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A B S T R A C T

In recent years, deep learning approaches have gained significant attention in predicting brain disorders
using neuroimaging data. However, conventional methods often rely on single-modality data and supervised
models, which provide only a limited perspective of the intricacies of the highly complex brain. Moreover, the
scarcity of accurate diagnostic labels in clinical settings hinders the applicability of the supervised models. To
address these limitations, we propose a novel self-supervised framework for extracting multiple representations
from multimodal neuroimaging data to enhance group inferences and enable analysis without resorting to
labeled data during pre-training. Our approach leverages Deep InfoMax (DIM), a self-supervised methodology
renowned for its efficacy in learning representations by estimating mutual information without the need for
explicit labels. While DIM has shown promise in predicting brain disorders from single-modality MRI data, its
potential for multimodal data remains untapped. This work extends DIM to multimodal neuroimaging data,
allowing us to identify disorder-relevant brain regions and explore multimodal links. We present compelling
evidence of the efficacy of our multimodal DIM analysis in uncovering disorder-relevant brain regions,
including the hippocampus, caudate, insula, - and multimodal links with the thalamus, precuneus, and sub-
thalamus hypothalamus. Our self-supervised representations demonstrate promising capabilities in predicting
the presence of brain disorders across a spectrum of Alzheimer’s phenotypes. Comparative evaluations against
state-of-the-art unsupervised methods based on autoencoders, canonical correlation analysis, and supervised
models highlight the superiority of our proposed method in achieving improved classification performance,
capturing joint information, and interpretability capabilities. The computational efficiency of the decoder-free
strategy enhances its practical utility, as it saves compute resources without compromising performance. This
work offers a significant step forward in addressing the challenge of understanding multimodal links in complex
brain disorders, with potential applications in neuroimaging research and clinical diagnosis.

1. Introduction

The brain is a vastly complex organ whose function relies on si-
multaneously operating multitudes of distinct biological processes. As
a result, individual imaging techniques often capture only a single facet
of the information necessary to understand a dysfunction or perform
a diagnosis. As an illustration, structural MRI (sMRI) captures static
but relatively precise anatomy, while fMRI measures the dynamics
of hemodynamic response but with substantial noise. Unimodal brain
imaging analyses have been shown to potentially yield misleading
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conclusions (Calhoun and Sui, 2016; Plis et al., 2011), which is unsur-
prising given fundamental differences in measured information of the
modalities, as each modality has its own inherent flaws.

To address the limitations of unimodal analyses, it is natural to turn
to multimodal data to leverage a wealth of complementary information,
which is key to enhancing our knowledge of the brain and developing
robust biomarkers. Unfortunately, multimodal modeling is often chal-
lenging, as finding points of convergence between different multimodal
views of the brain is a nontrivial problem.
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This work proposes the adoption of self-supervised learning (SSL),
specifically Deep InfoMax (DIM) (Hjelm et al., 2019), to address the
challenge of multimodal modeling by estimating multimodal relation-
ships via mutual information. Thereby allowing us to achieve the
following three goals. Our primary goal in addressing multimodal
modeling is to understand how to represent multimodal neuroimaging
data by exploiting unique and joint information in two modalities.
Secondly, we want to understand how to measure the amount of
joint information in representations between modalities and how it
is interplayed with discriminative performance. As the third goal, we
want to understand whether unsupervised multimodal representations
capture group discriminative brain regions and the links between differ-
ent modalities (e.g., T1-weighted structure measurements and resting
functional MRI data). The final goal is to understand how to ex-
ploit co-learning (Baltrušaitis et al., 2018), especially in cases where
one modality is particularly challenging to learn. By achieving these
three goals in this work, we address three of the five multimodal
challenges (Baltrušaitis et al., 2018): representation, alignment, and co-
learning, leaving only generative translation and fused prediction for
future work.

We present a general framework for self-supervised multimodal neu-
roimaging. The proposed approach can capitalize on the available joint
information to show competitive performance relative to supervised
methods. Our approach opens the door to additional data discovery. It
enables characterizing subject heterogeneity in the context of imperfect
or missing diagnostic labels and, finally, can facilitate the visualization
of complex relationships.

1.1. Related work

In neuroimaging, linear independent component analysis (ICA)
(Comon, 1994) and canonical correlation analysis (CCA) (Hotelling,
1992) are commonly used for latent representation learning and inter-
modal link investigation. Joint ICA (jICA) (Moosmann et al., 2008) per-
forms ICA on concatenated representation for each modality. jICA has
been extended with multiset canonical correlation (mCCA+
jICA) (Sui et al., 2011) and ICA with spatial CCA (sCCA+
ICA) (Sui et al., 2010) which mitigate limitations of ICA, jICA and CCA
applied separately. These jICA or jICA-adjacent methods all estimate
a joint representation. Another approach, parallel ICA (paraICA) (Liu
et al., 2009), simultaneously learns independent components for fMRI
and SNP data that maximize the correlation between specific multi-
modal pairs of columns in the mixing matrix of different modalities. A
recent improvement over paraICA, aNy-way ICA (Duan et al., 2020),
can scale to any number of modalities and requires fewer assumptions.

Most of the available multimodal imaging analysis approaches,
including those mentioned above, rely on linear decompositions of the
data. However, recent work suggests the presence of nonlinearities in
neuroimaging data that can be exploited by deep learning (DL) (Abrol
et al., 2021). Likewise, correspondence between modalities is unlikely
to be linear (Calhoun and Sui, 2016). These findings motivate the
need for deep nonlinear models. Supervised DL models have proven
successful in neuroimaging due to their ease of use. These models show
unparalleled performance, mainly in the abundance of training data: a
data sample paired with a corresponding label. However, supervised
models are prone to the shortcut learning phenomenon (Geirhos et al.,
2020); when a model hones in on trivial patterns in the training set that
are sufficient to classify the available data but are not generalizable
to data unseen at training. Next, it has been shown that supervised
models can memorize noisy labels (Arpit et al., 2017), which are
commonplace in healthcare (Pechenizkiy et al., 2006; Rokham et al.,
2020). Furthermore, supervised methods have also been shown to be
data-inefficient (Hénaff et al., 2020) while labels in medical studies are
costly and scarce. Finally, in many cases, diagnostic labels are based
on self-reports and interviews and thus may not accurately reflect the
underlying biology (Rokham et al., 2020). Many of these problems

can be addressed with unsupervised learning and, more recently, self-
supervised learning (SSL) (Dosovitskiy et al., 2014). In SSL, a model
trains on a proxy task that does not require externally provided labels.
SSL has been shown to improve robustness (Hendrycks et al., 2019),
data-efficiency (Hénaff et al., 2020), and can outperform supervised
approaches on image recognition tasks (Caron et al., 2020).

In the early days of the current wave of unsupervised deep learning,
common approaches were based on deep belief networks (DBNs) (Sri-
vastava and Salakhutdinov, 2012a; Plis et al., 2014), and deep Boltz-
mann machines (DBMs) (Srivastava and Salakhutdinov, 2012b; Hjelm
et al., 2014; Suk et al., 2014). However, DBNs and DBMs are challeng-
ing to train. Later, deep canonical correlation analysis (DCCA) (Andrew
et al., 2013) was introduced for multiview unsupervised learning.
DCCA (Andrew et al., 2013), and its successor, deep canonically cor-
related autoencoder (DCCAE) (Wang et al., 2015), are trained in a
two-stage procedure. A neural network trains unimodally in the first
stage via layer-wise pretraining or an autoencoder. In the second stage,
CCA captures joint information between modalities. Due to the need for
a decoder, the autoencoding approaches demand high computational
and memory requirements for full brain data as most brain segmen-
tation models are still working on 3D patches (Fedorov et al., 2017;
Henschel et al., 2020).

Among many self-supervised learning approaches, we are specifi-
cally interested in methods that use maximization of mutual informa-
tion, such as Deep Infomax (DIM) (Hjelm et al., 2019) and contrastive
predictive coding (CPC) (Oord et al., 2018). These methods can natu-
rally be extended to modeling multimodal data (Fedorov et al., 2021)
compared to other self-supervised pre-text tasks (Misra and Maaten,
2020) (e.g. relative position (Doersch et al., 2015), rotation (Gidaris
et al., 2018), colorization (Zhang et al., 2016)). The maximization of
mutual information in these methods allows a predictive relationship
between representations at different levels as a learning signal for
training. Specifically, the learning signal in DIM (Hjelm et al., 2019)
is the relationship between the intermediate representation of a con-
volutional neural network (CNN) and the whole representation of the
input. For example, in (CPC) (Oord et al., 2018), this is done between
the context and a future intermediate state. Both DIM and CPC have
been successfully extended and applied unimodally for the prediction of
Alzheimer’s disease from sMRI (Fedorov et al., 2019), transfer learning
with fMRI (Mahmood et al., 2019, 2020), and brain tumor, pancreas
tumor segmentation, and diabetic retinopathy detection (Taleb et al.,
2020). In addition, these models do not reconstruct as part of their
learning objective, unlike autoencoders. The reconstruction-free model
saves a lot of compute and memory, especially for volumetric medical
imaging applications.

In multiview and multimodal settings, self-supervised learning has
enabled state-of-the-art results on various computer vision problems
via maximization of mutual information between different views of the
same image (Bachman et al., 2019; Tian et al., 2019; Chen et al., 2020),
and multimodal data (e.g., visual, audio, text) (Miech et al., 2020;
Alayrac et al., 2020; Radford et al., 2021; Sylvain et al., 2020a). These
SSL approaches capture the joint information between two correspond-
ing distorted or augmented images, image–text, video–audio, or video–
text pairs. In the multiview case (Bachman et al., 2019; Tian et al.,
2019; Chen et al., 2020), the models learn transformation-invariant
representations by capturing the joint information while discarding
information unique to a transformation. In the case of multimodal data,
the models learn modality-invariant (Saito et al., 2016) representations
known as retrieval models. The same ideas have been extended to the
multidomain scenario to learn domain-invariant (Feng et al., 2019b)
representations. However, when one modality can capture the anatomy
and the other can capture brain dynamics, the joint information alone
will not be sufficient due to the unique modality-specific informa-
tion content that each modality measures. We hypothesize that we
additionally need to capture unique modality-specific information.
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Most of the described multiview, multidomain, and multimodal
work can be viewed as a coordinated representation learning (Bal-
trušaitis et al., 2018). In coordinated representation learning, we learn
separate representations for each view, domain, or modality. The repre-
sentations are coordinated through an objective function by optimizing
a similarity measure with possible additional constraints (e.g., orthog-
onality in CCA). In this case, the objective function mainly captures
joint information between the global latent representation of modalities
that summarize the whole input. However, such a framework only
considers a global-global relationship between modalities. To resolve
this limitation, we can consider intermediate representations, namely
as local representation that captures local information about the input.
That would allows us to capture local-to-local, global-to-global, local-
to-global multimodal relationships. Previously, augmented multi-scale
DIM (AMDIM) (Bachman et al., 2019), cross-modal DIM (CM-DIM) (Syl-
vain et al., 2019, 2020b), and spatio-temporal DIM (ST-DIM) (Anand
et al., 2019) used local intermediate representation of convolutional
layers to capture multi-scale relationships between multiple views,
modalities or time frames. Similarly, multi-scale relationships improve
semantic correspondences between two views of the same image in
EsViT (Li et al., 2021). Furthermore, from neuroscientific and neu-
rological perspectives, the brain is a complex system with multiple
scales of an organization where local changes can influence global
changes (Sheng et al., 2017; Kim et al., 2013; Filippi et al., 2020; Liu
et al., 2022; Xie et al., 2015), or local changes can influence local
changes (Frisoni et al., 2008) between structure and function. Thus,
we hypothesize that multi-scale relationships between modalities can
also be used to learn representations from multimodal neuroimaging
data. To verify this, we extend the coordinated representation learning
framework to a multi-scale coordinated representation framework for
multimodal data.

1.2. Contributions

First, we propose a multi-scale coordinated framework as a family
of models. The family of models is inspired by many published SSL
approaches based on the maximization of mutual information that
we combine in a complete taxonomy. The family of methods within
this taxonomy covers multiple inductive biases that can capture joint
inter-modal and unique intra-model information. In addition, it covers
multi-scale multimodal relationships in the input data.

Secondly, we provide a methodology to evaluate learned repre-
sentation exhaustively. We thoroughly investigate the models on a
multimodal dataset OASIS-3 (LaMontagne et al., 2019) by evaluating
performance on two classification tasks, exploring label efficiency and
transfer learning to out-of-distribution subset of the data, measuring
the amount of joint information in representations between modali-
ties, via Central Kernel Alignment (CKA) (Kornblith et al., 2019) and
interpreting the representation in the brain voxel space.

Our results prove that self-supervised models yield useful predictive
representations for classifying a spectrum of Alzheimer’s phenotypes.
The proposed models can achieve near-supervised performance on the
classification tasks, outperform previous autoencoder and CCA-based
approaches, and improve label efficiency. Furthermore, the proposed
multimodal models can capture higher content of joint information
between modalities than CCA-based approaches.

We show that self-supervised models can uncover regions of interest
supported by the literature such as the cuneus (Wu et al., 2021),
subthalamus hypothalamus (Zhu et al., 2019; Ríos et al., 2022), tha-
lamus (Coupé et al., 2019), insula (Philippi et al., 2020), hippocam-
pus (Yang et al., 2022).

We show that multimodal self-supervised models can uncover mul-
timodal links between anatomy and brain dynamics supported by pre-
vious literature such as subthalamus hypothalamus and posterior cin-
gulate cortex (Laxton et al., 2010), posterior cingulate cortex and
cerebellum (Zimny et al., 2011), precuneus and cerebellum (Parker
et al., 2020), cerebellum and thalamus (Martí-Juan et al., 2023).

2. Materials and methods

In this section, we establish the foundation of our framework by pre-
senting an overview of coordinated representation learning, extending
this concept to multi-scale coordinated learning, then delving into mu-
tual information, followed by outlining the taxonomy and established
baselines.

2.1. Overview of coordinated representation learning

To help the reader understand the foundation of our framework, we
start with the idea of coordinated representation learning (Baltrušaitis
et al., 2018).

Let x = (x1,& , xM ) be an arbitrary sample of M related input
modalities collected from the same subject. Taken together, a set of
samples comprise a multimodal dataset ò = {(x1

i
,& , xM

i
)}

N
i=1
. The

modalities of interest are sMRI and rs-fMRI, represented as T1 and
fALFF volumes, respectively. Thus, M = 2 and xm * Rd

1
×d

2
×d

3 , a
d
1
× d

2
× d

3
tensor. While inter-modal relationships can be as complex

as a concurrent acquisition of neuroimaging modalities, we pair sMRI
and rs-fMRI based on the temporal proximity between sessions of the
same subject from the OASIS-3 (LaMontagne et al., 2019) dataset.

Let ò = {(x
1
,& , xM ) < P (D

1
,& , DM )} be a multimodal dataset

consisting of N-paired samples (x
1
,& , xM ) fromM unimodal datasets.

Then for each sample xm, we want to learn d-dimensional represen-
tation zm = Em(xm) * Rd by passing a sample through encoder Em.
The encoder Em is a nonlinear projection parameterized by a deep
neural network. Note that the encoder is individual for each modality
m. To learn the parameters of each encoder Em, we want to optimize
multimodal objective ú(P (D

1
,& , DM )). By other means, we constraint

the parameters of the encoders by multimodal objective ú(z
1
,& , zM )

to coordinate the representations across modalities, for example, by
enforcing higher similarity distance or correlation between represen-
tation from different modalities. In this setup, we learn separate latent
representations for each modality.

In this work, we parameterize the encoder Em for each modality m

with a volumetric deep convolutional neural network. To learn each en-
coder’s parameters, we optimize an objective function ú = ú(z1,& , zM )

that incorporates the representation of each modality and coordinates
them. The coordination objective encourages each encoder to learn
a latent representation for their respective modality informed by the
other modalities. This cross-modal influence is learned during training
and captured in each encoder’s parameters. Hence, a representation
of an unseen subject’s modality will capture cross-modal influences
without a contingency on the availability of the other modalities. One
common choice concerning cross-modal influences is to coordinate
representations across modalities zm by maximizing their similarity
metric (Frome et al., 2013) or correlation via CCA (Andrew et al., 2013)
between representation vectors.

To summarize, in coordinated representation learning, modality-
specific encoders learn to generate representations in a cross-
coordinated manner guided by an objective function.

The main limitation of the coordinated representation framework is
its exclusive focus on capturing joint information between modalities
instead of capturing information exclusive to each modality. Thus,
DCCA (Andrew et al., 2013) and DCCAE (Wang et al., 2015) employ
coordinated learning only as a secondary stage after pretraining the
encoder. The first stage in these methods focuses on learning modality-
specific information via layer-wise pretraining of the encoder in DCCA
or pretraining of the encoder with an autoencoder (AE) in DCCAE. On
the other hand, deep collaborative learning (DCL) (Hu et al., 2019a)
attempts to capture modality-specific information using a supervised
objective for phenotypical information with respect to each modality,
in addition to CCA.
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Another limitation that previous work has not considered is using
intermediate representation in the encoder. Intermediate representa-
tions have been integral to the success of U-Net architecture in biomedi-
cal image segmentation (Ronneberger et al., 2015), brain segmentation
tasks (Henschel et al., 2020), achieving state-of-the-art results with self-
supervised learning on natural image benchmarks with DIM (Hjelm
et al., 2019) and AMDIM (Bachman et al., 2019), and achieving near-
supervised performance in Alzheimer’s disease progression prediction,
with self-supervised pretraining (Fedorov et al., 2019).

Our work addresses these limitations by proposing a multi-scale
coordinated learning framework.

2.2. Multi-scale coordinated learning

We re-introduce intermediate representations to introduce multi-
scale coordinated learning and explain how they can benefit multi-
modal modeling.

Each encoder Em produces intermediate representations. Specifi-
cally, if the encoder Em is a convolutional neural network (CNN) with
L layers, each subsequent layer l = {1,& , L} in the CNN represents
a more significant part of the original input data. Furthermore, each
of these scales, which corresponds to the depth of a layer, is an
increasingly nonlinear transformation of the input and produces a more
abstract representation of that input relative to the previous scales. The
intermediate representations of layer l are S × o convolutional features
{cm

l
}Sl
, where S is the number of locations in the convolutional features

of layer l, and o is the number of channels. These features are also often
referred to as activation maps within the network. For example, if the
input is a 3D cube, the arbitrary feature size s within a layer l of the
CNN will be s× s× s. Thus, each intermediate representation will have
S = s3 locations. Each location in the intermediate representation has
a receptive field (Araujo et al., 2019) that captures a specific subset
of the input sample. Each intermediate representation thus captures
some of the input’s local information, while the latent representation
(zm) captures the input’s global information.

With two scales and two modalities, we can define multi-scale
coordinated learning based on four objectives, schematically shown
in Fig. 1. The Convolution-to-Representation (CR) objective captures
modality-specific information as local-to-global intra-model interactions.
The Cross Convolution-to-Representation (XX) objective captures joint
inter-modal local-to-global interactions between the local representa-
tions in one modality and the global representation in another modality.
The Representation-to-Representation (RR) objective captures joint infor-
mation between global inter-modal representations as global-to-global in-
teractions. The Convolution-to-Convolution (CC) objective captures joint
information between local inter-modal representations as local-to-local
interactions.

Thus, we can capture modality-specific information and multimodal
relationships at multiple scales. These extensions cover two previously
mentioned limitations in the coordinated learning framework. Our
extensions also allow us to define a complete taxonomy of models that
can be constructed based on these four principal interactions and to
show how these compare to or supersede related work.

First, we will define an estimator of mutual information to construct
an objective ú based on these multi-scale coordinated interactions. This
estimator will define each of the four objectives as a mutual information
maximization problem that can be used to encourage the interactions
between the corresponding representations. Lastly, we explain how one
can construct an objective ú for a multi-scale coordinated represen-
tation learning problem, based on a combination of the four primary
objectives between global and local features, and, additionally, show
how these compare to related work.

2.3. Mutual information maximization

To estimate mutual information between random variables X and
Y , we use a lower bound based on the noise-contrastive estimator
(InfoNCE) (Oord et al., 2018).

I(X; Y ) e I InfoNCE(X; Y ) =
1

N

N1

i=1

log
ef (xi ,yi)

1

N

1N

j=1
1i�je

f (xi ,yj )
, (1)

where the samples xi < X, yi < Y construct pairs: (xi, yi) sampled
from the joint P (X, Y ) (positive pair) and (xi, yj )i�j sampled from the
product of the marginals P (X) ⊗ P (Y ) (negative pair). The xi * R

d

and yi * R
d represent d-dimensional representation vectors, and can

be local or global representations. The function f ∶ R
d
³ R in Eq. (1)

is a scoring function that maps its input vectors to a scalar value and is
supposed to reflect the goodness of fit. This functions f is also known
as the critic function (Tschannen et al., 2020). The encoder is optimized
to maximize the critic function for a positive pair and minimize it for a
negative pair, such that f (xi, yi) ≫ f (xi, yj )i�j . Our choice of the critic
function is a scaled dot-product (Bachman et al., 2019) and is defined
as:

f (x, v) =
x¼y
√
d

(2)

2.4. Taxonomy for multi-scale coordinated learning

Given the mutual information estimator, we can construct four pri-
mary objectives and then use those to construct a complete taxonomy
of interactions, shown in Fig. 2. Each option within the taxonomy
specifies a unique optimization objective ú(ò). Notably, the first row
of the figure shows the principal losses: CR, XX, RR, and CC, - that we
defined before. The remaining parts of the taxonomy are constructed
by adding a composition of the principal losses. For example, the 5th
combinationRR-CC is the sum of the two primary objectives RR and
CC.

To discuss the options in the taxonomy, we first reintroduce some
notations. A local representation cm

ld
is any arbitrary location d *

{1,& , S} in the convolutional feature cl
m
from a convolutional layer l,

with S locations. A location is represented as the C-dimensional vector,
where C is the number of channels of the convolutional activation map
for layer l. The choice of the layer l is a hyperparameter and can be
guided by the following intuition. The selected layer l should not be too
close to the last layer, nor be the final layer itself. This is because, in
such cases, the local and global content of the input tend to exhibit high
similarity, often sharing nearly identical receptive fields. This similarity
can lead to overly simplistic solutions that fail to learn meaningful
representations. The concepts of local and global representations, can
effectively serve as a strategy for block-wise pretraining in analogy to
layer-wise training. This approach is exemplified in the Greedy Deep
InfoMax (GIM) (Löwe et al., 2019). Secondly, the chosen layer l should
not be too close to or be the first layer. This will lead to a local
representation with a tiny receptive field that only captures hyper-local
information of the input. As well as using the input data is primarily
oriented towards capturing the intensity of pixels and voxels. This
approach, however, has been proven ineffective, as highlighted in the
DIM study (Hjelm et al., 2019). A significant factor contributing to this
ineffectiveness is the inherent and substantial noisiness present at both
the pixel and voxel levels within the input data.

The global representation is the encoder’s Em latent representation
zm = Em

(xm) that summarizes the whole input. The global represen-
tation is a d-dimensional vector, where d is also a hyperparameter.
With this global representation, we also define a d-dimensional space,
wherein we compute scores with the critic function f . However, the
local representation is a C-dimensional vector. To overcome the differ-
ence in size, we add local projection head ā. This projection head takes
the C-dimensional local representation from layer l in the encoder and
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Fig. 1. The concept behind the multi-scale coordinated learning based on four principle relationships: Convolution-to-Representation (CR), Cross Convolution-to-Representation (XX),
Representation-to-Representation (RR), and Convolution-to-Convolution (CC). Each colored vector in the convolution activation map c1

li
and c2

oj
corresponds to arbitrary locations i and

j in features maps of layers l and o for modalities 1 and 2, respectively. We use ‘‘local representation’’ to denote each location in the convolutional activation map: the c vector
spanning the channels. The latent representation vector z is the d-dimensional global representation. To avoid clutter, we display only a slice of data but layer activations a volume
per channel in our applications.

Fig. 2. The complete taxonomy of interactions, based on the four principle interactions. The lower dots are the convolutional activations, whereas the upper dots are the global
representations. The interactions are defined between 1st modality (left) and second modality (right). The combinations represent the names of the models that are based on these
four interactions: CR, XX, RR, and CC. The colors follow the colormap from Fig. 1.

projects it to the d-dimensional space to compute scores with f in this

d-dimensional space. This projection is also parameterized by a neural

network and separate for each modality. In addition, we introduce a

global projection head g. Both the local and global projection heads are

shown to improve the training performance in DIM (Hjelm et al., 2019)

and SimCLR (Chen et al., 2020), respectively.

The first objective (CR), in the top left corner of Fig. 2, trains

two independent encoders, one for each modality, with a unimodal

loss function that maximizes the mutual information between local

cm
ld
and global zm representations. This objective directly implements

the Deep InfoMax (DIM) (Hjelm et al., 2019). The idea behind this

approach is to maximize the information between the encoder’s lowest

and highest scales. In other words, the local representations are driven

to predict the global representation. The objective for an arbitrary layer

l is defined as:

úCR(m) = I InfoNCE(ām
({cm

ld
}d=1,&,S ); g

m
({zm}))

=
1

N

N1

i=1

log
e
f (ām(cm

i,ld
),gm(zm

i
))

1

N

1N

j=1
1
[i�j]e

f (ām(cm
i,ld

),gm(zm
j
))

,

(3)

where we only define the following objective úCR(m) for a modality m.
The objective has to be computed for each modality.

The CR objective can be extended to the multimodal case by mea-
suring the inter-modal mutual information between local cm

ld
and global

zk representations of modality m and k � m, respectively. We call
this multimodal objective Cross Convolution-to-Representation (XX),
and it is shown second from the top left in Fig. 2. This objective
has previously been used in the context of augmented multiscale DIM
(AMDIM) (Bachman et al., 2019), cross-modal DIM (CM-DIM) (Sylvain
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et al., 2020b), and spatio-temporal DIM (ST-DIM) (Anand et al., 2019).
We define it as

úXX(m, k) = I InfoNCE(ām
({cm

ld
}d=1,&,S ); g

k
({zk}))k�m, (4)

where the objective úXX(m, k) is defined for a pair of modalities m and
k. The objective has to be computed for all possible pairs of modalities.
In the case of symmetric coordinated fusion, the symmetry has to be
preserved for modalities m and k by computing both úXX(m, k) and
úXX(k, m), whereas for asymmetric fusion, this is not the case.

The third elementary objective measures mutual information be-
tween the global representation of one modality zm and the global
representation of another modality zk, k � m. This objective is called
Representation-to-Representation (RR), shown as the third in the top
row of Fig. 2. This interaction has been used in many prior contrastive
multiview work (Tian et al., 2019; Chen et al., 2020; He et al., 2020;
Caron et al., 2020) and DCCA (Andrew et al., 2013). The RR objective
is defined as

úRR(m, k) = I InfoNCE(gm({zm}); gk({zk})), (5)

where we the objective úRR(m, k) is defined for a pair of modalities m
and k.

The fourth elementary objective is similar to RR, but only maximizes
the mutual information between the two inter-modal local representa-
tions cm

ld
and ck

of
, where d and f are arbitrary locations in layers l, o

within modality m and k � m, respectively. This objective is called
Convolution-to-Convolution (CC) and is shown as the fourth from the
top left in Fig. 2. The CC objective has been used in AMDIM (Bachman
et al., 2019), CM-DIM (Sylvain et al., 2020b), and ST-DIM (Anand
et al., 2019). Due to many possible pairs of locations between the
activation maps in each encoder, we reduce the computational costs
by sampling arbitrary locations, which was proposed in AMDIM (Bach-
man et al., 2019). Thus, after sampling an arbitrary location from
the convolutional activation map for one modality, we compute the
objective similarly to XX, by treating sampled locations as the global
representation.

úCC(m, k) = I InfoNCE(ām
({cm

ld
}d=1,&,S );ā

k
({ck

l∗
}))k�m, (6)

where ∗ < {1,& , T } is a sampled location from T locations. The
objective úCC(m, k) is defined for a pair of modalities m and k.

Combining these four primary objectives can construct more com-
plicated objectives, as shown in Fig. 2. For example, the XX-CC objec-
tive for two modalities (as m = M1 and k = M2) can be written as

úXX-CC(DM1, DM2
) = úXX

(M1,M2) + úXX
(M2,M1)

+ úCC
(M1,M2) + úCC

(M2,M1)

(7)

The goal would be to find parameters � that maximize úXX-CC. The
objective is repeated with flipped modalities to preserve the symmetry
of XX and CC. Removing the symmetry is intuitively similar to guiding
the representations of one modality by the representations of another
modality, which may be interesting for future work on asymmetric
fusion. The XX-CC objective coordinates representations locally with
the CC objective on convolutional activation maps and coordinates
representations across scales in the encoder with XX. The local repre-
sentations of one modality should be predictive of the global and local
representations of the other modality.

2.5. Baselines and other objectives

We compare our method to an autoencoder (AE), a deep canonical
correlation autoencoder (DCCAE) (Wang et al., 2015), and a supervised

Fig. 3. This figure shows schemes for the following models: Supervised, autoencoder
(AE), deep canonical correlation autoencoder (DCCAE), the CR objective combined
with CCA (CR-CCA), and the RR objective combined with an autoencoder (RR-AE). The
Supervised and CR-CCA objectives follow a similar structure as schemes represented in
our taxonomy; see Fig. 2. The AE-based models (AE, DCCAE, RR-AE) are represented
by a 3-dot scheme where the middle dot is a representation, the lower dots are the
input itself, and the upper dots are reconstructions of the input.

model. Each model type is a high-performing version of the three main
categories of alternative approaches to our framework. The AE and
supervised models are trained separately for each modality, while the
DCCAE is trained jointly on all modalities. By Supervised, we refer to a
unimodal model trained to predict a target using cross-entropy loss.

In addition to defining a unified framework that covers multiple
existing approaches, our taxonomy contains a novel unpublished ap-
proach that combines different combinations of the four objectives.
One novel approach combines the CR objective with the objective of
the DCCAE, which we call CR-CCA. The CR objective allows us to
train using modality-specific information, and the CCA objective aligns
the representations between modalities. This leads to the following
objective:

úCR-CCA(DM1, DM2
) =úCCA

(M1,M2) + úCCA
(M2,M1)

+ úCR
(M1) + úCR

(M2)

(8)

A second novel approach combines the AE objective with our RR
objective to create the RR-AE objective. The AE objective ensures
the learning of modality-specific representations, and the RR objective
enforces the alignment of representations across modalities, similar to
the CCA objective in the DCCAE. The final objective of the RR-AE is as
follows.

úRR-AE(DM1, DM2
) = úRR

(M1,M2) + úRR
(M2,M1)

− RM1
− RM2,

(9)

where RM is the mean squared reconstruction error for the AE with an
additional decoder D, and modality M :

RM
=

1

N

N1

n=1

‖xM
n

−DM
(EM

(xM
n
))‖2 (10)

The baseline schemes are shown in Fig. 3. The AE-based models (AE,
DCCAE, RR-AE) are represented by a 3-dot scheme where the middle
dot is a representation, the lower dots are the input itself, and the upper
dots are reconstructions of the input.

3. Experimental details

In this section, we provide a detailed description of the dataset,
outline the implementation framework, and discuss the evaluation of
the learned representation.

3.1. Dataset

In this study, we validate our method using the OASIS-3 (LaMon-
tagne et al., 2019) dataset, a multimodal neuroimaging dataset com-
prising multiple Alzheimer’s disease phenotypes. Each subject within
this dataset is represented by a T1 volume and a fractional ampli-
tude of low-frequency fluctuation (fALFF) (Zou et al., 2008) volume,
generated from T1w and resting-state fMRI (rs-fMRI) images. The T1
volume accounts for brain anatomy, while the fALFF volume captures
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Table 1
The details of the dataset splits and usage.

Dataset: 826 subjects

Splits Stratified 5-fold cross-validation: 726 subjects Hold-out: 100 subjects

Set Training Validation Test

Number of samples 580–582 subjects
(2828–2944 pairs)

144–146 subjects
(653–769 pairs)

100 subjects
(424 pairs)

resting-state dynamics. Both T1 and fALFF volumes have proven to be
informative in studying Alzheimer’s disease (He et al., 2007) but also
other conditions, such as chronic smoking (Wang et al., 2017).

3.1.1. Preprocessing

The T1w images underwent brain masking using BET in FSL (Jenk-
inson et al., 2002) (v 6.0.20), linear transformation to MNI space, and
subsampling to 3 mm following preprocessing. We discarded 15 T1w
images due to their failure to pass the initial visual quality assess-
ment. The rs-fMRI was registered to the first image using MCFLIRT
in FSL (Jenkinson et al., 2002) (v 6.0.20), with specific parameters
detailed in the original text. We computed the fALFF maps within
the 0.01 to 0.1 Hz power band using REST (Song et al., 2011). Both
modalities have a final volume size of 64 × 64 × 64.

We registered the volumes in the MNI space to simplify our method’s
analysis and interpretability. However, we minimized data preprocess-
ing to retain as much information from the original data as possible for
the neural network to learn. Additionally, we subsampled to 3 mm to
reduce computational demands, with applications on 1 mm earmarked
for future work.

3.1.2. Demographics and labels

The dataset’s largest cohort comprises non-Hispanic Caucasian sub-
jects (84%). We selected 826 (70% HC, 15% AD, 15% unlabeled)
Non-Hispanic Caucasian subjects. The OASIS-3 (LaMontagne et al.,
2019) dataset contains a considerable number of subjects who are
neither classified as AD nor readily identified as controls. These subjects
belong to one of 21 diagnostic categories, such as cognitive impairment,
frontotemporal dementia (FTD), Diffuse Lewy body disease (DLBD),
and vascular dementia from preclinical cohorts, and followed longitu-
dinal progression. We combined all such subjects into a distinct third
class. In addition, to Non-Hispanic Caucasians, we used 134 African
American subjects (100 HC, 34 AD) as an out-of-distribution hold-out
set for transfer learning with linear evaluation.

3.1.3. Dataset splits

We partitioned the 826 subjects into 5 stratified folds and 1 hold-
out test sets. The final subsets consist of 580−582 subjects (2828−2944

pairs) as training, 144 − 146 subjects (653 − 769 pairs) as validation,
100 subjects (424 pairs) as hold-out test. Our splits ensure that each
subject is only present in one of the subsets. The details of the splits
are shown in Table 1. We matched the scans of each modality based
on the closest available date for each subject, resulting in a total of
4021 pairs for 826 subjects. The number of pairs exceeds the number of
subjects because some subjects have multiple scans. We utilized all the
pairs during pre-training but limited our final evaluation to one pair of
images per subject. We opted to evaluate only one pair per subject to
ensure that performance will not be biased towards subjects with more
pairs. For the 2-way classification, long-tailed phenotypic data were
excluded, while for the 3-way classification, we incorporated unlabeled
data as a long-tailed phenotypic third class. We use an entire dataset
of Non-Hispanic Caucasian subjects to perform model introspection for
interpretability, but we still limit analysis to one pair per subject for
the same reasons.

3.1.4. Data augmentation and additional preprocessing
Before introducing the images into the neural network, we normal-

ized the intensities of the T1 and fALFF images using min–max rescaling
to the unit interval ([0, 1]). During pre-training, we augmented the
dataset by incorporating random crops of size 64, obtained after ap-
plying reflective padding of size eight to all sides. The preprocessing
and augmentation choices were determined based on evaluations of the
supervised baseline.

We also explored histogram standardization, z-normalization, ran-
dom flips, and a balanced data sampler (Hermans et al., 2017). How-
ever, these alternatives did not yield significantly different results.
Consequently, we employed a simple min–max rescaling and random
cropping approach to minimize computational costs.

3.2. Framework

Our experimental framework is depicted in Fig. 4, encompass-
ing the preliminary pre-training, subsequent evaluation of the classi-
fication tasks, alignment of the representations, and analysis of the
representations through the lens of saliency in brain space.

3.2.1. Architecture
For our encoder, we choose the architecture from the deep convo-

lutional generative adversarial networks (DCGAN) (Radford et al., 2015).
This architecture provides a simple, fully convolutional structure and
has a specialized decoder which is essential for the performance of
generative and autoencoding approaches. We used volumetric convolu-
tional layers for the experiments with neuroimaging OASIS-3 dataset.
Most of the hyperparameters we left as in the original work (Radford
et al., 2015). We swapped the last tanh activation functions in the
decoder with a sigmoid because the intensities of the input images are
scaled into the unit interval. The last layer projects activations from the
previous layer to the final 64-dimensional representation vector that
we named global. All convolutional layers are initialized with Xavier
uniform (Glorot and Bengio, 2010) and gain related to the activation
function (Paszke et al., 2019). Each modality has its encoder with
DCGAN architecture.

The local projection head is needed to project local representation to
a 64-dimensional channel space to ensure that the critic scores between
the global and local representations will be computed in the same
space. For a local projection head ā, we choose an architecture similar
to AMDIM (Bachman et al., 2019) but uses volumetric convolutional
layers. The projection head represents one ResNet block from a third
l = 3 layer of DCGAN architecture with feature size 128 × 8 × 8 × 8.
One direction in the block consists of 2 convolutional layers (kernel
size 1, number of output and hidden channels 64, Xavier uniform
initialization (Glorot and Bengio, 2010)). The second direction consists
of one convolutional layer (kernel size 1, number of output channels
64, initialization as identity). The projection heads are individual for
each modality, and we added them only if the model uses convolutional
features in the objective.

The global projection head is needed to improve the representation.
As it has been shown (Chen et al., 2020), the last layer of the neural
network can develop a lower rank condition which is beneficial to the
optimization of the objective but can be destructive to the represen-
tation. For a global projection head g, we follow SimCLR (Chen et al.,
2020). We perform a hyperparameter search for the number of hidden
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Fig. 4. The Figure show the learning framework for the CR-based objective with the T1 image. It includes an encoder with DCGAN (Radford et al., 2015) architecture, local
and global projection heads, and the computation of the critic function. The evaluation of the representation is performed with a frozen pre-trained encoder. First, with logistic
regression, we evaluate the downstream performance. Secondly, with alignment analysis, we explore the multimodal properties of the representation. Finally, we interpret the
representation in the brain space with saliency gradients.

layers in the projection head for each model that can use the projection
head (except Supervised, AE, CC). We have considered cases: without a
projection head, with a linear projection head, and a projection head
with 1-, 2-, or 3- hidden layers. The number of output dimensions in
the projection layers equals 64.

3.2.2. Optimization and regularization for pre-training
We perform the training of the models on OASIS-3 dataset with

RAdam (Liu et al., 2019) optimizer with learning rate (lr=4e−4). The
pre-training step in our framework has been performed for 500 epochs.
For each trained model, we saved 10 checkpoints based on the best
validation loss.

In addition, following AMDIM (Bachman et al., 2019), we add
regularization to InfoNCE objective by penalizing the squared scores
computed by the critic function as �f (x, y)2 with � = 4e−2, and clipping
the scores by c tanh(

s

c
) with c = 20.

3.3. Evaluation

It is important to exhaustively validate the representations the
model learns, which in the proposed framework is done in three steps.
The first step evaluates the representations using classification tasks
with logistic regression. This step uses the features extracted by the
encoder from the input. This evaluation aims to ensure the discrimina-
tive power of the pre-trained features. In the second step, we compute
the similarity between representations to measure how much joint
information has been captured by the model. The third and last step
consists of two analyses to explore the relationship between the latent
space and the brain space to assess voxel-wise group differences based
on saliency gradients for each of the d dimensions of the representation.

3.3.1. Classification evaluation
After the pre-training step, to evaluate the discriminative perfor-

mance of the representations captured by the model, we train logistic
regression on frozen representations from the last layer of the encoder.
Note that most self-supervised learning algorithms evaluate the discrim-
inative power of representations with a linear evaluation protocol based

on linear probes (Alain and Bengio, 2016). However, we chose to use
logistic regression due to faster training times.

The process of linear evaluation with logistic regression is shown in
Fig. 5. We perform two classification tasks to evaluate the discrimina-
tive performance of representations learned by the various objectives
in our taxonomy. The first task is a binary classification of Alzheimer’s
Disease (AD) vs. Healthy Cohort (HC). The second task is a ternary
classification with an additional long-tailed phenotypical class. The first
task is easier than the second one because the latter has an added class.

After extracting the representations with a pre-trained encoder,
the logistic regression is trained on global representation z. We use
logistic regression (from scikit-learn Pedregosa et al., 2011) to perform
classification tasks. The hyperparameters of the logistic regression were
optimized with Optuna (Akiba et al., 2019) for 500 iterations. The se-
lections of the hyperparameters are performed based on the validation
subset. The search space for hyperparameters is defined as follows:
inverse regularization strength C is sampled log-uniformly with inter-
val [1e−6, 1e+3], for the elastic net penalty, the mixing parameter is
uniformly sampled from unit interval [0, 1]. The logistic regression is
trained using SAGA solver (Defazio et al., 2014). We use a ROC AUC
and one-vs-one (OVO) ROC AUC Macro (Hand and Till, 2001) as a
scoring function for a hyperparameter search for binary and ternary
classification, respectively. The OVO strategy for ROC AUC metrics in
multiclass classification is computed as the average AUC of all possible
pairwise combinations of classes. In addition, it is insensitive to class
imbalance for macro averaging (Pedregosa et al., 2011). Classification
is performed separately for each modality by training logistic regres-
sion on the representations extracted from that modality using the
corresponding convolutional encoder.

3.3.2. Alignment analysis
The alignment analysis is added to estimate the joint information

content of the representation between modalities as a measure of
the inductive bias of the training objective. We use central kernel
alignment (CKA) (Kornblith et al., 2019) to evaluate the alignment
between representations of different modalities. CKA is effective (Korn-
blith et al., 2019) as a method to identify the correspondence between
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Fig. 5. The schematic process of linear evaluation with logistic regression. In the first stage, we perform feature extraction using a pre-trained encoder. In the second stage, we
search for a hyperparameter based on a validation set using Optuna (Akiba et al., 2019). After finding parameters, we compute metrics for each task and save importance scores
of the features (beta values of the logistic regression) for further analysis.

Fig. 6. The schematic process of computing Central Kernel Alignment (CKA). In the first stage, we perform feature extraction using a pre-trained encoder. In the second stage,
we stack features in matrices n × d where d is the dimensionality of the representation vector, and n is the number of samples.

representations of networks with different initializations, compared
to CCA-based similarity measures (Raghu et al., 2017; Morcos et al.,
2018). CKA is considered to be a normalized version of the Hilbert–
Schmidt Independence Criterion (HSIC) (Gretton et al., 2005). The CKA
measure for a pair of modalities m and k is defined as:

CKA(Zm, Zk
) =

‖‖ZkTZm‖‖
2

F

‖‖ZmTZm‖‖F ‖‖ZkTZk‖‖F
, (11)

where d is the dimension of the latent representation, Z is a n×d matrix
of stacked global d-dimensional representation z for n samples, ‖ ç‖F is
the Frobenius norm. The schematic process of computing CKA is shown
in Fig. 6.

Our results are only evaluated using CKA since we find it (Fedorov
et al., 2021) to be the most robust to noise, which reinforces findings
in previous literature (Kornblith et al., 2019; Nguyen et al., 2021) that
suggest the same.

3.3.3. Saliency explanation of the representation in brain space
To explain the representations in brain space, we adapt the inte-

grated gradients algorithm (Sundararajan et al., 2017). We want to
understand the representations rather than the saliency of a specific
label. Hence we propose a straightforward adaptation. Instead of using
a target variable, we compute gradients with respect to each dimension
of the representation. This is done by setting the specific dimension in
the vector to 1 and all other dimensions to 0.

3.3.4. Model selection
We save the top 10 checkpoints during training based on the val-

idation loss. In contrast, most self-supervised studies save checkpoints
based on the classification performance using a proxy classifier during
training. We use only the loss and do not rely on the labels. Selecting
the best ten checkpoints is a valid strategy as we ensure that our mod-
els converge within 500 epochs (see learning curves https://wandb.

ai/noidea/neuroimage-fusion/). Moreover, there is no guarantee that
lower self-supervised loss leads to better classification performance.

For each modality, we extract representation separately. However,
the checkpoint is the same for both modalities in multimodal models.
Because otherwise, the alignment measure with CKA will be between
two unrelated models. For unimodal models, the checkpoints are paired
based on the saving order to ensure that the model trained relatively
with the same number of epochs.

After extracting features, we train the logistic regression for each
checkpoint by tuning its hyperparameters via optuna (Akiba et al.,
2019) on a validation set. After calculating each modality’s logis-
tic regression performance score, we computed the average perfor-
mance across two modalities for that checkpoint. Then we select the
best checkpoint (epoch) as a maximum over checkpoint’s performance
(e.g., the ROCAUC or OVO ROCAUC Macro (based on the task)). The
procedure is shown in Fig. 7.

Once we select the best checkpoint, we compute mean over folds to
select the hyperparameter set of the model (e.g., projection head) based
on a validation set. Finally, we report the hold-out test set performance
of the model.

4. Results

In this section, we present our findings derived from two classifica-
tion tasks within the OASIS-3 dataset, with an emphasis on examining
the comparative performance of self-supervised methodologies. The
Supervised model serves as the upper bound performance when labels
are accessible during training. We have implemented baseline models
such as unimodal models AE and CR (Fedorov et al., 2019), along with
multimodal models DCCAE (Wang et al., 2015), RR (SimCLR) (Chen
et al., 2020), and XX-CC (AMDIM) (Bachman et al., 2019). Moreover,
we delve into the inductive biases of various multimodal objectives
using the Centered Kernel Alignment (CKA) metric to evaluate the
joint information contained within the cross-modality representations.

https://wandb.ai/noidea/neuroimage-fusion/
https://wandb.ai/noidea/neuroimage-fusion/
https://wandb.ai/noidea/neuroimage-fusion/
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Fig. 7. The schematic process of best checkpoint selection.

Fig. 8. The figure shows ROC AUC performance of logistic regression on a hold-out test set for binary classification (top right corner) and ternary classification (bottom left corner)
tasks. On the right side, the barplot shows CKA on a hold-out test set across the subject for ternary classification. The color map of the legend corresponds to ranking with CKA.
Markers correspond to the mean of the ROC AUC, and error bars correspond to the standard error. The X- and Y -axis correspond to the ROC AUC on T1 and fALFF modalities.
The ROC AUC was measured as a one-versus-one (OVO) macro metric for ternary classification. Two classification tasks are shown on the same plot to visualize the generalizability
of the learned representation in tasks with different difficulties. The dashed line represents a diagonal of the balanced performance between T1 and fALFF. The CKA shows an
alignment of the representation between modalities as a measure of joint information. Lower CKA values mean less joint information between representations, and higher CKA
values — more joint information. The brown arrow shows how the relative ranking of the AE model falls on a different task. The pale orange arrow shows the consistency of the
relative ranking for the RR-XX-CC model.

Subsequent to this, we highlight the group differences between the
supervised models and the top-performing self-supervised models estab-
lished initially. Lastly, we explore the multimodal associations between
representation T1 and fALLF.

4.1. Linear classification performance

The classification results on a hold-out test set are shown for both
tasks in Fig. 8. The performance is shown with a mean and standard
error of the ROC AUC and one-versus-one (OVO) ROC AUC Macro

(average) (Hand and Till, 2001) metrics for binary and ternary classifi-
cation tasks, respectively. Additionally, we report CKA as the measure
of joint information between representations of different modalities for
each model. In Fig. 8, CKA was computed on all subjects for three
classes from the hold-out test set.

The best-performing model for binary classification for T1 modality
is Supervised with 86.1 ± 1.0%. However, three models are comparable
based on the statistical comparison (Table 2). Two of them are multi-
modal RR-XX-CC 84.0 ± 0.6% and RR-AE 84.0 ± 0.6%, and one of them
unimodal AE 85.9 ± 0.3%.
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Table 2
Mean and standard error of ROCAUC and CKA metrics for binary classification task on the T1 modality. The significance is computed with the
Wilcoxon signed-rank test and additional Holm correction for multiple comparisons.

Model Baseline Multimodal ROCAUC CKA Significance

Supervised ✓ 86.1 ± 1.0 21.4 ± 1.4 N/A
AE ✓ 85.9 ± 0.3 50.8 ± 0.4

RR-XX-CC ✓ 84.0 ± 0.6 76.6 ± 0.4

RR-AE ✓ 84.0 ± 0.6 68.2 ± 0.9

CR-XX-CC ✓ 83.2 ± 1.1 54.4 ± 1.4 .
CR-XX ✓ 82.5 ± 1.3 52.7 ± 1.3 ∗

CR-CCA ✓ 82.5 ± 0.9 21.7 ± 0.6 .
CR-CC ✓ 81.8 ± 1.2 15.1 ± 0.6 .
RR-CR-XX ✓ 81.3 ± 1.6 39.4 ± 1.1 .
XX ✓ 80.5 ± 2.4 65.2 ± 1.3 .
XX-CC ✓ ✓ 80.3 ± 1.6 67.4 ± 2.1 ∗

RR ✓ ✓ 80.1 ± 1.3 72.3 ± 0.9 ∗

RR-XX ✓ 79.7 ± 1.0 73.1 ± 2.5 ∗

DCCAE ✓ ✓ 79.6 ± 1.7 21.2 ± 0.6 ∗

RR-CR ✓ 79.4 ± 1.3 29.7 ± 0.4 ∗

RR-CC ✓ 79.0 ± 1.5 72.8 ± 1.2 ∗

RR-CR-CC ✓ 78.9 ± 1.2 27.3 ± 0.5 ∗

CR ✓ 78.8 ± 1.9 15.1 ± 0.6 ∗

RR-CR-XX-CC ✓ 78.2 ± 1.3 39.7 ± 1.6 ∗

CC ✓ 77.3 ± 2.1 47.9 ± 1.6 ∗

The significance is denoted as follows: ∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, p < 0.1. Bold names are the best models based on ROCAUC and
significance testing.

Table 3
Mean and standard error of ROCAUC and CKA metrics as mean ± SE for binary classification task on fALFF on a hold-out test set. The
significance is computed with the Wilcoxon signed-rank test and additional Holm correction for multiple comparisons.

Model Baseline Multimodal ROCAUC CKA Significance

RR-XX-CC ✓ 79.4 ± 1.3 76.6 ± 0.4 N/A
XX-CC ✓ ✓ 77.3 ± 1.4 67.4 ± 2.1

RR ✓ ✓ 75.9 ± 1.8 72.3 ± 0.9

RR-CR-XX ✓ 75.6 ± 1.1 39.4 ± 1.1 ∗

CR-XX-CC ✓ 75.0 ± 0.6 54.4 ± 1.4 .
XX ✓ 74.8 ± 1.0 65.2 ± 1.3 .
RR-CR-XX-CC ✓ 74.6 ± 0.8 39.7 ± 1.6 ∗

RR-CC ✓ 74.6 ± 1.8 72.8 ± 1.2 .
Supervised ✓ 74.2 ± 1.1 21.4 ± 1.4 ∗

CR-XX ✓ 73.1 ± 1.9 52.7 ± 1.3 .
RR-AE ✓ 73.0 ± 1.8 68.2 ± 0.9 ∗

RR-XX ✓ 72.7 ± 1.2 73.1 ± 2.5 ∗

RR-CR-CC ✓ 72.5 ± 0.8 27.3 ± 0.5 ∗

RR-CR ✓ 72.2 ± 0.8 29.7 ± 0.4 ∗

CR-CC ✓ 71.8 ± 1.9 15.1 ± 0.6 .
DCCAE ✓ ✓ 71.5 ± 1.4 21.2 ± 0.6 ∗

CR-CCA ✓ 71.1 ± 1.6 21.7 ± 0.6 ∗

AE ✓ 70.9 ± 2.3 50.8 ± 0.4 ∗

CR ✓ 68.6 ± 1.0 15.1 ± 0.6 ∗

CC ✓ 65.5 ± 3.2 47.9 ± 1.6 ∗

The significance is denoted as follows: ∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, p < 0.1. Bold names are the best models based on ROCAUC and
significance testing.

The best-performing model on ternary classification for T1 modality

is Supervised 73.9±1.3%. However, there are a couple of self-supervised

multimodal models that are very close where the p-value is only p < 0.1

(Table 4). However, the strongest self-supervised multimodal model is

RR-XX-CC with 70.2 ± 1.2% ROCAUC.

The best-performing model for binary classification for fALFF modal-

ity is RR-XX-CC with 79.4 ± 1.3%. Based on statistical comparison

(Table 3) it shares the first place with XX-CC 77.3 ± 1.4% and RR

75.9 ± 1.8%.

On ternary classification for fALFF modality, the best performing

model is RR-XX 63.2 ± 2.2%. Based on statistical comparison (Table 5)

it is comparable with Supervised 62.9 ± 3.2%, XX 62.5 ± 1.2%, RR-XX-CC

62.2±1.6%. The significance comparison test marks many other models

in Table 5. We hypothesize that the main reason for many comparable

models is a high variance of the model’s performance in this task which

can be explained by the difficulties of training models on fALFF with

limited data.

The unimodal autoencoder (AE) model can perform well on the
simple binary classification task and T1 as it achieves the best perfor-
mance as an unsupervised model 85.9±0.3%. However, the performance
significantly drops (brown arrow in Fig. 8) on the harder ternary clas-
sification task with long-tailed third class for T1, achieving 67.1±1.5%,
which is worse than multimodal models such as RR-XX-CC (70.2±1.2%).
Unimodal models such as CR and AE are outperformed by most of the
multimodal models, especially on fALFF. A multimodal extension of AE
with CCA as DCCAE or RR-AE can improve performance on classifica-
tion tasks. However, these models also struggle with consistency of the
results as AE.
CCA-based models (CR-CCA, DCCAE) consistently outperformed

most of the proposed self-supervised decoder-free models on 2-way and
3-way classification tasks. Therefore we could achieve more robust per-
formance with the proposed models while reducing the computational
cost and the number of parameters in the models by not requiring the
decoder for each modality.

Overall, the proposed self-supervised models, specifically RR-XX-CC,
perform robustly on both tasks and retain their ranking relative to the
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Table 4
Mean and standard error of OVO ROCAUC Macro and CKA metrics for ternary classification task for T1 on the hold-out test set. The significance
is computed with the Wilcoxon signed-rank test and additional Holm correction for multiple comparisons.

Model Baseline Multimodal OVO ROCAUC Macro CKA Significance

Supervised ✓ 73.9 ± 1.3 21.9 ± 1.6 N/A
RR-XX-CC ✓ 70.2 ± 1.2 73.9 ± 1.1 .

RR-CR-XX-CC ✓ 68.6 ± 0.7 38.0 ± 1.3 ∗

RR-XX ✓ 68.3 ± 1.3 73.0 ± 0.8 .
CR-XX-CC ✓ 68.2 ± 1.1 39.8 ± 0.4 ∗

RR-CR-XX ✓ 68.0 ± 1.5 37.0 ± 1.4 .
RR-CR-CC ✓ 67.3 ± 0.8 30.3 ± 0.8 ∗

AE ✓ 67.1 ± 1.5 48.6 ± 0.3 ∗

RR-CC ✓ 67.1 ± 1.6 70.5 ± 0.7 .
CR ✓ 66.8 ± 1.4 15.2 ± 0.2 ∗

CR-XX ✓ 66.8 ± 1.4 30.5 ± 1.7 .
DCCAE ✓ ✓ 66.6 ± 1.4 15.0 ± 1.0 .
XX ✓ 66.5 ± 1.5 65.2 ± 0.9 ∗

XX-CC ✓ ✓ 66.5 ± 0.9 66.2 ± 1.8 ∗

CR-CCA ✓ 65.3 ± 2.2 21.5 ± 0.4 ∗

RR-AE ✓ 64.4 ± 1.3 70.9 ± 1.1 ∗

RR-CR ✓ 64.3 ± 1.8 27.9 ± 0.5 ∗

CR-CC ✓ 63.8 ± 2.1 14.9 ± 0.7 ∗

CC ✓ 63.7 ± 1.1 45.7 ± 1.3 ∗

RR ✓ ✓ 63.7 ± 1.3 69.5 ± 0.6 ∗

The significance is denoted as follows: ∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, p < 0.1. Bold names are the best models based on ROCAUC and
significance testing.

Table 5
Mean and standard error of OVO ROCAUC Macro and CKA metrics for ternary classification task for fALFF on a hold-out test set. The significance
is computed with the Wilcoxon signed-rank test and additional Holm correction for multiple comparisons.

Model Baseline Multimodal OVO ROCAUC Macro CKA Significance

RR-XX ✓ 63.2 ± 2.2 73.0 ± 0.8 N/A
Supervised ✓ 62.9 ± 3.2 21.9 ± 1.6

XX ✓ 62.5 ± 1.2 65.2 ± 0.9

RR-XX-CC ✓ 62.2 ± 1.6 73.9 ± 1.1

XX-CC ✓ ✓ 60.7 ± 1.9 66.2 ± 1.8

RR-CR-CC ✓ 59.2 ± 2.8 30.3 ± 0.8

CR-XX-CC ✓ 59.2 ± 1.0 39.8 ± 0.4

CR-CCA ✓ 59.0 ± 2.2 21.5 ± 0.4 ∗

DCCAE ✓ ✓ 59.0 ± 0.7 15.0 ± 1.0

RR-CR-XX ✓ 58.5 ± 0.6 37.0 ± 1.4

CR-CC ✓ 58.3 ± 1.7 14.9 ± 0.7 ∗

CR-XX ✓ 58.1 ± 1.0 30.5 ± 1.7 .
RR-CC ✓ 57.6 ± 1.7 70.5 ± 0.7 .
RR-CR-XX-CC ✓ 57.4 ± 3.0 38.0 ± 1.3

RR-AE ✓ 57.3 ± 1.9 70.9 ± 1.1

CR ✓ 55.2 ± 2.3 15.2 ± 0.2 .
RR ✓ ✓ 55.0 ± 1.6 69.5 ± 0.6 .
AE ✓ 53.9 ± 1.3 48.6 ± 0.3 ∗

RR-CR ✓ 53.7 ± 1.8 27.9 ± 0.5 ∗

CC ✓ 51.9 ± 1.0 45.7 ± 1.3 ∗

The significance is denoted as follows: ∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, p < 0.1. Bold names are the best models based on ROCAUC and
significance testing.

other models. Significantly, these models outperform previous unsu-
pervised unimodal and multimodal models. In addition, these results
support the benefits of multimodal learning as co-learning, which could
be seen as a regularization effect.

Judging by the higher CKA alignment measure (0.63 − 0.74), these
models capture joint information between modalities. While there are
other models—RR-AE, RR-CC, and RR—that achieve higher CKA align-
ment, they are not as robust. We hypothesize that the joint information
alone is not the answer to the problem, but the architecture of the
model is essential. Note that the XX, XX-CC, RR-XX, and RR-XX-CC
models capture the local–global relationship across modalities. While
the RR-AE, RR-CC, and RR models only capture joint information
on global–global or local–local representation level. Thus, given the
empirical evidence in Fig. 8, the local–global relationship XX is an
essential building block for multimodal data because it allows us to
capture complex multi-scale relationships between modalities. Impor-
tantly, CCA-based approaches such DCCAE and CR-CCA fail to capture
high alignment per the CKA measure.

By taking into account the classification performance (near super-
vised performance on T1 on both tasks, best performance on fALFF
for binary classification, and near best performance on ternary classi-
fication), consistency of the performance (pale orange arrow in Fig. 8)
and the amount of captured joint information, we select RR-XX-CC for
further analysis in this manuscript.

4.1.1. Label efficiency and transfer learning
Here, we explore the label efficiency (Jin et al., 2023) of the models

with binary classification tasks performed specifically on Non-Hispanic
Caucasian and African American subjects. The model was exclusively
trained on Non-Hispanic Caucasians, meaning the African American
dataset represents an application of transfer learning to a subset that
is out of distribution.

To refresh, SSL models are trained in two stages: initial pre-training
on the unlabeled datasets followed by linear evaluation on the labeled
dataset. To evaluate the label efficiency (Jin et al., 2023) we vary
the labeled dataset in the second stage by using only a subset of
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Fig. 9. Label efficiency on T1 of the six best models (Supervised, self-supervised baselines, and best proposed) on binary classification on the hold-out test set with Non-
Hispanic Caucasian subjects and for transfer learning to the out-of-distribution set with African American subjects. The percent corresponds to the number of subjects with
labels: 10%, 25%, 50%, 75%, 100%. The performance is measured with ROCAUC using mean and standard error.

Fig. 10. Label efficiency on fALFF of the six models (Supervised, self-supervised baselines, and best proposed) on binary classification on the hold-out test set with Non-Hispanic
Caucasian subjects and out-of-distribution set with African American subjects. The percent corresponds to the number of subjects with labels: 10%, 25%, 50%, 75%, 100%. The
performance is measured with ROCAUC using mean and standard error.

the labels. We train Supervised model using that subset of the labels,
while self-supervised does not need labels, hence trained on the full
unlabeled training dataset. Because of the ability to train models on
unlabeled data, SSL has access to more samples than the Supervised.
Hence comparing the performance of the SSL with respect to Supervised
can only show the label efficiency, but not the data efficiency. As data
efficiency would require to train SSL on similar smaller subsets.

Guided by the above, we train our SSL models on the whole training
subset, while we train Supervised only on the subset with the available
labels. We control the number of labels in the training subset in each
fold by the percentage of the subjects while ensuring stratified label
distribution. Specifically, we use 10%, 25%, 50%, 75%, 100%. After pre-
training all models, we follow the same linear evaluation protocol with
Logistic Regression, where the encoder is frozen and serves as a feature
extractor.

The results are shown in Fig. 9 on T1 and Fig. 10, and the detailed
metric values are shown in Table 6 for T1 and in Table 7 for fALFF.

For the label-efficiency, the Supervised model starts to catch up with
the best self-supervised model RR-XX-CC after being trained with more
than 25% of the labeled data on T1. While on fALFF, the Supervised
cannot catch the performance of the multimodal models RR-XX-CC and
XX-CC. This result shows the benefit of multimodal learning for fALFF.

For transfer learning, all models drop performance on fALFF with a
maximum difference of 13.4%, while on T1, the models mostly perform
comparably, and the maximum difference is 5.5%. If we conduct the
Wilcoxon signed-rank test with the alternative hypothesis that ‘‘the
performance of Non-Hispanic Caucasian subjects is greater than that
of African American subjects’’, we find significant drops in performance
for the fALFF modality. A star marks a significant drop in performance.
The drop on fALFF shows that the models cannot generalize to a
different race, while it seems T1 almost does not have this issue.
Furthermore, these results show that self-supervised and supervised
learning cannot guarantee out-of-distribution generalization for free.
Hence additional methodologies are needed. At least, the models should
be able to access the data from a different race.

4.2. Interpretability

4.2.1. Explaining group differences between HC and AD
In this subsection, we explain the performance of the models by

analyzing the saliency maps. As a point of interest and comparison, we
selected the models in the previous section Supervised and RR-XX-CC.
We use these two models to generate saliency maps and interpret what
the models have learned.
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Table 6
Label-efficiency on binary classification task on hold-out test for T1 measured as ROCAUC and reported as mean ± standard error.

Model Baseline Multimodal Set 10% 25% 50% 75% 100%

Supervised ✓ African American 75.7 ± 4.04 81.4 ± 1.26 85.0 ± 0.79 84.6 ± 0.72 85.2 ± 0.34
Non-Hispanic Caucasian 72.2 ± 3.46 81.4 ± 2.05 83.7 ± 1.75 84.6 ± 1.58 85.3 ± 1.22

AE ✓ African American 76.8 ± 5.93 77.9 ± 2.68 80.9 ± 1.79 79.4 ± 2.27 82.8 ± 1.01

Non-Hispanic Caucasian 78.1 ± 3.09 80.4 ± 1.05 84.4 ± 0.73 84.2 ± 1.15 ∗ 85.6 ± 0.53

DCCAE (Wang et al., 2015) ✓ ✓ African American 74.0 ± 6.05 79.4 ± 2.87 81.2 ± 1.10 84.0 ± 0.36 83.1 ± 0.79

Non-Hispanic Caucasian 74.9 ± 5.60 77.7 ± 0.96 79.1 ± 1.30 81.5 ± 0.98 81.1 ± 0.96

RR (Tian et al., 2019; Chen et al., 2020) ✓ ✓ African American 70.9 ± 2.55 78.9 ± 1.13 78.4 ± 1.26 80.7 ± 1.27 80.6 ± 2.15

Non-Hispanic Caucasian 75.9 ± 1.32 78.2 ± 1.40 76.7 ± 1.49 79.9 ± 0.82 80.8 ± 1.35

XX-CC (Bachman et al., 2019) ✓ ✓ African American 82.4 ± 2.01 79.4 ± 0.74 82.5 ± 2.10 83.7 ± 1.54 84.3 ± 1.14
Non-Hispanic Caucasian 77.2 ± 2.32 76.3 ± 4.62 79.9 ± 2.32 79.7 ± 2.17 80.5 ± 1.75

RR-XX-CC ✓ African American 81.4 ± 2.37 83.4 ± 1.47 82.6 ± 2.34 84.2 ± 1.70 83.9 ± 1.66

Non-Hispanic Caucasian 78.7 ± 2.27 83.9 ± 1.32 81.8 ± 2.06 83.6 ± 1.55 84.4 ± 0.60

Bold text is for the model with the best performance on African American subjects, and non-bold is the best performance on Non-Hispanic Caucasians. The blue color is the
best model, and the orange color is the second best model. The start ∗ marks significant (p < 0.05) differences in the performance based on Wilcoxon signed-rank test with the
alternative hypothesis that ‘‘the performance of Non-Hispanic Caucasian subjects is greater than that of African American subjects’’.

Table 7
Label-efficiency on binary classification transfer task for fALFF measured as ROCAUC and reported as mean ± standard error.

Model Baseline Multimodal Set 10% 25% 50% 75% 100%

Supervised ✓ African American 60.0 ± 2.71 63.4 ± 2.34 68.4 ± 1.32 70.4 ± 0.85 71.5 ± 0.59
Non-Hispanic Caucasian 62.8 ± 4.03 68.2 ± 2.25 69.6 ± 2.20 72.8 ± 1.54 73.4 ± 0.86

AE ✓ African American 58.3 ± 1.56 54.5 ± 2.38 62.4 ± 0.97 64.2 ± 2.83 64.5 ± 1.35

Non-Hispanic Caucasian 61.9 ± 4.90 67.9 ± 2.82 ∗ 74.7 ± 2.41 ∗ 68.3 ± 4.00 ∗ 70.6 ± 2.53 ∗

DCCAE (Wang et al., 2015) ✓ ✓ African American 58.5 ± 2.22 59.7 ± 2.07 63.3 ± 1.33 63.6 ± 0.98 66.0 ± 2.39

Non-Hispanic Caucasian 66.7 ± 4.11 64.4 ± 2.88 70.3 ± 1.27 ∗ 70.6 ± 1.65 ∗ 71.6 ± 1.76 ∗

RR (Tian et al., 2019; Chen et al., 2020) ✓ ✓ African American 60.3 ± 4.43 63.3 ± 5.76 69.5 ± 2.59 71.1 ± 1.44 72.0 ± 2.17
Non-Hispanic Caucasian 64.8 ± 3.28 72.3 ± 3.38 74.2 ± 1.57 71.9 ± 1.20 74.3 ± 1.59

XX-CC (Bachman et al., 2019) ✓ ✓ African American 64.4 ± 2.48 66.8 ± 1.24 68.6 ± 2.35 69.3 ± 1.36 70.3 ± 1.93

Non-Hispanic Caucasian 75.7 ± 2.98 ∗ 78.1 ± 2.76 ∗ 78.3 ± 2.16 77.5 ± 2.34 78.1 ± 1.02 ∗

RR-XX-CC ✓ African American 66.0 ± 2.27 69.1 ± 2.53 69.8 ± 2.64 69.0 ± 2.32 71.2 ± 2.75

Non-Hispanic Caucasian 74.4 ± 4.28 78.1 ± 0.78 ∗ 77.6 ± 1.14 ∗ 77.9 ± 1.23 78.3 ± 1.23

Bold text is for the model with the best performance on African American subjects, and non-bold is the best performance on Non-Hispanic Caucasians. The blue color is the
best model, and the orange color is the second best model. The start ∗ marks significant (p < 0.05) differences in the performance based on Wilcoxon signed-rank test with the
alternative hypothesis that ‘‘the performance of Non-Hispanic Caucasian subjects is greater than that of African American subjects’’.

Fig. 11. The schematic process for explaining group differences. First, we extract representations and compute gradients for each dimension of the representation vector. After
that, we apply Gaussian Blur with � = 1.5 and brain mask. Then we perform a voxel-wise two-sided Mann–Whitney U test and correct p-values via FDR Benjamini–Hochberg
correction with 0.05. We compute RBC as effect size to get final values for each voxel, and after selecting significant (� = 0.05) voxels, we achieve RBC maps (total 64 maps (1
map for each of the 64 dimensions)). Finally, we overlap RBC maps with the Neuromark atlas by taking the sign(max(abs)) value found within ROI.

For each selected model, we compute integrated gradients (Sun-
dararajan et al., 2017) along each dimension in the 64-dimensional
representation and keep both the positive and the negative parts of the
gradients. After computing saliency gradients for each dimension of the
latent representation, we apply brain masking and smooth them with
a Gaussian filter (� = 1.5). Then, we perform a voxel-wise two-sided
test using the Mann–Whitney U-Test, with the Rank Biserial Correlation
(RBC) used to quantify the effect size. We study interpretability based

on these effect size maps. We call them RBC maps. The positive value
of the RBC suggests that the neural network is more sensitive in that
location for subjects with Alzheimer’s disease, while the negative values
— less sensitive. The final RBC maps are achieved by selecting the
significant voxels with a p < 0.05. However, before, we performed FDR
Benjamini–Hochberg correction with a p < 0.05, as we ran multiple tests
for each voxel. Lastly, we match the RBC maps with the ROIs defined
in the template from the Neuromark pipeline (Du et al., 2020). We
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Fig. 12. The figure shows the near absolute maximum (quantile 0.999) Peak RBC values of the saliency for regions in the Neuromark atlas for the dimensions with the highest
positive and negative importance (Betas in Logistic Regression) derived from the best fold on binary classification. The left side shows values for T1 data, and the right side shows
the maps found for fALFF. The outer circle shows values for the Supervised model and the inner circle for the RR-XX-CC model. Stars mark regions with the highest positive (red)
and negative (blue) RBC value. The exact values are shown in Table 8.

call this template the Neuromark atlas in the rest of the text. To create
the Neuromark atlas, 53 spatial ICA components from the Neuromark
template are used. To match RBC maps to Neuromark, we select the
peak RBC value within spatial overlap for each ROI map in the atlas.
The schematic framework for this analysis is shown in Fig. 11. The final
results are summarized for all dimensions in Fig. 12.

As depicted in Fig. 12, a comparative analysis is presented be-
tween the Supervised model and the multimodal self-supervised model
RR-XX-CC. The insight from this comparison is the evident domi-
nance of the Supervised model in terms of peak values, represented
by brighter colors, thus demonstrating a stronger contrast compared
to RR-XX-CC. This investigation implies that the Supervised models
exhibit more confident behavior due to higher RBC values. In con-
trast, the self-supervised model, RR-XX-CC, exhibits lower RBC and
smoother behavior across brain regions. This is presumably because
self-supervised models are designed to capture as much information as
possible from the input images (Hjelm et al., 2019) to perform instance
discrimination (Wu et al., 2018). The saliency maps of the Supervised
model exhibit sparse yet potent peaks, which can be attributed to the
model’s usage of labels to learn its representations.

For the Supervised model, Putamen 3 (Coupé et al., 2019) displays
the lowest RBC value of −0.607 on T1. Right inferior frontal gyrus R
IFG 30 (Chen et al., 2023; Hallam et al., 2020) exhibits the highest
RBC value of 0.619 on T1. Other noteworthy peak RBC values include:
Subthalamus hypothalamus 2 (Zhu et al., 2019; Ríos et al., 2022) with

a value of −0.564. Precentral gyrus PreCG 14 (Behfar et al., 2020) at
−0.604. Thalamus 5 (Coupé et al., 2019) at 0.566. Superior parietal
lobule SPL 12 (Prawiroharjo et al., 2020; Corriveau-Lecavalier et al.,
2020) at 0.569.

The Supervised model has the highest RBC value on fALFF, which is
observed in Subthalamus hypothalamus 2 (Zhu et al., 2019; Ríos et al.,
2022) at 0.346. Middle frontal gyrus MiFG 31 (Chen et al., 2023) and
Hippocampus HiPP 28 (Yang et al., 2022) both display the lowest value
at −0.415.

In RR-XX-CC model for T1 modality, Cerebellum CB 50 (Kolbeinsson
et al., 2020) has lowest peak RBC at −0.508. Paracentral lobule ParaCL
10 (Jang et al., 2017) exhibits the highest RBC value at 0.511. Other
significant peak RBC values are: Thalamus 5 (Coupé et al., 2019) at
0.398, Left postcentral gyrus L PoCG 9 (Zhang et al., 2020) at 0.442,
Insula 27 (Philippi et al., 2020) at −0.488.

Interestingly, RR-XX-CC has high localization for T1 in the default-
mode networks that have been claimed to distinguish Alzheimer’s
disease from healthy aging (Greicius et al., 2004). In addition, the sen-
sorimotor network in both T1 and fALFF is studied for mild cognitive
impairment and Alzheimer’s disease (Agosta et al., 2010; Sendi et al.,
2021).

On fALFF, the highest saliency value is seen in Cuneus 20 (Wu et al.,
2021) at 0.308. Cerebellum CB 50 (Kolbeinsson et al., 2020) displays
lowest RBC value of −0.316. Additionally, other important peak RBC
values include: Subthalamus hypothalamus 2 (Zhu et al., 2019; Ríos
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Table 8
The table for the Fig. 12 provides detailed quantitative information on the near absolute maximum (quantile 0.999) Peak RBC values of the saliency for regions
in the Neuromark atlas for the dimensions with highest and lowest importance (Betas in Logistic Regression), derived from the best fold on binary classification.

Model Region Supervised RR-XX-CC Literature

Modality T1 fALFF T1 fALFF

0 1 Caudate 0.608 – – −0.262 Persson et al. (2018), Stein et al. (2011), Coupé et al. (2019)
1 2 Subthalamus hypothalamus −0.564 0.346 – 0.294 Zhu et al. (2019), Ríos et al. (2022)
2 3 Putamen −0.607 −0.407 – – Coupé et al. (2019)
3 5 Thalamus 0.566 – 0.398 −0.248 Coupé et al. (2019)
4 7 Middle temporal gyrus MTG 0.552 – −0.484 0.269 Berron et al. (2020)
5 8 Postcentral gyrus PoCG – – – 0.252 Zhang et al. (2020)
6 9 Left postcentral gyrus L PoCG – – 0.442 – Zhang et al. (2020)
7 10 Paracentral lobule ParaCL – – 0.511 −0.245 Jang et al. (2017)
8 12 Superior parietal lobule SPL 0.569 – 0.489 −0.283 Prawiroharjo et al. (2020), Corriveau-Lecavalier et al. (2020)
9 13 Paracentral lobule ParaCL – – −0.397 −0.303 Jang et al. (2017)
10 14 Precentral gyrus PreCG −0.604 – 0.425 0.290 Behfar et al. (2020)
11 15 Superior parietal lobule SPL – – −0.422 0.283 Prawiroharjo et al. (2020), Corriveau-Lecavalier et al. (2020)
12 16 Postcentral gyrus PoCG – – – −0.272 Zhang et al. (2020)
13 17 Calcarine gyrus CalcarineG – – 0.489 0.244 Wingo et al. (2020)
14 18 Middle occipital gyrus MOG – – – 0.299 Frisoni et al. (2022)
15 20 Cuneus – – −0.410 0.308 Wu et al. (2021)
16 23 Inferior occipital gyrus IOG – – – −0.242 Feng et al. (2019a)
17 24 Lingual gyrus LingualG – – – 0.249 Liu et al. (2017)
18 25 Middle temporal gyrus MTG −0.551 – – −0.267 Berron et al. (2020)
19 27 Insula −0.603 – −0.488 0.262 Philippi et al. (2020)
20 29 Inferior frontal gyrus IFG – – −0.466 −0.272 Hallam et al. (2020), Chen et al. (2023)
21 30 Right inferior frontal gyrus R IFG 0.619 −0.414 – 0.289 Chen et al. (2023), Hallam et al. (2020)
22 31 Middle frontal gyrus MiFG – −0.415 – – Chen et al. (2023)
23 32 Inferior parietal lobule IPL 0.582 −0.414 −0.455 – Greene et al. (2010), Zhou et al. (2015)
24 33 Left inferior parietal lobule R IPL 0.602 – – −0.262 Greene et al. (2010), Zhou et al. (2015)
25 34 Supplementary motor area SMA – – – 0.278 Ye et al. (2019)
26 35 Superior frontal gyrus SFG – – −0.426 −0.264 Hirono et al. (1998)
27 36 Middle frontal gyrus MiFG −0.568 −0.410 – – Cheung et al. (2021)
28 37 Hippocampus HiPP – −0.415 – 0.247 Yang et al. (2022)
29 40 Inferior frontal gyrus IFG – – – 0.254 Hallam et al. (2020), Chen et al. (2023)
30 43 Precuneus – −0.411 0.431 – Casula et al. (2023), Guennewig et al. (2021)
31 44 Precuneus – 0.344 0.436 – Casula et al. (2023), Guennewig et al. (2021)
32 45 Anterior cingulate cortex ACC −0.593 – 0.451 – Tekin et al. (2001)
33 46 Posterior cingulate cortex PCC – −0.411 0.427 – Minoshima et al. (1994), Rahim et al. (2023)
34 47 Anterior cingulate cortex ACC – – 0.459 – Tekin et al. (2001)
35 48 Precuneus – – 0.421 −0.255 Casula et al. (2023), Guennewig et al. (2021)
36 49 Posterior cingulate cortex PCC −0.556 – 0.460 −0.258 Minoshima et al. (1994), Rahim et al. (2023)
37 50 Cerebellum CB −0.551 – −0.508 −0.316 Kolbeinsson et al. (2020)
38 51 Cerebellum CB – – 0.433 – Kolbeinsson et al. (2020)
39 53 Cerebellum CB – – 0.470 −0.315 Kolbeinsson et al. (2020)

et al., 2022) at 0.294, Superior parietal lobule SPL 15 (Prawiroharjo
et al., 2020; Corriveau-Lecavalier et al., 2020) at 0.283, Right inferior
frontal gyrus R IFG 30 (Chen et al., 2023; Hallam et al., 2020) at 0.289.

This gives a more detailed overview of each region found by the
Supervised and RR-XX-CC models in both the T1 and fALFF modalities.
This analysis is limited to the dimensions with highest and lowest
importance. To see analysis across all the dimensions with non-zero
importance see Fig. E.20 and Table E.16. Hence, further investigation
and cross-referencing with related studies would help to understand the
implications of these data.

4.2.2. Exploring multimodal links
This section explores multimodal links between the T1 and fALFF

modalities. To perform this analysis, we compute an asymmetric corre-
lation matrix between all pairs of dimensions in 64-dimensional global
representation of the T1 and fALFF. We computed the Spearman cor-
relation, applied Benjamini/Hochberg FDR Benjamini–Hochberg cor-
rection for the two-sided hypothesis, and used p < 0.05 to select
the links. We perform this separately for each of the groups: HC
and AD. After that, given the correlation matrix for each group, we
perform a z-test with Fisher z-transformed correlations to find signifi-
cant group-discriminative correlations. Then, we pair dimensions across
modalities. To create a pair, for each dimension in one modality, we
find the dimension in the other modality with the highest positive and
negative significant correlation. Since each dimension has already been
assigned to multiple ROIs, we keep only the top ROI based on the
peak RBC value for analysis. Finally, we connect the top ROI in one

modality with the top ROI in another via an edge with a correlation
value between dimensions as a weight. This methodology allows us to
explore multimodal links in brain space through the latent space. We
repeat the same procedure for each dimension from 64 dimensions and
each modality. The schematic process is shown in Fig. 13.

The final summarization of the multimodal relationships is shown
in Fig. 14 for healthy subjects and Fig. 15 for subjects with Alzheimer’s
disease. Note, we show the top 64 edges with maximum by absolute
value weights, and, specifically, we only focus on the self-supervised
multimodal model RR-XX-CC. However, we also show the same dia-
gram for the Supervised model in a restricted way. Because the cor-
relation of the Supervised is much lower, and the model is learning
representation unimodally, thus the relationships are more likely to
be spurious. The Fig. 14 and Fig. 15 shows ROIs for T1 on the left
side with blue hues and fALFF on the right side with red hues for HC
and AD groups, respectively. Additionally, we group ROIs by functional
networks defined in the Neuromark atlas.

The highest positive correlation was pinpointed by the RR-XX-CC
model between the Subthalamus hypothalamus 2 (T1) and the Posterior
cingulate cortex PCC 49 (fALFF) (Laxton et al., 2010), yielding a corre-
lation coefficient of Spearman’s r(592) = 0.689, p < 0.05, as portrayed in
Fig. 14 and Table 9. Conversely, the lowest correlation was discovered
between the Posterior cingulate cortex PCC 49 (T1), and Cerebellum
CB 50 (fALFF) (Zimny et al., 2011) with a Spearman correlation of
r(592) = −0.686, p < 0.05. The other edges are described in Table 9.

In the detailed analysis in Fig. 15 and Table 10 on AD subjects for
the RR-XX-CC model, the highest positive correlation is highlighted
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Fig. 13. The schematic process for exploring multimodal links. First, we compute the Spearman’s correlation matrix for each group: HC and AD. We apply FDR Benjamini–Hochberg
correction to select significant correlations within the group. After that, we perform Z-test with Fisher z-transform to find group-discriminative correlations in the latent space.
Based on these results, we select significant correlations (� < 0.05, shown as black in the figure, white are non-significant correlations). Then for each dimension, we find pairs of
dimensions with the highest positive and negative correlation. The third step has been done in the previous section. Hence we reuse our result. However, we select only the ROI
with the highest RBC peak value for analysis for the dimensions in the selected pair. Finally, we match top ROI labels in one modality via latent correlations with top ROIs in
the other modality.

between Precuneus 48 (T1) and Cerebellum CB 53 (fALFF) (Parker
et al., 2020), as depicted in Fig. 15. This association is quantified with
a Spearman’s correlation coefficient of Spearman’s r(145) = 0.797, p <

0.05. On the other end, the most negative correlation was observed
between Cerebellum CB 50 (T1) and Thalamus 5 (fALFF) (Martí-Juan
et al., 2023), characterized by a Spearman’s r(145) = −0.822, p < 0.05.
The other edges are described in Table 10.

These intricate neural associations brought to light by the RR-XX-
CC model in the context of AD underscore the model’s capability in
extracting meaningful relationships, offering a rich tapestry of insights
for further neuroscientific exploration.

4.3. Hardware, reproducibility, and code

The experiments were performed using an NVIDIA V100. The code
is implemented mainly using PyTorch (Paszke et al., 2019) and Cat-
alyst (Kolesnikov, 2018) frameworks. The code is available at github.
com/Entodi/fusion for reproducibility and further exploration by the
scientific community.

5. Discussion

5.1. Multi-scale coordinated self-supervised models

Based on the classification performance and interpretability anal-
ysis, the proposed self-supervised multimodal multi-scale coordinated

models can capture useful representation and multimodal relation-
ships in the data. Compared to existing unimodal (CR and AE) and
multimodal (DCCAE) counterparts, these models achieve higher dis-
criminative performance in ROC-AUC on downstream tasks. While
some of them can capture higher joint information content between
modalities as measured by the CKA. Furthermore, these models can
produce representations that, compared to the Supervised model, show
competitive performance on T1 and outperform fALFF.

We show strong empirical evidence that the XX is the important
relationship to encourage when high discriminative performance is the
goal. This result is an evidence of the importance and existence of
multi-scale local-to-global multimodal relationships in the functional
and structural neuroimaging data, which other relationships cannot
capture. However, in addition to XX, the RR objective is needed in the
training objective to achieve higher alignment between models.

However, not all multimodal variants from the taxonomy of Fig. 2
result in robust and useful representations. Specifically, our experi-
ments show that the CC relationship should not be used separately
from other objectives, as the CC will optimize only the layers below the
chosen one because the last layer will behave as a random projection.
We show it only for a complete picture of achievable classification
performance with all objectives in the taxonomy.

The CCA-based objectives did not show the good results expected
in a multi-view scenario (Wang et al., 2015). However, our taxonomy
revealed that DCCA is related to SimCLR (Chen et al., 2020), which

https://github.com/Entodi/fusion
https://github.com/Entodi/fusion
https://github.com/Entodi/fusion
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Fig. 14. The Figure shows multimodal links for controls between T1 and fALFF of ROIs in the Neuromark atlas for the RR-XX-CC model, and for the Supervised model in the left
bottom corner. The ROIs for T1 are shown on the left side with shades of blue, and the ROIs for fALFF are shown on the right side with shades of orange. The edge weights are
defined by the correlation between dimensions in the representation vector between T1 and fALFF and colored according to the color bar. We show only significant edges based
on a statistical z-test on Fisher z-transformed correlation coefficients (Hinkle et al., 1988). The Supervised models have very weak correlations (<0.39) compared to the multimodal
RR-XX-CC model. The figure shows only the top 64 edges.

Table 9
The table for the Fig. 14 provides detailed quantitative information on the multimodal links for healthy controls between T1 and fALFF of ROIs
in the Neuromark atlas for RR-XX-CC model.

Correlation ROI 1 ROI 2 Literature

0 0.509 Superior parietal lobule SPL 12 50 Cerebellum CB Weiler et al. (2015)
1 0.562 Caudate 1 14 Precentral gyrus PreCG Liang et al. (2021)
2 −0.396 Superior parietal lobule SPL 12 50 Cerebellum CB Weiler et al. (2015)
3 0.480 Superior parietal lobule SPL 12 50 Cerebellum CB Weiler et al. (2015)
4 0.540 Superior parietal lobule SPL 12 49 Posterior cingulate cortex PCC Gaubert et al. (2021)
5 0.553 Precuneus 48 16 Postcentral gyrus PoCG Tosun et al. (2014)
6 0.689 Subthalamus hypothalamus 2 49 Posterior cingulate cortex PCC Laxton et al. (2010)
7 0.539 Precuneus 48 10 Paracentral lobule ParaCL Zhang et al. (2022)
8 −0.544 Precuneus 48 5 Thalamus Ryu et al. (2010)
9 −0.224 10 Paracentral lobule ParaCL Superior parietal lobule SPL 12 Ekblad et al. (2020)
10 −0.686 49 Posterior cingulate cortex PCC Cerebellum CB 50 Zimny et al. (2011)
11 0.103 17 Calcarine gyrus CalcarineG Superior parietal lobule SPL 12 Hu et al. (2019b)
12 0.509 46 Posterior cingulate cortex PCC Superior parietal lobule SPL 12 Gaubert et al. (2021)
13 0.513 49 Posterior cingulate cortex PCC Precuneus 48 Walhovd et al. (2010)
14 0.328 50 Cerebellum CB Posterior cingulate cortex PCC 49 Zimny et al. (2011)
15 0.092 53 Cerebellum CB Precuneus 48 Parker et al. (2020)
16 −0.165 12 Superior parietal lobule SPL Posterior cingulate cortex PCC 49 Gaubert et al. (2021)
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Fig. 15. The Figure shows multimodal links for subjects with Alzheimer’s disease between T1 and fALFF of ROIs in the Neuromark atlas for the RR-XX-CC model, and for the
Supervised model in the left bottom corner. The ROIs for T1 are shown on the left side with shades of blue, and the ROIs for fALFF are shown on the right side with shades
of orange. The edge weights are defined by the correlation between dimensions in the representation vector between T1 and fALFF and colored according to the color bar. We
show only significant edges based on a z-test from Fisher z-transformed correlation coefficients (Hinkle et al., 1988). The Supervised models have very weak correlations (<0.43)
compared to the multimodal RR-XX-CC model. The figure shows only the top 64 edges.

led us to develop the RR model. While CCA maximizes correlations,
SimCLR maximizes cosine similarity between representations of differ-
ent modalities. However, the SimCLR objective has one more important
difference: it performs an additional discrimination step on cosine simi-
larity scores. Thus, it does two things: maximizes the similarity between
modalities and simultaneously performs additional discrimination of
pairs based on similarity. This task is more challenging because it needs
to capture richer information to classify pairs of representations from
different modalities based on similarity. In addition, the CCA-objective
is prone to numerical instability (Wang et al., 2015). RR does not
have such issues. We recommend using ‘‘softer’’ loss functions based
on mutual information estimators with deep neural networks and not
the ‘‘exact’’ solutions based on linear algebra in DCCAE (Wang et al.,
2015).

While AE imposes additional computational complexity due to the
decoder, it does not show increased classification accuracy over non-
autoencoder methods. Specifically, the AE model struggles to deal
with ternary classification tasks. Multimodal models from our proposed
taxonomy have a reduced computational burden because they do not
contain a volumetric decoder. These findings concur with the poor
performance of autoencoders on datasets with natural images (Hjelm

et al., 2019). To achieve greater performance, we hypothesize that
autoencoders may require encoders and decoders of higher capacity.
However, this will considerably increase the difficulty of training large
volumetric models.

5.1.1. Comparing self-supervised models on group discriminative regions

For a comprehensive analysis, we also ran group discriminative
analyses for multimodal XX-CC, RR, RR-AE, and unimodal AE, given
their competitive performance in Tables 2 and 3. The results are dis-
played in Fig. 16, which shows the dimensions with the highest positive
and negative importance in Logistic Regression. To see analysis across
all the dimensions with non-zero importance see Fig. F.21 in Appendix.

Based on Fig. 16, self-supervised algorithms share similarities in
some regions. However, RR-XX-CC and XX-CC find similar regions,
compared to other models. Especially, AE finds unique regions com-
pared to multimodal models, while its combination with the RR objec-
tive, RR-AE, finds regions similar to RR.

This analysis in addition to its best performance on both tasks (see
Table 2, Table 3, Table 4, and Table 5) further reinforces our choice to
explore RR-XX-CC.
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Table 10
The table for the Fig. 15 provides detailed quantitative information on the multimodal links for AD between T1 and fALFF of ROIs in the
Neuromark atlas for RR-XX-CC model.

Correlation ROI 1 ROI 2 Literature

0 −0.616 Right inferior frontal gyrus R IFG 30 9 Left postcentral gyrus L PoCG Xie et al. (2020)
1 0.635 Superior parietal lobule SPL 12 49 Posterior cingulate cortex PCC Gaubert et al. (2021)
2 0.628 Superior parietal lobule SPL 12 9 Left postcentral gyrus L PoCG Sintini et al. (2019)
3 −0.822 Cerebellum CB 50 5 Thalamus Martí-Juan et al. (2023)
4 −0.754 Superior parietal lobule SPL 12 15 Superior parietal lobule SPL Gu and Zhang (2019)
5 −0.773 Superior parietal lobule SPL 12 16 Postcentral gyrus PoCG Sintini et al. (2019)
6 −0.508 Precuneus 48 8 Postcentral gyrus PoCG Tosun et al. (2014)
7 0.735 Precuneus 48 16 Postcentral gyrus PoCG Tosun et al. (2014)
8 0.576 Posterior cingulate cortex PCC 49 9 Left postcentral gyrus L PoCG Guerrier et al. (2018)
9 −0.653 Superior parietal lobule SPL 12 50 Cerebellum CB Weiler et al. (2015)
10 0.441 Superior parietal lobule SPL 12 49 Posterior cingulate cortex PCC Gaubert et al. (2021)
11 0.376 Precuneus 48 10 Paracentral lobule ParaCL Zhang et al. (2022)
12 0.491 Posterior cingulate cortex PCC 49 9 Left postcentral gyrus L PoCG Guerrier et al. (2018)
13 −0.518 Posterior cingulate cortex PCC 49 13 Paracentral lobule ParaCL Bi et al. (2021)
14 0.632 Superior parietal lobule SPL 12 15 Superior parietal lobule SPL Walhovd et al. (2009)
15 0.797 Precuneus 48 53 Cerebellum CB Parker et al. (2020)
16 −0.314 27 Insula Superior parietal lobule SPL 12 Chételat et al. (2017)
17 −0.344 50 Cerebellum CB Superior parietal lobule SPL 12 Weiler et al. (2015)
18 0.638 49 Posterior cingulate cortex PCC Precuneus 48 Walhovd et al. (2010)
19 −0.653 49 Posterior cingulate cortex PCC Superior parietal lobule SPL 12 Gaubert et al. (2021)
20 0.429 51 Cerebellum CB Superior parietal lobule SPL 12 Weiler et al. (2015)
21 −0.185 53 Cerebellum CB Cerebellum CB 50 Ibañez et al. (2021)
22 0.217 50 Cerebellum CB Superior parietal lobule SPL 12 Weiler et al. (2015)

5.1.2. Comparing models on the multimodal latent structure
In this part, we study the inductive biases of the models concerning

the multimodal latent structure. The multimodal latent structure and
CKA alignment have not been explored in the literature for multimodal
models. Previously, multi-view methods such as DCCAE (Wang et al.,
2015) have only computed captured correlation for multi-view image
datasets, such as two-view MNIST.

We have computed cross-modal correlations between dimensions
of the representation vector across subjects to compare learned multi-
modal latent structure. We computed these correlations separately for
HC and AD subjects. The results are shown in Fig. 17.

Clearly, AE, CR-CCA, and DCCAE fail to capture the multimodal
structure with the lowest correlations. We should not expect multi-
modal structure for unimodal AE, while for CCA-based multimodal
models, we should expect it. The Supervised captures polarized struc-
ture.

The multimodal models RR-XX-CC, XX-CC, RR, and RR-AE capture
much higher correlations and find more significant pairs of latent di-
mensions. Furthermore, higher correlation values agree with the higher
CKA alignment measure shown in Fig. 8.

However, the multimodal structure differs in these models, which
could explain the difference in the inductive biases. Specifically, RR has
a diagonal structure. It might be the case that RR does not precisely
capture the joint information we want to explore but assigns to each
latent dimension in one modality a dimension from another as classifi-
cation assigns a label to a representation. Hence it might be the reason
why it fails to capture unique modality-specific information and not as
strong as RR-XX-CC. The RR-XX-CC and XX-CC models share joint block
structure behavior, which XX can explain as it estimates multimodal
local–global relationships. The RR-AE shares some similarities with the
block structure of the RR-XX-CC and XX-CC models. We hypothesize
that it is primarily due to the autoencoder aspect of the RR-AE as it
requires capturing local structure for reconstruction.

Notably, the proposed multimodal models RR-XX-CC, XX-CC, RR,
and RR-AE find many highly correlated group-discriminative pairs
compared to unimodal (Supervised and AE), and CCA-based multimodal
models. We summarized the number of multimodal links and max posi-
tive and negative correlations in Table 11. We count only significant p <

0.05 multimodal links based on the Z test. The multimodal models RR-
XX-CC and XX-CC that use mutual information estimator show higher
number of significant links and a higher positive and negative corre-
lations. These result reinforce the benefit of multimodal coordination

for interpretability due to the ability to explore the multimodal latent
structure by having separate representation vectors.

The RR-XX-CC find the highest number of significant multimodal
links 252.00 ± 15.72. The closest is XX-CC with 209.60 ± 23.33. Then RR
and RR-AE with 121.40 ± 8.16 and 136.80 ± 11.41, respectively. While
Supervised (62.40 ± 18.08) finds more than unimodal AE (22.80 ± 2.13)
or CCA-based DCCAE (18.00 ± 2.59) and CR-CCA (17.40 ± 3.33). Based
on the correlations, the RR-XX-CC, XX-CC, RR, and RR-AE achieve
correlations above 0.70, while other four models achieve maximum
0.57. This evidence further supports the benefit of mutual information
estimator and multimodal training.

5.2. Future work

The models we have constructed in this work do not disentangle
representation into joint and unique modality-specific representations.
The analysis between CKA and downstream performance shows the
existence of a joint subspace between modalities, and a specific amount
of joint information measured by CKA is important to learn representa-
tions valuable for downstream tasks and interpretability. Future work
could consider models that explicitly represent factors of the joint and
unique components. Some related ideas have been explored in work
on natural images when disentangling content and style (Von Kügelgen
et al., 2021; Lyu et al., 2021), similarly, for neural data with variational
autoencoders (Liu et al., 2021).

In the current work, we have not considered the evaluation of the
models on other MRI datasets that would introduce covariate shifts due
to different scanning protocols or scanners. The standard strategy is to
perform transfer learning or domain adaptation. However, fine-tuning
to a different objective can lead to catastrophic forgetting (Kirkpatrick
et al., 2017) and destroy the properties of the representations that
we focus on achieving. That is one of the reasons why we use linear
evaluation using features from a frozen encoder. Fine-tuning on the
same dataset with a supervised objective can lead to losing the learned
properties. Furthermore, the maximization of mutual information does
not solve the covariate shift problem by default. Hence additional
engineering (Ruan et al., 2021) would be required. Future methods
should be able to deal with such covariate shifts.

Our analysis does not consider the family of multimodal generative
variational models (Kingma and Welling, 2013). Volumetric variational
models are computationally expensive, and the field is under active
development. Including all possible models with all possible underlying
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Fig. 16. The figure shows the near absolute maximum (quantile 0.999) peak RBC values of the saliency for regions in the Neuromark atlas for the dimensions with the highest
positive and negative importance (Betas in Logistic Regression) derived from the best fold on binary classification. The circles represent one of the self-supervised algorithms. The
order from outer to inner is the following: RR-XX-CC, XX-CC, RR, RR-AE, and AE. The models are chosen based on significance in Tables 2 and 3. It can be seen that mostly
self-supervised models agree on the regions. However, AE seems very different from the other four algorithms.

Table 11
The table summarizes the number of significant p < 0.05 group discriminative multimodal links, maximum positive and
negative correlations. The values are reported as Mean ± Standard Error, calculated across folds.

Model Number of significant links Max positive correlation Max negative correlation

Supervised 62.40 ± 18.08 0.46 ± 0.01 −0.47 ± 0.01

AE 22.80 ± 2.13 0.57 ± 0.01 −0.56 ± 0.02

CR-CCA 17.40 ± 3.33 0.52 ± 0.04 −0.50 ± 0.03

DCCAE 18.00 ± 2.59 0.48 ± 0.03 −0.48 ± 0.01

RR 121.40 ± 8.16 0.86 ± 0.01 −0.73 ± 0.02

RR-AE 136.80 ± 11.41 0.72 ± 0.02 −0.70 ± 0.01

XX-CC 209.60 ± 23.33 0.77 ± 0.02 −0.79 ± 0.02

RR-XX-CC 252.00 ± 15.72 0.85 ± 0.01 −0.84 ± 0.01

technology was not precisely our goal and would make the already ex-
tensive list of models even harder to analyze. Future work may consider
variational models under the same taxonomy for a fair comparison and
detailed analysis of multimodal fusion applications.

There is more that can be done concerning the explainability of
the models. Currently, a common choice to model neuroimaging data
is to use a convolutional neural network (CNN) (Abrol et al., 2021).
However, the simple application of CNNs leads to representation, where
each dimension captures multiple ROIs. This effect creates difficulties
in analyzing the cross-modal relationships between modalities. The
multimodal links between ROIs can only be measured by the correlation

between dimensions of a representation in different modalities. Thus
the measured links do not represent the multimodal link between one
ROI and another ROI but rather between dimensions. Future work may
consider ROI-based representations.

In addition, as we want to focus on unsupervised models with-
out using group labels, we used HC and AD groups to show group
differences or identify ROIs in our analysis. However, the data may
contain phenotypically small patient groups not represented by HC
or AD groups. Doing group analysis in such a scenario will be hard
because we do not have the labels. Thus future work can consider
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Fig. 17. The multimodal latent structure of multiple models. The structure is computed by computing Spearman’s correlations between dimensions in the representation vector
of T1 and fALFF across subjects separately for HC and AD. Each row and four consecutive columns correspond to a different model. The first column is a correlation for HC, the
second — for AD, the third is a Z score from Z-test, and the fourth is the significant p < 0.05 correlation pairs based on Z-test. The correlation matrices of the HC subjects have
been clustered using hierarchical (agglomerative) clustering using SciPy (Virtanen et al., 2020). Then the found linkage has been applied across correlations of the AD subjects.

additional clustering of the representation for finding such subgroups
that explainability methods can further analyze.

6. Conclusions

In this work, we presented a novel multi-scale coordinated frame-
work for representation learning from multimodal neuroimaging data.
We showed that self-supervised approaches can learn meaningful and
useful representations that capture regions of interest with group differ-
ences without accessing group labels during pre-training. We developed
evaluation methodologies to access the properties of representations
learned by models within the family of models in downstream task anal-
ysis, measurements of joint subspace, and explainability evaluations.

One of our models, RR-XX-CC consistently outperformed previous
unsupervised unimodal AE and multimodal DCCAE (Wang et al., 2015),
RR (SimCLR Chen et al., 2020), XX-CC (AMDIM Bachman et al., 2019)
models, achieved near-supervised performance (based on significance
test) on both classification tasks, improved data-efficiency and outper-
formed Supervised model on fALFF. Further, our findings suggest the
importance of multi-scale local-to-global multimodal relationships XX
that considerably improve the performance over previous methods and
within the proposed family of models. This result suggests that multi-
scale relationships exist between local structure and global summary of
the inputs in different modalities previously neglected in multimodal
representation learning. While we also show that the objective RR is
important to capture the joint information. In contrast, such common
approach as CCA could not achieve high alignment between modalities
according to the CKA measure.

The RR-XX-CC model, selected based on the best classification
performance and higher joint information content via CKA, was able
to capture important regions of interest related to Alzheimer’s dis-
ease such as the cuneus (Wu et al., 2021), subthalamus hypothala-
mus (Zhu et al., 2019; Ríos et al., 2022), thalamus (Coupé et al.,
2019), insula (Philippi et al., 2020), hippocampus (Yang et al., 2022).
Notably, the RR-XX-CC model can capture higher number of group-
discriminative significant multimodal links that are supported by the

literature such as subthalamus hypothalamus and posterior cingulate
cortex (Laxton et al., 2010), posterior cingulate cortex and cerebel-
lum (Zimny et al., 2011), precuneus and cerebellum (Parker et al.,
2020), cerebellum CB 50 and thalamus 5 (Martí-Juan et al., 2023).
Notably, the model did not have access to the labels during pre-training.
Hence, such a model can be helpful for exploratory scientific data
analyses.

The showcased benefits of applying a comprehensive approach,
evaluating a taxonomy of methods, and performing extensive qualita-
tive and quantitative evaluation suggest that the nascent multimodal
representation learning is a field with significant potential in neu-
roimaging. Our work lays a foundation for future robust and increas-
ingly more interpretable multimodal models.
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Table A.12
Accuracy on Two-View MNIST dataset. Ranking is based on the median of the Rotated accuracy.

Model Rotated_ACC_Median Rotated_ACC_IQR_25 Noisy_ACC_Median Noisy ACC IQR 25

Supervised 0.9906 0.0000 0.9862 0.0000
XX 0.9773 0.0000 0.9811 0.0000
CR-CCA 0.9752 0.0000 0.9786 0.0000
XX-CC 0.9747 0.0000 0.9818 0.0001
RR-XX-CC 0.9727 0.0000 0.9762 0.0000
XX-RR 0.9716 0.0000 0.9775 0.0000
DCCAE 0.9688 0.0000 0.9662 0.0000
RR-CR-XX 0.9643 0.0000 0.9665 0.0000
RR-CR-XX-CC 0.9631 0.0000 0.9680 0.0000
CR-XX-CC 0.9483 0.0000 0.9434 0.0000
RR-CR 0.9420 0.0001 0.9432 0.0000
RR-CR-CC 0.9418 0.0000 0.9435 0.0000
RR-CC 0.9359 0.0000 0.9483 0.0000
RR 0.9353 0.0000 0.9509 0.0000
RR-AE 0.9335 0.0000 0.9462 0.0000
CR-XX 0.9322 0.0000 0.9189 0.0000
CR-CC 0.8230 0.0013 0.9182 0.0032
AE 0.8175 0.0000 0.8274 0.0000
CR 0.7869 0.0003 0.6704 0.0000
CC 0.7838 0.0000 0.7928 0.0000
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Appendix A. Experiments on multi-view and multi-domain
datasets with natural images

See Tables A.12 and A.13.

A.1. Two-view MNIST

The first dataset used in our experiments is the Two-View MNIST
dataset (Wang et al., 2015). This dataset serves as a simple case for the
multi-modal scenario, where data is represented as a pair of corrupted
images derived from a single source. Initially, image intensities are
rescaled to a unit interval and resized to 32 × 32 to fit the DCGAN
architecture. The first view is generated by randomly rotating the
images at an angle uniformly sampled from [−

�

4

,
�

4

]. The second view is
generated by adding [0, 1]-uniform noise to the image and performing
an additional intensity rescaling to a unit interval. A cross-validation
dataset was created using a stratified 5-fold split from the original 60K
training MNIST set, resulting in 48K and 12K images in the training
and validation sets, respectively. The original 10K MNIST test set was
preserved as a hold-out set.

Table A.12 presents the accuracy (ACC) on the multi-view Two-
View MNIST dataset, based on the linear evaluation protocol. The

best-performing model is the supervised model. Self-supervised uni-
modal models AE and CR underperform compared to multimodal ob-
jectives, with the exception of CC. CCA-based objectives are clearly
outperformed by objectives based on mutual information estimation
but still very close by performance. The best-performing models are
multimodal: XX and XX-CC, - that are decoder-free and use the mutual
information estimator.

A.2. MNIST-SVHN

The second dataset employed is the multi-domain MNIST-SVHN,
proposed by the authors of MMVAE (Shi et al., 2019). Each sample
in this dataset represents a single digit as a pair of images sampled
from MNIST and SVHN. The dataset generation follows the process
described in the MMVAE code (Shi et al., 2019). However, there are
two differences from the original work. First, MNIST images are resized
to 32 × 32 to fit the DCGAN architecture. Second, the original training
set is used to generate cross-validation folds using a stratified 5-fold
split.

Table A.13 presents the accuracy (ACC) on the multi-domain MNIST-
SVHN dataset, based on the linear evaluation protocol. In this case, the
supervised model is outperformed by multiple multimodal objectives:
XX-CC, RR-AE, RR, RR-XX-CC, XX-RR, RR-CR-XX, RR-CC, RR-CR-XX-
CC, RR-CR, RR-CR-CC, DCCAE. Among these multimodal objectives,
XX-CC performs best on the more complicated SVHN dataset than
MNIST.

A.3. Training details

The architecture of the models is similar to the OASIS3 setup, with
the only difference being that we use a DCGAN with one less layer,
as the input size of images is 32 × 32. The models are trained using
RAdam (Liu et al., 2019) with a learning rate lr = 4e−4 and the OneCy-
cleLR scheduler (Smith and Topin, 2019) with max_lr = 0.01. The batch
size is chosen from 64, 128, and 256 based on best performance on the
validation set. The pretraining step in our framework is performed for
50 epochs with the Two-View MNIST and MNIST-SVHN datasets. The
linear evaluation step is carried out for 50 epochs.

Appendix B. Joint linear classification on OASIS3

In this section, we explore the joint linear classification by training
a Logistic Regression on the concatenated learned embeddings from
both modalities, also known as late fusion (Rahaman et al., 2022).

https://github.com/Entodi/fusion
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Table A.13
Accuracy on MNIST-SVHN dataset. Ranking is based on the median of the SVHN accuracy as it is more challenging dataset.

Model MNIST ACC Median MNIST ACC IQR 25 SVHN ACC Median SVHN ACC IQR 25

XX-CC 0.9872 0.0040 0.8734 0.0132
XX 0.9883 0.0000 0.8695 0.0000
RR-AE 0.9905 0.0000 0.8677 0.0000
RR 0.9901 0.0000 0.8668 0.0001
RR-XX-CC 0.9912 0.0000 0.8635 0.0000
XX-RR 0.9889 0.0000 0.8627 0.0000
RR-CR-XX 0.9894 0.0000 0.8602 0.0001
RR-CC 0.9916 0.0000 0.8592 0.0000
RR-CR-XX-CC 0.9898 0.0000 0.8558 0.0000
RR-CR 0.9887 0.0000 0.8551 0.0000
RR-CR-CC 0.9892 0.0000 0.8544 0.0000
DCCAE 0.9792 0.0001 0.8423 0.0001
Supervised 0.9889 0.0000 0.8381 0.0000
CR-CCA 0.9819 0.0000 0.8149 0.0000
CR-XX-CC 0.9370 0.0000 0.6354 0.0004
CR-XX 0.9373 0.0000 0.5888 0.0000
CC 0.9217 0.0000 0.3173 0.0000
CR-CC 0.9313 0.0001 0.3158 0.0002
CR 0.9199 0.0000 0.2898 0.0001
AE 0.8977 0.0000 0.1967 0.0000

Table A.14
Mean and standard error of ROCAUC for binary joint classification task on a hold-out test set. The significance is
computed with the Wilcoxon signed-rank test and additional Holm correction for multiple comparisons.

Model Baseline Multimodal ROCAUC Significance

Supervised ✓ 87.3 ± 0.9 N/A

AE ✓ 84.5 ± 1.1 *
RR-AE ✓ 84.3 ± 0.6 .
CR-XX-CC ✓ 84.1 ± 0.5 *
RR-XX ✓ 83.5 ± 1.0 *
CR-CCA ✓ 82.9 ± 1.2 *
RR-CR-XX ✓ 82.5 ± 1.2 *
RR-XX-CC ✓ 82.0 ± 1.2 *
RR ✓ ✓ 81.8 ± 1.0 *
CR-CC ✓ 81.8 ± 1.1 *
RR-CC ✓ 81.4 ± 1.2 *
DCCAE ✓ ✓ 81.2 ± 0.6 *
CR-XX ✓ 81.1 ± 2.0 *
RR-CR-XX-CC ✓ 81.0 ± 1.5 *
RR-CR-CC ✓ 79.5 ± 1.8 *
RR-CR ✓ 79.4 ± 2.1 *
CR ✓ 79.4 ± 1.7 *
XX ✓ 79.3 ± 1.0 *
XX-CC ✓ ✓ 79.1 ± 1.2 *
CC ✓ 76.8 ± 2.1 *

The significance is denoted as follows: ∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, p < 0.1. Bold names are the best models
based on ROCAUC and significance testing.

The experiments follow precisely the same strategy as unimodal linear
classification.

The joint classification analysis is also known as fusion in the litera-
ture (Liang et al., 2022). There are three types of fusion: early, mid, and
late. Early fusion assumes combining modalities at the input level, mid
fusion — combination after encoding with initial unimodal nonlinear
layers, and combining at the end of the encoder — currently, the state-
of-the-art results achieved by mid fusion (Rahaman et al., 2022). In
contrast, in our work, we focus on the coordination approach (Liang
et al., 2022) with separate encoders. The coordination approach does
not mix multiple modalities but coordinates them via joint constraints
that we enforced via mutual information maximization or CCA. Hence,
we perform only late fusion within our framework. By construction,
we should underperform compared to mid-fusion (Rahaman et al.,
2022) due to a less expressive model. However, our framework is more
interpretable and can efficiently deal with missing modalities.

The results are shown in Table A.14 for binary classification and
Table A.15 for ternary classification. Overall, the models preserved rel-
ative ranking. Importantly, the proposed models still outperform base-
lines. However, joint classification did not improve the classification
performance drastically.

However, there are two downsides of late fusion by concatenation
with Logistic Regression. The aligned representation can have a higher
correlations. Hence, it will lead to multicollinearity (see structure
of the compared models in Fig. 17). The other problem is that the
unimodal logistic regression will only have 64-dimensional features,
while multimodal logistic regression will have 128-dimensional fea-
tures (2 modalities times 64 dimensions). Thus, it will be harder to fit
multimodal logistic regression, requiring more data due to complexity.
Hence, this topic would require extensive further research that is
beyond the scope of this work.

Appendix C. Ablation for the multimodal alignment

To explore the similarity between multimodal representations, we
proposed to use CKA over CCA. It has been shown (Kornblith et al.,
2019) that the Canonical Correlation Analysis (CCA) method does not
allow reliable identification of the correspondence between the repre-
sentations of different neural networks or layers. To further support
our choice for alignment measure, we compare CKA with projection-
weighted CCA (PWCCA) (Morcos et al., 2018). The PWCCA is shown
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Table A.15
Mean and standard error of OVO ROCAUC Macro for ternary joint classification task on a hold-out test set. The
significance is computed with the Wilcoxon signed-rank test and additional Holm correction for multiple comparisons.

Model Baseline Multimodal OVO ROCAUC Macro Significance

Supervised ✓ 71.6 ± 2.2 N/A
CR-XX ✓ 67.4 ± 1.5

RR-XX ✓ 67.3 ± 2.1

CR-XX-CC ✓ 67.2 ± 1.9

RR-XX-CC ✓ 67.1 ± 1.7 .

AE ✓ 66.9 ± 1.6

RR-CR-XX-CC ✓ 66.5 ± 2.3

RR-AE ✓ 66.1 ± 1.1 .
XX ✓ 66.0 ± 2.1 .
RR-CR-XX ✓ 64.9 ± 2.6 .
DCCAE ✓ ✓ 64.7 ± 0.6 *
RR-CR ✓ 63.9 ± 1.4 *
RR-CC ✓ 63.7 ± 0.9 *
CC ✓ 63.5 ± 1.0 *
RR-CR-CC ✓ 62.5 ± 1.7 *
RR ✓ ✓ 62.3 ± 1.1 *
CR-CCA ✓ 62.2 ± 2.6 *
XX-CC ✓ ✓ 62.0 ± 3.5 *
CR-CC ✓ 61.0 ± 2.2 *
CR ✓ 59.9 ± 2.5 *

The significance is denoted as follows: ∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, p < 0.1. Bold names are the best models
based on ROCAUC and significance testing.

Fig. B.18. Ranking of the models based on Linear CKA and PWCCA similarity measures. The models are sorted based on the corresponding metric on the test set.



NeuroImage 285 (2024) 120485

26

A. Fedorov et al.

Fig. D.19. Comparison of the models with Linear CKA, RBF CKA, CCA and PWCCA. The models sorted based on CKA performance on the test set.

Table E.16
The table for the Fig. E.20 provides detailed quantitative information on the near absolute maximum (quantile 0.999) Peak
RBC values of the saliency for regions in the Neuromark atlas for the dimensions with non-zero importance (Betas in Logistic
Regression), derived from the best fold on binary classification.

Model Region Supervised RR-XX-CC

Modality T1 fALFF T1 fALFF

0 1 Caudate 0.61 0.44 – −0.28
1 2 Subthalamus hypothalamus 0.64 0.43 – −0.30
2 3 Putamen −0.61 0.44 – 0.29
3 4 Caudate – 0.44 – −0.28
4 5 Thalamus 0.60 0.43 0.43 −0.28
5 6 Superior temporal gyrus STG – −0.42 −0.47 −0.29
6 7 Middle temporal gyrus MTG −0.67 −0.34 0.53 0.27
7 8 Postcentral gyrus PoCG −0.63 0.43 0.45 0.27
8 9 Left postcentral gyrus L PoCG 0.61 −0.34 −0.56 −0.30
9 10 Paracentral lobule ParaCL −0.65 −0.39 0.51 −0.29
10 11 Right postcentral gyrus R PoCG 0.55 −0.43 – 0.29
11 12 Superior parietal lobule SPL 0.67 −0.34 −0.54 0.34
12 13 Paracentral lobule ParaCL 0.55 −0.33 0.48 −0.34
13 14 Precentral gyrus PreCG 0.63 −0.30 −0.50 −0.34
14 15 Superior parietal lobule SPL −0.53 – 0.51 0.29
15 16 Postcentral gyrus PoCG −0.56 0.35 0.43 −0.32
16 17 Calcarine gyrus CalcarineG 0.67 −0.36 0.55 0.26
17 18 Middle occipital gyrus MOG 0.52 −0.33 −0.45 0.33
18 19 Middle temporal gyrus MTG −0.54 – – −0.26
19 20 Cuneus −0.57 −0.32 0.48 −0.32
20 21 Right middle occipital gyrus R MOG −0.52 0.34 – 0.25
21 22 Fusiform gyrus 0.53 −0.35 – −0.30
22 23 Inferior occipital gyrus IOG 0.53 0.32 0.46 −0.31
23 24 Lingual gyrus LingualG 0.61 0.39 0.50 −0.32
24 25 Middle temporal gyrus MTG −0.60 −0.33 0.45 −0.30
25 26 Inferior parietal lobule IPL −0.59 −0.34 – 0.25
26 27 Insula 0.62 −0.33 −0.57 −0.32
27 28 Superior medial frontal gyrus SMFG – 0.39 −0.45 –
28 29 Inferior frontal gyrus IFG −0.58 0.43 0.52 0.29
29 30 Right inferior frontal gyrus R IFG 0.62 −0.42 – 0.29
30 31 Middle frontal gyrus MiFG 0.55 −0.44 0.44 −0.26
31 32 Inferior parietal lobule IPL 0.59 0.44 0.47 0.28
32 33 Left inferior parietal lobue R IPL 0.60 0.39 0.43 −0.33
33 34 Supplementary motor area SMA 0.55 −0.40 – 0.32

(continued on next page)
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Fig. E.20. The figure shows the near absolute maximum (quantile 0.999) Peak RBC values of the saliency for regions in the Neuromark atlas for the dimensions with non-zero
importance (Betas in Logistic Regression) derived from the best fold on binary classification. The left side shows values for T1 data, and the right side shows the maps found for
fALFF. The outer circle shows values for the Supervised model and the inner circle for the RR-XX-CC model. Stars mark regions with the highest positive (red) and negative (blue)
RBC value. The exact values are shown in Table E.16.

Table E.16 (continued).

Model Region Supervised RR-XX-CC

Modality T1 fALFF T1 fALFF

34 35 Superior frontal gyrus SFG – 0.39 −0.46 −0.32
35 36 Middle frontal gyrus MiFG −0.57 −0.43 – 0.25
36 37 Hippocampus HiPP −0.58 −0.42 0.45 −0.27
37 38 Left inferior parietal lobule L IPL 0.55 0.33 −0.45 –
38 39 Middle cingulate cortex MCC 0.55 −0.40 – 0.29
39 40 Inferior frontal gyrus IFG −0.58 −0.40 0.43 −0.28
40 41 Middle frontal gyrus MiFG – – – 0.30
41 42 Hippocampus HiPP – – – −0.22
42 43 Precuneus 0.55 0.43 −0.47 0.26
43 44 Precuneus 0.56 0.45 0.44 −0.28
44 45 Anterior cingulate cortex ACC −0.59 0.45 0.45 −0.28
45 46 Posterior cingulate cortex PCC 0.57 0.43 −0.47 −0.26
46 47 Anterior cingulate cortex ACC −0.63 −0.38 0.49 −0.26
47 48 Precuneus −0.64 −0.40 0.49 −0.31
48 49 Posterior cingulate cortex PCC −0.66 −0.41 0.55 0.33
49 50 Cerebellum CB 0.63 −0.32 0.55 −0.35
50 51 Cerebellum CB 0.66 – −0.54 0.32
51 52 Cerebellum CB 0.67 0.44 0.49 −0.27
52 53 Cerebellum CB 0.59 −0.38 0.51 −0.33
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Fig. F.21. The figure shows the near absolute maximum (quantile 0.999) peak RBC values of the saliency for regions in the Neuromark atlas for the dimensions with non-zero
importance (Betas in Logistic Regression) derived from the best fold on binary classification. The circles represent one of the self-supervised algorithms. The order from outer to
inner is the following: RR-XX-CC, XX-CC, RR, RR-AE, and AE. The models are chosen based on significance in Tables 2 and 3. It can be seen that mostly self-supervised models
agree on the regions. However, AE seems very different from the other four algorithms.

to improve over standard CCA by weighting canonical coefficients to
improve the estimation of the joint content.

The ablations results are shown in Fig. B.18. The models are sorted
based on the corresponding metric. Overall, both PWCCA and Linear
CKA agree that the proposed methodologies capture higher content of
the joint information between modalities. However, the CKA empha-
sizes the divergent inductive biases of each model compared to PWCCA.
Additionally, PWCCA lacks stability when applied to different subsets
of the data. Hence, based on this exploration, we suggest using CKA to
measure alignment between modalities.

Full results with Linear CKA, RBF CKA, CCA, and PWCCA are shown
in Fig. D.19.

Appendix D. Explaining group differences between HC and AD

In Fig. 12 for Supervised vs. RR-XX-CC, we explored only the two
most significant (highest positive and lowest negative) dimensions from
64 available for the sake of showcasing the interpretability. However,
if we use all 64 except dimensions with zero importance and select
peak RBC by absolute value, the annulus looks as in Fig. E.20 with
supporting Table E.16. We capture hippocampus (37) and the default
mode network more consistently across all models.

Appendix E. Comparing self-supervised models on group discrim-
inative regions

Similarly, in Fig. 16, we explored only the two most significant
(highest positive and lowest negative) dimensions from 64 available
for the sake of showcasing the interpretability. However, if we use
all 64 except dimensions with zero importance and select peak RBC
by absolute value, the annulus looks as in Fig. F.21. We capture
hippocampus (37) and the default mode network more consistently
across all models.
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