Silverstein and Rosen, 2015 ). These abnormalities certainly affect mo- 
tor skills which we feel is a reason for the low connectivity for SM and 
VI networks captured by our model for SZ patients. DICE also captures 
hyper-connectivity in DMN for SZ patients which is reported by existing 
studies ( Guo et al., 2017 ). 

Whereas in classifying gender in the same dataset, DICE emphasized 
hyper-connectivity in the DM network and hypo-connectivity for the SM 

network for females compared to males. The differences captured in the 
DC and DNC for both tasks are supported by existing studies ( Culbreth 
et al., 2021; Filippi et al., 2013; Kim et al., 2021; Lynall et al., 2010; 
Mak et al., 2016; Morgan et al., 2020; Ritchie et al., 2018; van den 
Heuvel et al., 2010; Yu et al., 2011; Zhang et al., 2019; Zhu et al., 
2020 ) that show the role of the DMN in gender classiûcation and VI 
dysconnectivity for schizophrenic patients. Similarly to existing stud- 
ies ( Ingalhalikar et al., 2014; Zhang et al., 2018b ), DICE shows that 
female subjects have higher connectivity between the contralateral ho- 
mologue brain networks relative to males. 

DL models are commonly viewed as black-box models because of the 
difficulty of interpretation and not easily explained performance on the 
tasks they are trained on. These models can show excellent performance 
on tasks such as classiûcation based on the reasons that are not substan- 
tially revealing about the input data nor their dynamics. One reason is 
shortcut learning ( Geirhos et al., 2020 ): a DL model can classify images 
with or without airplanes with high accuracy by paying attention exclu- 
sively to the background (blue sky). Although predictive, such models 
cannot help in knowledge discovery. To control for shortcut learning 
we would like to be able to see why predictions are made. One ap- 
proach is making DL model interpretable. For that a posthoc method 
is often used, e.g., saliency maps ( Angelov et al., 2021; Lewis et al., 
2021; Ras et al., 2021; Simonyan et al., 2014 ). Such methods explain 
the input data by ûnding which part(s) of the input the model is most 
sensitive to. Saliency maps have shown some good results in computer 
vision tasks in 2d images. The use of saliency maps in neuroimaging and 
temporal data has different challenges ( Liu et al., 2021 ) as the output 
maps are noisy, difficult to interpret and does not provide good bound- 
aries nor the connection between different salient regions. Selection of 
the method for obtaining saliency maps is also something to consider 
as some of the methods are architecture based. Hence, using saliency 

maps to get task-speciûc brain’s connectivity graph is not feasible using 
current methods. To overcome the black-box nature of DL models and 
avoid using a posthoc method, we focused on the interpretability of the 
model’s results. For this purpose, as brain disorders are commonly asso- 
ciated with disruptions in the connectivity pattern of brain networks, we 
use only the learned connectivity matrices by our model for the down- 
stream classiûcation or prediction tasks, thus making the model extract 
the abnormality in connectivity relevant to the ground-truth signal. One 
way to conceptualize about our approach is to think of the generated DC 
and DNC as a <glass-box layer = (clear and interpretable) layer as noted 
in Fig. 1 . This approach combines üexibility (the layer is trainable) with 
interpretability and enables the model to capture differences in the con- 
nectivity of the groups in classiûcation task. Regression is also possible 
with our approach, although we leave it for the future work. Our <glass- 
box layer = approach enables learning the essential networks and their 
connection to other networks relevant to the training signal and directly 
output that without using a posthoc method. As the DC and DNCs esti- 
mated by our model are based on learnable functions, the output ma- 
trices can have slightly different values when the model is retrained, 
which is an attribute of DL models. Therefore, all the connectivity ma- 
trices shown in the paper are averaged over several randomly-seeded 
trials. 

4.3. Task-dependent flexible DNC 

We fully utilize the üexibility of our DL model to learn task- 
dependent (ground-truth signal) directed connectivity structures. We 
show in Section 3.2.4 that our model estimates DNC structures for the 
same subjects that are distinct to the ground-truth task of dementia, age, 
or gender. Hence our model can show the networks and their connec- 
tivity crucial for speciûc downstream tasks. The networks identiûed by 
the model through the learned DNC for dementia classiûcation (SM, CB, 
VI) match the results of prior studies ( Albers et al., 2015; Filippi et al., 
2017; Grant et al., 2014; Ingalhalikar et al., 2014; Jacobs et al., 2017 ). 
Whereas, for gender prediction, the most prominent network identiûed 
by the network was DM, which again matches existing literature ( Filippi 
et al., 2013; Kim et al., 2021; Mak et al., 2016; Ritchie et al., 2018 ). We 
feel this is a strong validation of the ability of DICE to ûnd disorder- 
dependent networks and connectivity patterns. We showed in Fig. 8 a 
that our model focused more on SMN than DMN despite having almost 
two-thirds of female subjects in the test set. This result is signiûcant 
because the model learned that the SMN connectivity, is more impor- 
tant than DMN for the downstream task of dementia classiûcation and 
hence enhances the signals for SMN. This eliminates the need to acquire 
strictly matched subjects with only the difference(s) for which you want 
to ûnd the relevant networks and connectivity. For example, when try- 
ing to ûnd the networks related to schizophrenia using PCC, one needs to 
ûnd two groups (schizophrenia patients and controls) that do not have 
any other differences. Extraneous differences would create ambiguity 
regarding whether the networks identiûed are related to the disorder 
(schizophrenia) or some other difference, e.g., gender. Instead of ex- 
plicitly confronting the confounding factors by regressing them out or 
taking equivalent measures, DICE performs the <de-confounding = im- 
plicitly based on the training labels. 

Another notable property of our model is that it ûnds the relevant 
networks and the connectivity structures (sub-graphs) without receiv- 
ing them during training, making DICE a self-supervised graph learning 
model. 

4.4. Dynamic DNC and temporal-attention 

As hypothesized, and shown in previous studies ( Allen et al., 2012; 
Calhoun et al., 2014; Hutchison et al., 2013; Sako ğlu et al., 2010 ) results 
in Section 3.2.5 show that connectivity between brain’s intrinsic net- 
work is dynamic, and dynamic connectivity can capture patterns which 
are missed by static models. Notably, controls and SZ patients spend 
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different amounts of time in each state 10 . Controls spend more time 
than SZ patients in strongly connected states, especially for visual and 
sensorimotor networks. On the other hand, SZ patients spend time in 
weakly connected states and do not often spend time in other states. 
Similar patterns were observed in FNC studies ( Damaraju et al., 2014; 
Rabany et al., 2019; Rashid et al., 2014; Wang et al., 2014; Yang et al., 
2022 ). 

Moreover, using all subjects in the FBIRN ( Keator et al., 2016 ), our 
model ûnds additional states doubling the state resolution. We explain 
this temporal resolution increase by instantaneity of directed connectiv- 
ity estimation in DICE in contrast to using a sliding window. Therefore, 
estimating connectivity instantaneously makes the model robust and 
ûnds patterns that are missed when using a window-based approach. 
Another explanation and an additional factor is the increased richness 
of representation via a directed graph - the connectivity matrices of DICE 
have twice the number of parameters compared to FC and FNC. Our ex- 
periment with k = 10 states show similar patterns of strongly and weakly 
connected states but they now vary in the direction of the connectiv- 
ity. This result shows that both the connectivity strength and direction 
of connectivity are dynamic (changes over time). As this state is rare 
(based on time spent), it would be harder for window-based approaches 
to capture it. It would be interesting to see when and how the direction 
of connectivity changes and how external factors like performing a task 
can trigger these changes. This, however, is a topic of the future work. 

Finally, we show that not all time-points of the fMRI data are equally 
important to the downstream prediction task and discriminative con- 
nectivity matrices exhibit temporal dynamics. Using temporal attention, 
our model ûnds important time-points relevant to the ground-truth sig- 
nal used in training. This further helps in interpretability as our model 
ûnds the time-points where the brain activity shows signals relevant to 
the task. Potentially, this would also be important in task data where 
the subject is asked to perform different tasks, and the DICE model can 
be used to ûnd out which task revealed the symptoms of the under- 
lying disorder. Our experiments show that temporal attention assigns 
stable and consistent weights to time-points across different randomly- 
seeded tasks. We also notice that a) just 5% of time-points are sufficient 
for achieving high classiûcation performance and b) exclusion of tem- 
poral attention (assigning the same weight to every time-point) nega- 
tively affects classiûcation performance. Consistent temporal attention 
values across randomly-seeded trials further strengthens the evidence 
of temporally dynamic discriminative DCs and the value of attention 
mechanism. As our experiments show, our attention module is indeed 
reliable per the deûnitions and potential issues discussed by Jain and 
Wallace (2019) and Wiegreffe and Pinter (2019) . As a learnable method, 
DICE and other <glass-box layer = models need to be able to consistently 
across training runs assign temporal attention values and estimate con- 
nectivity between nodes, whereas inüexible methods computing corre- 
lations such as PCC do not have this property. In a way, üexibility of 
the learnable model comes with an additional requirement of stability 
of learned interpretations. Even though our DICE model works well by 
showing high classiûcation performance and assigning consistent self 
and temporal attention values on relatively small datasets, as we show, 
having more subjects for training leads to an even more consistent as- 
signment of temporal weights in our experiments. 

5. Conclusions 

Our work demonstrates importance of learnable interpretable esti- 
mators of dynamic, directed, and task-dependent connectivity graphs 
from fMRI data. DICE learns to estimate interpretable dynamic and di- 
rected graphs that represent the directed connectivity among brain net- 
works. The end-to-end training process removes the need for existing 
external methods such as PCC and K-means, which are interpretable 
but inüexible and strictly depend on the input data. Implementing DICE 
with glass-box layer allowed us to bypass the need for a posthoc method 
for interpreting learned model representations. 

Connectivity matrices estimated by DICE show how brain connec- 
tivity changes across disorders, genders, and age. The learned connec- 
tivity matrices help understand the human brain and its disorders as 
the actual ground-truth connectivity matrix is not available. Further- 
more, we moved from FC and FNC to DC and DNC to learn the direc- 
tion of connectivity and simultaneously removed the issue of window 

sizing of input data by making the model instantaneous. The learned 
connectivity matrices provide knowledge that adheres to existing stud- 
ies. Utilizing üexibility of DL models in learning data representations, 
we show that using the same data, distinct connectivity structures can 
be learned based on the downstream task and the ground-truth signal. 
This üexibility allows acquiring more information from the data by us- 
ing different training labels, which would require a much more involved 
process of data selection and manual ûltering out of confounding factors 
for methods that are fully determined by the data, like PCC. Our model 
highlights different networks linked with the downstream classiûcation 
task, e.g., the default mode network for gender prediction. Unlike other 
interpretable models that may pay for it with a decrease in classiûcation 
performance ( Dhurandhar et al., 2018; Johansson et al., 2011; Luo et al., 
2019; Shukla and Tripathi, 2012 ), DICE beats state of the art methods 
in multiple classiûcation problems on four neuroimaging datasets. 

For classiûcation DICE uses the learned connectivity structures. To- 
gether with the temporal weights these structures are reasonably con- 
sistent across varying seeds. Notably, DICE’s performance drops with- 
out the use of temporal attention. The temporal attention module of the 
model ûnds interpretable bio-markers crucial to performing the classiû- 
cation task and shows that only a small fraction of time-points is enough 
for attaining maximum performance. Notably, not all time points are 
discriminative, as evident from the sparse distribution of temporal at- 
tention weights in Fig. 12 and high predictive power of just the top 5% 

of the attention weights of Table 10 . 
As the ground truth for the dynamic graph structure in resting state 

fMRI is unavailable, we believe there is a need for models with <glass- 
box layer < like DICE that can estimate this structure based only on the 
data and classiûcation labels. 

In future work, we would like to omit pre-processing with a dimen- 
sionality reduction method —like the used here ICA or region-based par- 
cellation —and train a model end-to-end on the voxel-level data. This, 
however, may require substantially larger datasets and may not be as 
useful as the current model for an average sized research dataset. As 
DICE estimates the direction of connectivity, for future work, we would 
like to examine how the direction of connectivity changes through time 
and during tasks for HC and patients. 

Data and code availability statement 

This study does not introduce a new dataset and all datasets used 
in this study are properly referenced. The code for the DICE model is 
available here https://github.com/UsmanMahmood27/DICE . Machine 
learning models’ results are computed using python package Polyssiûer, 
available at https://github.com/alvarouc/polyssiûer 

Ethics statement 

All the datasets used in this study are either publicly available or 
proper consent was taken before using the datasets. This study does not 
introduce a new dataset and all datasets used in this study are properly 
referenced. 

Declaration of Competing Interest 

The authors do not have any competing interests. 

Credit authorship contribution statement 

Usman Mahmood: Conceptualization, Methodology, Software, Data 
curation, Visualization, Validation, Investigation, Writing – original 

18 



U. Mahmood, Z. Fu, S. Ghosh et al. NeuroImage 264 (2022) 119737 

draft, Writing – review & editing. Zening Fu: Data curation, Writing 
– review & editing. Satrajit Ghosh: Writing – review & editing. Vince 
Calhoun: Resources, Writing – review & editing. Sergey Plis: Concep- 
tualization, Funding acquisition, Project administration, Resources, Su- 
pervision, Visualization, Validation, Writing – original draft, Writing –
review & editing. 

Acknowledgments 

This study was supported by following grants: NIH RF1MH121885, 
NIH 2R01EB006841, NIH R01MH129047, and NSF 2112455. Data 
for healthy subjects was provided [in part] by the Human Connec- 
tome Project, WU-Minn Consortium (Principal Investigators: David 
Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 
NIH Institutes and Centers that support the NIH Blueprint for Neu- 
roscience Research; and by the McDonnell Center for Systems Neu- 
roscience at Washington University. Data for Schizophrenia used 
in this study were downloaded from the Function BIRN Data 
Repository ( http://bdr.birncommunity.org:8080/BDR/ ), supported by 
grants to the Function BIRN (U24-RR021992) Testbed funded by 
the National Center for Research Resources at the National In- 
stitutes of Health, U.S.A. Data for Alzheimer’s was provided by 
OASIS-3: Principal Investigators: T. Benzinger, D. Marcus, J. Morris; 
NIH P50AG00561, P30NS09857781, P01AG026276, P01AG003991, 
R01AG043434, UL1TR000448, R01EB009352. AV-45 doses were pro- 
vided by Avid Radiopharmaceuticals, a wholly owned subsidiary of Eli 
Lilly. Autism data was provided by ABIDE. We acknowledge primary 
support for the work by Adriana Di Martino provided by the (NIMH 

K23MH087770) and the Leon Levy Foundation and primary support 
for the work by Michael P. Milham and the INDI team was provided 
by gifts from Joseph P. Healy and the Stavros Niarchos Foundation to 
the Child Mind Institute, as well as by an NIMH award to MPM (NIMH 

R03MH096321). 

Appendix A. Ablation study 

In this section, we show the stability of our DICE model in terms of 
classiûcation performance by changing different hyper-parameters. We 
also show that as we did not extensively ûne-tune the model for different 
experiments, it is possible to achieve better classiûcation performance 
than reported in the paper. In Table A.11 we show the effect of number 
of test folds on classiûcation performance. Table A.12 shows the effect 
on performance when changing the size of hidden dimensions. Also, as 
FBIRN experiments with 18 fold testing created the biggest leakage, the 
experiment without leakage was necessary for completeness and shows 
model performs similarly. All other experiments had leakage of 1–2 sub- 
jects whose effect should be insigniûcant. In Table A.13 , we show that it 
is possible to get a bit different classiûcation results than ones reported 
in the main body by permuting the subjects in different order. 

Table A1 
We show the effect of the different number of test folds on 
the classiûcation performance of the model using ICA data. 
We also do an experiment (18, no leakage) where the last fold 
had all the remaining subjects to prevent any data leakage. 
We see that the model shows similar performance on different 
number of test folds with an increase in performance with a 
greater number of folds. 

Dataset Number of test folds Mean AUC Median AUC 

FBIRN 4 0.859 0.861 
FBIRN 18 0.86 0.861 
FBIRN 18, no leakage 0.86 0.861 
ABIDE 5 0.705 0.71 
ABIDE 10 0.722 0.732 
OASIS 5 0.741 0.749 
OASIS 10 0.752 0.758 

Table A2 
We show how hidden dimensions of different modules of the model affect clas- 
siûcation performance. As we do not ûne-tune the hyper-parameters rigorously 
for each experiment, it is possible to get better results than ones reported in the 
main body of the paper. Similar results were seen for other datasets as well. We 
also show how removing the temporal attention reduces the model’s classiûca- 
tion performance. None means the ûnal connectivity matrix ÿ ÿ was just the 
average of each ÿ ý . 

Dataset 
biLSTM 

dim. 
Self-attention 
dim. ÿ2 

Temporal 
Attention 

Mean 
AUC 

Median 
AUC 

FBIRN 100 48 0.05 GTA 0.86 0.861 
FBIRN 100 48 0.05 None 0.733 0.764 
FBIRN 100 64 0.05 GTA 0.858 0.861 
FBIRN 128 64 0.025 GTA 0.865 0.875 
FBIRN 128 64 0.025 None 0.761 0.778 
FBIRN 64 32 0.05 GTA 0.849 0.858 

Table A3 
We show how permuting the order of the subjects can lead to a small variation 
in the classiûcation performance. 

Dataset 
biLSTM 

dimension 
Self-attention 
dimension ÿ2 Permutation 

Mean 
AUC 

Median 
AUC 

FBIRN 100 48 0.05 Randomly 
done 

0.86 0.861 

FBIRN 128 64 0.025 Randomly 
done 

0.865 0.875 

FBIRN 100 48 0.05 Default order 0.86 0.889 
FBIRN 128 64 0.025 Default order 0.858 0.875 

Appendix B. Added loss term and DNC with negative weights 

Connectivity of a node with itself equal to one is the only known 
and correct bias we can use while estimating connectivity matrix be- 
tween nodes. Therefore we experimented by adding a new loss term in 
Eq. (5) and create following two variations. 

ýýýý = CrossEntropy ( ̂ÿ , ÿ) + ÿ(1 − 
1 

ý 
tr ( tanh ( ÿ ÿ ))) + ÿ‖ÿ‖1 (B.1) 

ýýýý = CrossEntropy ( ̂ÿ , ÿ) + ÿ(1 − 
1 

ý 
tr ( sigmoid ( ÿ 

ÿ ))) + ÿ‖ÿ‖1 (B.2) 

The second term in Eqs. (B.1) and (B.2) is used to encourage the 
model to produce connectivity matrices with the average value of the 
main diagonal closer to 1. tr represents the trace of a matrix. ÿ is 
a regularization coefficient and we kept it at 0.75. ÿ equal to 1 does 
push the diagonal closer to 1 but leads to reduction in classiûcation 
performance. We found in our experiments that the second term re- 
sults in more stable and easier to visualize matrices across multiple tri- 
als. The added term did not signiûcantly affect the classiûcation per- 
formance as shown in Table B.14 with tanh and sigmoid activation. 
Figure B.13 shows the same matrix as Fig. 6 a created with the new loss 
Eq. (B.1) . 

We also re-create Fig. 4 using the new loss Eqs. (B.1) and (B.2) and 
show the estimated DNC in Fig. B.14 . The added loss terms noticeably 
increase the values on the diagonal of the connectivity matrices closer 

Table B1 
We compare the classiûcation performance on FBIRN ICA 
data with the new term added in the loss function. There 
is not a signiûcant difference in performance, though 
marginal improvement is seen with sigmoid activation. 

Dataset Added loss term Mean AUC Median AUC 

FBIRN None 0.86 0.861 
FBIRN tanh 0.859 0.861 
FBIRN sigmoid 0.862 0.875 
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Fig. B1. DNC estimated by DICE model using the loss Eq. (B.1) . We used the same FBIRN subjects as in Fig. 6 a. 

Fig. B2. Comparison of the DNCs learned with the additional regularization terms in the loss function against the DNC created using original loss and PCC FNC. As 
expected, regularization pushes the diagonal closer to 1. Also the difference between values of diagonal and non-diagonal elements is higher in tanh based DNC B.14 b 
as compared to sigmoid based DNC B.14 c. Similarly to Fig. 4 these matrices are averaged across multiple tries. 

to 1. Notably, the difference between diagonal and non-diagonal values 
is higher in DNC with tanh loss term than sigmoid based DNC. We expect 
that this is probably because the output value for non-negative input (0) 
in sigmoid is 0.5 and not 0 as in tanh. Hence, the loss for sigmoid is in 
the range [0-0.5] and not [0–1]. The choice of the function depends on 
the application and factors such as the presence of self edges, negative 
edges, the range of the edge weights etc. 

As FC and FNC are computed using PCC method to measure the cor- 
relations, it has negative correlations as well. These negative correla- 
tions are used in different studies and have meaningful interpretations. 
Therefore, we try to accommodate negative values in the DC and DNC 
estimated by our model. This can be done easily by making a small 
tweak in the self-attention part of the model. Equation (2) uses softmax 
function to get the weights and forces them in the range 0–1. Negative 
weights can be achieved by replacing the softmax function with tanh. 
We recreate Fig. 4 a by estimating negative weights as well. We see in 
Fig. B.15 that DICE can capture the negative weights by making a small 
tweak in the self-attention part but detail experiments are required to 
check the classiûcation performance, stability, and interpretation if neg- 
ative weights are incorporated. Also, incorporating negative weights re- 
quire some hyper-parameter changes as well. We leave this for future 
work. 

Fig. B3. DNC estimated by DICE model by incorporating negative weights in 
self-attention module. We used the same FBIRN subjects as in Fig. 4 a. The diag- 
onal is manually assigned 0 weight. 
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