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This study employs the hydraulic bulge test in combination with analysis to extract the stress—strain response
of an anisotropic Al-6022-T43 sheet metal. Tests are performed in a facility with a 150 mm aperture and the
deformation of the bulge is continuously monitored via 3D digital image correlation. The relatively high ductility
of this alloy enabled the bulge to deform well past a pressure maximum, reaching a strain of 0.66 at rupture.
After the pressure maximum, deformation localized around the apex and the strain profile acquired an increas-
ingly conical shape. Anisotropy is modeled with Barlat’s YId04-3D yield function, calibrated through a set of
independent experiments. The measured strains and curvatures at the apex are used in conjunction with mem-
brane equilibrium and Y1d04-3D to extract the material stress—strain response. The procedure adopted does not
assume an equibiaxial state of stress or strain. A finite element model of the bulge test that includes the draw
bead and clamping hardware is used to simulate the experiments. The model accurately reproduces all aspects of
the experiment including the strain profile and its localization after the pressure maximum. A parametric study of
the problem revealed that the particular anisotropy of the analyzed sheet did not influence the overall behavior
of the bulge, but affects the onset of failure in the presence of MK-type thickness imperfections. The amount of
material slipping over the draw bead during pressurization, however, is shown to have a more significant impact
on the bulge response and the extracted stress—strain response.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The hydraulic bulge test is the most direct means of measuring
the material stress—strain response of sheet metal to strains far larger
than what is possible in other tests. It typically involves a circular disc
clamped around its perimeter that is inflated by hydraulic pressure to
form a bulge. The nearly-equibiaxial stress state at the apex, and the
continuous reduction in local radius as the bulge height increases, de-
lay wall thinning and the limit pressure instability. The strain and ra-
dius at the apex of the bulge, used in conjunction with a flow rule and
the membrane equilibrium equation, enable extraction of the stress—
strain response. Measurements of the strain and radius were initially
performed manually (e.g., [1-3]) making the test cumbersome and lim-
iting its wider use. The introduction of a spherometer (e.g., [4]) and
similar devices (e.g., [5,6]) simplified the acquisition of these measure-
ments and made the test more accessible.

The more recent development of full-field optical methods like digi-
tal image correlation has expanded the measurements that can be made
and further simplified their extraction, providing new impetus to the
use of the bulge test (e.g., [7-10]). The ability to measure the exact
shape and strains at the apex coupled with numerical modeling of the
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test has enabled analysis of anisotropy, through thickness effects, strain
rate, and failure ([10-14]).

Analytical considerations of the bulge test have an equally long his-
tory, beginning with Gleyzal [15] and Hill’s [16] extension of an approx-
imated but insightful analysis of the problem. Chakrabarty and Alexan-
der [17] pushed Hill’s analysis forward by considering the effects of
material hardening, while others investigated factors such as thickness
effects, elliptical apertures, etc. (see [3,18-20] among others).

This paper presents a combined experimental and analytical proce-
dure for extracting the stress—strain response of an anisotropic sheet
metal using the bulge test. The procedure follows the general guide-
lines of Chen et al. [12]. Differences in the material properties and more
uniform clamping provide a simpler setting for the analysis and bring
to fore new insights about the bulge test. The material analyzed is Al-
6022-T43, an alloy aimed at automotive sheet metal forming [21]. In
this heat treatment it has a rather low initial yield stress, but exhibits
significant hardening and greater ductility than other aluminum alloys
(see basic properties in Table 1 and nominal stress—strain response in
Fig. A1). The material can be further hardened following forming by
heat treatment such as that experienced during the paint bake cycle.
Experiments on 1.20 mm thick sheets are conducted in our 150 mm (6
in) aperture bulge testing facility, using stereo DIC to continuously mon-
itor the evolution of deformation.
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Fig. 1. Cross section and selected dimensions of the bulge test facility.

Table 1
The rolling direction material parameters of Al-6022-T43 sheet analyzed.

t, in (mm) E Msi (GPa) v 0, ksi (MPa) o, ksi (MPa) ¢,

0.0474 (1.20) 10.2(70.3) 0.32 22.5(155) 37.9 (262) 0.227

The anisotropy of the sheet is established using an independent set
of experiments, which are used to calibrate the Yld04-3D non-quadratic
yield function of Barlat et al. [22]. A membrane stress state is assumed
to exist at the apex but neither an equibiaxial state of stress or strain is
assumed. Instead, the stress—strain response is extracted incrementally
using the measured strains and radii of curvature in the two principal
directions together with the constitutive and equilibrium equations.

The extracted stress—strain response and the Y1d04-3D constitutive
model are then implemented in a finite element model of the bulge test
and used to numerically simulate the bulge experiment and to assess the
onset of failure. Comparison of the measured and calculated response is
used to evaluate the whole process. In the way of evaluating commonly
used extrapolations of the uniaxial response, three such extrapolations
are compared with the one extracted from the bulge test.

2. Bulge experiments and results

The bulge experiments are performed using the custom-built hy-
draulic bulge testing facility shown schematically in Fig. 1. The design
was influenced by the Kuwabara facility in [23]. The base plate has
a 229mm (9 in=2R,) diameter recess that holds the sheet metal test
specimen. It is locked in place by a clamping ring that presses the spec-
imen against a draw bead machined into the base plate at a diameter
of 196 mm (7.72 in=2R;). The contact surface of the clamping ring
has a radius of 8.0mm (0.315 in). Clamping is achieved by tighten-
ing eight bolts that engage a closing plate at the top and thread into
the base plate as shown in Fig. 1. The arrangement leaves a 150 mm
(6.0 in=2R) aperture in which the bulge develops (in accordance with
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ISO2014 [9] guidelines). The system is pressurized with light oil using
a closed-loop servo-hydraulic pressurization system operated under vol-
ume control (see Fig. 2 of [12]).

DIC is used to continuously monitor the bulge throughout the test.
The system consists of two 5 MP digital cameras equipped with 50 mm
lenses set at an f/16 aperture. The setup provides a 70 mm (2.76 in)
depth of field and a 80 x 70 mm (3.15 x 2.76) measuring area. Images
were acquired at 2 s intervals initially but faster as failure approached.
Deformations were calculated from the recorded images using GOM
ARAMIS v6.3 [24]. A facet size of 40 x 40 pixels (~1.19 x 1.19 mm-
0.047 x 0.047 in) and a facet spacing of 10 pixels (0.30 mm-0.012 in)
provide a good balance between resolution and accuracy at the apex of
the bulge.

Fig. 2 summarizes the measured results from one of the bulge exper-
iments on Al-6022-T43 discs (experiment BT1). In Fig. 2a the pressure,
P, is plotted against the bulge height, h, normalized by the aperture
radius, R. The pressure rises nearly linearly with h up to about 55 bar
(800 psi) when the rate of increase slows down. The decrease in the rate
at which pressure increases continues until a pressure maximum devel-
ops at 64.0 bar (928 psi), which is indicated on the response by a caret
“”_Deformation continues beyond this critical state with the pressure
decreasing until it ruptures at 63.79 bar (925 psi).

The radii of curvature in the rolling (p,/R) and transverse direction
(p,//R) at the apex are plotted against the normalized height in Fig. 2b.
Each is determined from the DIC data by fitting a circle to the points that
are located within 15.2 mm (0.6 in) of the apex (size chosen to minimize
errors-see [10]). The two radii drop significantly with h, reaching a
value close to R just before rupture; notably they remain approximately
equal to each other throughout the experiment.

The measured logarithmic strains at the apex in the rolling (e,.) and
transverse (e,/) directions are plotted against the pressure in Fig. 2c (av-
eraged over a distance of 7.6 mm (0.3 in) from the apex). The two strains
differ throughout the test, presumably because of the anisotropy in the
sheet. The results indicate that the rolling and transverse directions are
the principal directions. The through thickness strain at the apex, e,
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Fig. 2. Summary of experimental results from a bulge test (BT1): (a) Pressure versus normalized apex height. (b) Normalized radii of curvature at the apex in the
rolling (x’) and transverse (y’) directions. (c) Pressure versus measured logarithmic strains at the apex in the x” and y’ directions. (d) Pressure versus approximate

through-thickness logarithmic strain at the apex.

is then directly obtained from incompressibility and is plotted against
pressure in Fig. 2d. The strain rate at the apex was about 4 x 10451 at
lower pressures and increased with time to 30 x 10~#s~! at the end of
the test.

A second bulge test (BT2) was performed on material from the same
sheet and exhibited essentially the same behavior quantitatively and
qualitatively. Images in this experiment were acquired at the much
faster rate of 5/s from just before the pressure maximum until failure,
providing for a much more detailed analysis of the evolution of defor-
mation. Fig. 3a shows the recorded pressure plotted against the bulge
height. The response is nearly identical to that of BT1 in Fig. 2a, but
extends slightly further past the limit pressure. The pressure reached
a maximum value of 64.26 bar (932.8 psi) and dropped to 63.81 bar
(925.2 psi) at failure.

The evolution of the bulge profile along a meridian oriented along
the diagonal of the rectangular area monitored by DIC is plotted in
Fig. 3b with r being the radial distance from the center of the disc.
The profiles correspond to the pressure and bulge height marked with
numbered bullets in Fig. 3a. Profile @, drawn in red color, corresponds
to the pressure maximum. The curvature of the partial bulge profiles
shown increases continuously but less so at higher pressures. The shape
of the profiles is nearly circular after the pressure maximum also. Fig. 3¢
shows the von Mises equivalent strain (e,) along the ten profiles. In the
first three stages the strain gradually increases but each profile remains
rather flat. The strain at the apex becomes increasingly greater in pro-
files @-@ while the strain further from the apex grows far less rapidly.
In profile @ at the pressure maximum, the strain at the apex is 0.53 and
drops down to 0.29 at r ~ —0.64R. Following the pressure maximum,
the strain profiles take on a more conical shape with higher deforma-
tion becoming increasingly concentrated around the apex and decreas-
ing nearly linearly outward from there. This of course implies that wall
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thinning accelerated after the pressure maximum at the apex. The high-
est strain recorded just before failure is 0.66. It is worth pointing out that
discreet local thickness measurements performed in the neighborhood
of such ruptures, were found to be in good agreement with the values
evaluated from the DIC measured surface strains using incompressibil-
ity. Interestingly, Brown and Sachs [1] reported similar conical strain
profiles in OFHC copper sheets in their classic work on the bulge test.
They measured the strains manually from the deformation of a pho-
togrid. Similar profiles were also reported recently in [10] and [13],
both using DIC to monitor the strains in bulge experiments on DC06
and DX54 steels respectively.

Fig. 4 shows one of the tested specimens (BT2) removed from the
testing facility. In these experiments, failure consistently initiated at the
apex and developed into a crack that initially was nearly normal to the
rolling direction of the sheet. Driven by the energy stored in the rela-
tively compliant test system, the crack propagated dynamically. In this
case the crack propagated along an essentially linear path normal to
the rolling direction. In the last image recorded just before rupture, the
specimen remained intact with no observed signs of localization. It is
worth pointing out that the clamped outer rim of the specimen exhibits
no wrinkling, indicating that slipping at the draw bead was minimal.
Furthermore, the uniform width of the rim outside the draw bead sug-
gests that asymmetric slipping was also minimal, unlike what was expe-
rienced in the Al-2024-T3 specimens reported [12] (e.g., see specimen
in Fig. C1).

2.1. Data analysis

Assuming that a membrane state of stress exists at the apex, the
stresses in the rolling and transverse direction (rx,,ry,) are related to
the pressure and the geometry of the bulge through the equilibrium
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Fig. 3. Evolution of bulge deformation in experiment BT2. (a) Pressure versus
apex height response, (b) deformed surface profiles across the apex, and (c) cor-
responding equivalent strain profiles (profiles correspond to numbered bullets
on the response in (a)).

equation

T T

Wy _P M
Py’ Py t

where t is the current wall thickness. Note that the stresses and radii in
the two directions can be different because of anisotropy [20]. Following
[12] the following stress ratio is formed,

Ty = ATy (2a)
so that from Eq. (1)
(L ap (L . _>
Px t Px Py
It’s worth noting Egs. (2) are simpler than in [12] because {ex,,ey}
are the principal strains. Using the calibrated anisotropic yield function,

@, in the flow rule the instantaneous strain ratio is related to the stress
ratio through

(2b)

Ty = —

-1
a
. ; + —) and 7

Py

de, 9o /o,

E_W:r(a) (3)
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Fig. 4. Experiment BT2 specimen after the test.

(in the calibration scheme adopted @ defined in Eq. (9) is evaluated
iteratively as described in Section 3).

The instantaneous strain ratio is evaluated from the measured strains
by assuming the elastic deformations to be negligibly small. Eq. (3) is
solved numerically for « for each strain increment and the correspond-
ing stresses follow from (2). The yield function is then used to evaluate
the equivalent stress, z,, and the equivalent plastic strain increment is
calculated as follows:

e Tode?, + ryrdef), .

“

Te

In this fashion the equivalent plastic stress—strain response of the
material is produced incrementally.

The measured data are also used to generate stress—strain responses
for the isotropic yield functions of von Mises and Hosford [25] with
an exponent of 8. For these purposes the apex of the bulge is assumed
to form a spherical cap of radius p, which is calculated from the DIC
data by fitting a sphere to the coordinates of all points within a 0.6-in
(15.2 mm) radius of the apex. Thus the stresses are given by

Pp
n=n=o-=1 (52)
and the strains are averaged so that
dey =de, = (deys +dey)/2 and de, = 2de;. (5b)

3. Constitutive models and calibration

As in our past works dealing with the deformation, localization and
failure of thin-walled aluminum alloy structures, the anisotropic Yld04-
3D model of Barlat et al. [22] is adopted in the present analysis on
Al-6022-T43 (see [12,26,27]; [28-31] who used Y1d2000-2D for shell
element models; and [32] who used an extension of the last model in a
3D setting, Y1d2000-3D). Hosford’s isotropic non-quadratic yield func-
tion expressed in terms of the principal deviatoric stresses is given by:

|s1—s2|k+|s2—s3|k+|s3—sl|k=20'llf. ©)

Barlat et al. [22] introduce anisotropy through two linear transfor-
mations to construct the tensors S’ and S’” from the Cauchy stress as
follows:

S'=C's=C'"Teo=L'6c and " =C"s=C"To = L"s )
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where C’, C”’, T, L’, L’’ are transformation tensors. T transforms o to
s and C’, C”’ contain the following anisotropy parameters.

0 ¢, —¢; 0 0 0
—ch, 0 —cb 0 0 0
c - =k, ¢ 0 0 0 0
00 0 0 g o of
0 0 0 0 Cqs ?
| 0 0 0 0 0 €66 |
0” -t —0;13 0 0 0
-5 0 —c5; 0 0 0
" - =l = 0 0 0 0 ®
] o 0 0 ¢, 0 0
0 0 0 0 C:ISIS 0
"
| 0 0 0 0 0 €66 |

The yield function in terms of the principal values of S’ and S’ then
becomes:

® = [(‘S{ - s’

+‘S§ - S{’)k + ‘S; - S;’)k + ‘S; - Sg’)k

A

where again k is assigned the value 8. Details about the derivations and
the derivatives of the yield function with respect to the stress compo-
nents can be found in [22] and [33] (model implemented in a subroutine
by Yoon [34]).

The anisotropy parameters are established from a set of independent
tests on specimens extracted from the same sheet that the bulge test
discs originated from. The calibration involves the following three sets
of experiments:

k

k k
! " ! "
+|si-sy| + |51 - s

k k
+|S;—S;’ +|S; - s +|S;—sg’ ©

(a) Seven uniaxial tests on specimens oriented at 15° intervals between
the rolling and transverse directions. The measured true stress-
logarithmic strain responses are shown truncated in Fig. A2a and
the corresponding axial-transverse strain responses in Fig. A2b.
Three plane strain tests on specimens with the geometry shown
in Fig. A3a oriented along the rolling, transverse, and 45° direc-
tions. The estimated axial stress-measured logarithmic axial strain
responses, 7, — e, are plotted in Fig. A3b.

The bulge test itself, from which the strain ratio and the extracted
stresses at the apex are used. Fig. A4 plots the measured strains
{ey(P), e, (P)} against each other. In the regime of interest to the
calibration they are linearly related with a ratio of 1.18.

(b)

(©

More details on the calibration procedure can be found in
[12,22,27].

For each of the 10 experiments under (a) and (b), we calculate the
stress state and strain ratios in the material coordinate system at a cho-
sen value of plastic work (WP =10.3 MPa-1500 psi). The yield function
(9) is used to calculate the equivalent stresses in terms of the unknown
constants {c’;,c”;}. Error functions are generated for each experiment,
comparing the calculated equivalent stresses to the rolling-direction uni-
axial flow stress (z,) at the same value of plastic work. The stress state
of each experiment is used in the flow rule to calculate the strain ratios
again in terms of the constants {c'i}-,c”i}-}. Additional error functions are
formed that compare these strain ratios to the values measured in the ex-
periments at the chosen value of plastic work (see Appendix A in [12] for
details; a similar set of experiments, without the bulge test stresses, was
used by [35] to calibrate the Y1d2000-2D model for the same alloy with
a T4 heat treatment.)

Data from the bulge test are used to inform the yield surface in the
neighborhood of the equibiaxial stress state. The experiment provided
the strains and radii of curvature at the apex, but the stresses must
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Fig. 5. Work contours of the calibrated Y1d04-3D constitutive model in the
rolling-transverse stress space at varying levels of shear. Experimental data used
in calibration are included with solid bullets (T =tension, PS=plane strain,
Bu =bulge test).

be established through an iterative process that involves recalculating
{c’ij,c”ij} in each iteration. Initially, the stress state is assumed to be
equibiaxial (z,=Pp/2t), the strain ratio is set at 1.0, and these values
are used to generate error functions similar to those described above.
The following weighted sum of the 22 error functions is then gener-

ated
2 2
Teg Ry
g(c{j,c;j'.)=zwm<re, _1) +an<R -1). (10)
m x'0 m n ex n

Here the first series represents errors from the m flow stresses, the
second the errors from the n strain ratios, and {w,,®,} are weight func-
tions that represent the confidence level assigned to each particular ex-
periment. é'(c’ij,c”ij) is minimized using the NMinimize routine of Math-
ematica to provide a first estimate of the constants {c’ij,c”ij}.

The stress history at the bulge apex is now recalculated using the
newly calibrated yield function and flow rule in Egs. (1)—(3). The new
stress state and strain ratio of the bulge apex at the chosen value of plas-
tic work are used to update the corresponding error functions. The min-
imization of the global error function (10) is then repeated to generate
a new set of {c’;;,c”;}. The bulge apex variables are again recalculated
and compared to the results of the previous iteration cycle; when the
two sets of results agree the calibration process is considered to have
converged.

The values of the anisotropy constants determined from this calibra-
tion process are listed in Table 2. In the absence of through thickness
shear measurements the constants {c"‘ 2 C;S’ 614’ c;/s} were set at 1.0. It
is worth pointing out that the estimated values of the constants are in-
fluenced to some degree by the weights {w,,,w,} used in (10) and by
the initial guess of the bulge apex stresses.

In general the results of such calibration processes are not unique.
To further evaluate the present solution the calibrated yield function
and some of the corresponding experimental points are compared in
Fig. 5 (T =tension, PS=plane strain, Bu=bulge test). Plotted are the
work contours in the 7,7, plane both normalized by the measured
stress in the rolling direction, 7,,, at WP =10.3 MPa (1500 psi) for dif-
ferent values of normalized shear stress (z,/7,). The comparison of
experimental data and the calibrated work contour is quite favorable.
Fig. 6 shows a similar comparison of the work contours corresponding
to the isotopic version of the yield function in Eq. (6) (H8) with the same
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Table 2
Y1d04-3D anisotropy parameters for Al-6022-T43.
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The calibrated yield function is now used to extract the material
stress—strain response from the experimental results from the apex of
the bulge test reported in Section 2. Eq. (3) is solved numerically for the
stress ratio a for measured values of the strain ratio. « is then used in Eq.
(2) to calculate the two stresses {r,,,7,.}. They are plotted against the
measured logarithmic plastic strains in the rolling and transverse direc-
tions in Fig. 7. In contrast to the corresponding results for Al-2024-T3
(F10b in [12]), the responses are noticeably different, which is a man-
ifestation of the more significant anisotropy in the Al-6022-T43 sheet
metal.

The calculated stresses are now used in the calibrated yield func-
tion (9) to establish the equivalent stress, 7,. The corresponding plastic
equivalent strain, e, is subsequently evaluated using Eq. (4). The result
of this process is the stress-plastic strain response plotted in Fig. 8 and
identified by Y1d04-3D. The response has a yield stress of about 138 MPa
(20 ksi) and rises to 379 MPa (55 ksi) at the terminal strain of just over
0.60. Included in the figure are the measured uniaxial responses in the
rolling, x’, and transverse, y’, directions. They exhibit a similar harden-
ing to the rolling direction, tracing a slightly higher stress trajectory,
and the transverse direction slightly lower. Both terminate at strains of
about 0.20, which demonstrates the advantages of using the bulge test
to establish the material response of sheet metal.

We include in Fig. 8 the stress-plastic strain response extracted from
the bulge test results using the Hosford yield function (H8) (i.e., by ne-
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e

Fig. 8. Extracted equivalent stress-plastic strain response using the calibrated
Y1d04-3D anisotropic yield function, and the isotropic vM and H8 functions.
Included for reference are stress-plastic strain responses measured in uniaxial
tension tests in the rolling and transverse directions.

glecting anisotropy and assuming the apex to be a spherical cap of radius
p as in Egs. (5); under these assumptions the von Mises yield function
(vM) produces the same response). The response follows a similar tra-
jectory, tracing slightly lower stress levels than the Y1d04-3D results.
This can be explained by comparing the work contours corresponding
to 7, =0 of the three models in Fig. 6. In the neighborhood of equib-
iaxial stress the three contours are very similar which leads to similar
equivalent stress for the extracted response. The implications of this sim-
ilarity on the numerical simulation of the bulge test will be discussed in
Section 4.

In the sheet metal manufacturing practice the bulge test is often
avoided. The alternative method of extracting the material response
from the necked regime of a uniaxial test using inverse analysis (e.g.,
[27]) is even more challenging and less common. Instead, the stress—
strain response from a uniaxial test is often extrapolated using one
of the traditional fits such as that of Swift [36] or Voce [37]. The
first,  =k(A + eP)N, assumes power law hardening and in the second,
t=a+ (r, —a)exp(— beP), the hardening decays exponentially at higher
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Table 3
Parameters for the Swift and Voce fits of the uniaxial stress—strain response.

Swift Voce

k MPa (ksi) A N a MPa (ksi) 7, MPa (ksi) b

483.4 (70.09) 0.0051 0.2512 347.3(50.36) 163.0(23.78) 9.4587
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(ksi) Te
504 (MPa)
? +300 ?
404 o
Uniaxial-x'
304 1200
204
100
10 . : T T T T
0 01 02 03 04 05 b 0.6
—> e

e

Fig. 9. Comparison of the equivalent stress-plastic strain response evaluated
from our bulge test, and extrapolations of the uniaxial tension response of Swift
and Voce and a combination of the two. The uniaxial response in the rolling
direction is included for reference. The solid bullets identify the values of equiv-
alent stress and strain at the pressure maximum predicted by Hill’s approximate
analysis of the bulge (see Appendix B).

strains. In the way of evaluating their performance against the stress—
strain response extracted from the bulge test, the two expressions are
fitted to the uniaxial response measured in the rolling direction.

The fit constants are listed in Table 3 and the resultant stress-plastic
strain responses, extrapolated to a strain of about 0.60, are plotted in
Fig. 9 together with the response extracted from the bulge test. Both
fit the uniaxial and bulge responses well up to a plastic strain of about
0.20. But at higher strains the Swift extrapolation significantly overesti-
mates the bulge response whereas the Voce extrapolation saturates early
and considerably underestimates the hardening (see also [13,38]). Dif-
ferences of this extent in plastic modulus can lead to significant errors
in the prediction of instabilities such as localization and wrinkling that
are common in sheet metal forming. More recently, some authors have
opted to fit the uniaxial stress—strain response using a combination of
Swift and Voce (e.g., [39]). Included in Fig. 9 is such an extrapolated fit.
As expected, it is much closer to the response extracted from the bulge
test than the two individual fits. It follows the measured response up to
a strain of 35% and overestimates the tangent modulus at higher strains.

4. Finite element modeling

A finite element model of the bulge test is developed in ABAQUS
and the experiment reported in Section 2 is simulated using the cali-
brated Y1d04-3D yield function and the extracted stress—strain response.
The model incorporates the precise geometry of the experimental set
up including the draw bead. Fig. 10a shows the finite element mesh of
only one quarter of the model for clarity. The disc rests on the draw
bead of the circular base located at R; =98 mm (3.86 in) as shown in
Fig. 10b. This figure includes the clamping ring which has an inner ra-
dius R=76.2mm (3.00 in) and a rounded profile radius on its inner
surface of 8.0mm (0.315 in). Chen et al. [12] demonstrated that even
small amounts of slipping at the draw bead can influence the results of
the bulge test. Accordingly in order to examine this effect in the present
study the model includes the draw bead and the mating groove in the
clamping ring.
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Fig. 10. (a) One quarter of the mesh adopted for our finite element model. (b)
Close-up cross section of the model in the vicinity of the clamping ring and draw
bead (indicated dimensions are in mm).

The disc is discretized with eight-node, reduced integration, lin-
ear solid elements (C3D8R). The base, including the draw bead, and
the clamping ring are modeled as analytical rigid surfaces. Surface-to-
surface frictional contact with finite sliding is adopted with Coulomb
friction coefficient x. An exponential “softened” contact pressure-
overclosure relationship is used. The disc is discretized with a mesh with
the following characteristics:

¢ 5 elements are used through the thickness.

e A 1-inch square section in the center of the disc has a more refined,
nearly-isotropic mesh with 42 x40 elements. A narrow (2w; x 2L;)
thickness imperfection with thickness (t, — At) is introduced at the
center of this area to facilitate localization.

¢ A nearly-uniform angular distribution of elements of 2.195° is used
in the rest of the disc.

¢ The axial distribution of elements outside the central zone is as fol-
lows:

The circular zone, r < 30.9 mm, that surrounds the fine square

mesh has 16 elements with a bias ratio of 2.

For 30.9 < r < 72.4 mm there are 20 elements with a bias ratio

of 1.2.

For 72.4 < r < 98.3 mm there are 30 elements with a bias ratio

of 4.

For 98.3 < r < 114.3 mm there are 20 elements with a bias ratio

of 4.
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The initial cavity between the flat disc and the base is enclosed with
25,172 four-node fluid elements F3D4.

The disc is first clamped in place in a manner similar to that followed
in the experiment. The base is fixed in space and the clamping ring is
incrementally displaced downward while keeping the volume of fluid
in the cavity constant. In the process a narrow ring of the disc engages
the draw bead and the mating groove eventually “locking” the disc in
place. Concurrently, the pressure in the cavity increases causing a small
vertical displacement to the free section of the disc. When the clamping
ring reaches the desired position it is fixed in space for the remainder of
the simulation. Subsequently the model is pressurized by incrementally
prescribing the flux of fluid into the cavity (volume-controlled pressur-
ization).

4.1. Numerical simulation of the bulge test

The main characteristics of the solution are illustrated through the
results of a simulation that uses the calibrated Yld04-3D constitutive
model. Fig. 11a shows the calculated pressure-height (P — h/R) response.
The model has no imperfection and a Coulomb coefficient of 0.4 is
adopted. The calculated response tracks that of the experimental very
closely (see Fig. 12) from the beginning to the end, and they are
not included in this figure for clarity. A pressure maximum develops
at 64.35bar (933.05 psi), which compares with 64.26 bar (932.8 psi)
recorded in the experiment. The analysis does not employ a failure cri-
terion so the response is followed further than the experiment well past
the pressure maximum. The evolution of the bulge profile is illustrated
in Fig. 11b that shows the complete shape of a meridian at the pressure
and height values marked with numbered bullets on the response in
Fig. 11a (r=radial distance measured from the bulge center). Profile @
corresponds to the pressure maximum. As in the experiments, the bulge
profiles exhibit a progressive increase in curvature with height and a
reduction of the rate of increase as the bulge height increases. Further-
more, as in the experiment, the shape of the bulge remains continuous
past the pressure maximum and the apex maintains its nearly circular
shape.

Fig. 11c shows the equivalent plastic strain (e?) that develops in the
same ten configurations, with profile @ once more corresponding to the
pressure maximum. In contrast to the bulge profiles, the strain profiles
exhibit an increasingly tighter radius around the apex, which becomes
significantly more pronounced after the pressure maximum. Thus in pro-
files ®-@, the zone around the apex becomes increasingly more conical
indicating an acceleration of wall thinning. Simultaneously, the strain
decreases nearly linearly with r moving away from the apex. These fea-
tures are once again very similar to those of the experimental profiles
in Fig. 3c. Fig. 11d compares the strain at the apex with that devel-
oped at r=0.65R. At lower values of bulge height the two strains grow
at a similar rate gradually diverging. For h > 0.4R when the pressure—
height response starts to become nonlinear, the strains continue to grow
at both locations but the trajectories increasingly diverge. Beyond the
limit load (marked with solid bullets) the rate of growth of strain at the
outer location where the bulge profile is becoming straighter, starts to
decrease. By contrast, the strain at the apex grows at an even faster rate.
This divergence in the rate of growth of strains is reminiscent of diffuse
localized deformation such as a neck in a tensile test. However, in the
present problem the pre-limit load stresses and deformations at the two
locations are different.

The simulation of the bulge test was repeated using the Hosford (H8)
and von Mises (vM) yield functions together with the corresponding
stress—strain responses (Fig. 8). The calculated pressure-bulge height re-
sponses are compared in Fig. 12a to the experimental response (drawn
with dashed line). On the scale of this plot, all three calculated responses
track the experimental results very well. A small difference from the ex-
periment observed below a pressure of about 7 bar (100 psi) is due to
the fact that the deformation was not continuously monitored during
the clamping process. To accentuate the small differences between the
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Fig. 11. Evolution of deformation in finite element simulation (analog to
Fig. 3). (a) Pressure versus height response, (b) deformed surface profiles, and
(c) corresponding equivalent strain profiles. (d) Evolution of equivalent plastic
strain at the apex (r=0) and at a point a radial distance of 0.65R from the apex
(location of pressure maximum denoted by LL).
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Fig. 12. (a) Predicted pressure versus height responses using three different
constitutive models compared to the experimental response and (b) close-up
view around the pressure maxima.

four responses around the pressure maxima, they are re-plotted in trun-
cated scales of pressure and height in Fig. 12b. The pressure maximum
of each response is now identified with a caret (*). As mentioned above,
the Y1d04-3D response nearly matches that of the experiment in all re-
spects including the level of the pressure maximum. The H8 response
is nearly identical to the Yld04-3D response, while the vM model’s re-
sponse traces a slightly lower pressure and pressure maximum. In addi-
tion, the strains at the three pressure maxima are in the neighborhood
of 0.56 reported for Y1d04-3D earlier. This close agreement between the
three constitutive models indicates that the anisotropy present in this
aluminum alloy sheet does not affect this particular problem with its
nearly axisymmetric deformation. Apparently, neither do the differences
between the shapes of the non-quadratic and quadratic yield surfaces. It
is worth emphasizing, however, that the yield function and anisotropy
can play a larger role in sheet metal forming applications with different
stress-states.

In the simulations thus far the initial geometry of the model was per-
fect and the bulges remained free of localized wall thinning well past
the pressure maxima that developed. To test the sensitivity of the so-
lution to imperfections we introduce a narrow, linear thickness imper-
fection in the center of the disc along the transverse direction (y’) with
dimensions (2L;, 2w;) =(0.33R, 1.27t,) and wall thickness reduction of
At. Fig. 13a shows the pressure-height response of the perfect case to-
gether with the responses of four discs assigned imperfection amplitudes
of: At/t,={0.25, 0.5, 0.75, 1.0}%. The responses are indistinguishable
from that of the perfect case until the point when the deformation in the
imperfection accelerates, which coincides with a sharp drop in pressure
(see Fig. 17 of [12] for a detailed depiction of the evolution of this de-
formation). This type of event is expected to cause rupture so the point
of downturn in the response can be considered to be the critical state of
each solution. As the imperfection increases, the critical point occurs at
increasingly smaller values of bulge height. Overall, this behavior indi-
cates that due to the nearly equibiaxial state of stress at the apex, the
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Fig. 13. (a) Effect of imperfection magnitude on predicted pressure versus
height response. (b) Comparison of pressure-height responses for At/t,=0.5%
using the vM, H8, and Y1d04-3D models.

structure is not very imperfection sensitive. It is worth noting that in
view of the observed tendency of accelerated wall thinning at the apex
of the bulge after the pressure maximum, we have also considered wall-
thinning imperfections of circular shape at the center of the disc. The
solution was found to be even less sensitive to this type of imperfection.

The effect of a linear thickness imperfection on the response cal-
culated using the two isotropic models vM and HS8 is also examined.
Fig. 13b compares the pressure-height responses of the two models
with the corresponding one from Y1d04-3D for thickness imperfections
of 0.5%. The imperfection has essentially no influence on the overall
response of the structure so the three responses are nearly identical to
those shown in Fig. 12a. However, the state of stress inside and in the
neighborhood of the imperfection is altered, which leads to differences
in the onset of localization predicted by the three constitutive models.
The H8 model localizes earlier than Yld04-3D whereas for vM local-
ization takes place late in the post-limit load regime. Furthermore, the
strain at the onset of localization is also different, achieving a value of
0.66 for Y1d04-3D, 0.61 for H8 and larger than 1.0 for vM. Clearly, the
difference between the H8 and Y1d04-3D is mainly caused by anisotropy,
while the difference between H8 and vM results from the different ex-
ponent of the two yield functions. This confirms that both of these con-
stitutive issues influence sheet metal forming of Al alloys.

The solutions presented above were generated with a Coulomb fric-
tion coefficient 4 =0.4. In [12] we pointed out that slipping over the
draw bead can affect the calculated response. The amount of slipping is
governed by the extent of mechanical clamping and by friction. In the
facility shown in Fig. 1, the imposed displacement of the clamping ring
was chosen to be as large as possible without causing failure of the disc
at the draw bead. This process does not preclude some small amount
of slipping at the draw bead. Consequently it is important that the ef-
fect of slipping on the response be evaluated. To this end, the bulge
test simulation is repeated using the Y1d04-3D constitutive model and
Coulomb friction coefficients of 0.3, 0.4 and 0.5 and a thickness imper-
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Fig. 14. Effect of friction coefficient on (a) predicted pressure versus height
response, and (b) magnitude of radial displacement of the disc boundary.

fection of At/t, =0.25%. The calculated pressure-bulge height responses
are shown in Fig. 14a. The magnitude of inward sliding of the outer
edge, s, normalized by t,, is plotted against the pressure in Fig. 14b.
Clearly, increase in friction lowers the pressure maximum and causes it
to occur at a smaller bulge height. The amount of sliding exhibits an ini-
tial transient caused by the clamping process, which is nearly identical
for the three values of y. Subsequently, s increases monotonically but
saturates at higher pressure levels. For y =0.3 the total amount of slid-
ing is greater than 2t,, whereas for y=0.5 the disc is essentially fixed
in place after the initial transient.

The extra feed of material into the bulging domain allowed by sliding
is responsible for the larger height reached for lower u values, and for
the increase in P,,,, observed in Fig. 14a and quantified in the Table be-
low. At the same time however, it is noteworthy that the strain achieved
at the pressure maximum decreases as the pressure and corresponding
bulge height increase, as the values reported in the same Table indicate.
(This result can also be demonstrated analytically using an extension of
Hill’s analysis of the critical strain—~Appendix B.)

" 0.3 0.4 0.5
Po. 9585 9352 9226
¢ 053 056 057

Since most bulge testing facilities used in materials labs are rela-
tively compliant, the bulge is expected to fail at the pressure maximum
or soon thereafter. Clearly then, it can be concluded that better clamping
can have the beneficial effect of increased strain measured in a bulge ex-
periment. In the present simulations, the response for y = 0.4 was closest
to the experimental response so this friction coefficient was adopted in
the parametric study performed.

It should be mentioned that in the simulations presented sliding is ax-
isymmetric and uniform. In practice, non-uniform, asymmetric slipping
may take place as illustrated by the failed specimen shown in Appendix
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Fig. 15. Predicted pressure versus height response using three different stress—
strain curves shown in Fig. 9. The measured experimental response is included.

C from a previous study. Slipping can influence the state of stress and
strain at the apex and, by extension, the extracted stress—strain response.
In general then, every effort should be made to reduce slipping in bulge
tests, as recommended in ISO 2014 [9].

Finally, to assess the effect of the stress—strain response adopted on
the numerical simulation of the bulge test, the FE model was used to cal-
culate the bulge response using the Swift and Voce extrapolations of the
uniaxial response shown in Fig. 9. Fig. 15 compares the pressure-height
responses calculated using these two stress—strain responses with that
produced using the stress—strain response extracted from the bulge test.
Here the H8 constitutive model is adopted for all three cases. As pointed
out in the discussion of Fig. 12, the H8 prediction using the stress—strain
response extracted from the bulge test is very close to the experimen-
tal one. As expected, the response produced by the Swift extrapolation
overestimates the experimental response and the Voce underestimates
it, pointing to the inadequacies of such extrapolations.

5. Summary and conclusions

The hydraulic bulge test enables direct measurement of the mate-
rial stress-strain response of sheet metal to strains far larger than other
tests. The nearly equibiaxial stress state and continuous reduction of
the local radius at the apex delay wall thinning and the associated limit
pressure instability. The relatively recent development of full-field opti-
cal methods like digital image correlation enables continuous measure-
ment of deformation and has generated renewed interest in the bulge
test. This paper reports the extraction of the stress—strain response of
an anisotropic, ductile aluminum alloy using a combination of bulge ex-
periments and analyses. Bulge tests on 1.20 mm Al-6022-T43 sheet were
conducted in a custom facility with a 150 mm aperture, with continuous
monitoring of deformation using DIC. The ductility of this alloy enabled
it to deform well past a pressure maximum reaching a strain of 0.66 be-
fore the bulge ruptured. By comparison, the strain at the load maximum
in a uniaxial tension test was 0.20, demonstrating the advantages of the
bulge test. After the pressure maximum, the strain profile took on an
increasingly more conical shape, and was accompanied by an accelera-
tion of wall thinning around the apex. Although this phenomenon has
been reported in a few past experiments, this is the first time it has been
captured to such a significant detail due to the additional capability af-
forded by DIC.

The material was found to have a unique anisotropy that was mod-
eled via the anisotropic Barlat et al. Y1d04-3D [22] yield function. The
rather elaborate calibration of this constitutive model was performed
through a set of independent experiments. The results are new and use-
ful to researchers and practitioners working with this alloy. A membrane
stress state is assumed to exist at the apex but in view of the anisotropy,
neither an equibiaxial state of stress or strain was assumed. The stress—
strain response is extracted incrementally using the measured strains
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and radii of curvature in the two principal directions together with the
constitutive and equilibrium equations. This added an iterative step to
the stress—strain extraction process, which is avoided if the anisotropy
is known a priori. The stress—strain response of the material was also
established using the von Mises and the Hosford yield functions.

A finite element model was subsequently used to simulate the bulge
test. The model discretizes the disc with solid elements, allows for the
possibility of slipping over the draw bead, and incorporates the cal-
ibrated anisotropic yield function and the extracted stress—strain re-
sponse. The calculated results reproduce the experimental measure-
ments very closely, including the pressure-height response, the pressure
maximum, and the deformed strain profile and its evolution into a more
conical shape after the pressure maximum. This is the first time the latter
has been reproduced numerically.

Additional findings and conclusions from the study follow in brief.

e The measured radii of curvature in the rolling and transverse direc-
tion were essentially the same, but because of the anisotropy the
strains were different and so were the calculated stresses. Despite
this, the stress—strain responses extracted using vM and H8 tracked
closely the one from the anisotropic model. Furthermore, FE simu-
lations of the bulge test using these constitutive models reproduced
the experimental results also. These results indicate that the particu-
lar anisotropy of the analyzed sheet does not affect the bulge test in
any significant manner. However, the anisotropy is expected to play
a larger role in problems with different stress states than that of the
bulge test.

Slipping of the clamped disc at the draw bead affects the response,
causes a decrease in the strain at the pressure maximum, and must
be accounted for in the modeling. Asymmetric slipping, on the
other hand, can result in additional complexity in the extraction of
the stress—strain response (see approach in [12]). Thus every effort
should be made to minimize slipping in bulge tests. In the reported
experiments, improved clamping made the proposed extraction pro-
cess simpler, and therefore more accessible to the sheet metal form-
ing researcher.

The sensitivity of the bulge test to small thinning imperfections at the
apex was examined and its effect was found to be mild. However, the
change of the state of stress in the neighborhood of the imperfection
changes the onset of localization predicted by Y1d04-3D, vM, and H8.
This reinforces the need for a suitably calibrated anisotropic yield
function.

Extrapolations of the uniaxial stress—strain response based on the
commonly used Voce and Swift fits respectively underestimated and
overestimated the actual response significantly. Adoption of these
extrapolations in the FE simulation of the bulge test resulted in
significant deviations from the measured results. The reported dif-
ferences are of paramount importance in forming simulations, and
especially in calculations of FLDs, as well as in other calculations in-
volving large deformations. A fit of the uniaxial response that com-
bines the Swift and Voce expressions produces an extrapolation that
is much closer to the measured response, but overestimates the tan-
gent modulus at higher strain values.
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Appendix A: Results of anisotropy experiments

Results from three sets of experiments conducted on Al-6022-T43
sheets for the purpose of calibrating the Y1d04-3D anisotropic yield func-
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Fig. A2. (a) True stress-strain responses of the seven uniaxial tension tests used
for calibrating the Y1d04-3D constitutive model. (b) Corresponding transverse
versus axial strain paths.

tion are summarized here. Fig. A1 shows the complete nominal stress—
strain response measured in the rolling direction. Fig. A2 shows the
true stress-logarithmic strain responses and axial-transverse strain re-
sponses from the seven tensile tests performed at 15° intervals between
the rolling and transverse directions of the Al-6022-T43 sheet. Fig. A3
shows the test specimen used in the plane-strain tests and the three ax-
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ial stress-strain responses measured in the middle of the test section.
Fig. A4 shows plots of the rolling direction strain versus and transverse
direction strain in the early stages of the bulge test.
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Appendix B: Hill’s Bulge analysis [1950]

Hill’s approximate but insightful analysis of a bulge test [16] is
based on the assumption that it deforms into a spherical shape (see also
[15] earlier approximate solution). It leads to the following relationship
between the through thickness strain at the apex, e;, the height of the
bulge h and its polar radius p:

t, h?
—e;, =1In T =2In 1+E s (Bla)
and
2 (141220 (B1b)
R R2)' R’

The equibiaxial state of stress at the apex relates the stress, 7, to the
instantaneous values of the variables through

p t
d
AP, T4 _ (B3)
)
For von Mises yielding,
7, =7 and dee=2de=—%. (B4)
d d
Then(B3) — L &% — 14 142 (BS)
7, de, pde,
Using (B)in(Bs) L 9% _ 3 _ 2 (B6)
& Tde, 2 2n

e e

Expanding p/h in terms of e,, leads to the following approximate
expression for the critical state
Ldee 11 (B7)
7, de, 8

Using the material response extracted from the bulge test and the
von Mises yield function in (B7) results in a critical strain of 0.44, which
compares with 0.528 measured in the experiment. Since the stress—strain
response extracted from the bulge using the von Mises yield function is
very similar to the one based on Y1d04-3D, the corresponding instability
strain resulting from (B7) is very close to 0.44. This difference between
the values produced by the complete bulge numerical analysis and Hill’s
closed form expression is of course caused by the approximate nature of
that solution.

For completeness, the Swift and Voce extrapolations of the measured
uniaxial response of Al-6022-T43 were implemented in (B7) in conjunc-
tion with the von Mises yield criterion. The calculated critical strains
are 0.54 for Swift and 0.40 for Voce. The critical strains are marked on
the corresponding stress—strain responses with sold bullets in Fig. 9.

Appendix C: Effect of slipping

Fig. C1 shows a failed bulge test specimen that experienced slipping
at the draw bead during the initial development of our bulge test facility.
The slipping is unsymmetric and is much more pronounced at the lower
end where wrinkles developed.
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Fig. C1. A bulge test specimen that experienced asymmetric slipping.
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