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In the past 20 years, white matter (WM) microstructure has been studied
predominantly using diffusion tensor imaging (DTI). Decreases in fractional
anisotropy (FA) and increases in mean (MD) and radial diffusivity (RD) have been
consistently reported in healthy aging and neurodegenerative diseases. To date,
DTI parameters have been studied individually (e.g., only FA) and separately (i.e.,
without using the joint information across them). This approach gives limited
insights into WM pathology, increases the number of multiple comparisons,
and yields inconsistent correlations with cognition. To take full advantage of
the information in a DTI dataset, we present the first application of symmetric
fusion to study healthy aging WM. This data-driven approach allows simultaneous
examination of age differences in all four DTl parameters. We used multiset
canonical correlation analysis with joint independent component analysis
(MCCA+jICA) in cognitively healthy adults (age 20-33, n=51 and age 60-79,
n=170). Four-way mCCA+jICA yielded one high-stability modality-shared
component with co-variant patterns of age differences in RD and AD in the corpus
callosum, internal capsule, and prefrontal WM. The mixing coefficients (or loading
parameters) showed correlations with processing speed and fluid abilities that
were not detected by unimodal analyses. In sum, mCCA+jICA allows data-driven
identification of cognitively relevant multimodal components within the WM. The
presented method should be further extended to clinical samples and other MR
techniques (e.g., myelin water imaging) to test the potential of mMCCA+jICA to
discriminate between different WM disease etiologies and improve the diagnostic
classification of WM diseases.
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Introduction

Degradation in myelin and axonal structure in the white matter
(WM) is one of the fundamental mechanisms contributing to
cognitive decline in normative aging and Alzheimer’s Disease and
Related Dementias (1). However, in vivo age differences in WM
microstructure mechanisms are only partially understood. This is
because almost all neuroimaging studies on the WM microstructure
in aging in the past 20years have used diffusion MRI and,
predominantly, diffusion tensor imaging (DTI) (2).

Fractional anisotropy (FA) is a measure of the directional
dependence of diffusion (3) and is influenced by the fiber orientational
coherence, fiber diameter, integrity, and density (4). Mean diffusivity
(MD) reflects the total magnitude of diffusion within a voxel, which
is inversely proportional to the density of physical obstructions, such
as myelin and cellular membranes (4, 5). Radial diffusivity (RD)
measures the magnitude of diffusion perpendicular to the primary
orientation of WM tracts, which in WM is restricted by axonal and
myelin membranes. Axial diffusivity (AD) is a measure of diffusion
along the length of an axon and is thought to reflect chronic axonal
injury. RD and AD have been linked to axonal damage and loss in
myelin membrane integrity (6, 7). Notably, AD and RD are orthogonal,
and FA and MD are mathematical combinations of AD and
RD. However, it is important to remember that DTT measures are only
proxies for WM microstructural integrity and are not specific to any
underlying neurobiological mechanism (8). Decreased FA and
increased MD, RD, and bidirectional differences in AD have been
consistently reported in healthy aging and Alzheimer’s Disease and
related dementias (9).

Importantly, most DTI studies on aging and dementia have used
only a fraction of information available in a diffusion dataset.
Typically, age differences have been reported either selectively (e.g.,
only FA), in arbitrarily selected regions (e.g., the corpus callosum),
and separately (i.e., without using the joint information across them,
for example, shared versus unique information across FA and RD).
Therefore, the aim of this study was to evaluate the use of the joint
information across all four DTT parameters to revisit age differences
in the entire WM using a data-driven symmetric fusion analysis.

There are different types of multimodal analysis (10). At one end
of the spectrum is the visual inspection of different data types. For
example, the analysis of the spatial overlap of unimodal analyses.
We have used this approach in our earlier work, attempting to
delineate different microstructural mechanisms of WM aging from
overlapping patterns of age differences in FA, MD, RD, and AD (11).
However, the overlap of voxels showing significant differences in each
parameter map does not measure the interaction among them. As a
result, our interpretation of the patterns of WM aging
remained inconclusive.

In the current study, we use data fusion on the opposite side of the
spectrum, namely, symmetric data fusion, which treats multiple image
types (or modalities) equally to take full advantage of their joint
information (10, 12). We chose to use data-driven multiset canonical
correlation analysis with joint independent component analysis
(mCCA +jICA) (10, 13, 14). This method combines the flexibility of
mCCA in maximizing covariations between the modalities (15) with
superior source separation with jICA (14).

mCCA +jICA outputs modality-shared and modality-unique
independent components (IC). These ICs represent sources of the
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signal, which—we hypothesize, based on unimodal analyses of DTI
data—should be congruent with age-related processes in WM
microstructure known from histological studies. For example, a
modality-shared IC composed of decreased FA and increased MD,
RD, and AD in older adults would likely reflect demyelination or
chronic tissue loss (7, 11, 16). The retrogenesis hypothesis of brain
aging (17) posits that WM regions that are last to myelinate during
development are also most vulnerable to aging. Thus, we hypothesized
that an IC reflecting demyelination or tissue loss would be localized
predominantly to late-myelinating WM regions, such as the prefrontal
WM, anterior corpus callosum, fornix, and the external capsule
(18-20).

Next, with this data-driven, exploratory approach, we expected to
obtain new insights into age differences in WM microstructure that
cannot be identified with a single parameter map or image modality
or by using traditional inferential statistics. Multimodal analyses using
partial least squares (21) or linked ICA (22) showed great promise in
identifying patterns of correlated group differences across diffusion
MRI features to improve diagnostic classification between healthy
controls and people at different stages of Alzheimer’s disease.

Finally, to date, unimodal analyses yielded mixed associations
with cognition, with marked inconsistencies between WM regions or
tracts, DTI parameters, and cognitive constructs, possibly hampered
by the number of multiple comparisons (2, 23, 24). Therefore,
we aimed to test whether multimodal fusion can identify components
relevant to cognition. Specifically, we hypothesized that covariant DTT
differences between young and old would be associated with executive
functions and processing speed, the cognitive functions most affected
by aging and possibly most sensitive to changes in brain’s structural
connectivity via WM (25).

Methods
Participants

The MRI data used in this study were obtained from three studies
conducted between 2011 and 2014 on neurologically and cognitively
healthy adults. We acquired the data using the 3 T Siemens TIM Trio
system with 45 mT/m gradients and 200 T/m/s slew rates (Siemens,
Erlangen, Germany) at the Beckman Institute for Advanced Science
and Technology at the University of Illinois, United States. All studies
were approved by the University of Illinois at Urbana-Champaign
Institutional Review Board, with written informed consent obtained
from all participants.

Older adults

Data for older adults were obtained from the baseline MRI data of
community-dwelling participants (n=170), aged 60-79 years, in the
Fit and Active Senior clinical trial (ID: NCT01472744). For more
information, refer to Baniqued et al., Burzynska et al., Ehlers et al.,
Fanning et al., Mendez Colmenares et al., and Voss et al. (26-32).

Young adults

Data for young adults were collected in two separate studies. The
first study included n =37 female dancers (aged 18-33) and education-
matched peers with no professional dance training, recruited from the
student population at the University of Illinois (33). The second study
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comprised n=14 college-age young adults, collected as a reference
sample for the FAST clinical trial.

Our final sample consisted of 221 participants (n=51 young and
n=170 older adults; see Supplementary material 1 for participant flow).

Diffusion tensor imaging

Diffusion tensor imaging images were obtained with no interslice
gap, with a twice-refocused spin echo single-shot Echo Planar Imaging
sequence (34) to minimize eddy current-induced image distortions.
The protocol consisted of a set of 30 non-collinear diffusion-weighted
acquisitions with b-value=1,000s/mm* and two T2-weighted
b-value=0s/mm?’ acquisitions, repeated two times, with 128 x 128
matrix, GRAPPA acceleration factor 2, flip angle =90, and a bandwidth
of 1,698 Hz/Px. The DTI acquisition for the young dancer sample
differed slightly on voxel dimensions and field of view (TR/
TE=10,000/98 ms, 1.9 x 1.9 mm? in-plane resolution, and 72 2-mm-
thick slices for full brain coverage), from the other young and older
samples (TR/TE=5,500/98 ms, 1.7 x 1.7 mm? in-plane resolution, and
40 3-mm-thick slices). DTI data were processed using the FSL
Diffusion Toolbox v.3.0 (FDT: http://www.fmrib.ox.ac.ulk/fsl) (31).
We used the Tract-Based Spatial Statistics (TBSS) workflow (35) to
align diffusion images into a 1 mmx 1 mmx 1 mm standard Montreal
Neurological Institute (MNI152) space via the FMRIB58_FA template
and project the center-of-tract values onto the WM skeleton. Our final
sample consisted of 221 participants (n=51 young and n=170
older adults).

Symmetric data fusion (NMCCA+jICA)

Multimodal age comparative analyses were carried out using a
4-way (FA, MD, RD, and AD) two-sample ¢-test mCCA +jICA (10,
13, 14, 36) using the Fusion ICA MATLAB Toolbox' as described in
Figure 1. We restricted our analyses to the WM skeleton thresholded
at the default FA>0.2.

Model order

There are several ways of selecting the optimal model order (i.e.,
the number of resulting ICs), ranging from a priori to data-driven
methods. Currently, there is no gold standard for selecting the model
order for mCCA +jICA for exploring specifically skeletonized WM
space. Therefore, to select our model order, we used a priori knowledge
from postmortem histological examinations in humans and primates
(37-43) as well as from spatial patterns of overlap in age differences in
FA, MD, RD, and AD identified in earlier cross-sectional DTI studies
(e.g., (11, 44)). The known histological age differences in WM include:
(1) loss or thinning of myelin, (2) decrease in average axonal diameter,
(3) loss of whole myelinated axons that may be associated with (4)
decrease in tissue density and increase in extracellular (free) water or
(5) increase in cellular density due to gliosis. Other histological

1 http://trendscenter.org/software/fit/
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changes in the aging WM include changes in axonal orientational
alignment in a voxel due to (6) loss or rarefaction of fibers in a specific
direction or (7) realignment due to macrostructural changes, as well
as (8) changes in the microvasculature. Thus, we decided that a model
with eight ICs would provide enough flexibility to accommodate a
broad of possible microstructural processes yet be low enough to
accommodate the restricted space of the WM skeleton (~8% of the
total brain volume).

IC quality assessment

We used 500 random iterations of ICA using the entropy-based
minimization ICA (EBM ICA) algorithm (45). We used ICASSO to
select the best single-run estimate to ensure the replicability of our
results (46). ICASSO runs the ICA algorithm repeatedly and compares
each result based on the correlation between squared source estimates
(47). Next, ICASSO estimates the stability of the ICA using clustering
analysis to compute a cluster quality index, Iq. We defined the Iq as
{I=avg.[S(1)i] —avg[s(i)e]}, where S is the spatial similarity between
two ICs and i is the source matrix. Therefore, the Iq value represents
the difference between intra- and inter-cluster component similarity.
We used the quality index to assess the stability and reliability of the
resulting ICs. Most studies use a quality index threshold between 80
and 90% (48-51); thus, we chose to examine only the ICs with an
19> 0.90.

mCCA+jICA

When applying the mCCA+jICA model, the 3D data were first
reshaped to a one-dimensional vector by subject. Then, the data were
normalized separately for each data type, ensuring that each data
type has the same average sum of squares, which is computed across
all subjects and voxels. This normalization process ensures that all
features have the same ranges and contribute equally to the fusion
model (52) (Figure 1). After running ICASSO, mCCA+jICA outputs
a source matrix (loadings for each voxel) and a mixing matrix
(loading coefficients for each component for each subject) (48). The
mixing matrix allows for analyzing the inter-correlation between
modalities and the differences between the groups (young vs. old).
Therefore, modality-shared ICs (with significant mixing coefficients
in at least two modalities) share variance across at least two feature
maps, while modality-unique ICs represent unique variance. The
mixing coefficients (also called loading parameters) reflect the
degree to which a given component is expressed in each subject for
a given feature. We used the GIFT Toolbox? to plot the mixing
coeflicients in MATLAB. To visualize each independent component,
each source matrix was reshaped to a 3D space, standardized
(z-scored), and thresholded at z>2.5 (p <0.01, two-tailed). We tested
the hypotheses by analyzing the composition, spatial location, and
direction of age differences in the ICs. The composition of each IC is
determined by the mixing coefficients and p values associated with
its feature maps.

2 https://trendscenter.org/software/gift/
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Cognitive assessment

Cognitive assessment included the Virginia Cognitive Aging
(VCAP) battery (53) administered as described in (32). Two cognitive
composites were used in the analyses due to their reliance on WM
integrity (2): executive function (matrix reasoning, Shipley
abstraction, letter sets, spatial relations, paper folding, and form
boards) and perceptual speed construct (digit symbol substitution,
letter comparison, and pattern comparison). We calculated the
composites as a sum of the z-score values across the respective tasks.
Two subjects were missing data from all cognitive scores; these two
subjects were included in the fusion analyses but not in the regression
analyses with cognition. An additional five subjects were missing data
for the “Letter Sets task” and two had missing data for the “Form
Boards task” due to technical issues. For these seven subjects with
missing data from one task, we replaced the missing score with the
sample mean when calculating the composite scores, resulting in
n =219 for the final cognitive analyses.

Statistics

The regression analysis between the mixing coefficients and
cognition was corrected for family-wise error using the false discovery
rate (FDR) method as implemented by p.adjust in R. We created
figures using the ggplot function in the ggplot2 package (54).
We performed statistical analyses in R version 4.2.1. Lastly, to
minimize the effects of the outliers but to avoid removing data points,
for both the mixing coeflicients and the cognitive composites
we identified outliers as <1st percentile or>99th percentile of
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distribution (i.e., winsorized) by replacing them with the nearest value
in the Ist or 99th percentile.

Results
Sample characteristics

The older and younger adults in our sample showed the expected age
difference in speed and fluid abilities, as well as whole-skeleton DTI
values, but did not differ in education. Additionally, the young adult group
had a higher proportion of females than the older adult group (Table 1).

mMCCA+ICA output

Among the eight ICs, only one (IC2) had a qualifying Iq=0.923.
IC2 was a multimodal component with RD and AD showing
significant age-discriminatory contributions. As shown in Figure 2,
RD showed an increase in older adults in the right anterior and
posterior internal capsule, body, and splenium of the corpus callosum,
in the occipital WM, prefrontal WM, and frontal WM (anterior
corona radiata and anterior cingulate; voxels in red). RD was
decreased in older adults in fewer regions, which included the left
anterior and posterior capsule, genu, and splenium corpus callosum
(voxels in blue). AD was mostly decreased in older adults, which
included the corpus callosum genu and splenium, right internal
capsule, and prefrontal WM (blue). AD was increased in the older
adults in a cluster of the left internal capsule and scattered voxels in
the forceps minor and major (red).
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TABLE 1 Sample characteristics.

Variables

Age 21.6+3.2 65.4+4.4 0.001
Women, 7 (%) 47 (91) 117 (68) 0.001
Education, years 154+2.2 15.8+29 0.409
DTI parameters
FA 0.479+0.02 0.454£0.01 0.001
MD 0.753+0.01 0.767 +0.03 0.001
RD 0.586+0.09 0.507+0.16 0.001
AD 0.661+0.21 1.126+0.09 0.001
Cognitive scores
Digit symbol 82.96+26.96 65.39+13.79 0.001
Pattern comparison 19.05+4.31 14.82+2.57 0.001
Letter comparison 12.45+2.94 9.53+1.82 0.001
Letter sets 12.54+2.09 11.05+2.69 0.001
Spatial relations 12.05+4.92 8.08+4.73 0.001
Paper folding 8.57+3.29 5.42+2.57 0.001
Form boards 9.88+4.41 5.60+3.69 0.001
Shipley abstract 15.20+2.58 12.36+3.55 0.001
Matrix reasoning 11.49+3.23 8.12+3.03 0.001

MD, RD, and AD are expressed in pm?ms™". Values are presented as mean + SD unless
otherwise stated.

Mixing coefficients and cognition

To test whether the age differences in RD and AD depicted by IC2
were relevant for cognition, we conducted regression analyses to
examine the relationship between the mixing coefficients for RD and
AD and the executive function and processing speed composites.
Because both DTI values and cognition show strong associations with
age, which may drive their correlation (11, 55), we residualized the
executive function and processing speed controlling for age. Note that
the mixing coefficients for RD and AD already contain age information,
so they were not residualized. The scatterplots in Figure 3 display the
relationship between the mixing coefficients and cognitive scores,
while controlling for sex and education. The regression lines represent
the results of the linear models fitted to the data. After controlling for
these covariates and correcting for multiple comparisons, we found
that higher mixing coeflicients for RD and AD were associated with
better executive functioning and processing speed.

To test whether the IC2-cognition association was present in both
younger and older groups, we performed regression analyses by age
group, adjusting for sex and education (Table 2). We found that the
mixing coefficients for RD and AD were significant predictors of
executive function and processing speed only among older adults but
not among younger adults. In the older group, in addition to the
mixing coeflicients, education was a significant positive predictor of
executive function and processing speed.

Table 2 displays the results of regression analyses examining the
relationship between mixing coeflicients for radial diffusivity (RD)
and axial diffusivity (AD) and executive function and processing
speed among young and old adults.
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The fundamental question we were interested in answering is
whether the multimodal fusion of DTI parameters using mCCA +ICA
would provide more relevant information on age differences in WM
concerning cognition than conventional, unimodal analysis. To
investigate this, we conducted regression analyses between mean FA,
MD, AD, and RD across the whole WM skeleton with executive
function and perceptual speed scores, controlling for age, sex, and
education. No association was significant after FDR correction. See
Supplementary material 2 for more details.

Discussion

We presented the first application of symmetric multimodal fusion
analysis, mCCA +jICA, to characterize joint age differences in four DTI
feature maps: FA, MD, AD, and RD, in only WM space. Our analyses
revealed one high-stability modality-shared IC with co-variate patterns
of RD and AD that differentiated between young and older adults. The
joint information across RD and AD showed a superior association
with cognitive performance compared to unimodal analyses.

Joint differences in DTI parameters
between young and older adults

In the context of our study, we can interpret the mixing coefficients
as the strength of the covariance between the DTI features in
expressing age differences in the WM microstructure for each IC. In
other words, a higher mixing coefficient for RD and AD indicated
stronger age differences in RD and AD in the regions indicated in
IC-2. There are a couple of observations that we would like to highlight
when interpreting mixing coefficients.

First, the variance in the mixing coefficients was greater in the old
group than in the young group, consistent with age-related increases in
heterogeneity, as previously described for other structural and functional
brain features (56, 57). Second, we found more negative values of mixing
coeflicients in older participants, suggesting weaker associations between
RD and AD within the IC2. It is possible that the negative mixing
coefficients observed in older adults reflect a decrease in the spatial
specificity of WM microstructures with age, in line with the
dedifferentiation hypothesis, which posits that certain neural processes
become less distinct and spatially specific with age (57). In this context,
this could reflect an increased variability in the extent and localization of
myelin loss or other histological processes. However, this possibility needs
to be investigated by fusing features generated with MRI methods specific
to myelin and axonal components such as myelin water fraction, neurite
density orientation, and quantitative magnetization transfer (58-60).
Additionally, it is worth noting that the results observed in the young
group might be influenced by a restriction of range in the data, which
could potentially affect the interpretation of the linear regression model
results. Further investigation is needed to confirm and understand the
implications of this limitation.

Overall, the results from the mCCA+jICA approach
demonstrate a unique pattern of joint age differences in RD and
AD. Modality-shared IC2 was localized to the splenium of the
corpus callosum, internal capsule, and prefrontal WM. The genu of
the corpus callosum is the primary late-myelinating WM region,
achieving peak myelination ~70-109 weeks after birth (19). Related
to this, it is characterized by small axon diameter, thin myelin
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and older adults had p<0.01. IC, independent component

A modality-shared independent component (IC2) differentiating younger and older adults via independent samples t-test on mixing coefficients.

(A) Spatial maps for RD. (B) Spatial maps for AD. When z scores (red voxels) are positive and mixing coefficients are positive, the component is showing
increased RD/AD in older adults. Conversely, when z-scores are negative (blue voxels) and mixing coefficients are positive, the component is showing
increased RD/AD in young adults. Density plots show the loading parameters (or mixing coefficients) of IC2 for both RD and AD feature maps. Higher
mixing coefficients for both RD and AD in older adults means that IC2 was expressed more in older adults. All the two-sample t-tests between young
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sheaths, and a low oligodendrocyte-to-axon ratio, which makes its
myelin sheaths metabolically challenged and more vulnerable to
age-related deterioration (61). The splenium of the corpus callosum
is also considered late-myelinating, with peak myelination achieved
~68 weeks after birth. The anterior internal capsule also has peak
myelination achieved ~109weeks after birth. In contrast, the
posterior internal capsule is considered early-myelinating and
begins myelinating <68 weeks before birth. Thus, our results support
the retrogenesis pattern of WM degeneration, except for the voxels
in the posterior internal capsule.

As known from unimodal analyses, age differences are typically
characterized by decreased FA, increased MD and RD, and
bidirectional differences in AD (11, 44, 62). In contrast, the
mCCA+ICA showed no age differences in FA or MD, but rather a
covariation of age bidirectional differences in RD and AD. However,
the increases in RD were mostly localized to the genus of the corpus
callosum, prefrontal WM, and anterior limb of the internal capsule,
consistent with the retrogenesis hypothesis and vulnerability of myelin
in late-myelinating regions.

We observed that increases in RD in the splenium of the corpus
callosum and prefrontal/frontal WM were accompanied by lowered
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AD in the same regions. Studies using DTI-post-free water
elimination have revealed that increases in RD accompany a
decrease in AD with age, for example, in the frontal WM and parts
of the corticospinal tracts (e.g., superior corona radiata) (63). Our
earlier work also showed that increases in RD were accompanied
by a decrease in AD in the superior corona radiata and prefrontal
WM regions, but this effect was accompanied by decreased FA
(11). Our study suggests that mCCA +jICA allows the detection of
unique age differences driven by RD and AD independently of
FA and MD.

In summary, mCCA+jICA is sensitive to the cross-information
among all DTT features, which captures how DTT features interact
and creates independent sources that explain unique mechanisms of
WM aging (10). This multimodal fusion approach allowed us to
revisit age differences in the entire WM using a data-driven
approach. As hypothesized, this IC showed co-variant age differences
in RD and AD in late-myelinating regions that may reflect
demyelination, unrestricted diffusion of water—or chronic axonal
loss (64, 65). Future studies should extend these results and test the
utility of multimodal fusion using quantitative MR features with
greater specificity for WM microstructure.
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FIGURE 3
Mixing coefficients for IC2-RD and IC2-AD and association with executive function and speed composites. Lines of fit are adjusted by sex and
education. Cognitive scores are residualized for age.

TABLE 2 Regression analyses of mixing coefficients for RD and AD as predictors of executive function and processing speed.

Executive function Processing speed

Young

Model 1

IC2-RD 0.110 0.442 0.530 0.186 0.010 0.004 0.009 0.921 0.980 0.321 0.001 0.003
Education 0.155 0.328 0.437 0.350 0.001 0.006 —0.271 0.013 0.026 0.272 0.001 0.003
Sex 0.760 0.202 0.404 —0.027 0.818 0.884 —0.010 0.980 0.980 0.154 0.091 0.156
Model 2

IC2-AD 0.142 0.319 0.437 0.173 0.017 0.051 0.014 0.880 0.980 0.291 0.001 0.003
Education 0.155 0.139 0.333 0.363 0.001 0.006 —0.272 0.013 0.026 0.292 0.001 0.003
Sex 0.663 0.254 0.435 0.023 0.884 0.884 —0.010 0.972 0.980 —0.172 0.272 0.408

Sex is coded as 0 = female, 1 = male. B are standardized coefficients. Model 1 includes RD mixing coefficients, education (years), and sex. Model 2 includes AD mixing coefficients, education

(years), and sex. p values (p) were corrected for multiple comparisons using the FDR method, denoted as “q”

Frontiers in Neurology 07 frontiersin.org


https://doi.org/10.3389/fneur.2023.1094313
https://www.frontiersin.org/journals/neurology

Mendez Colmenares et al.

Ability to detect age differences relevant to
cognition

Associations of DTT with cognition (2) have been inconsistent,
possibly due to multiple factors such as selective DTI parameter use,
selective ROI, or type II error caused by multiple comparisons.
We showed that mCCA +jICA could detect co-varying patterns of RD
and AD that show a superior correlation with cognition than
unimodal analyses, emphasizing the importance of studying WM
MRI modalities together.

This first application of mCCA +jICA to study age differences in
healthy aging WM identified multimodal patterns linked to executive
function and processing speed composite scores. Specifically, RD-AD
IC2 positively correlated with processing speed and executive function
among the older adults, suggesting that RD and AD shared co-variance
may capture a more nuanced pattern of age-related WM differences
that correlates with cognition more robustly than any DTI
feature alone.

The regression analyses indicated that education also had a
positive effect on cognition among the older adults, which is
consistent with the cognitive reserve theory (66). The fact that this
positive effect was observed only in the older group may reflect a
cumulative effect of past educational experiences, subsequent
socioeconomic status, and environmental enrichment among older
adults. In younger adults, this association may be more obscured
given that the highest level of education determines peak cognitive
performance and the age of maximal cognitive functioning (67), and
that many of our younger participants were still continuing
their education.

While our results showed a superior correlation with cognition
compared to unimodal analyses, our multimodal fusion approach
does not maximize both the inter-modality associations and the
correlations with cognition. An extension of mCCA +jICA,
mCCA +jICA with reference uses a supervised multimodal approach
to maximize the correlation between cognitive scores and mixing
coeflicients (68). This supervised fusion approach can extract IC
associated with a specific prior reference (e.g., cognitive scores) to
optimize the decomposition of components and maximize the
correlations with cognition. Future multimodal fusion studies should
integrate mCCA +jICA and mCCA +jICA with reference to further
study the patterns of WM aging, as well as the role of WM in key
models of neurocognitive aging such as compensation (69), neural
efficiency (70, 71), or dedifferentiation (57).

Technical considerations and limitations

We need to consider several strengths and limitations in
interpreting our results. First, we used the ICASSO algorithm to
run multiple iterations of ICA and select the best single-run
estimate to ensure the replicability of our results (46). This
approach generates more reliable estimates for an IC than an
estimate from a single run of the ICA algorithm (47). Since ICA
algorithms (indeed most machine learning algorithms) are often
stochastic in nature, replication requires addressing this aspect
(72). Here we wanted to quantify the reliability of our ICA
estimates to acquire more stable results. Currently, there are
different strategies to evaluate the reliability of ICs using distinct

Frontiers in Neurology

10.3389/fneur.2023.1094313

clustering algorithms, including ICASSO. However, there are no
current studies to establish the use of other measures of
replicability/reliability of ICA results in DTI datasets, as most
fusion models involve fMRI and EEG datasets (49, 73).
Consequently, we chose a stricter quality index threshold from
ICASSO to assess component stability. Future studies should
explore using ICASSO and other clustering algorithms to estimate
the stability of ICA components in DTI datasets.

Second, the four DTI parameters are based on the same diffusion
tensor. These parameters can provide some unique information about
tissue diffusivity; however, some microstructural processes in the WM
present distinct patterns and combinations of increased/decreased FA,
MD, RD, and AD (11). Thus, by fusing all four DTI parameter maps
and maximizing the information from each DTI feature, we aimed to
overcome—at least to some extent—the lack of specificity and mitigate
the potential collinearity across the parameters. The mCCA +jICA
model assumes some degree of correlation across modalities but
allows accurate source separation based on the initial correlation
between mixing profiles. In addition, mCCA +jICA has shown high
accuracy in estimating independent sources, especially among sources
derived from mixing profiles with distinct canonical correlation
coeflicients (74).

Another limitation is that DTI parameters reflect biological
processes that depend on tissue architecture (e.g., in regions with
crossing fibers). Because DTI confounds integrity, density, the
diameter of myelin and axons, fiber orientational coherence, and the
volume fraction of extracellular water (8, 75, 76), DTT alone may not
be enough to study the aging WM. Future studies should attempt
fusing modalities with greater sensitivity and specificity to myelin or
axons, such as myelin water fraction, neurite density orientation, and
quantitative magnetization transfer (58-60).

In addition, we used a model order of eight ICs, which is lower
than the order of 12-15, typically used in mCCA +;jICA analyses
that include whole-brain data (48, 77). However, given that the
WM skeleton occupies only ~8% of the total brain volume (137.832
skeleton voxels divided by 1.827.095 voxels of full-brain FA map in
MNI space) in a sheath-like-structure and that structural data
should exhibit fewer patterns that functional data, we concluded
that eight ICs should provide enough flexibility in modeling age
differences in WM. Although using the TBSS skeleton minimizes
the effects of partial volume on DTI parameter values (78) in
samples with a broad age span, it results in the data having a
sheath-like structure, which may affect the component structure.
We chose the TBSS approach for our study as it allows for
representing local WM voxels and restricts the analyses to the
center of WM tracts, reducing contribution from partial volume
and white matter hyperintensities. Using skeletonized data at a 0.2
threshold also reduces the multiple comparisons problem and
increases statistical power. While an ROI approach is typically
preferred for confirmatory analyses, it would not be suited for
mCCA +jICA which requires one continuous set of voxels for
identifying patterns.

Lastly, because methods to estimate the number of components
in data fusion have been developed using fMRI and EEG datasets (79),
we estimated the number of components based on a priori knowledge
of mechanisms of WM aging. As a result, we included the ICASSO
algorithm in the mCCA+jICA framework to evaluate our
components robustness and reliability carefully.
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Conclusion

Together, symmetric multimodal fusion (a) can provide new
and potentially more rigorous information about brain aging, (b)
can identify age differences in WM that bear more relevance to
cognition than those obtained with traditional, region-based
unimodal approaches. However, the DTI model, especially with a
unimodal approach, provides limited information about the
underlying neurobiological mechanisms of aging and dementia.
Future multimodal fusion analyses should include more advanced
MRI techniques sensitive to the WM’s microstructural tissue
components and water-tissue interactions (80). Multimodal
approaches allow leveraging the complementary information
among different MRI modalities, representing an opportunity to
characterize the role of WM connectivity in cognitive dysfunction
and dementia.
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