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Abstract

The field of neuroimaging has increasingly sought to develop artificial intelligence-based models
for neurological and neuropsychiatric disorder automated diagnosis and clinical decision support.
However, if these models are to be implemented in a clinical setting, transparency will be vital.
Two aspects of transparency are (1) confidence estimation and (2) explainability. Confidence
estimation approaches indicate confidence in individual predictions. Explainability methods

give insight into the importance of features to model predictions. In this study, we integrate
confidence estimation and explainability approaches for the first time. We demonstrate their
viability for schizophrenia diagnosis using resting state functional magnetic resonance imaging
(rs-fMRI) dynamic functional network connectivity (dFNC) data. We compare two confidence
estimation approaches: Monte Carlo dropout (MCD) and MC batch normalization (MCBN).

We combine them with two gradient-based explainability approaches, saliency and layer-wise
relevance propagation (LRP), and examine their effects upon explanations. We find that MCD
often adversely affects model gradients, making it ill-suited for integration with gradient-based
explainability methods. In contrast, MCBN does not affect model gradients. Additionally, we

find many participant-level differences between regular explanations and the distributions of
explanations for combined explainability and confidence estimation approaches. This suggests that
a similar confidence estimation approach used in a clinical context with explanations only output
for the regular model would likely not yield adequate explanations. We hope that our findings will
provide a starting point for the integration of the two fields, provide useful guidance for future
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studies, and accelerate the development of transparent neuroimaging clinical decision support
systems.
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1. Introduction

In recent years, studies have increasingly sought to develop automated diagnosis approaches
using machine learning and deep learning methods for a variety of neurological and
neuropsychiatric disorders like schizophrenia [1-3], major depressive disorder [4,5],
Alzheimer’s disease [6,7], and others. This growth can be partially attributed to the
limitations of existing clinical diagnostic approaches that are often dependent solely

upon symptoms, rather than empirical biological markers, for diagnosis [8—10]. As

many disorders can have overlapping symptoms, this is particularly problematic and

can lead to delays in diagnoses and misdiagnoses. Nevertheless, if the methods being
developed for automated diagnosis are ever to be implemented in a clinical setting, model
transparency must be taken into consideration [11]. While there are multiple dimensions

to transparency [12], there is little or no available literature on the subject of integrating
two of those dimensions - model confidence estimates [13,14] and model explainability
[2,15] — into the same model for neuroimaging classification. In this study, we compare
two existing approaches for estimating model confidence [13,14]. We then examine their
compatibility with two popular gradient-based explainability approaches [16,17] within the
context of resting state functional magnetic resonance imaging (rs-fMRI) classification of
schizophrenia (SZ), providing guidance and a starting point for future studies seeking to
develop more transparent neuroimaging models.

Within the context of automated diagnosis of neurological and neuropsychiatric disorders,
and SZ in particular, a variety of modalities like magnetoencephalography (MEG) [10],
electroencephalography (EEG) [8,9,18], magnetic resonance imaging (MRI) [19-21], and
functional magnetic resonance imaging (fMRI) [2,6,22] have been used. Relative to MRI,
fMRI offers insight into the links between schizophrenia and brain dynamics. Relative to
modalities like MEG and EEG, fMRI is recorded at lower sampling rates and thus provides
less insight into the activity of brain dynamics. However, fMRI offers significantly enhanced
spatial resolution and localization relative to MEG and EEG. Additionally, fMRI has been
used in many studies related to schizophrenia [23-26]. As such, it represents a useful
modality for eventual use within the context of automated diagnosis and clinical decision
support. Within the context of rs-fMRI analysis, many studies have utilized functional
network connectivity (FNC) for insight into the interaction of brain networks [26-30], so
FNC represents a useful starting point for the automated diagnosis of SZ [26].

While the use of rs-fMRI FNC for automated diagnosis of neurological disorders like SZ
represents a significant opportunity within the context of clinical decision support [31],
black-box automated clinical decision support systems are unlikely to be accepted by
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clinicians. As such, model transparency represents a critical component of the eventual
implementation of clinical decision support systems. An important aspect of transparency
is the capacity to provide an estimate of confidence in predictions [12]. To this end, one
approach, called Monte Carlo dropout (MCD), has seen increasing use within the domain
of neuroimaging classification [13]. MCD has been used in a variety of studies, including
those focused on cortex parcellation [32], dynamics estimation [33,34], and classification
of autism spectrum disorder [35] and Parkinson’s disease [36]. A more recently developed
alternative to MCD that has seen comparatively little use in the domain of neuroimaging
classification is Monte Carlo batch normalization (MCBN) [14]. A comparison of the two
methods for the domain of neuroimaging classification could provide a useful point of
reference for future studies.

The use of methods like MCD and MCBN that can provide estimates of prediction
confidence will greatly assist the development of transparent clinical decision support
systems. However, in and of themselves, they are insufficient to the task. It is also critical
that automated neuroimaging-based clinical decision support systems be explainable [11,37-
39]. If clinicians are to use clinical decision support systems, they are ethically obligated

to be able to explain the recommendations of such systems to their patients [11]. Both
explainability methods [2,40,41] and more recently developed interpretable models [42—44]
have been used extensively within the domain of neuroimaging analysis. Nevertheless,

with the exception of our preliminary work on this topic [1], explainability methods and
approaches for estimating model confidence have, to our knowledge, not yet been integrated.

As both approaches are necessary for the long-term development of clinical decision support
systems, the lack of integration of confidence estimation approaches and explainability
methods remains a key gap in the current capabilities of the field. In this study, we compare
MCD and the more recent MCBN approaches for estimating classifier confidence to better
understand their relative utility for the domain of neuroimaging classification. We then, for
the first time, integrate two popular gradient-based explainability methods with MCD and
MCBN, evaluating the effects of MCD and MCBN upon the explanations and seeking to
determine the best approach for integrating the two transparency approaches. It is our hope
that this study will provide guidance and a helpful starting point to future studies seeking to
develop more transparent neuroimaging models and clinical decision support systems.

2. Methods

2.1,

Data collection

We used the Functional Imaging Biomedical Informatics Research Network (FBIRN)
dataset consisting of rs-fMRI data from 151 individuals with SZ and 160 healthy controls
(HCs). The dataset has been in a number of previous studies [25,26]. The data was collected
from the University of California at Irvine, the University of California at Los Angeles, the
University of North Carolina at Chapel Hill, the University of New Mexico, the University
of Iowa, and the University of Minnesota. Data collection was approved by the Internal
Review Boards of each study site. Six sites used 3T Siemens scanners, and 1 site used a 3T
General Electric scanner for collection. T2*-weighted functional images were collected with
an AC-PC aligned echo-planar imaging (EPI) sequence (TR = 2s, TE = 30 ms, flip angle =
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77°, voxel size = 3.4x3.4 x 4mm?3, slice gap = 1 mm, 162 frames, 5:24 min). Recordings
were performed while the participants’ eyes were closed.

2.2. Data preprocessing

After collecting the data, we used statistical parametric mapping for preprocessing and used
rigid body motion correction to account for head movement. We spatially normalized the
recordings to an EPI template in the standard Montreal Neurological Institute (MNI) space,
resampling to 3 x 3 x 3mm?3. Lastly, we used a Gaussian kernel with a full width at half
maximum of 6 mm to smooth the recordings.

After completing general preprocessing steps, we began the feature extraction process. We
applied the Neuromark automated independent component analysis (ICA) pipeline [45] of
the GIFT toolbox (http://trendscenter.org/software/gift ) using the Neuromark_fMRI_1.0
template (also available at http://trendscenter.org/data) to extract 53 components (ICs)
associated with different brain regions and structures. The Neuromark pipeline has been
used extensively across a variety of studies within the field [26,28,29]. We then assigned the
components to 7 networks — the cerebellar (CBN), default mode (DMN), cognitive control
(CCN), visual (VSN), sensorimotor (SMN), auditory (ADN), and subcortical (SCN). After
extracting the ICs, we extracted the dFNC values using a sliding window approach. We used
a tapered window created by convolving a rectangle of window size = 40s with a Gaussian
(o = 3). We calculated Pearson’s correlation between each of the 53 ICs at each time step,
resulting in 1378 dFNC features and 124 time steps per study participant. It should be noted
that each of the samples can be assigned to 1 of 28 domain pairs (e.g., connectivity between
CCN and VSN is CCN/VSN). After extracting each of the dFNC features, we performed
feature-wise z-scoring across all subjects.

2.3. Model development

As shown in Fig. 1, we developed a 1D-CNN architecture with input dimensions of 1378
dFNC features x 124 time steps and output dimensions of 2 (i.e., one probability per class).
We applied a 10-fold stratified shuffle split cross-validation approach from Scikit-learn with
an approximately 80—10-10 training-validation-test split. Within each fold, we applied data
augmentation to triple the number of training samples. This involved adding Gaussian noise
(u =0, 0 =0.7) to two copies of each training sample. We used an Adam optimizer with

an adaptive learning rate [46]. The learning rate started at 0.001 and decreased by 50%

after each 15 epochs without an increase in validation accuracy (ACC). We used Kaiming
He normal initialization. To address class imbalances, we used a class-weighted categorical
cross-entropy. We trained the model for 100 epochs, shuffling after each epoch and using a
batch size of 50. We also used a model checkpoint approach to select the model from the
epoch with the highest validation accuracy. When assessing test performance, we calculated
the sensitivity (SENS), specificity (SPEC), and ACC for each fold. These metrics are shown
in equations (1)—(3), respectively.

TP

SENS = TP+ IN

Equation 1
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TN

SPEC = FP+TN Equation 2
TP+TN ‘
ACC = TP+TN+ FP+ FN Equation 3

Where true positives are abbreviated, “TP”, false negatives are abbreviated, “FN”, true
negatives are abbreviated, “TN”, and false positives are abbreviated, “FP”.

2.4. Monte Carlo Dropout

Monte Carlo Dropout (MCD) was first presented in Ref. [13]. At a high level, it involves

the repeated reinitialization of dropout layers during testing to form a distribution of models,
and thus a distribution of test predictions. It hinges upon the realization that dropout can be
used to form a Bayesian approximation. In our implementation, we used 1000 iterations of
dropout during testing to form a distribution of predictions for each sample.

2.5. Monte Carlo Batch Normalization

Similar to MCD, Monte Carlo Batch Normalization (MCBN) hinges upon the realization
that another component of neural networks (i.e., batch normalizations layers) can be used
to generate a Gaussian distribution of predictions. MCBN was first presented in Ref. [14].
MCBN involves several steps: (1) randomly selecting a minibatch of training data, (2)
updating the model batch normalization layers based upon the minibatch of training data,
(3) using the updated model to predict class probabilities for the test data, and (4) repeating
steps 1 through 3 a number of times to form a distribution of predictions for each sample.
We repeated MCBN for 1000 iterations.

2.6. Explainability

In this study, we applied two gradient-based explainability approaches: saliency and layer-

wise relevance propagation.

2.6.1. Saliency—Saliency was one of the first gradient-based explainability methods
[17]. Tt is a fairly straightforward approach that involves taking the gradient of the predicted
probability of a sample belonging to a particular class with respect to each of the input
features. It indicates the effect that a small change in an input feature has upon the output
probability of belonging to a particular class. Larger sensitivity values correspond to a
greater level of importance. Saliency has been applied in both neuroimaging studies [47] and
studies involving other healthcare data types [48,49].

We applied saliency to both the original network and to the network following each iteration
of MCBN and MCD, generating a distribution of values for each feature. Afterwards, we
normalized the absolute value of the saliency for each study participant to make sure that the
saliency summed to 100.

2.6.2. Layer-wise relevance propagation—Layer-wise relevance propagation (LRP)
[50] is a popular gradient-based feature attribution explainability method [51]. It has
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been shown to produce less noisy explanations than saliency [52]. It was first developed
within the context of image classification. However, because it is widely applicable to a
number of deep learning architectures, it has since been applied to a number of data types,
including various neuroimaging modalities [40,53] and other healthcare data involving both
time-series [54,55] and extracted features [56].

LRP involves a series of steps. (1) A sample is passed through a network and assigned to a
particular class. (2) A total relevance value of 1 is assigned to the output node corresponding
to the class of the sample. (3) The relevance is propagated back through the network from
layer to layer using a relevance rule until the relevance is distributed across the input

space. It should be noted that depending upon the relevance rule, there can be both positive
and negative relevance. Positive relevance indicates that a particular input feature provides
evidence for the sample being assigned to the class to which it was assigned. Negative
relevance indicates that a particular input feature gives evidence for a sample being assigned
to a class other than that to which it was assigned. In this study, we used the ap-rule to
propagate only positive relevance (a« = 1, g = 0). The ap-rule is shown in equation (4).

aw,) aw;)
R, = Z(a (@10) —-p (@10) R Equation 4
k

Yo (@w;)’ Yo (@;) '

Where the relevance is split into a positive component with a coefficient « and into a
negative component with a coefficients. The variables k and jindicate a node in a deeper and
shallower layer, respectively. The variables 2 and windicate the activation associated with a
particular node and the weight connecting two nodes in different layers, respectively.

We applied LRP to both the original network and to the network following each iteration
of MCBN and MCD, generating a distribution of relevance values for each feature. After
propagating relevance through the network in our study, we normalized the absolute
relevance for each study participant to make sure that the relevance summed to 100.

2.7. Statistical analyses

We performed six sets of statistical analyses. The first pair of pair of analyses were
performed to gain insight into the effects of MCBN and MCD on model predictions. The
second pair of analyses were performed to gain insight into the explanations spatially, and
the second pair of analyses sought insight into the temporal distribution of importance.

2.7.1. Prediction analyses—To analyze the effects of MCBN and MCD upon model
predictions, we performed two analyses. The first analysis sought to understand whether
MCBN and MCD mean predictions were, in general, different from the predictions of the
basic model. To that end, we performed two non-parametric, two-sided, two-tailed paired
Wilcoxon signed-rank tests comparing whether the predicted probability across MCBN or
MCD iterations for each test participant across folds was greater than the basic model
predicted probability for each test participant across folds. The second analysis sought to
understand whether MCD or MCBN moved samples closer to the decision boundary (i.e.,
50%). We calculated the absolute difference between the 50% decision boundary and the
predicted probabilities for the basic model, the mean predicted probabilities for the MCD
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model, and the mean predicted probabilities for the MCBN model for all test participants
across folds. We then performed non-parametric, two-sided, one-tailed, paired Wilcoxon
signed-rank tests to see if the absolute difference between the mean predicted probabilities
and the decision boundary was less for MCD versus the basic model and for MCBN versus
the basic model. If one of the tests yielded an insignificant p-value, we performed a follow
up test to see if the distance from the boundary was greater.

2.7.1.1. Spatial analyses.: We first sought to understand whether there were differences
in the importance of individual network pairs between HCs and SZs and then sought to
understand whether there were differences in the spatial distributions of importance between
the basic model and the model with MCBN and MCD. (1) For insight into the spatial

effects of MCBN and MCD upon the explanations for HCs relative to SZs, we summed the
total importance (i.e., normalized relevance for LRP and normalized saliency for saliency)
of each dFNC feature across time for each participant. We then averaged the importance
within each network domain pair and across participants on a per-fold basis. We then used
paired t-tests to determine whether there were differences in spatial importance distributions
for HCs versus SZs across folds. We then applied FDR correction (p < 0.05). (2) For

insight into the how representative the importance values associated with the regular model
were of the importance distributions associated with the models with MCBN and MCD,

we again summed the total importance of each dFNC feature across time for each subject.
We then performed a one-sample #test for each participant and calculated the percentage

of participants for which there was a significant difference between the importance values
associated with the regular model and the importance distributions of the model with MCBN
and MCD. We then applied FDR correction (p < 0.05) to the values for each subject

on a per-fold and per-feature basis and calculated the mean percentage of participants

across folds with significant differences. We implemented these analyses for both LRP and
saliency.

2.7.2. Temporal analyses—In our temporal analyses, we first sought to understand
whether there were differences in the temporal distribution of importance over time between
SZs and HCs and next sought to understand whether there were differences in the temporal
distribution of importance between the basic model and model with MCBN and MCD. To
this end, we adapted a method presented in Ref. [15]. We used Earth mover’s distance
(EMD), a distance measure comparing two densities, to calculate the distance for each
participant between the importance of each dFNC feature over time with the average
importance across time. A smaller EMD value indicates that the importance values are more
evenly distributed across time, and a larger EMD value indicates that the importance values
are more concentrated within smaller time windows. In our temporal analyses, we summed
the total absolute importance for each feature on a per-participant basis and normalized that
value such that the total importance summed to 100. We then compared that distribution to
a distribution in which the total importance was distributed evenly over time. (1) We first
sought to determine whether there were significant differences in the temporal distribution
of importance across classes. We calculated the mean EMD values in each network domain
pair across HCs and across SZs on a per-fold basis fold and then performed a paired #test
comparing the values for HCs and SZs. (2) We next sought to determine whether the MCD
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and MCBN importance distributions over time were significantly different from those of
the regular model. To do this, we performed one-sample t-tests comparing the MCD and
MCBN importance distributions for each dFNC feature with the importance value for the
regular model. We next applied FDR correction (p < 0.05) to the values for each participant
on a per-fold and per-feature basis and calculated the mean percent of participants with
significant differences across folds. We repeated these analyses for both LRP and saliency.

3. Analysis of not-a-number (NaN) counts

While our spatial and temporal analyses did provide insight into the distribution of
importance values. They overlooked an important aspect of integrating confidence estimate
approaches with gradient-based explainability methods. We thought it possible that changes
in model gradients associated with MCD might adversely affect the capacity of gradients
to be calculated for saliency or for relevance to be propagated for LRP. To this end, we
performed two analyses. (1) We calculated the percentage of samples for each fold that
returned Not-a-Number (NaN) importance values for the regular model and for at least

one of the 100 iterations of MCD and MCBN. (2) We also calculated the percentage of
MCD and MCBN iterations for each sample that produced NaN values across folds. In the
case of LRP, relevance values might ordinarily be returned in a minority of cases if the
total positive and negative relevance for a particular layer summed to zero, while saliency
should not ordinarily return NaN values. However, in our implementation of LRP with

the ap-rule, positive and negative relevance should not cancel out because only positive
relevance is propagated and negative relevance is effectively assigned a value of zero. The
presence of a large percentage of NaN values for MCD and MCBN values would indicate
that the methods disrupted model gradients to the extent that the explainability methods
became inoperable, which would indicate that they are in some cases incompatible with
gradient-based explainability methods. This could foreseeably occur with MCD if enough
neurons in successive layers were disabled in a configuration such that there was no path to
propagate importance from layer to layer through the network.

4. Results

In this section, we describe the results of our examination of the effects of MCD and MCBN

upon model predictions and performance.

4.1. Model performance

Table 1 shows the mean and standard deviation of the performance of our architecture

across 10 folds without a confidence estimation (i.e., “Regular”’) and with MCD and MCBN.
All metrics had mean levels of performance across folds that were much higher than
chance-level, with average accuracies around 75%. Interestingly, the model sensitivity and
specificity were most balanced for the regular model. In contrast, MCBN and MCD seemed
to favor either sensitivity or specificity. MCBN favored SENS much more than it favored
SPEC, while MCD favored SPEC much more than it favored SENS. Nevertheless, mean
ACC for the model with MCBN was similar to that of the regular model, and the mean ACC
was slightly lower for the model with MCD.
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4.2. Distribution of predictions

Our two-sided, two-tailed Wilcoxon sign-rank tests found that the mean predictions for
MCBN and MCD were significantly different from the basic model (p < 0.001). Fig. 2
shows the distribution of sample predictions across folds for the regular model without
confidence estimation and for the model with MCD and MCBN. The classifier generally
predicted either very high or very low probabilities, even in some cases of misclassification.
However, particularly among SZs, there were some samples that fell along a gradient

of predictions closer to the 50% line. The range of MCD sample predictions was much
wider than the range of MCBN sample predictions. With the exception of samples that

were already near the decision boundary, the standard deviation of the predictions for
MCBN was typically very small. Lastly, in a large number of instances, MCD seemed to
move the sample predictions closer to the 50% decision boundary. This observation was
confirmed by our two- sided, one-tailed Wilcoxon sign-rank tests that found that mean MCD
predictions were much closer to the 50% decision boundary than the basic model predictions
(p <0.001). In contrast, the mean MCBN predictions were farther from the 50% decision
boundary than the basic model predictions (p < 0.001).

4.3. Spatial analysis

Figs. 3 and 4 show the spatial distributions of importance for LRP and saliency, respectively
(i.e., the sum of the absolute value of the importance across all time steps). For both LRP
and saliency, there were several brain network pairs with high levels of importance across
nodes for the classification, including CBN/SCN and SMN/SCN. Other network pairs,
including VSN/SMN, VSN/SCN, and VSN, had high levels of importance for specific brain
regions that they contained. Specifically, (1) the interactions of the VSN with the postcentral
gyrus of the SMN, (2) the interactions of the VSN with the thalamus of the SCN, and (3) the
interactions of the other VSN brain regions with the cuneus region were important. For LRP,
the interactions of the SMIN with the inferior parietal lobule of the CCN were important.
While saliency did not identify this particular interaction as being as important as LRP, it
indicated that the interaction of two SMN brain regions with the inferior parietal lobule of
the CCN was importance.

Additionally, while there were no significant class-specific differences in saliency values,
there were some visible differences in LRP relevance between HCs and SZs. These visible
differences were present in the SCN/CBN, the SCN/SCN, the SCN/SMN, the VSN/SMN,
the SMN/CBN, the CCN/CBN, and the CBN/CBN. Our statistical analysis of class-specific
importance found differences in LRP relevance between HCs and SZs for CCN/SCN and
CBN/SMN for both the regular model and model with MCBN. In contrast, there were more
network pairs with class- specific relevance differences in models with MCD — VSN/VSN,
CCN/ SCN, CCN/CCN, CBN/SMN, and CBN/CBN.

For both LRP and saliency, the overall mean importance across folds seemed to be similar
across the regular model, the model with MCD, and the model with MCBN. This indicates
that at a high level the three methods yield similar levels of importance. However, Fig. 5
provides some higher resolution insight. It shows the average percentage of samples per fold
for which there were significant differences (p < 0.05) between the model with regular LRP
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and the model with MCBN and MCD. Importantly, for saliency, the majority of samples

had regular importance values that were away from the means of the importance values

with MCD and with MCBN. Importantly, there were some differences in the percentages of
samples for regular versus MCD and for regular versus MCBN in a number of network
pairs. Additionally, for LRP, a large number of samples in each fold had significant
differences. This was particularly the case for the regular LRP values versus the MCD LRP
values, and it was true to a lesser extent in the case for the regular LRP values versus the
MCBN LRP values. It should be noted, however, that the use of MCD and MCBN seemed to
have a larger effect upon the saliency values than upon the LRP values.

4.4. Temporal analysis

Figs. 6 and 7 show the mean EMD across folds for LRP relevance and saliency, respectively.
Higher EMD values indicate that importance is more concentrated temporally, while lower
EMD values indicate that importance is more uniformly dispersed over time. Interestingly,
for both LRP and saliency, importance is more concentrated temporally in HCs than in SZs
across the regular, MCD, and MCBN implementations. This is somewhat unexpected for
saliency given that the spatial analyses did not find class-specific differences in importance.
Additionally, it is odd that the MCD relevance values tend to be more concentrated
temporally than those for the regular and MCBN implementations, while the MCD saliency
values seem to be less concentrated temporally than those of the regular and MCBN
implementations. The regular and MCBN implementations generally seem to have similar
values across both LRP and saliency. It should be noted that while these differences

are distinct visually, they are not statistically significant. This indicates that while the
differences in the mean EMD can be visualized, the distribution of EMD values do overlap
to a degree.

Fig. 8 shows the percent of samples per fold with significant difference between the EMD of
the importance for the regular model and with the MCD and MCBN models. Interestingly,
for both LRP and saliency, the MCBN importance distributions were further from the
importance values of the regular model than the MCD importance values. Additionally, the
number of participants with differences was greater for saliency than for LRP.

4.5. NaN value analysis

Lastly, it is important to consider the effects of the confidence estimation approaches upon
the viability of the explainability methods. As such, we examined the number of samples
and iterations per sample of MCD and MCBN that resulted in the production of NaN values.
These results are shown in Fig. 9. Interestingly, saliency with the regular model and with
MCBN did not return any NaN values, while LRP with the regular model and with MCBN
did on one occasion in two of ten folds. For a significant portion of samples, the model

with MCD returned at least one iteration of NaN values for both explainability methods. The
percentage of NaN values ranged from around zero to ten percent of iterations for most folds
across both saliency and LRP, with some folds reaching much higher levels (e.g., up to 50%
for LRP). It should be noted that when a sample returned an explanation with NaN values,
those NaN values were returned for all dFNC features and time steps.
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5. Discussion

In this section, we discuss the performance results of our model and the results of the
effects of MCD and MCBN upon the model predictions. We then discuss the effects of the
respective methods upon output explanations. Lastly, we discuss limitations and next steps
related to our work.

5.1. Model performance

Overall model performance was well above chance-level. Additionally, while MCBN and
MCD were able to provide distributions of predictions for each sample, they seemed to
destabilize the SENS and SPEC of the model. This was a surprising finding relative to
previous studies that have used MCD and MCBN [57], suggesting that the utility of the
methods for improving classifier performance may be somewhat dependent upon the utilized
model and dataset. Relative to the performance of the models developed in Ref. [2] that

had accuracies ranging from 50% to 83%, our model performance was on par to slightly
lower. This could partially be related to the significantly larger dataset size used in Ref. [2].
Additionally, our model performance was below that of [47], which used a novel form of
extracted features.

5.2. Distribution of predictions

Our model generally had somewhat polarized predictions for each class, with extremely high
probabilities of samples belonging to one class and extremely low probabilities of samples
belonging to the other class. While this was the case, there were a number of samples that
were misclassified or that were predicted to be closer to the decision boundary line. The
predictions of MCBN tended to be more stable across iterations and to move the direction
of the predictions further towards the extreme that they already favored. In contrast, the
predictions of MCD generally varied widely and moved samples closer to the decision
boundary. Thus, it seems that for our data and model the use of dropout during testing
more greatly affected predictions than changes in the batch normalization layer values. The
comparatively small distribution of MCBN predictions could also be a symptom of the
dataset that we employed.

5.3. Spatial analysis

We identified a number of brain network pairs useful to the classification of SZ and HCs.
Previous studies have found widespread effects of SZ upon the CBN [2,15,27], SMN [15],
and SCN [2] similar to our results. Additionally, some studies have identified differences
in the VSN/VSN [25,58], VSN/SCN [25,59], and VSN/SMN [25,60] as important to
differentiating SZ from healthy individuals. Specifically, changes in connectivity between
the VSN and thalamus of the SCN have been identified [59]. These findings support the
overall reliability of our model relative to previous studies.

Our findings on the differences between class-specific LRP and saliency results were largely
unsurprising. Given the characteristics of each of the methods. LRP is able to provide
class-specific relevance values when using the ap-rule, so we would expect to see differences
in the relevance distribution between classes. In contrast, saliency just shows the gradient
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associated with the classification, and it is likely that specific regions will have similar
gradients across classes.

Differences between the explanations of the basic model and those of MCD and MCBN
can be attributed to the effects that they had upon the model shown in Fig. 2. Namely,

MCD had a much greater effect than MCBN upon the model predictions. This greater effect
upon predictions implies a greater effect upon the underlying model structure and upon any
resulting explanations.

5.4. Temporal analysis

We found that HCs generally had more temporally concentrated importance than SZs.

This indicates that the aberrant effects of SZ upon brain network interactions tend to be
temporally distributed. This finding contrasts [15], which found effects of SZ upon attention
values of a long short-term memory network to be more temporally localized. It should be
noted, however, that [15] analyzed the temporal distribution of importance for independent
components rather than dFNC. It could indicate that there are temporally localized patterns
of brain interaction found in HCs that are disrupted in SZs. Additionally, this finding is
related to those of other studies that have found effects of SZ upon brain network dynamics
[24,26].

At a high level, the temporal distribution of importance for the regular model and the model
with MCBN tended to be more similar to one another than the temporal distribution of the
model with MCD. However, on a more fine-grained, per-participant basis, there tended to
be a difference between the EMD values associated with the regular model and the EMD
distributions for both the model with MCD and with MCBN. Additionally, these differences
were stronger for saliency than for LRP.

5.5. NaN value analysis

While MCD did not result in NaN-valued explanations in the majority of iterations,

it resulted in NaN-valued explanations much more frequently than MCBN. When the
explainability methods output NaN values, they output NaN values for all features, which
prevented learning anything about the relative importance of the features. In that regard, the
explainability analysis failed, and although the production of NaN-valued explanations can
be tied to the use of MCD, the exact reason why NaN values occurred is not completely
clear. It is feasible that if enough neurons in subsequent layers were disabled via MCD,
there might not be a way to propagate relevance or backpropagation a gradient to the input
of a network, or the denominator of Equation (4) may sum to a total relevance of zero.

As such, although MCD can sometimes improve model performance, the use of multiple
dropout layers can, under some circumstances, disable model gradients, making MCD
incompatible with gradient-based explainability methods. This finding could also explain
the relatively high variance of model predictions that we identified for MCD, and it offers
a key guidance for future studies seeking to integrate confidence estimation methods with
gradient-based explainability methods. Namely, MCD may be incompatible with gradient-
based explainability methods in some applications.
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6. Recommendations for integration of confidence estimation approaches
and explainability methods

While MCD has seen more widespread use than MCBN, its effects upon model gradients
can prevent its effective integration with explainability methods, and it would be necessary
to discard MCD iterations with NaNs in an implementation setting. As such, MCBN
represents the more viable of the two methods for combination with gradient-based
explainability methods. Within the context of applying MCBN with explainability methods,
there are not large differences between explanations with MCBN relative to explanations
for a regular model when those explanations are averaged across individuals and folds.

As such, during model development, it may be unhelpful to integrate the two methods.
However, we also found that on a per-individual basis, the spatial and temporal distributions
of importance values associated with a traditional deep learning model tend to not be
representative of the overall distribution that results when the model is combined with
MCBN. As such, in a clinical implementation in which clinicians would be examining
explanations for an individual patient and in which they would be evaluating model
confidence estimates, a proper explanation of the confidence estimates would likely require
an aggregate explanation that combined (e.g., via averaging) output explanations for each
iteration of confidence estimation approaches. Additionally, some explainability methods,
like saliency relative to LRP, tend to be noisier than others [52]. This tendency seems

to be amplified when combined with confidence estimation approaches, as we found

that generally the distributions of MCBN saliency were significantly different from their
corresponding regular model importance values in more individuals than were those of LRP.

6.1. Limitations and next steps

While explainability is needed for the development of clinical decision support systems
[11,37-39], a number of researchers have indicated that current explainability approaches
are insufficient for use in a clinical setting [38,61]. There are valid concerns associated
with their critiques. Nevertheless, for the purposes of this study, we only sought to provide
a starting point to the integration of confidence estimation approaches and explainability
methods. Further developments will be needed within the context of both confidence
estimation and explainability in future years. However, they will eventually need to be
integrated, and it is better that the field begin considering that integrative process sooner
rather than later. While existing confidence estimation methods have had some popularity
within the context of neuroimaging classification in recent years, they require repeated
predictions and can be computationally intensive. Their repeated combination when directly
paired with repeated output of explanations can be doubly intensive to the point of
impracticality. This is, again, an example of how novel developments will be needed for
both fields in the coming years.

7. Conclusion

In this study, we combined model confidence estimation approaches with explainability
methods for the first time to help address the need for greater transparency in neuroimaging-
based clinical decision support systems. We used two confidence estimation approaches —
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MCD and MCBN. We further combined the two approaches with saliency and LRP for
explainability. Our findings indicate that MCBN obtains comparable or better classification
performance than MCD. Additionally, we found that MCD often adversely affected model
gradients, while MCBN did not. We also uncovered spatial and temporal effects of SZ
upon brain activity using our approach. It is our hope that this study will provide a starting
point to the field on the integration of confidence estimation and explainability methods,
provide useful guidance for future studies, and accelerate the development of transparent
neuroimaging clinical decision support systems.
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Fig. 1.
CNN Architecture. The model has sections (i) and (ii) for feature extraction and

classification, respectively. Layers in section (i) are repeated twice for different
hyperparameters. The first and second pairs of convolutional layers (conv1d) have a kernel
size of 10 and 16 and 24 filters, respectively. Each pair of convld layers is followed by a
max pooling layer with a pool size of 2 and spatial dropout (rates = 0.3 and 0.4). Layers

in section (ii) include 3 dense layers with 10, 6, and 2 nodes. Yellow circles with “BR”,
“R”, and “S” correspond to layers with batch normalization/ReLU, ReLU, and softmax
activations, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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Fig. 2.

Distributions of Sample Predictions. Panel A shows the model predictions without
confidence estimation. Panels B) and C) show the model predictions with MCD and MCBN,
respectively. The predictions for samples with true labels of HC and SZ are shown in red

and blue respectively, and samples are aligned in the same order across panels such that each

panel can be visually compared. It should be noted that the points in Panels B and C reflect

the mean of predictions, and the error lines reflect one standard deviation above and below

the mean. Samples are grouped from left to right based on their folds, with a black dashed

vertical line separating samples for each fold. The y-axis reflects the probability of a sample

belonging to the HC class, and the black dashed horizontal line indicates the 50% boundary

point between classes. As such, blue samples above the boundary point are misclassified,
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and red samples below the boundary point are misclassified. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this

article.)
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Fig. 3.

Mean of Total LRP Relevance Across All Timesteps. Panels A, B, and C reflect the mean
relevance of the regular model, the model with MCD, and the model with MCBN for SZs.
Panels D, E, and F show the same values for HCs. Networks are included on the x- and
y-axes and are separated by black lines. Network pairs surrounded by white boxes have
statistically significant differences between HCs and SZs. Lastly, all panels share the color
bars to the right of Panels C and F. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 4.

Mean of Total Saliency Across All Timesteps. Panels A, B, and C reflect the mean saliency
of the regular model, the model with MCD, and the model with MCBN for SZs. Panels D,
E, and F show the same values for HCs. Networks are included on the x- and y-axes and

are separated by black lines. All panels share the color bars to the right of Panels C and F.
(For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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Fig. 5.
Sample Level Differences in Spatial Importance. Panels A and B show the mean percent

of samples per fold with differences (p < 0.05) between their regular relevance values and
their MCD and MCBN relevance distributions, respectively. Panels C and D show the mean
percent of samples per fold with differences (p < 0.05) between their regular saliency values
and their MCD and MCBN saliency distributions, respectively. The color bars to the right
of Panels B and D are shared by Panels A and B and Panels C and D, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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Fig. 6.
Mean of Relevance EMD over Time. Panels A, B, and C reflect the mean EMD of the

regular model, the model with MCD, and the model with MCBN for SZs. Panels D, E,

and F show the same values for HCs. Networks are included on the x- and y-axes and are
separated by black lines. All panels share the color bars to the right of Panels C and F. (For
interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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Fig. 7.
Mean of Saliency EMD over Time. Panels A, B, and C reflect the mean EMD of the regular

model, the model with MCD, and the model with MCBN for SZs. Panels D, E, and F show
the same values for HCs. Networks are included on the x- and y-axes and are separated by

black lines. All panels share the color bars to the right of Panels C and F. (For interpretation
of the references to color in this figure legend, the reader is referred to the Web version of
this article.)
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Fig. 8.
Sample Level Differences in Temporal Importance Distributions. Panels A and B show the

mean percent of samples per fold with differences (p < 0.05) between their regular relevance
EMD values and their MCD and MCBN EMD distributions, respectively. Panels C and D
show the mean percent of samples per fold with differences (p < 0.05) between their regular
saliency EMD values and their MCD and MCBN saliency EMD distributions, respectively.
The color bars to the right of Panels B and D are shared by Panels A and B and Panels C and
D, respectively. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)
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Fig. 9.
Distribution of NaN Values. Panels A and D show the percent of samples per fold with at

least one NaN value for LRP and saliency, respectively. The values for the regular model,
the model with MCD, and the model with MCBN are shown in black, red, and blue,
respectively. Panels B and C show the percent of iterations per sample of each fold that
produced NaN LRP relevance values for MCD and MCBN, respectively. Panels E and F
show the percent of iterations per sample of each fold that produced NaN saliency values for
MCD and MCBN, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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Table 1

Model performance results.

SPEC SENS ACC

Regular 75.63 £ 14.64 7438 +11.34 75.00 +07.26
MCBN  70.63+1532 79.35+06.87 75.00 +09.06
MCD 78.13+£13.76  68.13+13.76  73.13 +07.93
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