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Abstract

The field of neuroimaging has increasingly sought to develop artificial intelligence-based models 

for neurological and neuropsychiatric disorder automated diagnosis and clinical decision support. 

However, if these models are to be implemented in a clinical setting, transparency will be vital. 

Two aspects of transparency are (1) confidence estimation and (2) explainability. Confidence 

estimation approaches indicate confidence in individual predictions. Explainability methods 

give insight into the importance of features to model predictions. In this study, we integrate 

confidence estimation and explainability approaches for the first time. We demonstrate their 

viability for schizophrenia diagnosis using resting state functional magnetic resonance imaging 

(rs-fMRI) dynamic functional network connectivity (dFNC) data. We compare two confidence 

estimation approaches: Monte Carlo dropout (MCD) and MC batch normalization (MCBN). 

We combine them with two gradient-based explainability approaches, saliency and layer-wise 

relevance propagation (LRP), and examine their effects upon explanations. We find that MCD 

often adversely affects model gradients, making it ill-suited for integration with gradient-based 

explainability methods. In contrast, MCBN does not affect model gradients. Additionally, we 

find many participant-level differences between regular explanations and the distributions of 

explanations for combined explainability and confidence estimation approaches. This suggests that 

a similar confidence estimation approach used in a clinical context with explanations only output 

for the regular model would likely not yield adequate explanations. We hope that our findings will 

provide a starting point for the integration of the two fields, provide useful guidance for future 
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studies, and accelerate the development of transparent neuroimaging clinical decision support 

systems.
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Carlo dropout; Monte Carlo batch normalization; Clinical decision support systems

1. Introduction

In recent years, studies have increasingly sought to develop automated diagnosis approaches 

using machine learning and deep learning methods for a variety of neurological and 

neuropsychiatric disorders like schizophrenia [1–3], major depressive disorder [4,5], 

Alzheimer’s disease [6,7], and others. This growth can be partially attributed to the 

limitations of existing clinical diagnostic approaches that are often dependent solely 

upon symptoms, rather than empirical biological markers, for diagnosis [8–10]. As 

many disorders can have overlapping symptoms, this is particularly problematic and 

can lead to delays in diagnoses and misdiagnoses. Nevertheless, if the methods being 

developed for automated diagnosis are ever to be implemented in a clinical setting, model 

transparency must be taken into consideration [11]. While there are multiple dimensions 

to transparency [12], there is little or no available literature on the subject of integrating 

two of those dimensions - model confidence estimates [13,14] and model explainability 

[2,15] – into the same model for neuroimaging classification. In this study, we compare 

two existing approaches for estimating model confidence [13,14]. We then examine their 

compatibility with two popular gradient-based explainability approaches [16,17] within the 

context of resting state functional magnetic resonance imaging (rs-fMRI) classification of 

schizophrenia (SZ), providing guidance and a starting point for future studies seeking to 

develop more transparent neuroimaging models.

Within the context of automated diagnosis of neurological and neuropsychiatric disorders, 

and SZ in particular, a variety of modalities like magnetoencephalography (MEG) [10], 

electroencephalography (EEG) [8,9,18], magnetic resonance imaging (MRI) [19–21], and 

functional magnetic resonance imaging (fMRI) [2,6,22] have been used. Relative to MRI, 

fMRI offers insight into the links between schizophrenia and brain dynamics. Relative to 

modalities like MEG and EEG, fMRI is recorded at lower sampling rates and thus provides 

less insight into the activity of brain dynamics. However, fMRI offers significantly enhanced 

spatial resolution and localization relative to MEG and EEG. Additionally, fMRI has been 

used in many studies related to schizophrenia [23–26]. As such, it represents a useful 

modality for eventual use within the context of automated diagnosis and clinical decision 

support. Within the context of rs-fMRI analysis, many studies have utilized functional 

network connectivity (FNC) for insight into the interaction of brain networks [26–30], so 

FNC represents a useful starting point for the automated diagnosis of SZ [26].

While the use of rs-fMRI FNC for automated diagnosis of neurological disorders like SZ 

represents a significant opportunity within the context of clinical decision support [31], 

black-box automated clinical decision support systems are unlikely to be accepted by 
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clinicians. As such, model transparency represents a critical component of the eventual 

implementation of clinical decision support systems. An important aspect of transparency 

is the capacity to provide an estimate of confidence in predictions [12]. To this end, one 

approach, called Monte Carlo dropout (MCD), has seen increasing use within the domain 

of neuroimaging classification [13]. MCD has been used in a variety of studies, including 

those focused on cortex parcellation [32], dynamics estimation [33,34], and classification 

of autism spectrum disorder [35] and Parkinson’s disease [36]. A more recently developed 

alternative to MCD that has seen comparatively little use in the domain of neuroimaging 

classification is Monte Carlo batch normalization (MCBN) [14]. A comparison of the two 

methods for the domain of neuroimaging classification could provide a useful point of 

reference for future studies.

The use of methods like MCD and MCBN that can provide estimates of prediction 

confidence will greatly assist the development of transparent clinical decision support 

systems. However, in and of themselves, they are insufficient to the task. It is also critical 

that automated neuroimaging-based clinical decision support systems be explainable [11,37–

39]. If clinicians are to use clinical decision support systems, they are ethically obligated 

to be able to explain the recommendations of such systems to their patients [11]. Both 

explainability methods [2,40,41] and more recently developed interpretable models [42–44] 

have been used extensively within the domain of neuroimaging analysis. Nevertheless, 

with the exception of our preliminary work on this topic [1], explainability methods and 

approaches for estimating model confidence have, to our knowledge, not yet been integrated.

As both approaches are necessary for the long-term development of clinical decision support 

systems, the lack of integration of confidence estimation approaches and explainability 

methods remains a key gap in the current capabilities of the field. In this study, we compare 

MCD and the more recent MCBN approaches for estimating classifier confidence to better 

understand their relative utility for the domain of neuroimaging classification. We then, for 

the first time, integrate two popular gradient-based explainability methods with MCD and 

MCBN, evaluating the effects of MCD and MCBN upon the explanations and seeking to 

determine the best approach for integrating the two transparency approaches. It is our hope 

that this study will provide guidance and a helpful starting point to future studies seeking to 

develop more transparent neuroimaging models and clinical decision support systems.

2. Methods

2.1. Data collection

We used the Functional Imaging Biomedical Informatics Research Network (FBIRN) 

dataset consisting of rs-fMRI data from 151 individuals with SZ and 160 healthy controls 

(HCs). The dataset has been in a number of previous studies [25,26]. The data was collected 

from the University of California at Irvine, the University of California at Los Angeles, the 

University of North Carolina at Chapel Hill, the University of New Mexico, the University 

of Iowa, and the University of Minnesota. Data collection was approved by the Internal 

Review Boards of each study site. Six sites used 3T Siemens scanners, and 1 site used a 3T 

General Electric scanner for collection. T2*-weighted functional images were collected with 

an AC-PC aligned echo-planar imaging (EPI) sequence (TR = 2s, TE = 30 ms, flip angle = 
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77°, voxel size = 3.4×3.4 × 4mm3, slice gap = 1 mm, 162 frames, 5:24 min). Recordings 

were performed while the participants’ eyes were closed.

2.2. Data preprocessing

After collecting the data, we used statistical parametric mapping for preprocessing and used 

rigid body motion correction to account for head movement. We spatially normalized the 

recordings to an EPI template in the standard Montreal Neurological Institute (MNI) space, 

resampling to 3 × 3 × 3mm3. Lastly, we used a Gaussian kernel with a full width at half 

maximum of 6 mm to smooth the recordings.

After completing general preprocessing steps, we began the feature extraction process. We 

applied the Neuromark automated independent component analysis (ICA) pipeline [45] of 

the GIFT toolbox (http://trendscenter.org/software/gift ) using the Neuromark_fMRI_1.0 

template (also available at http://trendscenter.org/data) to extract 53 components (ICs) 

associated with different brain regions and structures. The Neuromark pipeline has been 

used extensively across a variety of studies within the field [26,28,29]. We then assigned the 

components to 7 networks – the cerebellar (CBN), default mode (DMN), cognitive control 

(CCN), visual (VSN), sensorimotor (SMN), auditory (ADN), and subcortical (SCN). After 

extracting the ICs, we extracted the dFNC values using a sliding window approach. We used 

a tapered window created by convolving a rectangle of window size = 40s with a Gaussian 

(σ = 3). We calculated Pearson’s correlation between each of the 53 ICs at each time step, 

resulting in 1378 dFNC features and 124 time steps per study participant. It should be noted 

that each of the samples can be assigned to 1 of 28 domain pairs (e.g., connectivity between 

CCN and VSN is CCN/VSN). After extracting each of the dFNC features, we performed 

feature-wise z-scoring across all subjects.

2.3. Model development

As shown in Fig. 1, we developed a 1D-CNN architecture with input dimensions of 1378 

dFNC features x 124 time steps and output dimensions of 2 (i.e., one probability per class). 

We applied a 10-fold stratified shuffle split cross-validation approach from Scikit-learn with 

an approximately 80–10-10 training-validation-test split. Within each fold, we applied data 

augmentation to triple the number of training samples. This involved adding Gaussian noise 

(μ = 0, σ = 0.7) to two copies of each training sample. We used an Adam optimizer with 

an adaptive learning rate [46]. The learning rate started at 0.001 and decreased by 50% 

after each 15 epochs without an increase in validation accuracy (ACC). We used Kaiming 

He normal initialization. To address class imbalances, we used a class-weighted categorical 

cross-entropy. We trained the model for 100 epochs, shuffling after each epoch and using a 

batch size of 50. We also used a model checkpoint approach to select the model from the 

epoch with the highest validation accuracy. When assessing test performance, we calculated 

the sensitivity (SENS), specificity (SPEC), and ACC for each fold. These metrics are shown 

in equations (1)–(3), respectively.

SENS =
TP

TP + FN
Equation 1
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SPEC =
TN

FP + TN
Equation 2

ACC =
TP + TN

TP + TN + FP + FN
Equation 3

Where true positives are abbreviated, “TP”, false negatives are abbreviated, “FN”, true 

negatives are abbreviated, “TN”, and false positives are abbreviated, “FP”.

2.4. Monte Carlo Dropout

Monte Carlo Dropout (MCD) was first presented in Ref. [13]. At a high level, it involves 

the repeated reinitialization of dropout layers during testing to form a distribution of models, 

and thus a distribution of test predictions. It hinges upon the realization that dropout can be 

used to form a Bayesian approximation. In our implementation, we used 1000 iterations of 

dropout during testing to form a distribution of predictions for each sample.

2.5. Monte Carlo Batch Normalization

Similar to MCD, Monte Carlo Batch Normalization (MCBN) hinges upon the realization 

that another component of neural networks (i.e., batch normalizations layers) can be used 

to generate a Gaussian distribution of predictions. MCBN was first presented in Ref. [14]. 

MCBN involves several steps: (1) randomly selecting a minibatch of training data, (2) 

updating the model batch normalization layers based upon the minibatch of training data, 

(3) using the updated model to predict class probabilities for the test data, and (4) repeating 

steps 1 through 3 a number of times to form a distribution of predictions for each sample. 

We repeated MCBN for 1000 iterations.

2.6. Explainability

In this study, we applied two gradient-based explainability approaches: saliency and layer-

wise relevance propagation.

2.6.1. Saliency—Saliency was one of the first gradient-based explainability methods 

[17]. It is a fairly straightforward approach that involves taking the gradient of the predicted 

probability of a sample belonging to a particular class with respect to each of the input 

features. It indicates the effect that a small change in an input feature has upon the output 

probability of belonging to a particular class. Larger sensitivity values correspond to a 

greater level of importance. Saliency has been applied in both neuroimaging studies [47] and 

studies involving other healthcare data types [48,49].

We applied saliency to both the original network and to the network following each iteration 

of MCBN and MCD, generating a distribution of values for each feature. Afterwards, we 

normalized the absolute value of the saliency for each study participant to make sure that the 

saliency summed to 100.

2.6.2. Layer-wise relevance propagation—Layer-wise relevance propagation (LRP) 

[50] is a popular gradient-based feature attribution explainability method [51]. It has 
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been shown to produce less noisy explanations than saliency [52]. It was first developed 

within the context of image classification. However, because it is widely applicable to a 

number of deep learning architectures, it has since been applied to a number of data types, 

including various neuroimaging modalities [40,53] and other healthcare data involving both 

time-series [54,55] and extracted features [56].

LRP involves a series of steps. (1) A sample is passed through a network and assigned to a 

particular class. (2) A total relevance value of 1 is assigned to the output node corresponding 

to the class of the sample. (3) The relevance is propagated back through the network from 

layer to layer using a relevance rule until the relevance is distributed across the input 

space. It should be noted that depending upon the relevance rule, there can be both positive 

and negative relevance. Positive relevance indicates that a particular input feature provides 

evidence for the sample being assigned to the class to which it was assigned. Negative 

relevance indicates that a particular input feature gives evidence for a sample being assigned 

to a class other than that to which it was assigned. In this study, we used the ³³-rule to 

propagate only positive relevance (³ = 1, ³ = 0). The ³³-rule is shown in equation (4).

Rj = ∑
k

³
ajwjk

+

∑0, j ajwjk

+ − ³
ajwjk

−

∑0, j ajwjk

− Rk Equation 4

Where the relevance is split into a positive component with a coefficient ³ and into a 

negative component with a coefficient³. The variables k and j indicate a node in a deeper and 

shallower layer, respectively. The variables a and w indicate the activation associated with a 

particular node and the weight connecting two nodes in different layers, respectively.

We applied LRP to both the original network and to the network following each iteration 

of MCBN and MCD, generating a distribution of relevance values for each feature. After 

propagating relevance through the network in our study, we normalized the absolute 

relevance for each study participant to make sure that the relevance summed to 100.

2.7. Statistical analyses

We performed six sets of statistical analyses. The first pair of pair of analyses were 

performed to gain insight into the effects of MCBN and MCD on model predictions. The 

second pair of analyses were performed to gain insight into the explanations spatially, and 

the second pair of analyses sought insight into the temporal distribution of importance.

2.7.1. Prediction analyses—To analyze the effects of MCBN and MCD upon model 

predictions, we performed two analyses. The first analysis sought to understand whether 

MCBN and MCD mean predictions were, in general, different from the predictions of the 

basic model. To that end, we performed two non-parametric, two-sided, two-tailed paired 

Wilcoxon signed-rank tests comparing whether the predicted probability across MCBN or 

MCD iterations for each test participant across folds was greater than the basic model 

predicted probability for each test participant across folds. The second analysis sought to 

understand whether MCD or MCBN moved samples closer to the decision boundary (i.e., 

50%). We calculated the absolute difference between the 50% decision boundary and the 

predicted probabilities for the basic model, the mean predicted probabilities for the MCD 
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model, and the mean predicted probabilities for the MCBN model for all test participants 

across folds. We then performed non-parametric, two-sided, one-tailed, paired Wilcoxon 

signed-rank tests to see if the absolute difference between the mean predicted probabilities 

and the decision boundary was less for MCD versus the basic model and for MCBN versus 

the basic model. If one of the tests yielded an insignificant p-value, we performed a follow 

up test to see if the distance from the boundary was greater.

2.7.1.1. Spatial analyses.: We first sought to understand whether there were differences 

in the importance of individual network pairs between HCs and SZs and then sought to 

understand whether there were differences in the spatial distributions of importance between 

the basic model and the model with MCBN and MCD. (1) For insight into the spatial 

effects of MCBN and MCD upon the explanations for HCs relative to SZs, we summed the 

total importance (i.e., normalized relevance for LRP and normalized saliency for saliency) 

of each dFNC feature across time for each participant. We then averaged the importance 

within each network domain pair and across participants on a per-fold basis. We then used 

paired t-tests to determine whether there were differences in spatial importance distributions 

for HCs versus SZs across folds. We then applied FDR correction (p < 0.05). (2) For 

insight into the how representative the importance values associated with the regular model 

were of the importance distributions associated with the models with MCBN and MCD, 

we again summed the total importance of each dFNC feature across time for each subject. 

We then performed a one-sample t-test for each participant and calculated the percentage 

of participants for which there was a significant difference between the importance values 

associated with the regular model and the importance distributions of the model with MCBN 

and MCD. We then applied FDR correction (p < 0.05) to the values for each subject 

on a per-fold and per-feature basis and calculated the mean percentage of participants 

across folds with significant differences. We implemented these analyses for both LRP and 

saliency.

2.7.2. Temporal analyses—In our temporal analyses, we first sought to understand 

whether there were differences in the temporal distribution of importance over time between 

SZs and HCs and next sought to understand whether there were differences in the temporal 

distribution of importance between the basic model and model with MCBN and MCD. To 

this end, we adapted a method presented in Ref. [15]. We used Earth mover’s distance 

(EMD), a distance measure comparing two densities, to calculate the distance for each 

participant between the importance of each dFNC feature over time with the average 

importance across time. A smaller EMD value indicates that the importance values are more 

evenly distributed across time, and a larger EMD value indicates that the importance values 

are more concentrated within smaller time windows. In our temporal analyses, we summed 

the total absolute importance for each feature on a per-participant basis and normalized that 

value such that the total importance summed to 100. We then compared that distribution to 

a distribution in which the total importance was distributed evenly over time. (1) We first 

sought to determine whether there were significant differences in the temporal distribution 

of importance across classes. We calculated the mean EMD values in each network domain 

pair across HCs and across SZs on a per-fold basis fold and then performed a paired t-test 

comparing the values for HCs and SZs. (2) We next sought to determine whether the MCD 
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and MCBN importance distributions over time were significantly different from those of 

the regular model. To do this, we performed one-sample t-tests comparing the MCD and 

MCBN importance distributions for each dFNC feature with the importance value for the 

regular model. We next applied FDR correction (p < 0.05) to the values for each participant 

on a per-fold and per-feature basis and calculated the mean percent of participants with 

significant differences across folds. We repeated these analyses for both LRP and saliency.

3. Analysis of not-a-number (NaN) counts

While our spatial and temporal analyses did provide insight into the distribution of 

importance values. They overlooked an important aspect of integrating confidence estimate 

approaches with gradient-based explainability methods. We thought it possible that changes 

in model gradients associated with MCD might adversely affect the capacity of gradients 

to be calculated for saliency or for relevance to be propagated for LRP. To this end, we 

performed two analyses. (1) We calculated the percentage of samples for each fold that 

returned Not-a-Number (NaN) importance values for the regular model and for at least 

one of the 100 iterations of MCD and MCBN. (2) We also calculated the percentage of 

MCD and MCBN iterations for each sample that produced NaN values across folds. In the 

case of LRP, relevance values might ordinarily be returned in a minority of cases if the 

total positive and negative relevance for a particular layer summed to zero, while saliency 

should not ordinarily return NaN values. However, in our implementation of LRP with 

the ³³-rule, positive and negative relevance should not cancel out because only positive 

relevance is propagated and negative relevance is effectively assigned a value of zero. The 

presence of a large percentage of NaN values for MCD and MCBN values would indicate 

that the methods disrupted model gradients to the extent that the explainability methods 

became inoperable, which would indicate that they are in some cases incompatible with 

gradient-based explainability methods. This could foreseeably occur with MCD if enough 

neurons in successive layers were disabled in a configuration such that there was no path to 

propagate importance from layer to layer through the network.

4. Results

In this section, we describe the results of our examination of the effects of MCD and MCBN 

upon model predictions and performance.

4.1. Model performance

Table 1 shows the mean and standard deviation of the performance of our architecture 

across 10 folds without a confidence estimation (i.e., “Regular”) and with MCD and MCBN. 

All metrics had mean levels of performance across folds that were much higher than 

chance-level, with average accuracies around 75%. Interestingly, the model sensitivity and 

specificity were most balanced for the regular model. In contrast, MCBN and MCD seemed 

to favor either sensitivity or specificity. MCBN favored SENS much more than it favored 

SPEC, while MCD favored SPEC much more than it favored SENS. Nevertheless, mean 

ACC for the model with MCBN was similar to that of the regular model, and the mean ACC 

was slightly lower for the model with MCD.
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4.2. Distribution of predictions

Our two-sided, two-tailed Wilcoxon sign-rank tests found that the mean predictions for 

MCBN and MCD were significantly different from the basic model (p < 0.001). Fig. 2 

shows the distribution of sample predictions across folds for the regular model without 

confidence estimation and for the model with MCD and MCBN. The classifier generally 

predicted either very high or very low probabilities, even in some cases of misclassification. 

However, particularly among SZs, there were some samples that fell along a gradient 

of predictions closer to the 50% line. The range of MCD sample predictions was much 

wider than the range of MCBN sample predictions. With the exception of samples that 

were already near the decision boundary, the standard deviation of the predictions for 

MCBN was typically very small. Lastly, in a large number of instances, MCD seemed to 

move the sample predictions closer to the 50% decision boundary. This observation was 

confirmed by our two- sided, one-tailed Wilcoxon sign-rank tests that found that mean MCD 

predictions were much closer to the 50% decision boundary than the basic model predictions 

(p < 0.001). In contrast, the mean MCBN predictions were farther from the 50% decision 

boundary than the basic model predictions (p < 0.001).

4.3. Spatial analysis

Figs. 3 and 4 show the spatial distributions of importance for LRP and saliency, respectively 

(i.e., the sum of the absolute value of the importance across all time steps). For both LRP 

and saliency, there were several brain network pairs with high levels of importance across 

nodes for the classification, including CBN/SCN and SMN/SCN. Other network pairs, 

including VSN/SMN, VSN/SCN, and VSN, had high levels of importance for specific brain 

regions that they contained. Specifically, (1) the interactions of the VSN with the postcentral 

gyrus of the SMN, (2) the interactions of the VSN with the thalamus of the SCN, and (3) the 

interactions of the other VSN brain regions with the cuneus region were important. For LRP, 

the interactions of the SMN with the inferior parietal lobule of the CCN were important. 

While saliency did not identify this particular interaction as being as important as LRP, it 

indicated that the interaction of two SMN brain regions with the inferior parietal lobule of 

the CCN was importance.

Additionally, while there were no significant class-specific differences in saliency values, 

there were some visible differences in LRP relevance between HCs and SZs. These visible 

differences were present in the SCN/CBN, the SCN/SCN, the SCN/SMN, the VSN/SMN, 

the SMN/CBN, the CCN/CBN, and the CBN/CBN. Our statistical analysis of class-specific 

importance found differences in LRP relevance between HCs and SZs for CCN/SCN and 

CBN/SMN for both the regular model and model with MCBN. In contrast, there were more 

network pairs with class- specific relevance differences in models with MCD – VSN/VSN, 

CCN/ SCN, CCN/CCN, CBN/SMN, and CBN/CBN.

For both LRP and saliency, the overall mean importance across folds seemed to be similar 

across the regular model, the model with MCD, and the model with MCBN. This indicates 

that at a high level the three methods yield similar levels of importance. However, Fig. 5 

provides some higher resolution insight. It shows the average percentage of samples per fold 

for which there were significant differences (p < 0.05) between the model with regular LRP 
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and the model with MCBN and MCD. Importantly, for saliency, the majority of samples 

had regular importance values that were away from the means of the importance values 

with MCD and with MCBN. Importantly, there were some differences in the percentages of 

samples for regular versus MCD and for regular versus MCBN in a number of network 

pairs. Additionally, for LRP, a large number of samples in each fold had significant 

differences. This was particularly the case for the regular LRP values versus the MCD LRP 

values, and it was true to a lesser extent in the case for the regular LRP values versus the 

MCBN LRP values. It should be noted, however, that the use of MCD and MCBN seemed to 

have a larger effect upon the saliency values than upon the LRP values.

4.4. Temporal analysis

Figs. 6 and 7 show the mean EMD across folds for LRP relevance and saliency, respectively. 

Higher EMD values indicate that importance is more concentrated temporally, while lower 

EMD values indicate that importance is more uniformly dispersed over time. Interestingly, 

for both LRP and saliency, importance is more concentrated temporally in HCs than in SZs 

across the regular, MCD, and MCBN implementations. This is somewhat unexpected for 

saliency given that the spatial analyses did not find class-specific differences in importance. 

Additionally, it is odd that the MCD relevance values tend to be more concentrated 

temporally than those for the regular and MCBN implementations, while the MCD saliency 

values seem to be less concentrated temporally than those of the regular and MCBN 

implementations. The regular and MCBN implementations generally seem to have similar 

values across both LRP and saliency. It should be noted that while these differences 

are distinct visually, they are not statistically significant. This indicates that while the 

differences in the mean EMD can be visualized, the distribution of EMD values do overlap 

to a degree.

Fig. 8 shows the percent of samples per fold with significant difference between the EMD of 

the importance for the regular model and with the MCD and MCBN models. Interestingly, 

for both LRP and saliency, the MCBN importance distributions were further from the 

importance values of the regular model than the MCD importance values. Additionally, the 

number of participants with differences was greater for saliency than for LRP.

4.5. NaN value analysis

Lastly, it is important to consider the effects of the confidence estimation approaches upon 

the viability of the explainability methods. As such, we examined the number of samples 

and iterations per sample of MCD and MCBN that resulted in the production of NaN values. 

These results are shown in Fig. 9. Interestingly, saliency with the regular model and with 

MCBN did not return any NaN values, while LRP with the regular model and with MCBN 

did on one occasion in two of ten folds. For a significant portion of samples, the model 

with MCD returned at least one iteration of NaN values for both explainability methods. The 

percentage of NaN values ranged from around zero to ten percent of iterations for most folds 

across both saliency and LRP, with some folds reaching much higher levels (e.g., up to 50% 

for LRP). It should be noted that when a sample returned an explanation with NaN values, 

those NaN values were returned for all dFNC features and time steps.
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5. Discussion

In this section, we discuss the performance results of our model and the results of the 

effects of MCD and MCBN upon the model predictions. We then discuss the effects of the 

respective methods upon output explanations. Lastly, we discuss limitations and next steps 

related to our work.

5.1. Model performance

Overall model performance was well above chance-level. Additionally, while MCBN and 

MCD were able to provide distributions of predictions for each sample, they seemed to 

destabilize the SENS and SPEC of the model. This was a surprising finding relative to 

previous studies that have used MCD and MCBN [57], suggesting that the utility of the 

methods for improving classifier performance may be somewhat dependent upon the utilized 

model and dataset. Relative to the performance of the models developed in Ref. [2] that 

had accuracies ranging from 50% to 83%, our model performance was on par to slightly 

lower. This could partially be related to the significantly larger dataset size used in Ref. [2]. 

Additionally, our model performance was below that of [47], which used a novel form of 

extracted features.

5.2. Distribution of predictions

Our model generally had somewhat polarized predictions for each class, with extremely high 

probabilities of samples belonging to one class and extremely low probabilities of samples 

belonging to the other class. While this was the case, there were a number of samples that 

were misclassified or that were predicted to be closer to the decision boundary line. The 

predictions of MCBN tended to be more stable across iterations and to move the direction 

of the predictions further towards the extreme that they already favored. In contrast, the 

predictions of MCD generally varied widely and moved samples closer to the decision 

boundary. Thus, it seems that for our data and model the use of dropout during testing 

more greatly affected predictions than changes in the batch normalization layer values. The 

comparatively small distribution of MCBN predictions could also be a symptom of the 

dataset that we employed.

5.3. Spatial analysis

We identified a number of brain network pairs useful to the classification of SZ and HCs. 

Previous studies have found widespread effects of SZ upon the CBN [2,15,27], SMN [15], 

and SCN [2] similar to our results. Additionally, some studies have identified differences 

in the VSN/VSN [25,58], VSN/SCN [25,59], and VSN/SMN [25,60] as important to 

differentiating SZ from healthy individuals. Specifically, changes in connectivity between 

the VSN and thalamus of the SCN have been identified [59]. These findings support the 

overall reliability of our model relative to previous studies.

Our findings on the differences between class-specific LRP and saliency results were largely 

unsurprising. Given the characteristics of each of the methods. LRP is able to provide 

class-specific relevance values when using the ³³-rule, so we would expect to see differences 

in the relevance distribution between classes. In contrast, saliency just shows the gradient 
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associated with the classification, and it is likely that specific regions will have similar 

gradients across classes.

Differences between the explanations of the basic model and those of MCD and MCBN 

can be attributed to the effects that they had upon the model shown in Fig. 2. Namely, 

MCD had a much greater effect than MCBN upon the model predictions. This greater effect 

upon predictions implies a greater effect upon the underlying model structure and upon any 

resulting explanations.

5.4. Temporal analysis

We found that HCs generally had more temporally concentrated importance than SZs. 

This indicates that the aberrant effects of SZ upon brain network interactions tend to be 

temporally distributed. This finding contrasts [15], which found effects of SZ upon attention 

values of a long short-term memory network to be more temporally localized. It should be 

noted, however, that [15] analyzed the temporal distribution of importance for independent 

components rather than dFNC. It could indicate that there are temporally localized patterns 

of brain interaction found in HCs that are disrupted in SZs. Additionally, this finding is 

related to those of other studies that have found effects of SZ upon brain network dynamics 

[24,26].

At a high level, the temporal distribution of importance for the regular model and the model 

with MCBN tended to be more similar to one another than the temporal distribution of the 

model with MCD. However, on a more fine-grained, per-participant basis, there tended to 

be a difference between the EMD values associated with the regular model and the EMD 

distributions for both the model with MCD and with MCBN. Additionally, these differences 

were stronger for saliency than for LRP.

5.5. NaN value analysis

While MCD did not result in NaN-valued explanations in the majority of iterations, 

it resulted in NaN-valued explanations much more frequently than MCBN. When the 

explainability methods output NaN values, they output NaN values for all features, which 

prevented learning anything about the relative importance of the features. In that regard, the 

explainability analysis failed, and although the production of NaN-valued explanations can 

be tied to the use of MCD, the exact reason why NaN values occurred is not completely 

clear. It is feasible that if enough neurons in subsequent layers were disabled via MCD, 

there might not be a way to propagate relevance or backpropagation a gradient to the input 

of a network, or the denominator of Equation (4) may sum to a total relevance of zero. 

As such, although MCD can sometimes improve model performance, the use of multiple 

dropout layers can, under some circumstances, disable model gradients, making MCD 

incompatible with gradient-based explainability methods. This finding could also explain 

the relatively high variance of model predictions that we identified for MCD, and it offers 

a key guidance for future studies seeking to integrate confidence estimation methods with 

gradient-based explainability methods. Namely, MCD may be incompatible with gradient-

based explainability methods in some applications.
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6. Recommendations for integration of confidence estimation approaches 

and explainability methods

While MCD has seen more widespread use than MCBN, its effects upon model gradients 

can prevent its effective integration with explainability methods, and it would be necessary 

to discard MCD iterations with NaNs in an implementation setting. As such, MCBN 

represents the more viable of the two methods for combination with gradient-based 

explainability methods. Within the context of applying MCBN with explainability methods, 

there are not large differences between explanations with MCBN relative to explanations 

for a regular model when those explanations are averaged across individuals and folds. 

As such, during model development, it may be unhelpful to integrate the two methods. 

However, we also found that on a per-individual basis, the spatial and temporal distributions 

of importance values associated with a traditional deep learning model tend to not be 

representative of the overall distribution that results when the model is combined with 

MCBN. As such, in a clinical implementation in which clinicians would be examining 

explanations for an individual patient and in which they would be evaluating model 

confidence estimates, a proper explanation of the confidence estimates would likely require 

an aggregate explanation that combined (e.g., via averaging) output explanations for each 

iteration of confidence estimation approaches. Additionally, some explainability methods, 

like saliency relative to LRP, tend to be noisier than others [52]. This tendency seems 

to be amplified when combined with confidence estimation approaches, as we found 

that generally the distributions of MCBN saliency were significantly different from their 

corresponding regular model importance values in more individuals than were those of LRP.

6.1. Limitations and next steps

While explainability is needed for the development of clinical decision support systems 

[11,37–39], a number of researchers have indicated that current explainability approaches 

are insufficient for use in a clinical setting [38,61]. There are valid concerns associated 

with their critiques. Nevertheless, for the purposes of this study, we only sought to provide 

a starting point to the integration of confidence estimation approaches and explainability 

methods. Further developments will be needed within the context of both confidence 

estimation and explainability in future years. However, they will eventually need to be 

integrated, and it is better that the field begin considering that integrative process sooner 

rather than later. While existing confidence estimation methods have had some popularity 

within the context of neuroimaging classification in recent years, they require repeated 

predictions and can be computationally intensive. Their repeated combination when directly 

paired with repeated output of explanations can be doubly intensive to the point of 

impracticality. This is, again, an example of how novel developments will be needed for 

both fields in the coming years.

7. Conclusion

In this study, we combined model confidence estimation approaches with explainability 

methods for the first time to help address the need for greater transparency in neuroimaging-

based clinical decision support systems. We used two confidence estimation approaches – 
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MCD and MCBN. We further combined the two approaches with saliency and LRP for 

explainability. Our findings indicate that MCBN obtains comparable or better classification 

performance than MCD. Additionally, we found that MCD often adversely affected model 

gradients, while MCBN did not. We also uncovered spatial and temporal effects of SZ 

upon brain activity using our approach. It is our hope that this study will provide a starting 

point to the field on the integration of confidence estimation and explainability methods, 

provide useful guidance for future studies, and accelerate the development of transparent 

neuroimaging clinical decision support systems.
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Fig. 1. 

CNN Architecture. The model has sections (i) and (ii) for feature extraction and 

classification, respectively. Layers in section (i) are repeated twice for different 

hyperparameters. The first and second pairs of convolutional layers (conv1d) have a kernel 

size of 10 and 16 and 24 filters, respectively. Each pair of conv1d layers is followed by a 

max pooling layer with a pool size of 2 and spatial dropout (rates = 0.3 and 0.4). Layers 

in section (ii) include 3 dense layers with 10, 6, and 2 nodes. Yellow circles with “BR”, 

“R”, and “S” correspond to layers with batch normalization/ReLU, ReLU, and softmax 

activations, respectively. (For interpretation of the references to color in this figure legend, 

the reader is referred to the Web version of this article.)
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Fig. 2. 

Distributions of Sample Predictions. Panel A shows the model predictions without 

confidence estimation. Panels B) and C) show the model predictions with MCD and MCBN, 

respectively. The predictions for samples with true labels of HC and SZ are shown in red 

and blue respectively, and samples are aligned in the same order across panels such that each 

panel can be visually compared. It should be noted that the points in Panels B and C reflect 

the mean of predictions, and the error lines reflect one standard deviation above and below 

the mean. Samples are grouped from left to right based on their folds, with a black dashed 

vertical line separating samples for each fold. The y-axis reflects the probability of a sample 

belonging to the HC class, and the black dashed horizontal line indicates the 50% boundary 

point between classes. As such, blue samples above the boundary point are misclassified, 
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and red samples below the boundary point are misclassified. (For interpretation of the 

references to color in this figure legend, the reader is referred to the Web version of this 

article.)
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Fig. 3. 

Mean of Total LRP Relevance Across All Timesteps. Panels A, B, and C reflect the mean 

relevance of the regular model, the model with MCD, and the model with MCBN for SZs. 

Panels D, E, and F show the same values for HCs. Networks are included on the x- and 

y-axes and are separated by black lines. Network pairs surrounded by white boxes have 

statistically significant differences between HCs and SZs. Lastly, all panels share the color 

bars to the right of Panels C and F. (For interpretation of the references to color in this figure 

legend, the reader is referred to the Web version of this article.)
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Fig. 4. 

Mean of Total Saliency Across All Timesteps. Panels A, B, and C reflect the mean saliency 

of the regular model, the model with MCD, and the model with MCBN for SZs. Panels D, 

E, and F show the same values for HCs. Networks are included on the x- and y-axes and 

are separated by black lines. All panels share the color bars to the right of Panels C and F. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

Web version of this article.)
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Fig. 5. 

Sample Level Differences in Spatial Importance. Panels A and B show the mean percent 

of samples per fold with differences (p < 0.05) between their regular relevance values and 

their MCD and MCBN relevance distributions, respectively. Panels C and D show the mean 

percent of samples per fold with differences (p < 0.05) between their regular saliency values 

and their MCD and MCBN saliency distributions, respectively. The color bars to the right 

of Panels B and D are shared by Panels A and B and Panels C and D, respectively. (For 

interpretation of the references to color in this figure legend, the reader is referred to the 

Web version of this article.)
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Fig. 6. 

Mean of Relevance EMD over Time. Panels A, B, and C reflect the mean EMD of the 

regular model, the model with MCD, and the model with MCBN for SZs. Panels D, E, 

and F show the same values for HCs. Networks are included on the x- and y-axes and are 

separated by black lines. All panels share the color bars to the right of Panels C and F. (For 

interpretation of the references to color in this figure legend, the reader is referred to the 

Web version of this article.)
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Fig. 7. 

Mean of Saliency EMD over Time. Panels A, B, and C reflect the mean EMD of the regular 

model, the model with MCD, and the model with MCBN for SZs. Panels D, E, and F show 

the same values for HCs. Networks are included on the x- and y-axes and are separated by 

black lines. All panels share the color bars to the right of Panels C and F. (For interpretation 

of the references to color in this figure legend, the reader is referred to the Web version of 

this article.)
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Fig. 8. 

Sample Level Differences in Temporal Importance Distributions. Panels A and B show the 

mean percent of samples per fold with differences (p < 0.05) between their regular relevance 

EMD values and their MCD and MCBN EMD distributions, respectively. Panels C and D 

show the mean percent of samples per fold with differences (p < 0.05) between their regular 

saliency EMD values and their MCD and MCBN saliency EMD distributions, respectively. 

The color bars to the right of Panels B and D are shared by Panels A and B and Panels C and 

D, respectively. (For interpretation of the references to color in this figure legend, the reader 

is referred to the Web version of this article.)
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Fig. 9. 

Distribution of NaN Values. Panels A and D show the percent of samples per fold with at 

least one NaN value for LRP and saliency, respectively. The values for the regular model, 

the model with MCD, and the model with MCBN are shown in black, red, and blue, 

respectively. Panels B and C show the percent of iterations per sample of each fold that 

produced NaN LRP relevance values for MCD and MCBN, respectively. Panels E and F 

show the percent of iterations per sample of each fold that produced NaN saliency values for 

MCD and MCBN, respectively. (For interpretation of the references to color in this figure 

legend, the reader is referred to the Web version of this article.)
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Table 1

Model performance results.

SPEC SENS ACC

Regular 75.63 ± 14.64 74.38 ± 11.34 75.00 ± 07.26

MCBN 70.63 ± 15.32 79.35 ± 06.87 75.00 ± 09.06

MCD 78.13 ± 13.76 68.13 ± 13.76 73.13 ± 07.93
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