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a b s t r a c t 

This study employs the hydraulic bulge test in combination with analysis to extract the stress–strain response 

of an anisotropic Al-6022-T43 sheet metal. Tests are performed in a facility with a 150 mm aperture and the 

deformation of the bulge is continuously monitored via 3D digital image correlation. The relatively high ductility 

of this alloy enabled the bulge to deform well past a pressure maximum, reaching a strain of 0.66 at rupture. 

After the pressure maximum, deformation localized around the apex and the strain profile acquired an increas- 

ingly conical shape. Anisotropy is modeled with Barlat’s Yld04-3D yield function, calibrated through a set of 

independent experiments. The measured strains and curvatures at the apex are used in conjunction with mem- 

brane equilibrium and Yld04-3D to extract the material stress–strain response. The procedure adopted does not 

assume an equibiaxial state of stress or strain. A finite element model of the bulge test that includes the draw 

bead and clamping hardware is used to simulate the experiments. The model accurately reproduces all aspects of 

the experiment including the strain profile and its localization after the pressure maximum. A parametric study of 

the problem revealed that the particular anisotropy of the analyzed sheet did not influence the overall behavior 

of the bulge, but affects the onset of failure in the presence of MK-type thickness imperfections. The amount of 

material slipping over the draw bead during pressurization, however, is shown to have a more significant impact 

on the bulge response and the extracted stress–strain response. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The hydraulic bulge test is the most direct means of measuring

he material stress–strain response of sheet metal to strains far larger

han what is possible in other tests. It typically involves a circular disc

lamped around its perimeter that is inflated by hydraulic pressure to

orm a bulge. The nearly-equibiaxial stress state at the apex, and the

ontinuous reduction in local radius as the bulge height increases, de-

ay wall thinning and the limit pressure instability. The strain and ra-

ius at the apex of the bulge, used in conjunction with a flow rule and

he membrane equilibrium equation, enable extraction of the stress–

train response. Measurements of the strain and radius were initially

erformed manually (e.g., [1–3] ) making the test cumbersome and lim-

ting its wider use. The introduction of a spherometer (e.g., [4] ) and

imilar devices (e.g., [5,6] ) simplified the acquisition of these measure-

ents and made the test more accessible. 

The more recent development of full-field optical methods like digi-

al image correlation has expanded the measurements that can be made

nd further simplified their extraction, providing new impetus to the

se of the bulge test (e.g., [7–10] ). The ability to measure the exact

hape and strains at the apex coupled with numerical modeling of the
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est has enabled analysis of anisotropy, through thickness effects, strain

ate, and failure ( [10–14] ). 

Analytical considerations of the bulge test have an equally long his-

ory, beginning with Gleyzal [15] and Hill’s [16] extension of an approx-

mated but insightful analysis of the problem. Chakrabarty and Alexan-

er [17] pushed Hill’s analysis forward by considering the effects of

aterial hardening, while others investigated factors such as thickness

ffects, elliptical apertures, etc. (see [3,18–20] among others). 

This paper presents a combined experimental and analytical proce-

ure for extracting the stress–strain response of an anisotropic sheet

etal using the bulge test. The procedure follows the general guide-

ines of Chen et al. [12] . Differences in the material properties and more

niform clamping provide a simpler setting for the analysis and bring

o fore new insights about the bulge test. The material analyzed is Al-

022-T43, an alloy aimed at automotive sheet metal forming [21] . In

his heat treatment it has a rather low initial yield stress, but exhibits

ignificant hardening and greater ductility than other aluminum alloys

see basic properties in Table 1 and nominal stress–strain response in

ig. A1 ). The material can be further hardened following forming by

eat treatment such as that experienced during the paint bake cycle.

xperiments on 1.20 mm thick sheets are conducted in our 150 mm (6

n) aperture bulge testing facility, using stereo DIC to continuously mon-
tor the evolution of deformation. 
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Fig. 1. Cross section and selected dimensions of the bulge test facility. 

Table 1 

The rolling direction material parameters of Al-6022-T43 sheet analyzed. 

t o in (mm) E Msi (GPa) 𝜈 𝜎ox ′ ksi (MPa) 𝜎ux ′ ksi (MPa) 𝜀 ux ′ 

0.0474 (1.20) 10.2 (70.3) 0.32 22.5 (155) 37.9 (262) 0.227 
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The anisotropy of the sheet is established using an independent set

f experiments, which are used to calibrate the Yld04-3D non-quadratic

ield function of Barlat et al. [22] . A membrane stress state is assumed

o exist at the apex but neither an equibiaxial state of stress or strain is

ssumed. Instead, the stress–strain response is extracted incrementally

sing the measured strains and radii of curvature in the two principal

irections together with the constitutive and equilibrium equations. 

The extracted stress–strain response and the Yld04-3D constitutive

odel are then implemented in a finite element model of the bulge test

nd used to numerically simulate the bulge experiment and to assess the

nset of failure. Comparison of the measured and calculated response is

sed to evaluate the whole process. In the way of evaluating commonly

sed extrapolations of the uniaxial response, three such extrapolations

re compared with the one extracted from the bulge test. 

. Bulge experiments and results 

The bulge experiments are performed using the custom-built hy-

raulic bulge testing facility shown schematically in Fig. 1 . The design

as influenced by the Kuwabara facility in [23] . The base plate has

 229 mm (9 in = 2 R o ) diameter recess that holds the sheet metal test

pecimen. It is locked in place by a clamping ring that presses the spec-

men against a draw bead machined into the base plate at a diameter

f 196 mm (7.72 in = 2 R 1 ). The contact surface of the clamping ring

as a radius of 8.0 mm (0.315 in). Clamping is achieved by tighten-

ng eight bolts that engage a closing plate at the top and thread into

he base plate as shown in Fig. 1 . The arrangement leaves a 150 mm

6.0 in = 2 R ) aperture in which the bulge develops (in accordance with
477 
SO2014 [9] guidelines). The system is pressurized with light oil using

 closed-loop servo-hydraulic pressurization system operated under vol-

me control (see Fig. 2 of [12] ). 

DIC is used to continuously monitor the bulge throughout the test.

he system consists of two 5 MP digital cameras equipped with 50 mm

enses set at an f/16 aperture. The setup provides a 70 mm (2.76 in)

epth of field and a 80 × 70 mm (3.15 × 2.76) measuring area. Images

ere acquired at 2 s intervals initially but faster as failure approached.

eformations were calculated from the recorded images using GOM

RAMIS v6.3 [24] . A facet size of 40 × 40 pixels ( ∼1.19 × 1.19 mm–

.047 × 0.047 in) and a facet spacing of 10 pixels (0.30 mm–0.012 in)

rovide a good balance between resolution and accuracy at the apex of

he bulge. 

Fig. 2 summarizes the measured results from one of the bulge exper-

ments on Al-6022-T43 discs (experiment BT1). In Fig. 2 a the pressure,

 , is plotted against the bulge height, h , normalized by the aperture

adius, R . The pressure rises nearly linearly with h up to about 55 bar

800 psi) when the rate of increase slows down. The decrease in the rate

t which pressure increases continues until a pressure maximum devel-

ps at 64.0 bar (928 psi), which is indicated on the response by a caret

ˆ ”. Deformation continues beyond this critical state with the pressure

ecreasing until it ruptures at 63.79 bar (925 psi). 

The radii of curvature in the rolling ( 𝜌x ′ / R ) and transverse direction

 𝜌y ′ / R ) at the apex are plotted against the normalized height in Fig. 2 b.

ach is determined from the DIC data by fitting a circle to the points that

re located within 15.2 mm (0.6 in) of the apex (size chosen to minimize

rrors–see [10] ). The two radii drop significantly with h , reaching a

alue close to R just before rupture; notably they remain approximately

qual to each other throughout the experiment. 

The measured logarithmic strains at the apex in the rolling ( e x ′ ) and

ransverse ( e y ′ ) directions are plotted against the pressure in Fig. 2 c (av-

raged over a distance of 7.6 mm (0.3 in) from the apex). The two strains

iffer throughout the test, presumably because of the anisotropy in the

heet. The results indicate that the rolling and transverse directions are

he principal directions. The through thickness strain at the apex, e z ′ ,
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Fig. 2. Summary of experimental results from a bulge test (BT1): (a) Pressure versus normalized apex height. (b) Normalized radii of curvature at the apex in the 

rolling ( x ′ ) and transverse ( y ′ ) directions. (c) Pressure versus measured logarithmic strains at the apex in the x ′ and y ′ directions. (d) Pressure versus approximate 

through-thickness logarithmic strain at the apex. 
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s  
s then directly obtained from incompressibility and is plotted against

ressure in Fig. 2 d. The strain rate at the apex was about 4 ×10 − 4 s − 1 at

ower pressures and increased with time to 30 ×10 − 4 s − 1 at the end of

he test. 

A second bulge test (BT2) was performed on material from the same

heet and exhibited essentially the same behavior quantitatively and

ualitatively. Images in this experiment were acquired at the much

aster rate of 5/s from just before the pressure maximum until failure,

roviding for a much more detailed analysis of the evolution of defor-

ation. Fig. 3 a shows the recorded pressure plotted against the bulge

eight. The response is nearly identical to that of BT1 in Fig. 2 a, but

xtends slightly further past the limit pressure. The pressure reached

 maximum value of 64.26 bar (932.8 psi) and dropped to 63.81 bar

925.2 psi) at failure. 

The evolution of the bulge profile along a meridian oriented along

he diagonal of the rectangular area monitored by DIC is plotted in

ig. 3 b with r being the radial distance from the center of the disc.

he profiles correspond to the pressure and bulge height marked with

umbered bullets in Fig. 3 a. Profile 7 ○, drawn in red color, corresponds

o the pressure maximum. The curvature of the partial bulge profiles

hown increases continuously but less so at higher pressures. The shape

f the profiles is nearly circular after the pressure maximum also. Fig. 3 c

hows the von Mises equivalent strain ( e e ) along the ten profiles. In the

rst three stages the strain gradually increases but each profile remains

ather flat. The strain at the apex becomes increasingly greater in pro-

les 4 ○- 7 ○ while the strain further from the apex grows far less rapidly.

n profile 7 ○ at the pressure maximum, the strain at the apex is 0.53 and

rops down to 0.29 at r ≈ − 0.64 R . Following the pressure maximum,

he strain profiles take on a more conical shape with higher deforma-

ion becoming increasingly concentrated around the apex and decreas-

ng nearly linearly outward from there. This of course implies that wall
 t  

478 
hinning accelerated after the pressure maximum at the apex. The high-

st strain recorded just before failure is 0.66. It is worth pointing out that

iscreet local thickness measurements performed in the neighborhood

f such ruptures, were found to be in good agreement with the values

valuated from the DIC measured surface strains using incompressibil-

ty. Interestingly, Brown and Sachs [1] reported similar conical strain

rofiles in OFHC copper sheets in their classic work on the bulge test.

hey measured the strains manually from the deformation of a pho-

ogrid. Similar profiles were also reported recently in [10] and [13] ,

oth using DIC to monitor the strains in bulge experiments on DC06

nd DX54 steels respectively. 

Fig. 4 shows one of the tested specimens (BT2) removed from the

esting facility. In these experiments, failure consistently initiated at the

pex and developed into a crack that initially was nearly normal to the

olling direction of the sheet. Driven by the energy stored in the rela-

ively compliant test system, the crack propagated dynamically. In this

ase the crack propagated along an essentially linear path normal to

he rolling direction. In the last image recorded just before rupture, the

pecimen remained intact with no observed signs of localization. It is

orth pointing out that the clamped outer rim of the specimen exhibits

o wrinkling, indicating that slipping at the draw bead was minimal.

urthermore, the uniform width of the rim outside the draw bead sug-

ests that asymmetric slipping was also minimal, unlike what was expe-

ienced in the Al-2024-T3 specimens reported [12] (e.g., see specimen

n Fig. C1 ). 

.1. Data analysis 

Assuming that a membrane state of stress exists at the apex, the

tresses in the rolling and transverse direction ( 𝜏x ′ , 𝜏y ′ ) are related to

he pressure and the geometry of the bulge through the equilibrium
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Fig. 4. Experiment BT2 specimen after the test. 
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quation 

𝜏𝑥 ′

𝜌𝑥 ′
+ 

𝜏𝑦 ′

𝜌𝑦 ′
= 

𝑃 

𝑡 
(1)

here t is the current wall thickness. Note that the stresses and radii in

he two directions can be different because of anisotropy [20] . Following

12] the following stress ratio is formed, 

𝑦 ′ = 𝛼𝜏𝑥 ′ (2a) 

o that from Eq. (1) 

𝑥 ′ = 

𝑃 

𝑡 

( 

1 
𝜌𝑥 ′

+ 

𝛼

𝜌𝑦 ′

) −1 
and 𝜏𝑦 ′ = 

𝛼𝑃 

𝑡 

( 

1 
𝜌𝑥 ′

+ 

𝛼

𝜌𝑦 ′

) −1 
. (2b)

It’s worth noting Eqs. (2) are simpler than in [12] because { e x ′ , e y ′ }

re the principal strains. Using the calibrated anisotropic yield function,

, in the flow rule the instantaneous strain ratio is related to the stress

atio through 

𝑑𝑒 
𝑝 

𝑦 ′

𝑑𝑒 
𝑝 
′

= 

𝜕 𝛷∕ 𝜕 𝜏𝑦 ′

𝜕 𝛷∕ 𝜕 𝜏𝑥 ′
= 𝑟 ( 𝛼) (3)
𝑥 

479 
in the calibration scheme adopted 𝛷 defined in Eq. (9) is evaluated

teratively as described in Section 3 ). 

The instantaneous strain ratio is evaluated from the measured strains

y assuming the elastic deformations to be negligibly small. Eq. (3) is

olved numerically for 𝛼 for each strain increment and the correspond-

ng stresses follow from (2). The yield function is then used to evaluate

he equivalent stress, 𝜏e , and the equivalent plastic strain increment is

alculated as follows: 

 𝑒 𝑝 
𝑒 
= 

𝜏𝑥 ′𝑑 𝑒 
𝑝 

𝑥 ′
+ 𝜏𝑦 ′𝑑 𝑒 

𝑝 

𝑦 ′

𝜏𝑒 

. (4)

In this fashion the equivalent plastic stress–strain response of the

aterial is produced incrementally. 

The measured data are also used to generate stress–strain responses

or the isotropic yield functions of von Mises and Hosford [25] with

n exponent of 8. For these purposes the apex of the bulge is assumed

o form a spherical cap of radius 𝜌, which is calculated from the DIC

ata by fitting a sphere to the coordinates of all points within a 0.6-in

15.2 mm) radius of the apex. Thus the stresses are given by 

1 = 𝜏2 = 

𝑃 𝜌

2 𝑡 
= 𝜏𝑒 (5a)

nd the strains are averaged so that 

 𝑒 1 = 𝑑 𝑒 2 = ( 𝑑 𝑒 𝑥 ′ + 𝑑 𝑒 𝑦 ′ )∕2 and 𝑑 𝑒 𝑒 = 2 𝑑 𝑒 1 . (5b)

. Constitutive models and calibration 

As in our past works dealing with the deformation, localization and

ailure of thin-walled aluminum alloy structures, the anisotropic Yld04-

D model of Barlat et al. [22] is adopted in the present analysis on

l-6022-T43 (see [12,26,27] ; [28–31] who used Yld2000-2D for shell

lement models; and [32] who used an extension of the last model in a

D setting, Yld2000-3D). Hosford’s isotropic non-quadratic yield func-

ion expressed in terms of the principal deviatoric stresses is given by:

𝑠 1 − 𝑠 2 ||𝑘 + 

||𝑠 2 − 𝑠 3 ||𝑘 + 

||𝑠 3 − 𝑠 1 ||𝑘 = 2 𝜎𝑘 
𝑜 
. (6)

Barlat et al. [22] introduce anisotropy through two linear transfor-

ations to construct the tensors S ′ and S ′′ from the Cauchy stress as

ollows: 

 

′ = 𝑪 

′
𝒔 = 𝑪 

′
𝑻 𝜎 = 𝑳 

′𝜎 and 𝑺 

′′ = 𝑪 

′′
𝒔 = 𝑪 

′′
𝑻 𝜎 = 𝑳 

′′𝜎 (7)
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here C ′ , C ′′ , T, L ′ , L ′′ are transformation tensors. T transforms 𝝈 to

 and C ′ , C ′′ contain the following anisotropy parameters. 

𝑪 

′ = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 − 𝑐 ′12 − 𝑐 ′13 0 0 0 
− 𝑐 ′21 0 − 𝑐 ′23 0 0 0 
− 𝑐 ′31 − 𝑐 ′32 0 0 0 0 
0 0 0 𝑐 ′44 0 0 
0 0 0 0 𝑐 ′55 0 
0 0 0 0 0 𝑐 ′66 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 

 

′′ = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 − 𝑐 ′′12 − 𝑐 ′′13 0 0 0 
− 𝑐 ′′21 0 − 𝑐 ′′23 0 0 0 
− 𝑐 ′′31 − 𝑐 ′′32 0 0 0 0 
0 0 0 𝑐 ′′44 0 0 
0 0 0 0 𝑐 ′′55 0 
0 0 0 0 0 𝑐 ′′66 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (8)

The yield function in terms of the principal values of S ′ and S ′′ then

ecomes: 

= 

[ ( |||𝑆 

′
1 − 𝑆 

′′
1 
|||𝑘 + 

|||𝑆 

′
1 − 𝑆 

′′
2 
|||𝑘 + 

|||𝑆 

′
1 − 𝑆 

′′
3 
|||𝑘 

+ 

|||𝑆 

′
2 − 𝑆 

′′
1 
|||𝑘 + 

|||𝑆 

′
2 − 𝑆 

′′
2 
|||𝑘 + 

|||𝑆 

′
2 − 𝑆 

′′
3 
|||𝑘 

+ 

|||𝑆 

′
3 − 𝑆 

′′
1 
|||𝑘 + 

|||𝑆 

′
3 − 𝑆 

′′
2 
|||𝑘 + 

|||𝑆 

′
3 − 𝑆 

′′
3 
|||𝑘 
) / 

4 
] 1∕ 𝑘 

(9)

here again k is assigned the value 8. Details about the derivations and

he derivatives of the yield function with respect to the stress compo-

ents can be found in [22] and [33] (model implemented in a subroutine

y Yoon [34] ). 

The anisotropy parameters are established from a set of independent

ests on specimens extracted from the same sheet that the bulge test

iscs originated from. The calibration involves the following three sets

f experiments: 

a) Seven uniaxial tests on specimens oriented at 15° intervals between

the rolling and transverse directions. The measured true stress-

logarithmic strain responses are shown truncated in Fig. A2 a and

the corresponding axial–transverse strain responses in Fig. A2 b. 

b) Three plane strain tests on specimens with the geometry shown

in Fig. A3 a oriented along the rolling, transverse, and 45° direc-

tions. The estimated axial stress-measured logarithmic axial strain

responses, 𝜏x − e x , are plotted in Fig. A3 b. 

c) The bulge test itself, from which the strain ratio and the extracted

stresses at the apex are used. Fig. A4 plots the measured strains

{ e y ′ ( P ), e x ′ ( P )} against each other. In the regime of interest to the

calibration they are linearly related with a ratio of 1.18. 

More details on the calibration procedure can be found in

12,22,27] . 

For each of the 10 experiments under (a) and (b), we calculate the

tress state and strain ratios in the material coordinate system at a cho-

en value of plastic work ( W 

p = 10.3 MPa–1500 psi). The yield function

9) is used to calculate the equivalent stresses in terms of the unknown

onstants { c ′ ij , c ′′ ij }. Error functions are generated for each experiment,

omparing the calculated equivalent stresses to the rolling-direction uni-

xial flow stress ( 𝜏x ′ 0 ) at the same value of plastic work. The stress state

f each experiment is used in the flow rule to calculate the strain ratios

gain in terms of the constants { c ′ ij , c ′′ ij }. Additional error functions are

ormed that compare these strain ratios to the values measured in the ex-

eriments at the chosen value of plastic work (see Appendix A in [12] for

etails; a similar set of experiments, without the bulge test stresses, was

sed by [35] to calibrate the Yld2000-2D model for the same alloy with

 T4 heat treatment.) 

Data from the bulge test are used to inform the yield surface in the

eighborhood of the equibiaxial stress state. The experiment provided

he strains and radii of curvature at the apex, but the stresses must
480 
e established through an iterative process that involves recalculating

 c ′ ij , c ′′ ij } in each iteration. Initially, the stress state is assumed to be

quibiaxial ( 𝜏e = P 𝜌/2 t ), the strain ratio is set at 1.0, and these values

re used to generate error functions similar to those described above. 

The following weighted sum of the 22 error functions is then gener-

ted 

( 𝑐 ′
𝑖𝑗 
, 𝑐 ′′

𝑖𝑗 
) = 

∑
𝑚 

𝜔 𝑚 

( 

𝜏𝑒𝜙

𝜏𝑥 ′0 
− 1 

) 2 

𝑚 

+ 

∑
𝑛 

𝜔 𝑛 

( 

𝑅 𝜙

𝑅 𝑒𝑥 

− 1 
) 2 

𝑛 

. (10)

Here the first series represents errors from the m flow stresses, the

econd the errors from the n strain ratios, and { 𝜔 m 

, 𝜔 n } are weight func-

ions that represent the confidence level assigned to each particular ex-

eriment. ( c ′ ij , c ′′ ij ) is minimized using the NMinimize routine of Math-

matica to provide a first estimate of the constants { c ′ ij , c ′′ ij }. 

The stress history at the bulge apex is now recalculated using the

ewly calibrated yield function and flow rule in Eqs. (1) –( 3 ). The new

tress state and strain ratio of the bulge apex at the chosen value of plas-

ic work are used to update the corresponding error functions. The min-

mization of the global error function (10) is then repeated to generate

 new set of { c ′ ij , c ′′ ij }. The bulge apex variables are again recalculated

nd compared to the results of the previous iteration cycle; when the

wo sets of results agree the calibration process is considered to have

onverged. 

The values of the anisotropy constants determined from this calibra-

ion process are listed in Table 2 . In the absence of through thickness

hear measurements the constants { 𝑐 ′44 , 𝑐 ′55 , 𝑐 
′′
44 , 𝑐 

′′
55 } were set at 1.0. It

s worth pointing out that the estimated values of the constants are in-

uenced to some degree by the weights { 𝜔 m 

, 𝜔 n } used in (10) and by

he initial guess of the bulge apex stresses. 

In general the results of such calibration processes are not unique.

o further evaluate the present solution the calibrated yield function

nd some of the corresponding experimental points are compared in

ig. 5 (T = tension, PS = plane strain, Bu = bulge test). Plotted are the

ork contours in the 𝜏x ′ - 𝜏y ′ plane both normalized by the measured

tress in the rolling direction, 𝜏x ′ 0 , at W 

p = 10.3 MPa (1500 psi) for dif-

erent values of normalized shear stress ( 𝜏x ′ y ′ / 𝜏x ′ 0 ). The comparison of

xperimental data and the calibrated work contour is quite favorable.

ig. 6 shows a similar comparison of the work contours corresponding

o the isotopic version of the yield function in Eq. (6) (H8) with the same
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Table 2 

Yld04-3D anisotropy parameters for Al-6022-T43. 

𝑐 ′12 𝑐 ′13 𝑐 ′21 𝑐 ′23 𝑐 ′31 𝑐 ′32 𝑐 ′44 𝑐 ′55 𝑐 ′66 

1.0140 0.5047 0.7951 0.6976 0.5089 0.4509 1.0 1.0 1.1980 

𝑐 ′′12 𝑐 ′′13 𝑐 ′′21 𝑐 ′′23 𝑐 ′′31 𝑐 ′′32 𝑐 ′′44 𝑐 ′′55 𝑐 ′′66 
1.0217 1.4496 0.8892 1.1418 1.3136 1.5447 1.0 1.0 0.5664 
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x'0
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Fig. 6. Work contours of the isotropic H8 model in the rolling-transverse stress 

space at varying levels of shear, with the same experimental data as in Fig. 5 . 
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tension tests in the rolling and transverse directions. 
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xperimental data. Significant differences between the calculated work

ontours and all but two experimental points are observed, which must

e the result of the anisotropy in the sheets. The results in Figs. 5 and

 provide support for the validity of the results of the anisotropy cali-

ration procedure. 

.1. Extraction of the stress–strain response from the bulge test 

The calibrated yield function is now used to extract the material

tress–strain response from the experimental results from the apex of

he bulge test reported in Section 2 . Eq. (3) is solved numerically for the

tress ratio 𝛼 for measured values of the strain ratio. 𝛼 is then used in Eq.

2) to calculate the two stresses { 𝜏x ′ , 𝜏y ′ }. They are plotted against the

easured logarithmic plastic strains in the rolling and transverse direc-

ions in Fig. 7 . In contrast to the corresponding results for Al-2024-T3

F10b in [12] ), the responses are noticeably different, which is a man-

festation of the more significant anisotropy in the Al-6022-T43 sheet

etal. 

The calculated stresses are now used in the calibrated yield func-

ion (9) to establish the equivalent stress, 𝜏e . The corresponding plastic

quivalent strain, 𝑒 
𝑝 
𝑒 , is subsequently evaluated using Eq. (4) . The result

f this process is the stress-plastic strain response plotted in Fig. 8 and

dentified by Yld04-3D. The response has a yield stress of about 138 MPa

20 ksi) and rises to 379 MPa (55 ksi) at the terminal strain of just over

.60. Included in the figure are the measured uniaxial responses in the

olling, x ′ , and transverse, y ′ , directions. They exhibit a similar harden-

ng to the rolling direction, tracing a slightly higher stress trajectory,

nd the transverse direction slightly lower. Both terminate at strains of

bout 0.20, which demonstrates the advantages of using the bulge test

o establish the material response of sheet metal. 

We include in Fig. 8 the stress-plastic strain response extracted from

he bulge test results using the Hosford yield function (H8) (i.e., by ne-
481 
lecting anisotropy and assuming the apex to be a spherical cap of radius

as in Eqs. (5); under these assumptions the von Mises yield function

vM) produces the same response). The response follows a similar tra-

ectory, tracing slightly lower stress levels than the Yld04-3D results.

his can be explained by comparing the work contours corresponding

o 𝜏x ′ y ′ = 0 of the three models in Fig. 6 . In the neighborhood of equib-

axial stress the three contours are very similar which leads to similar

quivalent stress for the extracted response. The implications of this sim-

larity on the numerical simulation of the bulge test will be discussed in

ection 4. 

In the sheet metal manufacturing practice the bulge test is often

voided. The alternative method of extracting the material response

rom the necked regime of a uniaxial test using inverse analysis (e.g.,

27] ) is even more challenging and less common. Instead, the stress–

train response from a uniaxial test is often extrapolated using one

f the traditional fits such as that of Swift [36] or Voce [37] . The

rst, 𝜏 = k ( A + e p ) N , assumes power law hardening and in the second,

= a + ( 𝜏 − a ) exp ( − be p ), the hardening decays exponentially at higher
o 



K. Chen et al. International Journal of Mechanical Sciences 138–139 (2018) 476–488 

Table 3 

Parameters for the Swift and Voce fits of the uniaxial stress–strain response. 

Swift Voce 

k MPa (ksi) A N a MPa (ksi) 𝜏o MPa (ksi) b 

483.4 (70.09) 0.0051 0.2512 347.3 (50.36) 163.0 (23.78) 9.4587 
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Fig. 9. Comparison of the equivalent stress-plastic strain response evaluated 

from our bulge test, and extrapolations of the uniaxial tension response of Swift 

and Voce and a combination of the two. The uniaxial response in the rolling 

direction is included for reference. The solid bullets identify the values of equiv- 

alent stress and strain at the pressure maximum predicted by Hill’s approximate 

analysis of the bulge (see Appendix B ). 
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of 4. 
trains. In the way of evaluating their performance against the stress–

train response extracted from the bulge test, the two expressions are

tted to the uniaxial response measured in the rolling direction. 

The fit constants are listed in Table 3 and the resultant stress-plastic

train responses, extrapolated to a strain of about 0.60, are plotted in

ig. 9 together with the response extracted from the bulge test. Both

t the uniaxial and bulge responses well up to a plastic strain of about

.20. But at higher strains the Swift extrapolation significantly overesti-

ates the bulge response whereas the Voce extrapolation saturates early

nd considerably underestimates the hardening (see also [13,38] ). Dif-

erences of this extent in plastic modulus can lead to significant errors

n the prediction of instabilities such as localization and wrinkling that

re common in sheet metal forming. More recently, some authors have

pted to fit the uniaxial stress–strain response using a combination of

wift and Voce (e.g., [39] ). Included in Fig. 9 is such an extrapolated fit.

s expected, it is much closer to the response extracted from the bulge

est than the two individual fits. It follows the measured response up to

 strain of 35% and overestimates the tangent modulus at higher strains.

. Finite element modeling 

A finite element model of the bulge test is developed in ABAQUS

nd the experiment reported in Section 2 is simulated using the cali-

rated Yld04-3D yield function and the extracted stress–strain response.

he model incorporates the precise geometry of the experimental set

p including the draw bead. Fig. 10 a shows the finite element mesh of

nly one quarter of the model for clarity. The disc rests on the draw

ead of the circular base located at R 1 = 98 mm (3.86 in) as shown in

ig. 10 b. This figure includes the clamping ring which has an inner ra-

ius R = 76.2 mm (3.00 in) and a rounded profile radius on its inner

urface of 8.0 mm (0.315 in). Chen et al. [12] demonstrated that even

mall amounts of slipping at the draw bead can influence the results of

he bulge test. Accordingly in order to examine this effect in the present

tudy the model includes the draw bead and the mating groove in the

lamping ring. 
482 
The disc is discretized with eight-node, reduced integration, lin-

ar solid elements (C3D8R). The base, including the draw bead, and

he clamping ring are modeled as analytical rigid surfaces. Surface-to-

urface frictional contact with finite sliding is adopted with Coulomb

riction coefficient 𝜇. An exponential “softened ” contact pressure-

verclosure relationship is used. The disc is discretized with a mesh with

he following characteristics: 

• 5 elements are used through the thickness. 
• A 1-inch square section in the center of the disc has a more refined,

nearly-isotropic mesh with 42 ×40 elements. A narrow (2 w i ×2 L i )

thickness imperfection with thickness ( t o − 𝛥t ) is introduced at the

center of this area to facilitate localization. 
• A nearly-uniform angular distribution of elements of 2.195° is used

in the rest of the disc. 
• The axial distribution of elements outside the central zone is as fol-

lows: 

- The circular zone, r ≤ 30.9 mm, that surrounds the fine square

mesh has 16 elements with a bias ratio of 2. 

- For 30.9 ≤ r ≤ 72.4 mm there are 20 elements with a bias ratio

of 1.2. 

- For 72.4 ≤ r ≤ 98.3 mm there are 30 elements with a bias ratio

of 4. 

- For 98.3 ≤ r ≤ 114.3 mm there are 20 elements with a bias ratio
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Fig. 11. Evolution of deformation in finite element simulation (analog to 

Fig. 3 ). (a) Pressure versus height response, (b) deformed surface profiles, and 

(c) corresponding equivalent strain profiles. (d) Evolution of equivalent plastic 

strain at the apex ( r = 0) and at a point a radial distance of 0.65 R from the apex 

(location of pressure maximum denoted by LL). 
The initial cavity between the flat disc and the base is enclosed with

5,172 four-node fluid elements F3D4. 

The disc is first clamped in place in a manner similar to that followed

n the experiment. The base is fixed in space and the clamping ring is

ncrementally displaced downward while keeping the volume of fluid

n the cavity constant. In the process a narrow ring of the disc engages

he draw bead and the mating groove eventually “locking ” the disc in

lace. Concurrently, the pressure in the cavity increases causing a small

ertical displacement to the free section of the disc. When the clamping

ing reaches the desired position it is fixed in space for the remainder of

he simulation. Subsequently the model is pressurized by incrementally

rescribing the flux of fluid into the cavity (volume-controlled pressur-

zation). 

.1. Numerical simulation of the bulge test 

The main characteristics of the solution are illustrated through the

esults of a simulation that uses the calibrated Yld04-3D constitutive

odel. Fig. 11 a shows the calculated pressure-height ( P − h / R ) response.

he model has no imperfection and a Coulomb coefficient of 0.4 is

dopted. The calculated response tracks that of the experimental very

losely (see Fig. 12 ) from the beginning to the end, and they are

ot included in this figure for clarity. A pressure maximum develops

t 64.35 bar (933.05 psi), which compares with 64.26 bar (932.8 psi)

ecorded in the experiment. The analysis does not employ a failure cri-

erion so the response is followed further than the experiment well past

he pressure maximum. The evolution of the bulge profile is illustrated

n Fig. 11 b that shows the complete shape of a meridian at the pressure

nd height values marked with numbered bullets on the response in

ig. 11 a ( r = radial distance measured from the bulge center). Profile 7 ○
orresponds to the pressure maximum. As in the experiments, the bulge

rofiles exhibit a progressive increase in curvature with height and a

eduction of the rate of increase as the bulge height increases. Further-

ore, as in the experiment, the shape of the bulge remains continuous

ast the pressure maximum and the apex maintains its nearly circular

hape. 

Fig. 11 c shows the equivalent plastic strain ( 𝑒 𝑃 
𝑒 
) that develops in the

ame ten configurations, with profile 7 ○ once more corresponding to the

ressure maximum. In contrast to the bulge profiles, the strain profiles

xhibit an increasingly tighter radius around the apex, which becomes

ignificantly more pronounced after the pressure maximum. Thus in pro-

les 8 ○- 10 ○, the zone around the apex becomes increasingly more conical

ndicating an acceleration of wall thinning. Simultaneously, the strain

ecreases nearly linearly with r moving away from the apex. These fea-

ures are once again very similar to those of the experimental profiles

n Fig. 3 c. Fig. 11 d compares the strain at the apex with that devel-

ped at r = 0.65 R . At lower values of bulge height the two strains grow

t a similar rate gradually diverging. For h > 0.4 R when the pressure–

eight response starts to become nonlinear, the strains continue to grow

t both locations but the trajectories increasingly diverge. Beyond the

imit load (marked with solid bullets) the rate of growth of strain at the

uter location where the bulge profile is becoming straighter, starts to

ecrease. By contrast, the strain at the apex grows at an even faster rate.

his divergence in the rate of growth of strains is reminiscent of diffuse

ocalized deformation such as a neck in a tensile test. However, in the

resent problem the pre-limit load stresses and deformations at the two

ocations are different. 

The simulation of the bulge test was repeated using the Hosford (H8)

nd von Mises (vM) yield functions together with the corresponding

tress–strain responses ( Fig. 8 ). The calculated pressure-bulge height re-

ponses are compared in Fig. 12 a to the experimental response (drawn

ith dashed line). On the scale of this plot, all three calculated responses

rack the experimental results very well. A small difference from the ex-

eriment observed below a pressure of about 7 bar (100 psi) is due to

he fact that the deformation was not continuously monitored during

he clamping process. To accentuate the small differences between the
483 
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Fig. 12. (a) Predicted pressure versus height responses using three different 

constitutive models compared to the experimental response and (b) close-up 

view around the pressure maxima. 
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using the vM, H8, and Yld04-3D models. 
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our responses around the pressure maxima, they are re-plotted in trun-

ated scales of pressure and height in Fig. 12 b. The pressure maximum

f each response is now identified with a caret (ˆ). As mentioned above,

he Yld04-3D response nearly matches that of the experiment in all re-

pects including the level of the pressure maximum. The H8 response

s nearly identical to the Yld04-3D response, while the vM model’s re-

ponse traces a slightly lower pressure and pressure maximum. In addi-

ion, the strains at the three pressure maxima are in the neighborhood

f 0.56 reported for Yld04-3D earlier. This close agreement between the

hree constitutive models indicates that the anisotropy present in this

luminum alloy sheet does not affect this particular problem with its

early axisymmetric deformation. Apparently, neither do the differences

etween the shapes of the non-quadratic and quadratic yield surfaces. It

s worth emphasizing, however, that the yield function and anisotropy

an play a larger role in sheet metal forming applications with different

tress-states. 

In the simulations thus far the initial geometry of the model was per-

ect and the bulges remained free of localized wall thinning well past

he pressure maxima that developed. To test the sensitivity of the so-

ution to imperfections we introduce a narrow, linear thickness imper-

ection in the center of the disc along the transverse direction ( y ′ ) with

imensions (2 L i , 2 w i ) = (0.33 R , 1.27 t o ) and wall thickness reduction of

t . Fig. 13 a shows the pressure–height response of the perfect case to-

ether with the responses of four discs assigned imperfection amplitudes

f: 𝛥t / t o = {0.25, 0.5, 0.75, 1.0}%. The responses are indistinguishable

rom that of the perfect case until the point when the deformation in the

mperfection accelerates, which coincides with a sharp drop in pressure

see Fig. 17 of [12] for a detailed depiction of the evolution of this de-

ormation). This type of event is expected to cause rupture so the point

f downturn in the response can be considered to be the critical state of

ach solution. As the imperfection increases, the critical point occurs at

ncreasingly smaller values of bulge height. Overall, this behavior indi-

ates that due to the nearly equibiaxial state of stress at the apex, the
484 
tructure is not very imperfection sensitive. It is worth noting that in

iew of the observed tendency of accelerated wall thinning at the apex

f the bulge after the pressure maximum, we have also considered wall-

hinning imperfections of circular shape at the center of the disc. The

olution was found to be even less sensitive to this type of imperfection.

The effect of a linear thickness imperfection on the response cal-

ulated using the two isotropic models vM and H8 is also examined.

ig. 13 b compares the pressure–height responses of the two models

ith the corresponding one from Yld04-3D for thickness imperfections

f 0.5%. The imperfection has essentially no influence on the overall

esponse of the structure so the three responses are nearly identical to

hose shown in Fig. 12 a. However, the state of stress inside and in the

eighborhood of the imperfection is altered, which leads to differences

n the onset of localization predicted by the three constitutive models.

he H8 model localizes earlier than Yld04-3D whereas for vM local-

zation takes place late in the post-limit load regime. Furthermore, the

train at the onset of localization is also different, achieving a value of

.66 for Yld04-3D, 0.61 for H8 and larger than 1.0 for vM. Clearly, the

ifference between the H8 and Yld04-3D is mainly caused by anisotropy,

hile the difference between H8 and vM results from the different ex-

onent of the two yield functions. This confirms that both of these con-

titutive issues influence sheet metal forming of Al alloys. 

The solutions presented above were generated with a Coulomb fric-

ion coefficient 𝜇= 0.4. In [12] we pointed out that slipping over the

raw bead can affect the calculated response. The amount of slipping is

overned by the extent of mechanical clamping and by friction. In the

acility shown in Fig. 1 , the imposed displacement of the clamping ring

as chosen to be as large as possible without causing failure of the disc

t the draw bead. This process does not preclude some small amount

f slipping at the draw bead. Consequently it is important that the ef-

ect of slipping on the response be evaluated. To this end, the bulge

est simulation is repeated using the Yld04-3D constitutive model and

oulomb friction coefficients of 0.3, 0.4 and 0.5 and a thickness imper-
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Fig. 14. Effect of friction coefficient on (a) predicted pressure versus height 

response, and (b) magnitude of radial displacement of the disc boundary. 

f  

a  

e  

C  

t  

t  

f  

s  

i  

i

 

i  

t  

l  

a  

b  

(  

H

 

t  

o  

c  

p  

t  

t

 

i  

m  

Fig. 15. Predicted pressure versus height response using three different stress–

strain curves shown in Fig. 9 . The measured experimental response is included. 
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s  
ection of 𝛥t / t o = 0.25%. The calculated pressure-bulge height responses

re shown in Fig. 14 a. The magnitude of inward sliding of the outer

dge, s , normalized by t o , is plotted against the pressure in Fig. 14 b.

learly, increase in friction lowers the pressure maximum and causes it

o occur at a smaller bulge height. The amount of sliding exhibits an ini-

ial transient caused by the clamping process, which is nearly identical

or the three values of 𝜇. Subsequently, s increases monotonically but

aturates at higher pressure levels. For 𝜇= 0.3 the total amount of slid-

ng is greater than 2 t o , whereas for 𝜇= 0.5 the disc is essentially fixed

n place after the initial transient. 

The extra feed of material into the bulging domain allowed by sliding

s responsible for the larger height reached for lower 𝜇 values, and for

he increase in P max observed in Fig. 14 a and quantified in the Table be-

ow. At the same time however, it is noteworthy that the strain achieved

t the pressure maximum decreases as the pressure and corresponding

ulge height increase, as the values reported in the same Table indicate.

This result can also be demonstrated analytically using an extension of

ill’s analysis of the critical strain–Appendix B .) 

𝜇 0.3 0.4 0.5 

P max 958.5 935.2 922.6 

𝑒 
𝑝 
𝑒 0.53 0.56 0.57 

Since most bulge testing facilities used in materials labs are rela-

ively compliant, the bulge is expected to fail at the pressure maximum

r soon thereafter. Clearly then, it can be concluded that better clamping

an have the beneficial effect of increased strain measured in a bulge ex-

eriment. In the present simulations, the response for 𝜇= 0.4 was closest

o the experimental response so this friction coefficient was adopted in

he parametric study performed. 

It should be mentioned that in the simulations presented sliding is ax-

symmetric and uniform. In practice, non-uniform, asymmetric slipping

ay take place as illustrated by the failed specimen shown in Appendix
485 
 from a previous study. Slipping can influence the state of stress and

train at the apex and, by extension, the extracted stress–strain response.

n general then, every effort should be made to reduce slipping in bulge

ests, as recommended in ISO 2014 [9] . 

Finally, to assess the effect of the stress–strain response adopted on

he numerical simulation of the bulge test, the FE model was used to cal-

ulate the bulge response using the Swift and Voce extrapolations of the

niaxial response shown in Fig. 9 . Fig. 15 compares the pressure-height

esponses calculated using these two stress–strain responses with that

roduced using the stress–strain response extracted from the bulge test.

ere the H8 constitutive model is adopted for all three cases. As pointed

ut in the discussion of Fig. 12 , the H8 prediction using the stress–strain

esponse extracted from the bulge test is very close to the experimen-

al one. As expected, the response produced by the Swift extrapolation

verestimates the experimental response and the Voce underestimates

t, pointing to the inadequacies of such extrapolations. 

. Summary and conclusions 

The hydraulic bulge test enables direct measurement of the mate-

ial stress–strain response of sheet metal to strains far larger than other

ests. The nearly equibiaxial stress state and continuous reduction of

he local radius at the apex delay wall thinning and the associated limit

ressure instability. The relatively recent development of full-field opti-

al methods like digital image correlation enables continuous measure-

ent of deformation and has generated renewed interest in the bulge

est. This paper reports the extraction of the stress–strain response of

n anisotropic, ductile aluminum alloy using a combination of bulge ex-

eriments and analyses. Bulge tests on 1.20 mm Al-6022-T43 sheet were

onducted in a custom facility with a 150 mm aperture, with continuous

onitoring of deformation using DIC. The ductility of this alloy enabled

t to deform well past a pressure maximum reaching a strain of 0.66 be-

ore the bulge ruptured. By comparison, the strain at the load maximum

n a uniaxial tension test was 0.20, demonstrating the advantages of the

ulge test. After the pressure maximum, the strain profile took on an

ncreasingly more conical shape, and was accompanied by an accelera-

ion of wall thinning around the apex. Although this phenomenon has

een reported in a few past experiments, this is the first time it has been

aptured to such a significant detail due to the additional capability af-

orded by DIC. 

The material was found to have a unique anisotropy that was mod-

led via the anisotropic Barlat et al. Yld04-3D [22] yield function. The

ather elaborate calibration of this constitutive model was performed

hrough a set of independent experiments. The results are new and use-

ul to researchers and practitioners working with this alloy. A membrane

tress state is assumed to exist at the apex but in view of the anisotropy,

either an equibiaxial state of stress or strain was assumed. The stress–

train response is extracted incrementally using the measured strains
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Fig. A1. Nominal uniaxial stress–strain response in the rolling direction. 

Fig. A2. (a) True stress–strain responses of the seven uniaxial tension tests used 

for calibrating the Yld04-3D constitutive model. (b) Corresponding transverse 

versus axial strain paths. 

t

s  

t  

s  

t  

s  
nd radii of curvature in the two principal directions together with the

onstitutive and equilibrium equations. This added an iterative step to

he stress–strain extraction process, which is avoided if the anisotropy

s known a priori. The stress–strain response of the material was also

stablished using the von Mises and the Hosford yield functions. 

A finite element model was subsequently used to simulate the bulge

est. The model discretizes the disc with solid elements, allows for the

ossibility of slipping over the draw bead, and incorporates the cal-

brated anisotropic yield function and the extracted stress–strain re-

ponse. The calculated results reproduce the experimental measure-

ents very closely, including the pressure-height response, the pressure

aximum, and the deformed strain profile and its evolution into a more

onical shape after the pressure maximum. This is the first time the latter

as been reproduced numerically. 

Additional findings and conclusions from the study follow in brief. 

• The measured radii of curvature in the rolling and transverse direc-

tion were essentially the same, but because of the anisotropy the

strains were different and so were the calculated stresses. Despite

this, the stress–strain responses extracted using vM and H8 tracked

closely the one from the anisotropic model. Furthermore, FE simu-

lations of the bulge test using these constitutive models reproduced

the experimental results also. These results indicate that the particu-

lar anisotropy of the analyzed sheet does not affect the bulge test in

any significant manner. However, the anisotropy is expected to play

a larger role in problems with different stress states than that of the

bulge test. 
• Slipping of the clamped disc at the draw bead affects the response,

causes a decrease in the strain at the pressure maximum, and must

be accounted for in the modeling. Asymmetric slipping, on the

other hand, can result in additional complexity in the extraction of

the stress–strain response (see approach in [12] ). Thus every effort

should be made to minimize slipping in bulge tests. In the reported

experiments, improved clamping made the proposed extraction pro-

cess simpler, and therefore more accessible to the sheet metal form-

ing researcher. 
• The sensitivity of the bulge test to small thinning imperfections at the

apex was examined and its effect was found to be mild. However, the

change of the state of stress in the neighborhood of the imperfection

changes the onset of localization predicted by Yld04-3D, vM, and H8.

This reinforces the need for a suitably calibrated anisotropic yield

function. 
• Extrapolations of the uniaxial stress–strain response based on the

commonly used Voce and Swift fits respectively underestimated and

overestimated the actual response significantly. Adoption of these

extrapolations in the FE simulation of the bulge test resulted in

significant deviations from the measured results. The reported dif-

ferences are of paramount importance in forming simulations, and

especially in calculations of FLDs, as well as in other calculations in-

volving large deformations. A fit of the uniaxial response that com-

bines the Swift and Voce expressions produces an extrapolation that

is much closer to the measured response, but overestimates the tan-

gent modulus at higher strain values. 
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ppendix A: Results of anisotropy experiments 

Results from three sets of experiments conducted on Al-6022-T43

heets for the purpose of calibrating the Yld04-3D anisotropic yield func-
486 
ion are summarized here. Fig. A1 shows the complete nominal stress–

train response measured in the rolling direction. Fig. A2 shows the

rue stress-logarithmic strain responses and axial-transverse strain re-

ponses from the seven tensile tests performed at 15° intervals between

he rolling and transverse directions of the Al-6022-T43 sheet. Fig. A3

hows the test specimen used in the plane-strain tests and the three ax-

http://dx.doi.org/10.13039/100006234
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Fig. A3. (a) Drawing of the plane-strain tension specimen used for calibration. 

(b) Responses from the three plane-strain tests. 

Fig. A4. Transverse versus rolling-direction strain path measured in the bulge 

test and used to calibrate the Yld04-3D constitutive model. 
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al stress–strain responses measured in the middle of the test section.

ig. A4 shows plots of the rolling direction strain versus and transverse

irection strain in the early stages of the bulge test. 
487 
ppendix B: Hill’s Bulge analysis [1950] 

Hill’s approximate but insightful analysis of a bulge test [16] is

ased on the assumption that it deforms into a spherical shape (see also

15] earlier approximate solution). It leads to the following relationship

etween the through thickness strain at the apex, e t , the height of the

ulge h and its polar radius 𝜌: 

 𝑒 𝑡 = 𝑙𝑛 

( 

𝑡 𝑜 

𝑡 

) 

= 2 𝑙𝑛 
( 

1 + 

ℎ 2 

𝑅 

2 

) 

, (B1a)

nd 

𝜌

𝑅 

= 

( 

1 + 

ℎ 2 

𝑅 

2 

) 

∕ 2 ℎ 
𝑅 

. (B1b)

The equibiaxial state of stress at the apex relates the stress, 𝜏, to the

nstantaneous values of the variables through 

2 𝜏
𝜌

= 

𝑃 

𝑡 
(B2) 

t 𝑃 max , 
𝑑𝜏

𝜏
+ 

𝑑𝑡 

𝑡 
− 

𝑑𝜌

𝜌
= 0 (B3)

For von Mises yielding, 

𝑒 = 𝜏 and 𝑑 𝑒 𝑒 = 2 𝑑𝑒 = − 

𝑑𝑡 

𝑡 
. (B4)

hen ( B3 ) → 1 
𝜏𝑒 

𝑑 𝜏𝑒 

𝑑 𝑒 𝑒 
= 1 + 

1 
𝜌

𝑑𝜌

𝑑 𝑒 𝑒 
(B5)

sing ( B1 ) in ( B5 ) 1 
𝜏𝑒 

𝑑 𝜏𝑒 

𝑑 𝑒 𝑒 
= 

3 
2 
− 

𝜌

2 ℎ 
(B6) 

Expanding 𝜌/ h in terms of e e , leads to the following approximate

xpression for the critical state 

1 
𝜏𝑒 

𝑑 𝜏𝑒 

𝑑 𝑒 𝑒 
≈ 11 

8 
− 

1 
2 𝑒 𝑒 

. (B7) 

Using the material response extracted from the bulge test and the

on Mises yield function in ( B7 ) results in a critical strain of 0.44, which

ompares with 0.528 measured in the experiment. Since the stress–strain

esponse extracted from the bulge using the von Mises yield function is

ery similar to the one based on Yld04-3D, the corresponding instability

train resulting from ( B7 ) is very close to 0.44. This difference between

he values produced by the complete bulge numerical analysis and Hill’s

losed form expression is of course caused by the approximate nature of

hat solution. 

For completeness, the Swift and Voce extrapolations of the measured

niaxial response of Al-6022-T43 were implemented in ( B7 ) in conjunc-

ion with the von Mises yield criterion. The calculated critical strains

re 0.54 for Swift and 0.40 for Voce. The critical strains are marked on

he corresponding stress–strain responses with sold bullets in Fig. 9 . 

ppendix C: Effect of slipping 

Fig. C1 shows a failed bulge test specimen that experienced slipping

t the draw bead during the initial development of our bulge test facility.

he slipping is unsymmetric and is much more pronounced at the lower

nd where wrinkles developed. 
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Fig. C1. A bulge test specimen that experienced asymmetric slipping. 
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