
Martin Scales1
Research Center for Mechanics of Solids,

Structures & Materials,
The University of Texas at Austin,

ASE, 2617 Wichita Street,
Austin, TX 78712

e-mail: mscales@exponent.com

Kelin Chen2
Research Center for Mechanics of Solids,

Structures & Materials,
The University of Texas at Austin,

ASE, 2617 Wichita Street,
Austin, TX 78712

e-mail: kelinchen@utexas.edu

Stelios Kyriakides3
Research Center for Mechanics of Solids,

Structures & Materials,
The University of Texas at Austin,

ASE, 2617 Wichita Street,
Austin, TX 78712

e-mail: skk@mail.utexas.edu

Response, Localization, and
Rupture of Anisotropic Tubes
Under Combined Pressure
and Tension
The inelastic response and failure of Al-6061-T6 tubes under combined internal pressure
and tension is investigated as part of a broader study of ductile failure of Al-alloys. A
custom experimental setup is used to load thin-walled tubes to failure under radial paths
in the axial-hoop stress space. All loading paths achieve nominal stress maxima beyond
which deformation localizes into a narrow band. 3D digital image correlation (DIC) was
used to monitor the deformations in the test section and successfully captured the rapid
growth of strain within the localization bands where they burst. The biaxial stress
states generated are first used to calibrate the nonquadratic anisotropic Yld04-3D yield
function (Barlat et al., 2005, “Linear Transformation-based Anisotropic Yield Functions,”
Int. J. Plasticity, 21(5), pp. 1009–1039). The constitutive model is then incorporated
through a UMAT into a finite element analysis and used to simulate numerically the exper-
iments. The same calculations were performed using von Mises (VM) and an isotropic non-
quadratic yield function. The material hardening responses adopted were extracted for each
constitutive model from the necked zone of a tensile test using an inverse method. The use of
solid elements captures the evolution of local deformation deep into the localizing part of
the response, producing strain levels that are required in the application of failure criteria.
The results demonstrate that the adoption of a nonquadratic yield function, together with a
correct material hardening response are essential for large deformation predictions in
localizing zones in Al-alloys. Including the anisotropy in such a constitutive model produces
results that are closest to the experiments. [DOI: 10.1115/1.4048648]
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1 Introduction
The response and rupture of Al-6061-T6 tubes under combined

internal pressure and tension is investigated as part of a broader
study on ductile failure of aluminum alloys (e.g., Refs. [1–3]). Thin-
walled tubes extracted from the same tubular stock as the rest of the
tubes used in the study were tested to failure by burst under radial
paths in the nominal hoop and axial stress space. The experiments
are similar to a certain degree to those in Ref. [4] (see also Refs.
[5,6]). However, in the present experiments, the use of high resolu-
tion 3D digital image correlation (DIC) to monitor the deformation
of the test section allows accurate measurement of both the
induced average biaxial strain and the localized deformation that
leads to rupture.
The biaxial stress states generated are first used to calibrate the

nonquadratic anisotropic Yld04-3D yield function of Barlat et al.
[7]. The calibrated constitutive model is then incorporated through
aUMAT into a customfinite element analysis, which is used to simu-
late numerically the experiments. Simulations using the classical von
Mises (VM) and a nonquadratic isotropic model are also performed.
Unlike prior numerical efforts involving combined tension and inter-
nal pressure, solid elements are used to discretize the structure. Solid
elements enable monitoring of the evolution of local deformation
deeply into the post-limit load localizing part of the response

producing strain levels that are required in the application of
failure criteria. Another important component of the analysis is the
use of hardening responses extracted for each of the three constitutive
models from the necked zone of a tensile test on an axial strip using
the inverse method of Tardif and Kyriakides [8].
The results are used to demonstrate the effect of anisotropy on the

responses in this biaxial setting, but evenmore importantly the effect
of the constitutive model on the evolution of deformation in the
narrow neck that forms following the limit load that results in failure.

2 Experimental Setup, Procedures, and Results
The pressure-tension experiments involved 12 in (305 mm) long

tubular specimens extracted from the same 2-in (51 mm) diameter,
0.187 in (4.75 mm) wall thickness seamless tubular stock used in
the tension-torsion failure study in Ref. [2]. A 4.0 in (102 mm)
long test section with a nominal outer diameter of 1.73 in
(43.9 mm) and awall thickness of 0.050 in (1.27 mm)wasmachined
in the center of the test tube. The thicker end sections were sealed
with solid plugs and the assembly was mounted in a servo-hydraulic
testing machine using custom housings and pressurized clamps as
shown in Fig. 1. Axial load is applied by the 50 kip (222 kN) test
machine, and pressure via an independent 10,000 psi (690 bars)
closed-loop pressurizing system. The two systems are connected
through feedback, which enables the tracing of radial paths in the
nominal axial stress-hoop stress space as follows:

Σx = ηΣθ, η = const. (1)

The nominal stresses are related to the applied pressureP and axial
force F through
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Σθ =
PRo

to
and Σx =

F

2πRoto
+
PRo

2to
(2)

where Ro and to are the initial mid-surface radius and thickness. The
desired radial path is achieved by operating the pressurizing system
in volume control, and using the pressure as a command signal for
the axial force (loading scheme similar to that in Ref. [9]). The
volume was prescribed at a slow rate that resulted in an equivalent
strain rate of the order of 10−3 s−1 during the homogeneous defor-
mation stage of the experiment (note that Al-6061-T6 exhibits very
mild strain rate sensitivity which is negligible at such slow rates).
The test section deformation was continuously monitored using

3D DIC. Our system employs two 5 MP digital cameras equipped
with 50 mm lenses.
The cameras were oriented vertically so that the full length of the

test section, and nearly 180 deg of the circumference, could be

monitored. The strains were averaged over the central 1 in
(25.4 mm) length and 90 deg sector. Correlation and the instanta-
neous logarithmic strains (εx, εθ) were computed using GOM
ARAMIS v 6 using a facet size of 15 pixels and a spacing of 5
pixels corresponding to approximately 0.6to and 0.2to. These mea-
surements are used to obtain a first estimate of the current wall thick-
ness t = to exp (− εx − εθ). This value of t is used to obtain a first
estimate of the true stresses (σx, σθ), which are then used to establish
the plastic components of the strains and the through-thickness com-
ponent εpr = −(εpx + εpθ). This produces a new estimate of ɛr and the
process is repeated leading to quick (usually) convergence in the
stresses.

2.1 Experimental Results. Seven pressure-tension radial path
experiments were performed with stress ratios η= {0, 0.25, 0.5,

Fig. 1 Schematic of the pressure-tension experimental setup on the left and the closed-loop controlled pressurizing system on
the right
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0.75, 0.9, 1.0, 1.2} as shown in Fig. 2(a). Table 1 lists the main
geometric characteristics of each test specimen. Figure 3(a) shows
the recorded nominal hoop stress-average logarithmic hoop strain
(Σθ − εθ) responses, and Fig. 3(b) the corresponding axial responses
(Σx− ɛx). Each experiment achieves a load maximum (indicated
by ▴) beyond which deformation localizes, first as a mild bulge
at mid-span, and subsequently in the form of a narrow axial neck
with a width of the order of the wall thickness. The neck quickly
deepens and causes rupture by burst. Such burst failures were
sudden and catastrophic, but the “stiff” test setup of our system
limited the axial extent of the rupture. For η= 1.2, deformation local-
ized instead as a narrowcircumferential band that ruptured separating
the specimen in two.

The stress levels of the hoop direction responses in Fig. 3(a) are
banded together, whereas the axial stress levels in Fig. 3(b) fall in
accordance with the value of η. Figure 2(b) plots the induced loga-
rithmic strain histories, which are essentially linear up to the limit
load and mildly nonlinear beyond. The average strain levels are
smaller for η of 0.5 and 0.75 and larger for η= 0, 1.0, and 1.2.
The nominal stresses and strains at the limit load (subscript L) are
listed in Table 1. Included are also the nominal stresses from the
last data recorded before failure (subscript f ). The failure strains
reported are the largest values extracted from within the localization
band from the last DIC image recorded. Consequently, they are sig-
nificantly larger than the average values at the end of the strain tra-
jectories in Fig. 2(b).
The evolution of localization is now illustrated using results from

the η= 0.25 experiment. Figure 4(a) shows isolated the (Σθ − εθ)
response with five stations marked with numbered bullets.
Figure 4(b) plots the equivalent strain along a circumferential
profile that crosses the localization zone at these five stations.
Station ② at a hoop strain of 5.12% corresponds to the limit load.
For station ① with the much lower strain of 2.55%, the profile is
essentially flat indicating that the deformation is uniform around
the circumference. At the pressure maximum, a clear increase in
strain that covers a span of about 3to is observed. The strain
achieved a maximum value of 0.14 whereas away from this zone
it is at about 0.053—corresponds to the average value in
Fig. 4(a). In stations ③, ④, and ⑤ at average strains of 0.0535,
0.0559, and 0.0579, the local strain progressively increases with
the growth now being concentrated in a span of about 2to. A thick-
ness depression formed at the apex of the protrusion, and in the last
image recorded by DIC before burst the strain reaches a maximum
value of 0.26. Concurrently, the strain away from this zone
remained essentially unchanged for all four stations. The equivalent
strain recorded at the point undergoing the maximum deformation is
plotted against the average hoop strain in Fig. 5. The trajectory dem-
onstrates the nearly exponential growth of local strain around and
beyond the limit load—marked with ▴. Note that ee − εθ trajectories
from the rest of the experiments in the set included in the figure
exhibit the same rapid growth in the local strain as rupture is
approached. For this reason, in the experiments, the last few
images were taken at 1 s intervals. Thus, although the results
capture the trend of events, because of the accelerated unstable
growth of localized deformation as failure is approached, the
actual maximum strain at failure was not captured and is expected
to be much larger. Figure 6(a) shows DIC contours from the last
image recorded in the η= 0.25 experiment and Fig. 6(b) shows
the burst specimen. The rupture extends over a length of 0.6D
and the fracture surface is inclined at an angle of about 45 deg.

3 Analysis
The experiments are simulated numerically using solid elements

in order to follow the evolution of the axial localization zone that
precedes rupture. As in our preceding works on the response and

(a)

(b)

Fig. 2 (a) Nominal stress histories of the seven P-T tests, and
one uniaxial tension test and (b) recorded average strain
histories.

Table 1 Biaxial experiments: geometry of test specimens, and stresses and strains at the limit loads and at failure

Exp.
no. η R mm (in) t mm (in)

Ξo

(%)
ΣxL(MPa)

(ksi)
ΣθL(MPa)

(ksi)
ɛxL
(%)

ɛθL
(%)

Σxf(MPa)
(ksi)

Σθf(MPa)
(ksi)

ɛxf
(%)

ɛθf
(%)

11 0 21.3 (0.839) 1.26 (0.0498) 2.29 6 (0.9) 305 (44.2) −1.45 5.89 6 (0.9) 302 (43.8) −1.33 24.59
12 0.25 21.3 (0.839) 1.26 (0.0497) 2.50 83 (12.1) 314 (45.5) −0.36 5.12 83 (12.0) 313 (45.4) −0.37 23.06
4 0.5 21.3 (0.839) 1.26 (0.0498) 2.48 162 (23.4) 320 (46.4) 0.10 4.92 161 (23.4) 319 (46.2) 0.22 21.14
2 0.75 21.3 (0.839) 1.26 (0.0498) 2.60 241 (34.9) 320 (46.4) 0.54 5.06 241 (34.9) 320 (46.4) 1.47 17.40
3 0.9 21.3 (0.839) 1.27 (0.0501) 2.90 284 (41.2) 316 (45.8) 1.22 4.44 284 (41.2) 315 (45.7) 1.78 20.38
8 1 21.3 (0.839) 1.26 (0.0496) 4.52 312 (45.3) 312 (45.3) 3.63 5.32 311 (45.0) 311 (45.0) 4.88 21.30
10 1.2 21.2 (0.834) 1.01 (0.0399) 4.36 326 (47.3) 272 (39.5) 4.77 1.21 325 (47.1) 272 (39.4) 24.81 2.19

Σx = ηΣθ .
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ductile failure under multiaxial loads, three constitutive models are
adopted: (a) the first is based on the quadratic VM yield function;
(b) one based on the nonquadratic yield function of Hosford [10],
which in terms of the principal deviatoric stress components can
be expressed as

Φ = [(|s1 − s2|k + |s2 − s3|k + |s3 − s1|k)/2]1/k (3)

and (c) the nonquadratic anisotropic 3D yield function of Balat et al.
[7] Yld04-3D, expressed as

Φ = [(|S′1 − S′′1 |k + |S′1 − S′′2|k + |S′1 − S′′3 |k + |S′2 − S′′1 |k + |S′2 − S′′2 |k

+ |S′2 − S′′3 |k + |S′3 − S′′1 |k + |S′3 − S′′2 |k + |S′3 − S′′3|k])/4]1/k
(4)

where S′ and S′ ′ are linear transformations of the Cauchy stress
tensor through which orthotropic anisotropy is introduced (results
in 18 anisotropy parameters (see Refs. [3,7]; see also Ref. [11]
who used an extended version of Yld02-2D with fewer anisotropy
constants in solid element calculations). The stresses and strains
from the uniaxial and seven biaxial experiments were used to cali-
brate the model as outlined in Appendix A, and the determined con-
stants are listed in Table 2. Because the stress state in the
experiments was limited to the (x, θ) plane, six of the constants
could not be determined and were assigned values of 1.0.
The material hardening response was measured using a tensile

test on an axial dogbone specimen from the same tube stock as
the biaxial test specimens. Since tensile tests lead to necking at rela-
tively small strains, the hardening at larger strains is extracted using

(a)

(b)

Fig. 3 Nominal stress-average strain responses of the seven
P-T experiments: (a) hoop and (b) axial results

(a)

(b)

Fig. 4 (a) Nominal hoop stress-average strain response for the
η=0.25 experiment; station ② is the limit load. (b) Equivalent
strain profiles across the localization zone at the five stations
marked in (a).

Fig. 5 Maximum equivalent strain recorded in the localization
zone versus average hoop strain for the seven P-T experiments

Fig. 6 (a) Equivalent strain contour in the last stage prior to
failure for the η=0.25 experiment and (b) photograph showing
the same specimen after rupture

Table 2 Anisotropy parameters for Yld04-3D constitutive model

c′12 c′13 c′21 c′23 c′31 c′32 c′44,55,66
−0.2846 0.4221 0.7066 0.6257 −2.0404 −1.3176 1.0
c′′12 c′′13 c′′21 c′′23 c′′31 c′′32 c′′44,55,66
−0.0378 0.2290 0.1698 0.0841 −0.9810 −2.4454 1.0
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an inverse method that combines the constitutive model with the
finite element modeling to match the measured force–displacement
response as described in Appendix B (see also, Ref. [8]). The hard-
ening response extracted for each of the three constitutive models
appears in Fig. 20(b).
The finite element model used to simulate numerically the six

pressure-tension experiments that developed an axially oriented
rupture is shown in Fig. 7. Assuming symmetry about the mid-
length, and about a plane that contains the axis of the tube and
the zone of rupture enables consideration of only one-fourth of
the structure. The model includes one half of the 4-in long test
section and part of the thicker section that protruded outside the
grips in the experiments (see Fig. 1). A small axial thickness depres-
sion imperfection is introduced at the plane of symmetry shown colored in the figure. It has a width of 2to, length of R and, a circum-

ferential cosine distribution with amplitude Δt. The domain is
meshed with ABAQUS’ solid linear elements (C3D8R). The whole
domain has three elements through the thickness—this may
require further refinement when performing failure calculations
that go deeper in the localizing zone than was achieved in the exper-
iments. The straight test section has 51 elements around the circum-
ference, and 40 along the length. A zone 1.3R long and angular span
of 30 deg around the imperfection has a finer mesh with 66 elements
along the length and 27 elements in the circumferential direction.
The mesh of the radiused fillet is also refined while that of the
thicker section at the end is made coarser. Nodes on the x= 0
plane of symmetry are constrained in the axial direction but are
free in the radial direction. Nodes across the thickness surface of
the thicker end are kinematically coupled to a reference node to
facilitate the axial motion.
The loading mimics that of the experiments. The model is pres-

surized under volume control using incompressible fluid elements

Fig. 7 Finite element model and mesh adopted for simulation of
the pressure dominant P-T experiments

(a)

(b)

Fig. 8 Nominal stress-average strain responses for the η=0.25
experiment and Yld04 analysis: (a) hoop and (b) axial direction
results

(a)

(b)

Fig. 9 (a) Calculated equivalent strain profiles across the local-
ization zone predicted by the Yld04 model at the nine stations
marked in Fig. 8 for the η=0.25 experiment; station ③ corre-
sponds to the limit load in the analysis. (b) Close-up view of
the localization at station ⑨.

Fig. 10 Measured equivalent strain in the localizing zone versus
the average hoop strain for η=0.25 and corresponding predic-
tions using the VM, H8, and Yld04-3D constitutive models
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(F3D3 and F3D4). The symmetry planes at x= 0 and at θ= [0, π],
and the tube inner surface define the cavity, which was closed
with SFM3M3 surface elements at the thicker end. A volume
increase is prescribed, and the corresponding pressure is used as a
sensor. A user-amplitude routine (UAMP) takes the pressure and

applies an appropriately scaled axial force to achieve the same
radial path loading that was prescribed in the experiments, in accor-
dance with Eqs. (1) and (2).

3.1 Simulation of Σx= 0.25Σθ Experiment. The experiment
with stress ratio η= 0.25 is simulated numerically and the results
are used to evaluate the performance of the model and provide addi-
tional insight into the localization of deformation that leads to burst.
Figure 8(a) plots the calculated nominal hoop stress-average strain
response using the Yld04-3Dmodel and Fig. 8(b) the corresponding
nominal axial response. For consistency with the experiments, the
presented strains are computed from the average strain of all
surface elements located in the same region over which strains
were averaged in the experiment. An imperfection amplitude of
Δt= 0.03to is adopted. Included in the two figures are the responses
recorded in the experiment. The agreement between the measured
and calculated responses up to the limit loads is excellent in both
figures. The calibrated constitutive model and the appropriate
extraction of the material hardening play a pivotal role for this per-
formance. The strains at the limit loads differ by a small amount but,
while the descending part of the experimental hoop response
reached an average strain of about 6% prior to burst, the analysis
is taken further with the nominal stresses decreasing.
Figure 9(a) plots the equivalent strain in the neighborhood of the

imperfection at x= 0 corresponding to the nine stations marked on
the responses in Fig. 8 (the results are reflected about the plane of
symmetry for better visualization). In profile 1 at εθ ≈ 0.025, the
tube is deforming essentially uniformly so the increase in the
strain in the center is directly related to the lower thickness of
the imperfection. As the limit load is approached, deformation in
the neighborhood of the imperfection accelerates (profile 2) and,
by station 3 at the limit load, the strain has localized in the span
of the imperfection (2to). At subsequent stations, the local strain
grows reaching a maximum value of about 0.47 at station 9 when
the calculation was terminated. Figure 9(b) shows a deformed
image of the localizing part of the specimens corresponding to
station 9. Superimposed color contours represent the strain level.
The whole length of the imperfection zone sees higher strain but
the more severe localization affects a length of about 0.5R. The
maximum strain occurs at x= 0 and decreases both in width and
intensity away from this point, features that broadly agree with
the localization image recorded by DIC in Fig. 6(a). The very
rapid growth of the strain beyond the limit load is also illustrated

(a)

(b)

Fig. 11 Effect of imperfection amplitude on the stress-average
strain responses for the η=0.25 experiment using the Yld04-3D
analysis: (a) hoop and (b) axial direction results

(a)

(b)

Fig. 12 Comparison of measured stress-average strain
responses for η=0.25 and predicted using the VM, H8, and
Yld04-3D constitutive models: (a) hoop and (b) axial direction
results

Fig. 13 Average strain paths traced experimentally for stress
ratios of 0.25 and 1.0, and predictions using the VM, H8, and
Yld04-3D constitutive models
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in Fig. 10, which plots the equivalent strain at the deepest point of
the imperfection (0,0) versus the average hoop strain. Included here
is the corresponding plot from the experiment, which follows a very
similar trajectory, but terminates earlier due to failure by burst.
It is important to point out that experiments like the present ones

tend to deviate somewhat from the ideal geometry and loading con-
ditions inways that include: specimenwall thickness eccentricity (Ξo

in Table 1), surface roughness from manufacturing and machining,
small internal defects, axial load eccentricity, etc. In analysis, the col-
lective effect of these is typically represented by one geometric
imperfection such as the wall thinning one used in the present
study. In the way of assessing the effect of the geometry of the imper-
fection on the response, the amplitude of the imperfection Δt/to was
assigned values of {0.01, 0.02, 0.03}. The calculated nominal hoop
and axial stress-average strain responses are plotted in Fig. 11
together with the experimental ones. Interestingly, the three pairs

of responses are nearly identical up to their respective limit loads,
which are also very close to each other. The main effect of the imper-
fection amplitude is on the post-limit load part of the response.
Deceasing Δt results in slower growth of the strain in the localizing
zone and stretches the response to higher average strains. The three
responses in Fig. 11 were terminated when the maximum strain
reached the level of configuration 9 in Fig. 9.
Figure 12 includes the nominal hoop and axial stress-average

strain responses calculated using the VM and Hosford (H8) consti-
tutive models, together with the stress–strain response extracted for
each yield function from the uniaxial tension test as outlined in
Appendix B (see Fig. 20(b)). The three simulations were terminated
when the maximum strain in the necked region matched the last
value recorded in the experiment just before burst (Fig. 4(b)). The
H8 hoop response nearly matches the experiment whereas the

(a)

(b)

Fig. 14 Comparison of measured stress-average strain
responses for η= 1.0 and predicted using the VM, H8, and
Yld04-3D constitutive models: (a) hoop and (b) axial direction
results

Fig. 15 Measured equivalent strain in the localizing zone versus
the average hoop strain for η=1.0 and corresponding predic-
tions using the VM, H8, and Yld04-3D constitutive models

(a)

(b)

Fig. 16 Nominal stress-average strain responses for the seven
P-T paths calculated using the Yld04-3D contitutive model:
(a) hoop and (b) axial results

Fig. 17 Equivalent strain in the localizing zone versus the
average hoop strain calculated using the Yld04-3D constitutive
model for set of P-T radial paths—correspond to experimental
results in Fig. 5
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axial response is slightly lower. The limit load is close to the exper-
imental value and to the one of the Yld04-3D response, and so is the
extent of the post-limit load response. The VM hoop response is
higher than the experiment by about 2 ksi (14 MPa) but matches
the axial response at least initially. The limit load occurs at larger
εθ and the overall response extends to larger average strain. The
axial response stretches to a strain that is nearly four times higher
than the value of the experiment and those of the other two
responses. As is apparent in Fig. 10, the growth of localization
for VM is much slower than in the experiment and for the other
two models. The cause of this discrepancy can at least be partly
traced to the shape of the yield surface where it is intersected by
the stress path Σx = 0.25Σθ in Fig. 19. The local normal is quite
different from that of the H8 and Yld04-3D yield surfaces. This is
also supported by the calculated strain paths in Fig. 13 where the
path predicted by VM differs significantly from that of the experi-
ment—see similar trend in the calculations of Ref. [4] who used
shell elements to model their tubes.

3.2 Simulation of Σx = Σθ Experiment. For a broader presen-
tation of the numerical effort, simulations results from the equibiax-
ial stress path Σx = Σθ are presented in Figs. 14 and 15. Figures
14(a) and 14(b) plot the nominal hoop and axial stress-average
strain responses calculated using the three constitutive models for
Δt/to= 0.03 together with the measured ones. In this case also,
the Yld04-3D hoop and axial responses match the experimental
ones very closely. By contrast, both sets of H8 and VM responses
are somewhat lower. The limit loads of the three responses agree
while the experimental limit load occurs at somewhat higher
strain levels. Figure 15 plots the calculated equivalent strain at the
deepest point of the imperfection (0,0) versus the average hoop
strain—solid lines terminated at the maximum strain recorded in
the experiment. Included is also the corresponding experimental tra-
jectory. The Yld04-3D prediction matches well the measured trajec-
tory but the localization is followed to much higher strain levels—
partially drawn with dashed line. The H8 trajectory follows that of
Yld04-3D up to the limit load, but the upswing in ee occurs at higher
average hoop strain. The VM solution has a hard time localizing
even at very high values of εθ. The strain path predicted by this
model included in Fig. 13 is also seen to deviate significantly
from the measure one. Overall, the results confirm the inappropri-
ateness of this constitutive model for response and failure

calculations for Al-alloys (see similar conclusions in Giagmouris
et al. [12] and Chen et al. [3]).

3.3 Summary of Numerical Simulations Results. All seven
radial path experiments were simulated numerically and the
nominal hoop and axial stress-average strain responses calculated
using Yld04-3D are plotted in Figs. 16(a) and 16(b). An imperfec-
tion amplitude of Δt/to= 0.03 was adopted for the whole set. The
responses follow the experimental ones in Fig. 3 to the same
degree of agreement as for the two cases discussed in more detail
in Figs. 8 and 14. The limit loads occur at strain levels comparable
to those of the experiments. Figure 17 plots the equivalent strain at
the deepest point of the imperfection (0,0) versus the average hoop
strain for the seven simulations. The strain at the limit load is iden-
tified with the symbol r. All cases localize close to the onset of the
limit load beyond which the local strain grows in a nearly exponen-
tial manner. The calculations were terminated when the local strain
reached a value of 0.4. Although the figure does not facilitate
one-to-one comparison with the experiments, the trend of the trajec-
tories is similar to that of the corresponding measured results in
Fig. 5 up to the points they were recorded. Such numerical results
are essential for establishing the onset of failure using a suitably cal-
ibrated failure criterion such the triaxiality based Johnson and Cook
[13], or more recent approaches that include the effect of shear
(Lode angle) such as Mohr and Marcadet [14]. However, the local-
izing zone mesh may require further refinement when such calcula-
tions go deeper into the localization zone than in the present
experiments and simulations.
Figure 18 compares the measured and calculated average strain

paths using the Yld04-3D constitutive model for the whole set of
experiments performed. The analysis reproduces the strain paths
very well for all cases. By contrast, the VM model predictions
were uniformly poor. The predictions for H8 showed improvement
supporting the need for a nonquadratic yield function for plasticity
of Al-alloys. Nevertheless, in concert with previous publications on
the subject, for best performance the material anisotropy must be
included in the constitutive model (e.g., Refs. [3–6,12]). It is
worth mentioning that unlike other stress states considered in our
broader study of ductile failure, here the Yld04-3D constitutive
model was calibrated using only the pressure-tension experiments.
The very good overall performance of predictions using this consti-
tutive model attests also to the adequacy of the calibration per-
formed for the present problem.

3.4 Analytic Prediction of Limit Load. The onset of localiza-
tion denoted by a limit load instability is important for generating
forming limits in manufacturing. The classical Considère condition
for the limit load of thin-walled structures under uniform stress
states can provide an analytical alternative to numerical treatment
for establishing such critical states. Appendix C outlines the Con-
sidère condition for the present pressure-tension tube problem.
The condition is formulated in terms of a general yield function,
and is subsequently specialized to the three yield functions used
in this study. The strains at the limit loads predicted using
Yld04-3D for each of the seven radial loading paths are marked
in Fig. 18 with symbol “•”. For 0≤ η≤ 0.9, the predictions are
close to both the experimental and the numerical values. Generally,
they are slightly lower primarily because of the finite length of the
test specimens. For η= 1.2, the prediction is rather higher. This is
partly caused by the relatively poor match between the calibrated
Yld04-3D surface in the neighborhood of this data point seen in
Fig. 19. Better fitting of this part of the yield surface is expected
to improve the limit strain prediction for η= 1.0 also. The limit
strains predicted for the VM and H8 constitutive models are close
to the numerically generated ones and consequently differ from
the experimental values to the same degree. Interestingly, the pre-
dictions using σx = ησθ are close to the ones presented primarily
because the strains at the limit load are relatively small.

Fig. 18 Average strain histories for the set of P-T experiments
and simulations using the Yld04-3D constitutive model. The
bullets “•” represent the limit values predicted analytically in
Appendix C.
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4 Summary and Conclusions
The paper studies the response and failure of aluminum alloy

tubes under combined tension and internal pressure with the aim
of adding more clarity on the localization mechanism that leads
to failure. Tubular specimens with R/t≈ 16.7 and L/R= 4.77
were loaded to failure in a custom setup under seven radial
paths with Σx/Σθ = η={0. 0.25, 0.5, 0.75, 0,9, 1.0, 1.2}. All
responses achieved load maxima beyond which deformation local-
ized in an axial band with width of order of the wall thickness for
six of the paths, and a circumferential band for η= 1.2. The defor-
mation in the test section was monitored with high-resolution 3D
DIC, both during the uniform and localized phases. Strains within
the band grew rapidly and developed high gradients, reaching
values nearly an order of magnitude larger than those outside
the band. Failure occurred within the band suddenly for all speci-
mens. The high resolution imaging enabled capture of the very
rapid growth of deformation within the bands that preceded
failure. However, because of the abruptness of localization, the
actual strain at failure is much larger than the maximum strain
recorded.
The experiments were simulated using a custom finite element

analysis. Unlike our previous efforts on the subject, the tubes
were discretized with solid elements. This enabled tracking the
deformation in the localizing bands through the wall thickness to
the high levels of strain required for the application of failure crite-
ria. The analysis uses the von Mises and nonquadratic Hosford (H8)
yield functions as well as the anisotropic yield function Yld04-3D
calibrated for the stress state of the problem using the experimental
responses. An important component of the analysis is the use of
hardening responses extracted for each constitutive model from
the necked zone of a tensile test using an inverse method.
The following conclusions are drawn from the study:
The analysis based on the calibrated Yld04-3D constitutive

model is capable of accurately reproducing all aspects of the exper-
imental behavior. This includes the initial uniform strain regime, the
strains at the limit load instability, and the nearly exponential
growth of strain in the subsequent localization in narrow bands.
By contrast, the performance of the VM constitutive model was
broadly poor. It failed to reproduce any of the initial strain paths,
the predicted limit load strains are significantly off, and so is
the evolution of localized deformation that follows. In the case of
η= 1.0, VM failed to localize entirely. Switching to a nonquadratic
yield function with exponent of 8, improved the prediction of some
strain paths, resulted in better limit load predictions, and localizing
zone strain trajectories closer to the measured ones.
The results demonstrate the following:

(a) The adoption of a nonquadratic yield function for failure
predictions of Al-alloys is essential. Including the anisot-
ropy in such a constitutive model produces more optimal
results.

(b) Tracking the strains inside the narrow and high gradient
localization zones necessary for prediction of failure requires
a fine mesh of solid elements.

(c) Successful modeling of localizations requires a material
hardening response extrapolated, for example, from the
necked zone of a uniaxial tension test using the constitutive
model adopted in the structural analysis.

(d) For structures under uniform stress states like the present
one, the onset of a load maximum that precedes failure
important in design can be estimated accurately using Con-
sidère type analysis. As in numerical analysis, this must be
based on an appropriate yield function and the corresponding
hardening response.
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Appendix A: Calibration of Yld04-3D
The Yld04-3D anisotropic yield function is calibrated using stres-

ses and strains from the seven biaxial Σx − Σθ experiments per-
formed and the uniaxial tension test as follows. For each of the
biaxial tests, let (εwx , ε

w
θ ) be the strains corresponding to plastic work

Wp =
∫εwx
0
σxdε

p
x +

∫εwθ
0
σθdε

p
θ = 1000 psi (6.9MPa) (A1)

and (σwx , σ
w
θ ) be the corresponding stresses. This state of stress is

introduced into the current yield function σe =Φ(σwx , σ
w
θ ) and the

following error function is developed

Eσ =
σe
σwxu

−1
( )2

(A2)

where σwxu is the stress corresponding to the same value of plastic
work measured in the uniaxial tension test. The measured instanta-
neous strain ratio dεpx/dε

p
θ is used to generate the R-ratio

Rexp =
dεpθ
dεpr

= −
1

(1 + dεpx/dε
p
θ)

(A3)

The flow rule is then used to evaluate the same strain ratio at the
required stress state

dεpx
dεpθ

∣∣∣∣
Φ
=
∂Φ/∂σx
∂Φ/∂σθ

∣∣∣∣
σwx ,σ

w
θ

(A4)

RΦ is then generated as in (A3) and the strain ratio error function
is formed:

ER =
RΦ

Rexp
−1

( )2

(A5)

Fig. 19 Work contours of the VM, H8, and calibrated Yld04-3D
constitutive models in the axial-hoop stress space together
with experimental data points
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The flow stress and R-value from uniaxial tension is incorporated
in exactly the same manner. A global error function consisting of
the weighted sum of the eight pairs of error functions is then
generated

E(c′ij, c′′ij) =
∑8
i=1

ωσi
RΦ

Rexp
−1

( )2

+ωRi
σe
σwxu

−1
( )2

(A6)

The basinhopping algorithm of the Scipy python package ([15])
was used to establish optimal values of the anisotropy coefficients
(c′ij, c

′′
ij) listed in Table 2. Because the stress states are limited to

the (x, θ) space, six parameters could not be determined and are
assigned values of 1.
A work contour of the calibrated constitutive model is shown in

the axial-hoop stress space in Fig. 19 together with the experimental
stresses (σxo is the uniaxial tension flow stress). Yld04-3D matches
the experiments very well. Included are the corresponding work
contours for the H8 and VM models. The quadratic yield function
deviates from the data significantly. Hosford’s yield function, H8,
performs quite well but misses the data around the equibiaxial
stress state.

Appendix B: Extraction of the Material Hardening
at Large Strains
The material hardening response was extracted from a tensile test

on a dog bone specimen extracted along the axis of the tube. The
specimen necks at a strain of about 7% (see Fig. 20(a)). Thus, for
higher strains the material hardening is extrapolated from the mea-
sured nominal stress–elongation response using the numerical
simulation procedure of Tardif and Kyriakides [8] in conjunction
with an appropriate constitutive model. Figure 20(b) shows the
equivalent stress–strain responses extracted for the VM, H8, and
Yld04-3D yield functions using this procedure. The three responses
agree quite well up to a strain of about 10% but deviate for higher
values with Yld04-3D exhibiting significantly more hardening, VM
modest, and H8 somewhat more hardening. The dashed lines repre-
sent linear extrapolations using the tangent modulus at the end of
the extraction process. Figure A2(a) shows that the experimental
nominal stress–displacement response was matched by the numer-
ical simulations for all three constitutive models. (More details
about the specimen and model geometry and numerical procedure
followed can be found in Scales [16]).

Appendix C: Analytical Estimates of the Limit Loads
Failure of a thin-walled tube loaded under combined internal

pressure and axial load is preceded by a load maximum instability,
which signifies the onset of localized deformation. Thus, the strains
at the limit load represent a critical state, and analytical estimates
provide useful alternatives to numerical treatment in manufacturing
and other applications. Here, we develop the classical Considère
condition for the onset of a load maximum in a thin-walled tube
under combined internal pressure P and axial load F. Assume the
tube to be finitely deformed to a radius r and wall thickness t,
and that the elastic strains are negligibly small. The true stresses
are given by

σθ =
Pr

t
and σx =

F

2πrt
+
Pr

2t
(C1)

In our experiments, the nominal stresses are

Σx = ηΣθ (C2a)

Thus, at the load maximum

dP = 0 and dF = 0 (C2b)

which, respectively, lead to

dσθ = (2dεθ + dεx)σθ and dσx = (σθdεθ + σxdεx) (C3)

Let Φ be the yield function and σe the associated equivalent stress,
then

dσe =
∂Φ
∂σθ

dσθ +
∂Φ
∂σx

dσx (C4)

(C3)→ (C4)

dσe =
∂Φ
∂σθ

(2dεθ + dεx) +
∂Φ
∂σx

(dεθ +
σx
σθ

dεx)

[ ]
σθ (C5a)

Using the flow rule

dσe =
∂Φ
∂σθ

2
∂Φ
∂σθ

+
∂Φ
∂σx

( )
+
∂Φ
∂σx

∂Φ
∂σθ

+
σx
σθ

∂Φ
∂σx

( )[ ]
Λσθ (C5b)

Plastic work compatibility requires that

dεe = dεθ +
σx
σθ

dεx

( )
σθ
σe

(C6a)

and from the flow rule

dεe = Λ
∂Φ
∂σθ

+
σx
σθ

∂Φ
∂σx

( )
σθ
σe

(C6b)

Combining (C5b) and (C6b) leads to the following Considère
condition for the limit load

dσe
dεe

∣∣∣∣
L

= σeL

2
∂Φ
∂σθ

( )2

+ 2
∂Φ
∂σθ

∂Φ
∂σx

+
σx
σθ

∂Φ
∂σx

( )2

∂Φ
∂σθ

+
σx
σθ

∂Φ
∂σx

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (C7)

where
σx
σθ

=
1
2
+
(
η −

1
2

)
e−2εθ .

For the material at hand ɛθL is relatively small and thus σx ≈ ησθ.
Applying (C7) and this approximation to the von Mises yield

function leads to

dσe
dεe

∣∣∣∣
L

= σeL
4η3−6η2 + 3η + 4

4(η2 − η + 1)3/2

[ ]
(C8)

Applied to the Hosford yield function with exponent 8 (C8)
leads to

dσe
dεe

∣∣∣∣
L

=σeL
η[η7−(1−η)7]2+2[1+(1−η)7](1+η7)

21/8{η[η7−(1−η)7]+[1+(1−η)7]}[η8+(1−η)8+1]7/8

[ ]

(C9)

Application of (C8) to Yld04 requires numerical treatment.
It is worth pointing out that if in contrast to the nominal stresses

being proportional (C2a), the true stresses are assumed to be pro-
portional, σx = ησθ, for pressure dominant loading paths the Con-
sidère condition becomes

dσe
dεe

∣∣∣∣
L

= 2
∂Φ
∂σθ

+
∂Φ
∂σx

( )
σeL (C10)

Appling the von Mises yield function to (C10) leads to

dσe
dεe

∣∣∣∣
L

=
3σeL

2(η2 − η + 1)1/2
(C11)

(e.g., Mellor [17]).
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Applied to the Hosford yield function with exponent 8 (C10)
leads to

dσe
dεe

∣∣∣∣
L

=
[η7 + (1 − η)7 + 2]

21/8[η8 + (1 − η)8 + 1]
7/8 σeL (C12)

Application of (C10) to Yld04 requires again numerical
treatment.
The Considère expression (C7) was used to develop estimates of

the limit loads for the seven stress path experiments reported using
the VM, H8, and Yld04 yield functions. The equivalent stress and
strain at the limit load can be evaluated using the material response
extracted from the uniaxial test for each yield function using an
inverse method that appears in Fig. 20(b). The stresses and plastic

strains are then evaluated from the yield function and flow rule,
respectively.
The total strains at the limit loads of the seven experiments for

Yld04 are depicted with symbols “•” in Fig. 18—the elastic
strain components were added for consistency with the experimen-
tal and numerical results.
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