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We show how to build a compiler for a sparse array language that supports shape operators such as reshaping

or concatenating arrays, in addition to compute operators. Existing sparse array programming systems

implement generic shape operators for only some sparse data structures, reduce shape operators on other

data structures to those, and do not support fusion. Our system compiles sparse array expressions to code that

efficiently iterates over reshaped views of irregular sparse data structures, without needing to materialize

temporary storage for intermediates. Our evaluation shows that our approach generates sparse array code

competitive with popular sparse array libraries: our generated shape operators achieve geometric mean

speed-ups of 1.66×–15.3× when compared to hand-written kernels in scipy.sparse and 1.67×–651× when

compared to generic implementations in pydata/sparse. For operators that require data structure conversions
in these libraries, our generated code achieves geometric mean speed-ups of 7.29×–13.0× when compared

to scipy.sparse and 21.3×–511× when compared to pydata/sparse. Finally, our evaluation demonstrates

that fusing shape and compute operators improves the performance of several expressions by geometric mean

speed-ups of 1.22×–2.23×.
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1 Introduction
Shape operators are the type casts of array programming. The shape of an array determines which

operations are valid as vectors of different lengths cannot be added and matrices of incompatible

dimensions cannot be multiplied. However, programmers often need to manipulate the shape of

arrays, and do so via shape operators. Many important computations require explicitly manipulating

array shapes, such as stacking constraint matrices in physical simulation [30], reshaping tensors in

neural networks [36], and slicing images in biomedical computing [8]:
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As a result, dense array programming systems [16, 19, 25] have ample support for shape operators,

and they often reduce to constant-time metadata edits.

Sparse array programming systems lag behind their dense counterparts, with incomplete sup-

port for shape operators. While sparse array libraries [2, 37] support some shape operators, the

implementations reduce to a small set of hand-written kernels. The data structure conversions

required by these reductions incur a significant performance cost. Sparse tensor algebra compilers,

on the other hand, [3, 22, 38, 39] lack a complete set of shape operators.

Hand-engineering sparse shape operators faces a significant scaling problem: each shape operator

must be implemented for each sparse data structure, and it is not feasible to implement the full

Cartesian product. Prior work on sparse tensor algebra compilation proposes a promising direction.

Kjolstad et al. [22] and Chou et al. [9] show how to decouple compute operators from sparse data

structures by establishing a data representation interface that sparse tensor algebra is compiled to

and that each sparse data structure implements. This separation linearizes the quadratic dependency

between algorithm and data representation and lets users generate sparse tensor algebra kernels for

any combination of input and output data structures. Such techniques have not yet been developed

for sparse shape operators. The key challenge lies in establishing a compilation model that supports

generating code that iterates over, and computes on, combinations of reshaped, concatenated, and

sliced views of sparse arrays backed by irregular data structures.

While recent work on compilers for sparse tensor algebra [3, 5, 22] addresses the sparse compute

problem, they do not support shape operators except for limited cases (e.g., Taco supports slicing

unfused array operands [18] and Looplets [3] supports concatenation without fusion). The challenge

is that shape operators result in significantlymore complicated iteration patterns, requiring a general

unified representation of both shape operators and computation. On the other hand, libraries of

hand-written kernels, such as scipy.sparse [37] and pydata/sparse [2] are not feature complete,

and are limited by the time required for the maintainers to implement different combinations of

shape operators and sparse array data structures. These libraries also do not support operator fusion,

which is an important optimization to achieve high performance for complicated expressions.

We introduce a compiler-based approach to providing general support for sparse shape operators,

extending ideas from Taco to support iterating over reshaped arrays. We implement these ideas

in a prototype compiler named Burrito
1
. We extend an existing array programming language to

support shape operators (Section 4), describe compilation to a new intermediate representation (IR)

for iterating over sparse data structures (Section 5), and outline the compilation process from our

IR to efficient CPU code (Section 6 and Section 7). Our abstractions enable generation of specialized

code for sparse array kernels containing shape operators, can generate code for a variety of data

structures, and enable fusion across shape and compute operators. Table 1 summarizes how Burrito

compares to other array programming systems. Our technical contributions are:

(1) A lowering approach from an array language with shape operators (Section 4) to a high-level

loop language that expresses fusion across operators (Section 5).

(2) A state-driven algorithm for generating optimized while loops that coiterate through re-

shaped iteration spaces (Section 6).

1
A Burrito is what you get when you reshape a Taco.
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(3) A compilation approach for generating iteration code that abstracts both data structures and

reshaped iteration spaces, based on a simple iterator model (Section 7).

Burrito generates code competitive with hand-written libraries on unfused shape operators, and

generally outperforms these libraries when given sparse kernels that offer fusion opportunities.

Across six shape operators hand-written in scipy.sparse and pydata/sparse, Burrito performs

1.66×–15.3× and 1.67×–651× faster, respectively. For shape operators whose library implemen-

tations convert between data structures, Burrito-generated code outperforms scipy.sparse by
7.29×–13.0× and pydata/sparse by 21.3×–511×. To evaluate the benefits of fusion, we perform a

self-comparison and show that code that fuses shape and compute operators outperforms unfused

code by 1.22×–2.23× on some benchmarks. The observed benefits are largely due to the removal of

expensive intermediate tensor allocations, which we discuss further in Section 8.

Table 1. Comparison of sparse shape operation support across several programming systems. Yellow circles

indicate partial support: scipy.sparse and pydata/sparse have limited sparse data format support. Taco

and Looplets support fusing compute operators, but not shape operators.

Programming Model Compilation

Data Representation Shape Operators

Dense Sparse Any dims Slicing Concatenation Reshape Fusion

numpy ✘ ✔ ✘ ✔ ✔ ✔ ✔ ✘
scipy.sparse ✘ ✔ ● ✘ ✔ ✔ ✔ ✘
pydata/sparse ✘ ✔ ● ✔ ✔ ✔ ✔ ✘
Taco ✔ ✔ ✔ ✔ ✔ ✘ ✘ ●
Looplets ✔ ✔ ✔ ✔ ✘ ✔ ✘ ●
Burrito (This Work) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

2 Sparse Tensor Algebra Compilation Background
Burrito builds on a line of prior work on sparse tensor algebra compilation in the Taco com-

piler [22]. In this section, we give the background necessary to understand our contributions.

2.1 Tensor Index Notation
Taco decouples the language for expressing computation, known as tensor index notation, from

the language that describes the physical layout of the sparse data structures backing those tensors,

known as the format language [9]. Tensor index notation is a simple, declarative language for

writing tensor algebra that supports element-wise addition, multiplication, broadcasts over tensor

dimensions, and reductions (summations) over tensor dimensions. For example, matrix multipli-

cation can be written as 𝐴𝑖 𝑗 =
∑

𝑘 𝐵𝑖𝑘𝐶𝑘 𝑗 , where each component of 𝐴𝑖 𝑗 is the inner product of a

row of B and a column of C. We extend tensor index notation to also support shape operators in

Section 4.

2.2 Format Language
Taco’s language for expressing sparse data structures requires users to specify tensor types via

combinations of per-dimension components [9, 22]. The popular coordinate (COO) format is simply

a list of coordinate-value tuples, and can be expressed as a Compressed-Singleton matrix for the

2D case. As another example, the Compressed-Sparse-Row (CSR) [35] matrix format is expressed

as Dense-Compressed, because the rows are densely stored but the columns of each row are

compressed. We refer the reader to Chou et al. [9, Section 2] for a survey of tensor storage formats.

Burrito uses this same format language for describing sparse data structures, with a slight change

introduced by Kovach et al. [23], described in Section 7.1.
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2.3 Concrete Index Notation
Tensor index notation is lowered to an intermediate representation (IR) called the Concrete Index

Notation (CIN) [21], which describes tensor computation as per-dimension loops over intersections

and unions of tensor coordinates. For example, a vector addition, 𝑎𝑖 = 𝑏𝑖 +𝑐𝑖 , requires a loop over the
union of the non-zero coordinates in vectors 𝑏 and 𝑐 , because the output has a non-zero value when

either operand is non-zero. This is denoted 𝑖𝑏 ∪ 𝑖𝑐 , where 𝑖𝑏 denotes the non-zero 𝑖 coordinates in

vector 𝑏. Likewise, a multiplication compiles to a loop over the intersection of non-zero coordinates,

because the output has a non-zero only where both operands contain non-zero values. Generating

a set expression corresponding to loop bounds is done on a per-dimension basis in Taco, and can

be used to generate fused loops as well (e.g. multiply-add, 𝑎𝑖 = 𝑏𝑖𝑐𝑖 +𝑑𝑖 where a single loop iterates

over the set expression (𝑖𝑏 ∩ 𝑖𝑐 ) ∪ 𝑖𝑑 ).

forall 𝑖 ∈ 𝑖𝑏 ∪ 𝑖𝐴
forall 𝑗 ∈ 𝑗𝐴 ∩ 𝑗𝑥

𝑡 += 𝐴(𝑖𝐴, 𝑗𝐴 ) ∗ 𝑥 ( 𝑗𝑥 )
𝑦 (𝑖 ) = 𝑏 (𝑖𝑏 ) + 𝑡

Fig. 2. CIN for𝑦𝑖 = 𝑏𝑖+
∑

𝑗 𝐴𝑖 𝑗𝑥 𝑗 .

Consider an expression that adds a vector to the result of amatrix-

vector multiplication, 𝑦𝑖 = 𝑏𝑖 +
∑

𝑗 𝐴𝑖 𝑗𝑥 𝑗 . This expression can be

compiled to a loop over 𝑖 coordinates that coiterates over 𝑏 and 𝐴’s

𝑖 dimension, with a nested reduction loop over 𝑗 coordinates that

coiterates over 𝐴’s 𝑗 dimension and 𝑥 , as shown in Figure 2. These

loops iterate over all values of 𝑖 such that 𝑏 contains a non-zero

element or 𝐴 contains a non-empty row, and then iterates over all values of 𝑗 such that 𝐴 has a

non-empty column and 𝑥 contains a corresponding non-zero value, computing the SpMV reduction

before computing and storing the sum of the two values. These loops are then lowered to loops

that coiterate each of these three data structures, as described in the next sections. We refer the

reader to Kjolstad et al. [21] for a more thorough description of CIN along with more examples.

Note that Taco supports loop scheduling operations on CIN such as loop reordering and in-

sertion of temporary tensors [21] as well as more complicated operations such as loop tiling and

parallelization [29]. While the prototype Burrito compiler supports loop reordering, it does not

implement a full-fledged scheduling language, which we see as orthogonal to this work.

2.4 Iteration Lattice

A: Compressed , Compressed
b: Compressed
x: Compressed

𝑖𝑏 ∪ 𝑖𝐴

𝑖𝑏 𝑖𝐴

∅

𝑖𝐴 𝑖𝑏

𝑖𝑏 𝑖𝐴

𝑗𝐴 ∩ 𝑗𝑥

∅

𝑗𝐴 𝑗𝑥

Fig. 3. Iteration lattices generated for

𝑦𝑖 = 𝑏𝑖 +
∑

𝑗 𝐴𝑖 𝑗𝑥 𝑗 from Figure 2.

Iteration lattices [18, 22] are ordered state machines that

enable reasoning about multi-way merging of ordered co-

ordinate sets. They consist of ordered points, where each

point is distinguished by a set of coordinates. Following

CIN, 𝑖𝑏 represents the set of non-zero coordinates in the 𝑖th

dimension of 𝑏, while ∅ represents the empty set, i.e., there

are no non-zero coordinates remaining. A point may also

have child points that represent simplified versions of the

parent’s sequence expression.

This data structure is used to implement an important

component of sparse tensor algebra compilation, namely the

coiteration optimization, which produces loops and control

flow that handle the cases where some sparse tensors do

not contain values for certain coordinates. For each loop in CIN, the set expression describing its

iteration space is used to build an iteration lattice representing cases where some operands do not

contain elements. Consider iteration over the union of two coordinate sets, generated from sparse

vector addition. If one operand contains a coordinate that the other does not, then no addition

needs to be performed, only a copy of the non-zero value from the source operand to the output

vector. Likewise, if either vector runs out of elements, the program should move to code that only
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1 while 𝑖 � 𝑖𝑏 ∪ 𝑖𝐴
2 if 𝑖 == 𝑖𝑏 && 𝑖 == 𝑖𝐴:
3 while 𝑗 � 𝑗𝐴 ∩ 𝑗𝑥
4 if 𝑗 == 𝑗𝐴 && 𝑗 == 𝑗𝑥 :
5 t += A(𝑖𝐴, 𝑗𝐴) * x( 𝑗𝑥 )
6 y(𝑖) = b(𝑖𝑏 ) + t
7 elif 𝑖 == 𝑖𝐴:
8 while 𝑗 � 𝑗𝐴 ∩ 𝑗𝑥
9 if 𝑗 == 𝑗𝐴 && 𝑗 == 𝑗𝑥
10 t += A(𝑖𝐴, 𝑗𝐴) * x( 𝑗𝑥 )
11 y(𝑖) = t
12 elif 𝑖 == 𝑖𝑏 :
13 y(𝑖) = b(𝑖𝑏 )
14 while 𝑖 � 𝑖𝑏
15 y(𝑖) = b(𝑖𝑏 )
16 while 𝑖 � 𝑖𝑏 ∪ 𝑖𝐴
17 while 𝑗 � 𝑗𝐴 ∩ 𝑗𝑥
18 if 𝑗 == 𝑗𝐴 && 𝑗 == 𝑗𝑥 :
19 t += A(𝑖𝐴 , 𝑗𝐴) * x( 𝑗𝑥 )
20 y(𝑖) = t

(a) Pseudocode of the generated loops.

1 while (iA < iA_e) {
2 int i = A_crd0[iA]);
3 int jA = A_pos1[jA];
4 int jA_end = A_pos1[jA+1];
5 int jx = x_pos [0];
6 int jx_end = x_pos [1];
7

8 double t = 0.0;
9 while (jA < jA_end && jx < jx_end) {
10 int j = min(A_crd1[jA], x_crd[jx]);
11 if (j == A_crd1[jA] && j == x_crd[jx]) {
12 t += A_vals[jA] * x_vals[jx];
13 }
14 jA += (j == A_crd1[jA]);
15 jx += (j == x_crd[jx]);
16 }
17

18 y_vals[i] = t;
19 iA++;
20 }

(b) C code generated for lines 16-20 of (a).

Fig. 4. Optimized loops generated for 𝑦𝑖 = 𝑏𝑖 +
∑

𝑗 𝐴𝑖 𝑗𝑥 𝑗 from the lattices in Figure 3.

iterates over the non-empty vector, copying the non-zero values into the output vector. Similarly,

for sparse vector multiplication, the multiplication only needs to be performed if both vectors

contain the same non-zero coordinate. If either vector runs out of elements, then the multiplication

is complete.

We show the iteration lattice for our running example, 𝑦𝑖 = 𝑏𝑖 +
∑

𝑗 𝐴𝑖 𝑗𝑥 𝑗 , in Figure 3. In the first

lattice, over a union, if 𝑖𝐴 runs out of elements (𝐴 runs out of non-empty rows), then control flow

passes to a loop over only 𝑖𝑏 . Likewise, if 𝑖𝑏 runs out of elements (𝑏 runs out of non-zero values),

then control flow passes to a loop over only 𝑖𝐴.

In this work, we extend iteration lattices to represent iteration over more complicated coiteration

expressions than Taco, containing operations more complex than just union and intersection. We

define these sequence expressions in Section 5, provide a construction algorithm for generalized

iteration lattices, and show how to use them to compile a loop in CIN to loops that efficiently

coiterate sparse data structures in Section 6.1.

2.5 Generated Code
While our compilation pipeline relies on many ideas from Taco, it uses a different code generation

approach. Therefore, we will not describe how Taco generates C code. Instead, we provide an

example of the code that both Taco and Burrito generate
2
for our running add-SpMV example.

Figure 4a shows the coiterating loops for the example in pseudocode that abstracts away from

concrete data structures. Figure 4b shows C code that implements the last nested while loop in

the pseudocode, highlighting the complex nature of code that coiterates irregular data structures.

Section 6 describes our algorithm for compiling iteration lattices to loops.

3 Overview
The compilation approach we describe in this paper compiles an array language to C code. The

array language is tensor index notation, as used in many prior tensor algebra compilers, extended

with shape operators. Like in Kjolstad et al. [22], our array language operates on logical arrays

2
Burrito generates the same code as TACO for expressions that do not contain shape operators.
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Concrete Index Notation

product, projection,     
and disjoint union

(Section 5)

Abstract Control-Flow IR
(Section 6)

Coiteration Optimization
(Section 6)

Format Language

C language

format
properties

Code Generation
(Section 7)

Shape Operations 
(Section 4)

Tensor Algebra

Fig. 5. The Burrito compilation approach compiles an array language to C code in three steps through two

loop-based intermediate representations over logical arrays. Section references mark our contributions.

that abstract away the details of the physical data structures. Burrito separately accepts a format

language as in Chou et al. [9] for describing the physical data structures (see Section 2.2).

Figure 5 shows an overview of our compilation approach, implemented in the Burrito compiler.

Compilation consists of three lowering steps through two intermediate representations (IRs). The

first step lowers the array language to Concrete Index Notation (CIN) (see Section 2.3). Each

loop iterates over an expression that describes the loop’s iteration domain as an ordered set

expression (sequence expression) over the coordinates of array dimensions. Prior work expressed

the iteration pattern of compute operators as intersections and unions [22] as well as complements

and slicing [18]. In order to support the complete set of shape operators, our work adds three new

sequence operators: set product, set projection, and disjoint union. Thus, the full set of operators is

(intersection + union)
Kjolstad et al. [22]

+ (complement + slicing)
Henry et al. [18]

+ (product + projection + disjoint union)
[this work]

CIN loops are then lowered to the control-flow intermediate representation (CFIR), a new IR

that expresses complex control-flow while still abstracting away the concrete data structures. Each

forall is turned into successive while loops over sequence expressions, each of which iterates over

progressively simplified loop bodies as sparse arrays run out of non-zero coordinates. This is made

possible through our generalization of the iteration lattices introduced in Kjolstad et al. [22], which

represent iteration over combinations of sparse coordinate sets. The final step lowers CFIR to C

code using a compile-time iterator model inspired by Kovach et al. [23], and replaces logical arrays

by the physical data structures described in the format language.

4 Shape Operators
Burrito extends the tensor index notation described in Section 2.1 to support four primitive shape

operators, which compose to express the shape operators supported by the popular numpy [16] array
processing library. These primitives are collapsing and splitting (which together can implement

reshape), concatenation, and slicing. Figure 6 provides the syntax of the complete algorithm

language supported by Burrito. This section provides a high-level semantics for these operators

by describing how array coordinates in the operands map to an array coordinate in the result of

the expression. We then provide a shape inference algorithm for detecting the validity of an array

program via typing rules.

4.1 Operator Definitions
The shape of a logical 𝑛-dimensional array is an 𝑛-dimensional hyper-rectangle where each dimen-

sion has a size. Tensor index notation labels each dimension via index variables. Shape operators

combine and construct index variables, thereby combining and constructing the corresponding

dimensions those variables label. We define each shape operator with respect to the coordinate

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 312. Publication date: October 2024.
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kernel F array(I) = expr

expr F array(I) | expr + expr | expr * expr | sum(idx, expr) | broadcast(idx, expr) |

collapse(expr, (idx, idx) � idx) | concat((expr, expr), (idx, idx) � idx) |

split(expr, idx � (idx, idx)) | slice(expr, idx � idx, (int, int, int))

Fig. 6. Our front-end language for expressing array algebra, which supports tensor index notation (element-

wise addition and multiplication, summation along an axis, and broadcasting), as well as our additional shape

operators. Indices (idx) label array dimensions. Operators marked in red are our additions.

mapping it induces from its operands to its result. Note that our operators are all binary (e.g. binary

concatenation), as Burrito supports fusion by default.

Collapse. The collapse operator flattens two dimensions into one, constructing a new index with

a size equal to the product of the size of the flattened dimensions. Consider an array expression

𝐸 representing a three-dimensional array that is indexed by variables {𝑖, 𝑗, 𝑘}. The following

coordinate mapping collapses (flattens) the 𝑖 and 𝑗 index variables into an index variable 𝑙 :

(𝑥,𝑦, 𝑧) ∈ 𝐸 =⇒ (𝑥 ∗ | 𝑗 | + 𝑦, 𝑧) ∈ collapse(𝐸, (𝑖, 𝑗) � 𝑙)

where | 𝑗 | is the size of the dimension labelled by index variable 𝑗 (the dimension of coordinate 𝑦).

For example, a matrix B with rows labeled i and columns labeled j
can be row-major collapsed via c(k) = collapse(B(i,j),(i,j) � k), pro-

ducing the iteration pattern in the figure to the right, or be column-major

collapsed via c(k) = collapse(B(i,j),(j,i) � k).

Concatenate. The concat operator is used to stack two arrays along a dimension. Consider two array

expressions, 𝐸0 and 𝐸1, representing two-dimensional arrays that are indexed by {𝑖, 𝑗} and {𝑖, 𝑘},
respectively. Concatenating these arrays along the 𝑗 and 𝑘 dimensions produces the following

coordinate mapping:

(𝑥,𝑦) ∈ 𝐸0 =⇒ (𝑥,𝑦) ∈ concat((𝐸0, 𝐸1), ( 𝑗, 𝑘) � 𝑙)

(𝑧,𝑤) ∈ 𝐸1 =⇒ (𝑧,𝑤 + | 𝑗 |) ∈ concat((𝐸0, 𝐸1), ( 𝑗, 𝑘) � 𝑙)
where | 𝑗 | is the size of the dimension labelled by index variable 𝑗 (the dimension of coordinate 𝑦).

For example, a program that horizontally concatenates two arrays

can be expressed as: D(i,l) = concat((B(i,j),C(i,k)), (j,k) � l). We

provide a visual description of this operator in the figure to the right.

D contains every coordinate B contains, as well as every coordinate that C contains, with the second

coordinate of each element offset by the size of the dimension labeled by j.

Split. The split operator is the inverse of collapse, as it divides one source dimension into two

constructed dimensions.
3
Consider an array expression 𝐸 representing a two-dimensional array

that is indexed by variables {𝑖, 𝑗}. The following coordinate mapping splits 𝑗 into index variables 𝑘

and 𝑙 :

(𝑥,𝑦) ∈ 𝐸 =⇒ (𝑥, 𝑦|𝑙 | , 𝑦 mod |𝑙 |) ∈ split(𝐸, 𝑗 � (𝑘, 𝑙))

where |𝑙 | is the size of the dimension labelled by index variable 𝑙 .

For example, consider splitting a 1-dimensional array into a 2-

dimensional array: C(i,j) = split(b(k), k � (i,j)). For this row-wise

splitting, the coordinate 1 in b corresponds to (0, 1) in C. This produces

3
The split and collapse operators are building blocks that can be used to support the common reshape operator.
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the iteration pattern in the bottom of the figure to the right. For a column-

wise splitting: C(i,j) = split(b(k), k � (j,i)), the coordinate 1 in b corresponds to (1, 0) in C. This

coordinate remapping is defined by the inverse of the strided offset formula for collapse.

Slice. The slice operator extracts a uniform (possibly strided) subsequence from a dimension via

values for the start, end, and stride. Consider an array expression 𝐸 representing a two-dimensional

array that is indexed by variables {𝑖, 𝑗}. The following coordinate mapping slices into 𝐸’s second

dimension:

(𝑥,𝑦) ∈ 𝐸 & 𝑠 ≤ 𝑦 < 𝑒 & ∃𝑧 ∈ N, 𝑦 = 𝑠 + 𝑟 ∗ 𝑧 =⇒ (𝑥, 𝑧) ∈ slice(𝐸, 𝑗 � 𝑘, (𝑠, 𝑒, 𝑟 ))
Unlike the other operators, slicing is used to discard elements at certain coordinates. A coordinate

in the sliced dimension is discarded if: 1) it is less than the start value; 2) greater than or equal

to the end value; or 3) not a whole-number multiple of the stride value from the start index. If a

coordinate passes these filters, the whole-number multiple is the new coordinate in the output

dimension.

For example, if a user wished to slice out the second through the fourth

elements of a 1-dimensional array, they could write the slicing expression

c(i) = slice(b(j), j � i, (2,5,1)), depicted on the right. If they wanted the first half of an array,

they could write a(i) = slice(b(j), j � i, (0,J/2,1)). Note that Henry et al. [18] introduced slicing

on sparse arrays only, while Burrito supports slicing any array expression, including intermediate

computations, e.g., slicing the result of a multiplication or a flattened array.

4.2 Shape Inference
The shape of an expression in our array language is a part of its type, along with the type of the scalar

elements. An array compiler requires a shape inference algorithm for type-checking programs.

Shape inference from tensor index notation is quite straight-forward: element-wise expressions

produce a result with the same shape as its operands and reductions remove a dimension from the

shape of the operand. Broadcasting, though implicit in tensor index notation, is technically a shape

operator, as it inserts a new dimension into the shape of an array. The new shape operators defined

in the prior section construct new dimensions, and we provide inference rules for reasoning about

these new dimensions in order to check for program correctness.

As described previously, the shape of an array specifies the number of dimensions and the size

of each dimension. Let 𝑆 denote the shape of an array as an unordered set of indices, each of which

labels a dimension with a name and size. And let |𝑖 | denote the size of the dimension indexed by 𝑖 .

The inference rules are provided in Figure 9. For illustration, the collapse inference rule is:

𝐸 : 𝑆 𝑖 ∈ 𝑆 𝑗 ∈ 𝑆 𝑘 ∉ 𝑆 |𝑖 | · | 𝑗 | = |𝑘 |
collapse(𝐸, (𝑖, 𝑗) � 𝑘) : (𝑆 − {𝑖, 𝑗}) ∪ {𝑘}

The first two constraints, i ∈ 𝑆 and j ∈ 𝑆 , require the source indices i and j that are being collapsed

to be contained within the shape 𝑆 of the array expression a. Next, k ∉ 𝑆 requires that the constructed

index, k, is not already in 𝑆, which is necessary for the uniqueness of indices in the output shape.

The last constraint, |i| · |j| = |k|, requires that the size of the dimension of the constructed index, |k|,
is the product of the size of dimensions represented by the source indices, |i| and |j|. This means

that the output array of the collapse has the same number of discrete elements in space as the array

being collapsed. The output array has a shape where dimensions other than i and j are unchanged,

and i and j are replaced by k.

Consider the element-wise multiplication of a vector with a flattened matrix c(k) = a(k) *

collapse(B(i,j), (i,j) � k). This program is well-typed: the shape of the argument to collapse is

𝑆B(i,j) = {i,j}, and i ∈ 𝑆B(i,j) and j ∈ 𝑆B(i,j) are trivially true. Likewise, the constructed index is
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a(𝐼 ) : 𝐼
𝐸 : 𝑆 𝑖 ∈ 𝑆 𝑗 ∈ 𝑆 𝑘 ∉ 𝑆 |𝑖 | · | 𝑗 | = |𝑘 |
collapse(𝐸, (𝑖, 𝑗 ) � 𝑘 ) : (𝑆 − {𝑖, 𝑗 }) ∪ {𝑘 }

𝐸 : 𝑆 𝑖 ∉ 𝑆

broadcast(𝑖, 𝐸 ) : 𝑆 ∪ {𝑖 }
𝐸0 : 𝑆0 𝐸1 : 𝑆1 𝑆0 − {𝑖 } = 𝑆1 − { 𝑗 } 𝑘 ∉ 𝑆0 |𝑖 | + | 𝑗 | = |𝑘 |

concat( (𝐸0, 𝐸1 ), (𝑖, 𝑗 ) � 𝑘 ) : (𝑆0 − {𝑖 }) ∪ {𝑘 }

𝐸 : 𝑆0 𝐸1 : 𝑆1 𝑆0 = 𝑆1

𝐸0<op>𝐸1 : 𝑆0

𝐸 : 𝑆 𝑖 ∈ 𝑆 𝑗 ∉ 𝑆 𝑘 ∉ 𝑆 |𝑖 | = | 𝑗 | · |𝑘 |
split(𝐸, 𝑖 � ( 𝑗, 𝑘 ) ) : (𝑆 − {𝑖 }) ∪ { 𝑗, 𝑘 }

𝐸 : 𝑆 𝑖 ∈ 𝑆

sum(𝑖, 𝐸 ) : 𝑆 − {𝑖 }
𝐸 : 𝑆 𝑖 ∈ 𝑆 𝑗 ∉ 𝑆

𝑒−𝑠+(𝑟−1)
𝑟

= | 𝑗 |
slice(𝐸, 𝑖 � 𝑗, (𝑠, 𝑒, 𝑟 ) ) : (𝑆 − {𝑖 }) ∪ { 𝑗 }

Fig. 9. Shape inference rules for shape and compute operators. An array’s shape is determined by the set

of indices that index it. Broadcasting inserts a new index into the shape. Element-wise operations produce

an expression with the same shape as the inputs. Summation removes the reduced index from the shape.

Collapsing flattens two indices into a single index, while splitting divides a single source index into two indices.

Concatenation accepts a pair of expressions and pair of indices, concatenating the two expressions along the

two indices to produce a single index. Slicing relabels a source index into a smaller index.

not in the source shape, k ∉ 𝑆B(i,j). Lastly, the dimensionality constraint is satisfied if |i| · |j| = |k|.
It follows that both operands to the multiplication have shape {k}, so it is also well-typed.

5 Sequence Expressions
The first step in our compilation model is to generate nested loops that each iterate over the

coordinates in one or more dimensions of one or more logical arrays. We extend the Concrete

Index Notation (CIN) of Kjolstad et al. [21] (see Section 2.3) with a more advanced language for

describing the iteration domain of each loop, which we call a sequence expression. Our extensions

go beyond the unions and intersections of the coordinates in array dimensions described in prior

work, to support the complex iteration patterns introduced by shape operators. For the remainder

of this work, we refer to the coordinates of array dimensions as sequences, and the expressions that

represent combinations of these sets using set operators as sequence expressions.

In this section, we provide a construction algorithm for generating sequence expressions from the

expression language described in Section 4.1 and a semantics for the sequence combinators in the

sequence expression language. Sequence expressions are closely related to the coordinate mappings

described by the high-level shape operators in Section 4.1, and express both compute and shape

operators, allowing for a natural fusion of operators. However, where the high-level compute and

shape operators describe how to combine whole arrays, sequence expressions describe the iteration

domain of a single loop in the CIN. For example, prior work observed that a tensor addition leads

to the union of two sequences. Similarly, we show that a collapse leads to the Cartesian product of

two sequences, where the coordinates in the resulted tuples are combined using a strided offset

formula. Each shape operator corresponds to a computation on the coordinates of non-zeros of its

operands, and fundamentally change the iteration spaces of the loops.

5.1 Sequence Combinator Semantics
We provide the full grammar for CIN below. CIN includes forall loops, statement pairs, consumer-

producer where statements, assignments, and reductions. The forall statement iterates over a sequence

expression that may contain sparse as well as dense sequences. The where statement is similar to a

let statement. It constructs an intermediate tensor (or scalar) on the right hand side that can be used

on the left hand side, and is thus a construct for creating intermediate tensors. We refer the reader

to Kjolstad et al. [21] for more details on CIN, as this section focuses on our novel contribution: the

grammar for sequence expressions, seq.
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stmt F forall idx ∈ seq stmt | stmt; stmt | stmt where stmt | a(I) = expr | a(I) += expr

seq F idx a | seq ∪ seq | seq ∩ seq | seq × seq | seq ⊔ seq | 𝜋𝑘 ( seq, int ) | seq [ int:int:int ]

Each sequence combinator describes computation on ordered sets of coordinates. Sequence com-

binators corresponding to tensor computations (i.e. union and intersection) join two sequences,

but sequence combinators corresponding to shape operators must additionally transform the co-

ordinates from the sequences they combine. The semantics of these combinators are important

both for understanding how shape operators combine iteration spaces, and for compiling down to

loops over irregular data structures. These combinators are used to generate a sequence expression

that represents the set of non-zero coordinates of the output array of a computation, for each

dimension of the output array. The remainder of this section describes the semantics of the sequence

combinators.

product:𝐴×𝐵 is similar to a Cartesian product on two sequence expressions. Intuitively, product

corresponds to: for each element in 𝐴, step through each element in 𝐵, and for the tuple (𝑎, 𝑏),
apply a strided offset formula to product a single coordinate value. Formally:

𝐴 × 𝐵 = { 𝑎 · |𝐵 | + 𝑏 | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 }

Note that this combinator looks quite similar to the semantics defined for collapse, and indeed it is

used to represent the iteration induced by collapse operators.

concatenation: 𝐴 ⊔ 𝐵 combines two sequence expressions as a union of the first with the

elements of the second offset by the logical size of the first. This combinator is isomorphic to a

disjunctive union, but produces a sequence with a logical size that is the sum of the logical sizes of

the two input sequences. Intuitively, this combinator corresponds to first stepping through each

element in 𝐴 and then through each element in 𝐵 (with an offset). Formally:

𝐴 ⊔ 𝐵 = 𝐴 ∪ { |𝐴| + 𝑏 | 𝑏 ∈ 𝐵 }

This combinator has similar semantics as concat, and is used to compile that operator.

projection: 𝜋𝑘 (𝐴, 𝐽 ) is the inverse of a product combinator. It applies the inverse of the strided

offset formula to elements of 𝐴 to produce a tuple from a single coordinate, with the shape ( |𝐴 |
𝐽
, 𝐽 ).

It then produces two sequences, controlled by the projection index, 𝑘 (which is either 0 or 1). This

combinator is isomorphic to the set projection operation. Intuitively, a projection of a sequence

produces two sequences that each iterate over sub-spaces of the original sequence. The first sequence

𝜋0 (𝐴, 𝐽 ) is a sequence of size |𝐴 |
𝐽
, and the second, 𝜋1 (𝐴, 𝐽 ) is a sequence of size 𝐽 . Formally:

𝜋0 (𝐴, 𝐽 ) = { 𝑎/𝐽 | 𝑎 ∈ 𝐴 } 𝜋1 (𝐴, 𝐽 ) = { 𝑎 mod 𝐽 | 𝑎 ∈ 𝐴 }

This combinator corresponds to the split operator, and is used to compile that operator.

slice: 𝐴[𝑠 :𝑒 :𝑟 ] is a filtering combinator. Intuitively, slicing removes all elements from a sequence

that are not a stride of 𝑟 away from the start 𝑠 , and elements greater than or equal to 𝑒 . Formally:

𝐴[𝑠:𝑒:𝑟 ] = { 𝑥 | 𝑎 ∈ 𝐴 ∧ 𝑠 ≤ 𝑎 < 𝑒 ∧ 𝑎 = 𝑠 + 𝑟 · 𝑥 }

This combinator represents the semantics of the slice operator, and is used to compile it.

5.2 Lowering Shape Operators to Sequence Combinators
Burrito’s lowers array expressions to sequence expressions using a recursive algorithm that

pattern matches on the array expression to produce a sequence expression for the loop correspond-

ing to each index variable. Figure 11 defines this algorithm, which accepts an array expression

expr from the grammar defined in Figure 6, along with an index variable i. It then generates a

sequence expression that represents the output coordinates in the ith dimension of expr.
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c(i) = a(i) + b(i) B(i, j) = split(a(k), k � (i, j)) c(k) = collapse(A(i, j), (i, j) � k) + b(k)

↓ ↓ ↓

forall 𝑖 ∈ 𝑖𝑎 ∪ 𝑖𝑏
𝑐 (𝑖 ) = 𝑎 (𝑖𝑎 ) + 𝑏 (𝑖𝑏 )

forall 𝑖 ∈ 𝜋0 (𝑘𝑎, [𝐼 , 𝐽 ] )
forall 𝑗 ∈ 𝜋1 (𝑘𝑎, [𝐼 , 𝐽 ] )

𝐵 (𝑖, 𝑗 ) = 𝑎 (𝑘𝑎 )
forall 𝑘 ∈ (𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏

𝑐 (𝑘 ) = 𝐴(𝑖𝐴, 𝑗𝐴 ) + 𝑏 (𝑘𝑏 )

Fig. 10. CIN for various kernels.

1 func Seq(expr , i):
2 match expr with
3 | array(I) ↦→ iarray
4 | a + b ↦→ Seq(a, i) ∪ Seq(b, i)
5 | a * b ↦→ Seq(a, i) ∩ Seq(b, i)
6 | sum(j, a) ↦→ Seq(a, i)
7 | broadcast(i, a) ↦→ Ui
8 | broadcast(j, a) ↦→ Seq(a, i)
9 | collapse(a, (j, k) � i) ↦→ Seq(a, j) × Seq(a, k)
10 | collapse(a, (j, k) � l) ↦→ Seq(a, i)
11 | concat ((a, b), (j, k) � i) ↦→ Seq(a, j) ⊔ Seq(b, k)
12 | concat ((a, b), (j, k) � l) ↦→ Seq(a, i) ∪ Seq(b, i)
13 | split(a, j � (i, k)) ↦→ 𝜋0 (Seq(a, j), |k | )
14 | split(a, j � (k, i)) ↦→ 𝜋1 (Seq(a, j), |i | )
15 | split(a, j � (k, l)) ↦→ Seq(a, i)
16 | slice(a, j � i, (s, e, r)) ↦→ Seq(a, j)[s:e:r]
17 | slice(a, j � k, (s, e, r)) ↦→ Seq(a, i)

Fig. 11. Generation of a sequence expression from an array

expression expr, for a dimension labelled by index i.

Consider compiling the rightmost

kernel in Figure 10, which generates a

single loop over the output index, k. In

order to derive the sequence expres-

sion that corresponds to k’s iteration

space, the recursive construction al-

gorithm in Figure 11 first applies the

rule on line 4, then the rule on line 9,

and lastly a series of base cases (line

3). These rules construct the sequence

(𝑖𝐴 × 𝑗𝐴) ∪ 𝑘𝑏 , the loop bounds in the

rightmost loop of Figure 10. This se-

quence expression means that the re-

sulting sequence of non-zeros is equiv-

alent to the flattened sequence of a’s

non-zeros unioned with the sequence of b’s non-zeros. This exactly represents the set of non-zeros

in the output array, and the iteration pattern required to produce the result.

6 Lowering to Coiterating Loops
To generate code that efficiently iterates over a sequence expression, Burrito reasons about when

a sparse sequence runs out of elements and whether it contains a particular coordinate. In order to

represent this reasoning, we introduce a second intermediate representation, CFIR (Control Flow

Intermediate Representation), which contains more complex control-flow constructs than CIN’s

forall loops. CFIR allows Burrito to represent coiterating optimizations while still abstracting

away the concrete details of the underlying physical data structures. CIN loops are compiled to

a sequence of progressively simpler CFIR while loops that each exits when a sequence (e.g. an

array or reshaped view of an array) runs out of values. We first define CFIR before showing how

to construct it via a generalized form of iteration lattices [18, 22]. Iteration lattice construction

reasons about format properties to determine which sequences should be iterated over and which

can be randomly-accessed into, but lattices and CFIR both abstract away details of the physical

data structures underlying the logical arrays.

6.1 Control Flow Intermediate Representation
We provide the grammar for CFIR below. Its key components are loops and conditional execution

(switch statements).

cfir F while idx � seq (with (seq = seq)*)? cfir | switch idx (case seq: cfir)+ |

cfir; cfir | a(I) = expr | a(I) += expr | alloc a(I)

6.1.1 Loops. The while loops of CFIR iterate over a sequence expression until a sub-sequence

runs out of elements. The drop-out semantics is useful because a sequence expression and loop

body can be simplified to discard sub-expressions that have run out of values in earlier loops, thus
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producing simpler and more efficient code. Therefore, if a sub-sequence becomes empty, control

flow should transition to a loop over a simpler sequence expression with a simpler loop body.

while 𝑘 � 𝑖𝐴 × 𝑗𝐴
𝑏 (𝑘 ) = 𝐴(𝑖𝐴, 𝑗𝐴 )

For example, a kernel that collapses a 2-dimensional array into a 1-dimensional

array produces a single loop that iterates over the product of the 2D array’s

dimensions, as shown on the right.

6.1.2 Conditionals. The second control-flow construct in CFIR is the conditional switch construct.

while 𝑖 � 𝑖𝑎 ∪ 𝑖𝑏
switch 𝑖

case 𝑖𝑎 ∪ 𝑖𝑏 :
𝑐 (𝑖 ) = 𝑎 (𝑖𝑎 ) + 𝑏 (𝑖𝑏 )

case 𝑖𝑎 :
𝑐 (𝑖 ) = 𝑎 (𝑖𝑎 )

case 𝑖𝑏 :
𝑐 (𝑖 ) = 𝑏 (𝑖𝑏 )

When iterating over a sequence expression, some sub-expressions may

not contain a coordinate that other sub-expressions contain. Conditional

execution is required to represent when a loop body should execute a

simplified computation based onwhich sub-sequences contain a particular

coordinate. In CFIR, this is handled by the switch construct, which redirects

computation based on the value of a coordinate. For example, in sparse

vector addition, the addition should only be performed when both vectors

contain a coordinate, and the switch statement in the code to the right represents that guard.

6.1.3 Location. CFIR loops also support locating into sequences that support random-access (via the

with operation) in order to randomly access array values. This construct is useful because, in certain

circumstances, a sequence does not need to be fully iterated. For example, vector multiplication

while 𝑖 � 𝑖𝑎 with 𝑖𝑏 = 𝑖𝑎
𝑐 (𝑖 ) = 𝑎 (𝑖𝑎 ) ∗ 𝑏 (𝑖𝑏 )

iterates over 𝑖𝑎 ∩ 𝑖𝑏 . If 𝑖𝑎 ⊆ 𝑖𝑏 , it is sufficient to iterate over only 𝑖𝑎 , and

randomly access into 𝑖𝑏 to get the value labeled by its coordinate. This

is the iterate/locate optimization described by Kjolstad et al. [22], and is

illustrated on the right. Iterating over a sparse sequence and locating into a dense sequence is

asymptotically optimal, and the with operator allows CFIR to represent this optimization. The with

construct allows Burrito to represent this pattern, as with 𝑎 = 𝑏 means that 𝑏 is being iterated over,

once a value is computed, use that value to locate into sequence 𝑎. Burrito uses format properties

to detect which sub-sequences support fast𝑂 (1) locates. If a sequence is dense, or constructed from
only dense sequences (i.e. the product of two dense sequences), it can and should be located into.

6.1.4 Pairs, Assignments, and Allocations. CFIR also supports sequences of statements (sequential

computation) through the pair construct, assignments, compound assignments for reductions, and

allocations of intermediate temporaries. These statements are placed inside while and case bodies

to perform computation and data structure allocation.

6.2 Generalized Iteration Lattices
func ConstructLattice(seq):

point = LatticePoint(seq)
// Transition sub -sequences
// (Section 6.2.1 and Figure 13)
edges = Edges(seq)
for sub in edges:

// Simplification
// (Section 6.2.2)
r = remove(sub , seq)
s = simplify(r)
l = ConstructLattice(s)
point.add_child(sub , l)

return point

Fig. 12. Top-down lattice construction.

Iteration lattices [22] consist of an ordered set of lattice

points and are used to generate the drop-out while loops in

the previous subsection. In Burrito, a lattice point is labeled

by a sequence expression, and represents iterating over that

sequence. Each lattice point has children that represent sim-

plified versions of the parent’s sequence expression. Edges

to children are labeled by a sub-sequence whose removal

from the parent’s sequence expression produces the simpli-

fied sequence expression in the child point. Concretely, a

point representing the sequence 𝑠 has an edge labeled 𝑒 to a

child point representing the sequence 𝑡 if removing 𝑒 from

𝑠 (replacing it with the empty set) and performing simplification produces the sequence 𝑡 .

While prior work [18, 22] provides a bottom-up lattice construction algorithm that requires filter-

ing nodes to perform this simplification, we instead introduce a top-down construction algorithm
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based directly on sequence simplification. We believe this algorithm is simpler and thus enables us

to incorporate the additional complexity of our new sequence expressions. Figure 12 shows our

algorithm for lattice construction, which follows a recursive top-down approach that generates

progressively simpler sequence expressions to iterate over. For a given sequence expression, 𝑠 ,

Burrito first finds all sub-sequences whose removal result in a simplification of 𝑠 , called edge

sequences. These sequences label the edges of the lattice from the point labelled by 𝑠 . Then, for

each edge sequence, remove it from 𝑠 , simplify via set rules, and recursively construct an iteration

lattice to point the edge to.

func Edges(seq):
match seq with
| iarray ↦→ {seq}
| a ∪ b ↦→ Edges(a) ∪ Edges(b)
| a ∩ b ↦→ Edges(a) ∪ Edges(b)
| a × b ↦→ Edges(a)
| a ⊔ b ↦→ Edges(a)
| 𝜋𝑘 (a, 𝑗 ) ↦→ {seq} ∪ Edges(a)
| a[s:e:r] ↦→ {seq} ∪ Edges(a)

Fig. 13. Function for gathering a set of

sub-sequences whose removal induces

state transitions.

6.2.1 Edge Sequences. The algorithm for gathering edge se-

quences recurses on the structure of a sequence expression.

Edge sequences are often sequences produced by array levels,

but can also correspond to slices or projections. This is be-

cause a slice (or projection) can run out of coordinates before

the sequence it is slicing (or projecting) runs out, and should

thus induce a state transition. We give an algorithm for col-

lecting edges from a sequence expression in the function

Edges in Figure 13. It is a recursive algorithm that generates

a set of sub-sequences that correspond to state transitions.

Consider a loop over the sequence (𝑎 ∪ 𝑏) × 𝑐 , where all sequences are sparse. If 𝑎 runs out of

elements, the state transitions to a loop over 𝑏 × 𝑐 . Likewise, if 𝑏 runs out of elements, the state

moves to a loop over 𝑎 × 𝑐 . This iteration lattice is illustrated in Figure 14c. Notably, if 𝑐 runs out of

elements, 𝑎 ∪ 𝑏 must be stepped forward, and 𝑐 reset, based on the semantics of product. This is

why there is no edge corresponding to 𝑐 running out, and why Figure 13 only grabs edges from the

first operand of the product combinator.

6.2.2 Sequence Simplification. Sequence simplification follows simple set rules, such as if one

side of an intersection is empty, the entire intersection is empty. Likewise, if one side of a union

𝜋0 (𝑎, 𝑗 ) ∩ 𝑏

∅

𝜋0 (𝑎, 𝑗 ) 𝑎, 𝑏

(a) Dense or sparse 𝑎 and 𝑏

𝑎 ⊔ 𝑏

| 𝑎 | +𝑏

∅

𝑎

𝑏

(b) Dense or sparse 𝑎 and 𝑏

(𝑎 ∪ 𝑏 ) × 𝑐

𝑏 × 𝑐 𝑎 × 𝑐

∅

𝑏𝑎

𝑏 𝑎

(c) Sparse 𝑎, 𝑏 and 𝑐 .

𝜋1 (𝑎, 𝑗 ) ∪ 𝑏

𝑏

∅

𝜋1 (𝑎, 𝑗 ) 𝑎

𝑏

𝑏

(d) Sparse 𝑎 and dense 𝑏.

(𝑎 ⊔ 𝑏 ) ∪ 𝑐

(𝑎 ⊔ 𝑏 ) ( | 𝑎 | + 𝑏 ) ∪ 𝑐

| 𝑎 | + 𝑏

∅

𝑐 𝑎

𝑎 𝑐

𝑏

𝑏

(e) Sparse 𝑎 and 𝑐 , dense 𝑏.

𝑎[𝑠:𝑒:𝑟 ] ∪ (𝑏 × 𝑐 )

𝑎[𝑠:𝑒:𝑟 ] (𝑏 × 𝑐 )

∅

𝑏 𝑎 𝑎[𝑠:𝑒:𝑟 ]

𝑎𝑎[𝑠:𝑒:𝑟 ] 𝑏

(f) Sparse 𝑎 and 𝑏, dense 𝑐 .

Fig. 14. Iteration lattices for several sequence expressions. Full lines are edges to sub-points, dotted lines are

edges to non-sub-points (see Section 6.2.3 for the distinction).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 312. Publication date: October 2024.



312:14 Alexander J Root, Bobby Yan, Peiming Liu, Christophe Gyurgyik, Aart J.C. Bik, and Fredrik Kjolstad

is empty, then return the other side of the union. Our algorithm treats sparse-and-empty and

dense-and-empty differently. For example, for a set expression 𝑎 ∪ 𝑏 with 𝑎 as a dense sequence,

the entire union must be empty when 𝑎 becomes empty because the sequence must have been

fully iterated when a dense sequence (which contains every coordinate) runs out of coordinates.

This optimization can be seen in Figure 14d, where a dense sequence, 𝑏, is coiterated with a sparse

sequence—when the dense sequence runs out, the entire union must run out. We provide the full

list of rewrite rules in Appendix A.

Concatenation is a special case, as 𝑎 ⊔ 𝑏 simplifies to a new (but simple) combinator, the offset

|𝑎 | + 𝑏. This represents iteration over 𝑏, where all the coordinates are offset by the size of 𝑎’s

dimension. The offsets induced by concatenation are illustrated in Figures 14b and 14e.

6.2.3 Sub-points. Given a lattice point 𝑝 that iterates over a sequence 𝑠 , the sub-points of 𝑝 are

descendant points that represent sequences that are strict subsets of 𝑠 . For example, in Figure 14f,

the sequence 𝑎[𝑠:𝑒:𝑟 ] ∪ (𝑏 × 𝑐) has two sub-points, labeled 𝑎[𝑠:𝑒:𝑟 ] and (𝑏 × 𝑐). Sub-points of 𝑝
correspond to a sequence that represents a strictly simpler state than the state represented by 𝑝 .

Not all descendant points are sub-points due to the complexity of the concatenation combinator.

Consider the iteration lattice in Figure 14b. The concatenation combinator produces a state transition

when 𝑎 runs out, indicating a transition to start iterating over the offset elements of 𝑏4. However,

the point |𝑎 | +𝑏 is not considered a sub-point of 𝑎⊔𝑏, because it represents a disjoint set (it requires
𝑎 runs out, not just that 𝑎 is missing an element). Edges to non-sub-points are denoted with a dotted

edge in 14b and 14e. To compute the sub-points of a lattice point 𝑝 , we gather all descendants that

represent a subset of 𝑝’s sequence. Note that a point is considered its own sub-point.

6.3 Lowering Lattices to Loops
func CompileForall(idx , seq , body):

// Lattice construction in Figure 12
lattice = ConstructLattice(seq)
points = TopoSort(lattice)
build = 𝜆 p: BuildLoop(p, idx , body)
loops = map(build , points)
return fold(Pair , loops)

func BuildLoop(point , idx , body):
build = 𝜆 sp: Compile(simplify(sp, body))
// Case for each sub -point (Section 6.2.3)
bodies = map(build , point.subs)
// Find locators (Section 6.3.1)
seq , loc = RemoveLocs(point.seq)
if len(bodies) > 1: // Section 6.3.2
body = Switch(idx , point.subs , bodies)

else:
body = bodies [0]

return While(idx , seq , loc , body)

Fig. 15. Compilation of CIN to CFIR.

Iteration lattices are used to generate loops over

progressively simpler loop bodies. A lattice always

maintains a partial ordering, because each point

has a progressively simpler sequence expression.

The lattice can be compiled to loops by topologi-

cally sorting the points, laying them out in order,

and generating a CFIR loop for each point that

runs until an edge sequence runs out. A CFIR loop

exits when an edge sequence runs out, as this indi-

cates that the iteration should be passed to a loop

over a simpler sequence expression. The body of

a CFIR loop is generated as a conditional over the

sub-points in the lattice, where the bodies of the

conditional statements contain simplified code. We

provide the lowering algorithm from CIN forall

loops to CFIR loops in Figure 15, discuss two of the methods used in constructing loops, and walk

through two examples below.

6.3.1 Removing Locators. As described in Section 6.1.3, when a sparse sequence is intersected with

a dense sequence, the loop can be optimized by iterating over the sparse sequence and locating

into the dense sequence. As in Taco, we recursively search for dense sequences and turn them into

locators instead during loop construction (Figure 15). See [22, Section 5.2] for more details.

4
The result is a fissioned loop, which is the most efficient way to iterate over concatenated arrays.
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6.3.2 Building Conditionals. Note that some loop bodies do not require a conditional loop, such as

when iterating over a single array. Conditionals are only needed when there are multiple possible

states that can be transitioned to, which corresponds to the sequence operator having sub-points

other than itself. Therefore, the construction algorithm for building a loop body only constructs a

conditional switch statement if the sequence being iterated over has more than one sub-point (and

therefore, there are multiple sub-states that needed to be considered).

6.3.3 CFIR Examples. Consider the CIN in Figure 16d, where the 𝑘 loop iterates over the product

of a dense iterator and a sparse iterator, unioned with another sparse iterator. This loop generates

the iteration lattice in Figure 16e, which contains three non-empty states: the initial state (top), a

state that iterates over only the product (middle left), and a state that iterates over only the second

sparse iterator, 𝑘𝑏 (middle right). This iteration lattice compiles to the three loops in Figure 16f,

c(k) = collapse(A(i, j),(i,j)�k)
+ b(k)

(a) Array algorithm description.

forall 𝑘 ∈ (𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏
𝑐 (𝑘 ) = 𝐴(𝑖, 𝑗 ) + 𝑏 (𝑘 )

(d) Concrete index notation.

A: Dense , Compressed
b: Compressed
c: Dense

(b) Array format description.

= +

(c) Logical iteration pattern.

(𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏

𝑖𝐴 × 𝑗𝐴 𝑘𝑏

∅

𝑘𝑏 𝑖𝐴

𝑖𝐴 𝑘𝑏

(e) 𝑘’s iteration lattice.

1 while 𝑘 � (𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏

2 switch k

3 case (𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏 :

4 𝑐 (𝑘 ) = 𝐴(𝑖, 𝑗 ) + 𝑏 (𝑘 )
5 case (𝑖𝐴 × 𝑗𝐴 ):
6 𝑐 (𝑘 ) = 𝐴(𝑖, 𝑗 )
7 case 𝑘𝑏 :

8 𝑐 (𝑘 ) = 𝑏 (𝑘 )
9 while 𝑘 � 𝑖𝐴 × 𝑗𝐴

10 𝑐 (𝑘 ) = 𝐴(𝑖, 𝑗 )
11 while 𝑘 � 𝑘𝑏

12 𝑐 (𝑘 ) = 𝑏 (𝑘 )

(f) Control-flow IR.

Fig. 16. Compilation of the fused collapse-and-addition in (a) with the formats in (b) produces the CIN in (d),

visually represented by the space-filling curves in (c). Compilation of (d) generates the iteration lattice (e),

which constructs the coiterating loops in (f). For the final compiled C output, refer to Figure 22.

C(i, j) = split(a(k), k � (i, j)) * B(i, j)

(a) Array algorithm description.

a: Compressed
B: Dense , Compressed
C: Dense , Dense

(b) Array format description.

forall 𝑖 ∈ 𝜋0 (𝑘𝑎, 𝐽 ) ∩ 𝑖𝐵
forall 𝑗 ∈ 𝜋1 (𝑘𝑎, 𝐽 ) ∩ 𝑗𝐵

𝐶 (𝑖, 𝑗 ) = 𝑎 (𝑘 ) ∗ 𝐵 (𝑖, 𝑗 )

(c) Concrete index notation.

𝜋0 (𝑘𝑎, 𝐽 ) ∩ 𝑖𝐵

∅

𝜋1 (𝑘𝑎, 𝐽 ) ∩ 𝑗𝐵

∅

𝜋0 (𝑘𝑎, 𝐽 ) 𝑘𝑎, 𝑖𝐵 𝜋1 (𝑘𝑎, 𝐽 ) 𝑘𝑎, 𝑗𝐵

(d) Iteration lattices for 𝑖 and 𝑗 .

1 while 𝑖 � 𝜋0 (𝑘𝑎, 𝐽 ) with 𝑖𝐵 = 𝜋0 (𝑘𝑎, 𝐽 )
2 while 𝑗 � 𝜋1 (𝑘𝑎, 𝐽 ) ∩ 𝑗𝐵

3 𝐶 (𝑖, 𝑗 ) = 𝑎 (𝑘 ) ∗ 𝐵 (𝑖, 𝑗 )

(e) Control-flow IR.

Fig. 17. Multiplication of a split compressed vector and a CSR matrix exposes an opportunity for the iter-

ate/locate optimization: the 𝑖 loop can iterate over the projection of the sparse vector’s sequence, and use 𝑖 to

locate into a row of the CSR matrix, possibly skipping some rows. The 𝑗 loop still coiterates the split sequence

and the compressed columns of the CSR matrix, as both sequences are sparse. Refer to Figure 23b for the

final generated C code from this example.
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corresponding to each of the three non-empty states. When the union can be simplified (when either

the product or 𝑘𝑏 run out of elements), control flow is passed to a loop over a simpler sequence

expression. Inside the loop over the union, there are cases for each possible sub-state that the

iteration could be in. For example, if the product contains a coordinate that 𝑘𝑏 does not, the second

case (lines 5–6 of Figure 16f) perform a simplified version of computation, with a copy replacing the

addition. The cases within a loop correspond exactly to the sub-states that the loop’s sequence has.

Likewise, consider a kernel that reshapes (splits) a 1D sparse array into a 2D view, and performs

element-wise multiplication with a CSR matrix, as illustrated in Figure 17. Both CIN loops iterate

over the intersection of a projection and a sequence from the CSR matrix. These loops generate the

almost identical iteration lattices in Figure 17d. However, the first loop intersects a sparse sequence

(the projection) with a dense sequence, 𝑖𝐵 . Therefore, the iterate-locate optimization described in

Section 6.1.3 is applied to produce a loop that locates into the dense sequence. The second loop

intersects two sparse sequences, so there needs to be a switch statement inserted to handle the case

where one sparse sequence trails behind the other. This results in the loop nest shown in Figure 17e.

7 Code Generation
In this section, we show how a simple set of primitives compose to produce iteration over any

sequence expression. This final code generation pass uses a simple iterator model that builds on

the indexed stream model of Kovach et al. [23], a representation used for compiling fused sparse

tensor algebra that shows how to iterate over unions and intersections efficiently. This approach

decouples the mathematical intuition behind iteration, a complex abstraction when handling sparse

data structures, and the actual code generation. We first describe the iterator model for formats,

then for sequence combinators, and lastly provide the complete code generation algorithm from

CFIR to C code.

7.1 Iterator Model
Burrito relies on a small set of composable primitives to implement iteration over combinations

of sequences: initialize, valid, evaluate, equals, next, and locate. We describe each below, giving

examples of the iterator model for sequence products in Figure 20 and slicing in Figure 21. Note that

Figure 21 shows a generalization of prior work [18], which supported slicing only array dimensions,

while our algorithm can generate code that iterates over the slice of any sequence.

Initialize handles declaring any necessary iteration variables and locating the first non-zero

element of a sequence.

Valid is a check that the sequence has not run out of coordinates, meaning no sub-sequence has

run out. This is a check that no iterators have gone out of bounds, and slices and projections

are still within a valid range.

Evaluate computes the current coordinate value of the sequence. For unions and intersections,

this takes the minimum of the two sequences, but for sequence combinators, a sequence value

(or values) must be re-mapped to the new space. For example, a product applies the strided

offset formula to map two sequence coordinates to a single sequence coordinate. Likewise, a

slice must re-map a sequence value to the sliced coordinate space.

Equals checks whether a sequence is currently at a coordinate. For unions and intersections,

equality simply means that both sequence operands are equal to the given value. For com-

binators, we re-map the provided value into the spaces spanned by the operand sequences.

This is used to compile CFIR’s conditional statements (see Figure 23a).
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Next steps the sequence forward to the next non-zero value. For array levels, unions, and

intersections, this performs the same conditional updates as Taco (e.g. line 25 of Figure 22). For

sequence combinators, we define modular code generators for stepping forward a sequence.

Locate moves physical iterators to point to a specific logical coordinate. Section 6.1.1 described

cases where random-access into a sequence is asymptotically preferable, and the locate

interface is used to support this optimization. Many sequence combinators are invertible

and this property can be used to locate through them, and base data structure formats often

support fast random access (e.g. dense or hashed formats).

7.1.1 Formats. The iterator model for array formats is equivalent to the base case of the recursive

algorithm for generating iteration code, as tensor dimensions are the main primitive in sequence

expressions. As examples, we provide the implementations of dense and compressed formats in

Figures 18 and 19, respectively. Extending Burrito to support an additional sparse format only

requires implementing the iterator interface for that format type. Our prototype compiler supports

Dense(String name , String idx ,
String size):

Init():
emit " int {idx}_{name} = 0;"

Valid ():
emit "{idx}_{name} < {size}"

Eval():
emit "{idx}_{name}"

Equals(i):
emit "{idx}_{name} == {i}"

Next():
emit "{idx}_{name }++;"

Locate(i):
emit "{idx}_{name} = {i};"

Fig. 18. Iterator model for a dense dimension.

Compressed(String name , String idx ,
String lb , String ub):

Init():
emit " int {idx}p_{name} = {lb};"

Valid ():
emit "{idx}p_{name} < {ub}"

Eval():
emit "{name}_crd[{idx}p_{name }]"

Equals(i):
emit "Eval() == {i}"

Next():
emit "{idx}p_{name }++;"

Locate(i):
emit "{idx}p_{name} = binary_search ({i},
{name}_crd , {lb}, {ub});"

Fig. 19. Iterator model for a compressed dimension.

Product(Seq a, Seq b):
Init():
emit Init(a); Init(b)
emit while(Valid(a) && !Valid(b))
emit { Next(a); Init(b); }

Valid ():
emit Valid(a) && Valid(b)

Eval():
emit (Eval(a) * |b|) + Eval(b)

Equals(i):
emit Equals(i/|b|,a) && Equals(i%|b|,b)

Next():
emit Next(b)
emit while(Valid(a) && !Valid(b))
emit { Next(a); Init(b); }

Locate(i):
emit Locate(i/|b|,a); Locate(i%|b|,b)

Fig. 20. Iterator interface for sequence products.

Slice(Seq a, Expr s, Expr e, Expr r):
Init():
emit Init(a)
emit Locate(a, s)
emit while(Valid () && ((Eval(a)-s)%r))
emit { Next(a); }

Valid ():
emit Valid(a) && Eval(a) < e

Eval():
emit (Eval(a) - s) / r

Equals(i):
emit Equals ((i * r) + s, a)

Next():
emit do { Next(a) }
emit while(Valid () && ((Eval(a)-s)%r))

Locate(i):
emit Locate ((i * r) + s, a)

Fig. 21. Iterator interface for sequence slices.
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Taco’s dense, compressed, and singleton level formats [9], which compose to express many sparse

data structures, such as CSR, CSC, COO, CSF, DCSR/DCSC, and other variants.

1 int i_A = 0; // init 𝑖𝐴
2 int jp_A = A_pos[i_A]; // init 𝑗𝐴
3 while ((i_A < I) && !(jp_A < A_pos[i_A+1])) { // valid 𝑖𝐴 && !valid 𝑗𝐴
4 i_A++; // next 𝑖𝐴
5 jp_A = A_pos[i_A]; // init 𝑗𝐴
6 }
7 int kp_b = b_pos [0]; // init 𝑘𝑏
8 while ((i_A < N) && (jp_A < A_pos[i_A+1]) && (kp_b < b_pos [1])) { // valid 𝑖𝐴 × 𝑗𝐴 ∪ 𝑘𝑏
9 int k = min((i_A * M) + A_crd[jp_A], b_crd[kp_b]); // eval (𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏
10 if (((i_A == k / M) && (A_crd[jp_A] == k % M)) && // equals 𝑘, (𝑖𝐴 × 𝑗𝐴 ) ∪ 𝑘𝑏
11 (k == b_crd[kp_b])) {
12 c[k] = A.values[jp_A] + b.values[kp_b];
13 } else if ((i_A == k / M) && (A_crd[jp_A] == k % M)) { // equals 𝑘, 𝑖𝐴 × 𝑗𝐴
14 c[k] = A.values[jp_A];
15 } else if (k == b_crd[kp_b]) { // equals 𝑘, 𝑘𝑏
16 c[k] = b.values[kp_b];
17 }
18 if (k == ((i_A * M) + A_crd[jp_A])) { // next 𝑘, (𝑖𝐴 × 𝑗𝐴 )
19 jp_A++; // next 𝑗𝐴
20 while ((i_A < N) && !(jp_A < A_pos[i_A+1])) {
21 i_A++; // next 𝑖𝐴
22 jp_A = A_pos[i_A]; // init 𝑗𝐴
23 }
24 }
25 kp_b += (k == b_crd[kp_b]); // next 𝑘, 𝑘𝑏
26 }

Fig. 22. Compilation of the first loop of Figure 16f, which iterates over a collapsed CSR matrix, A, and adds it

to a compressed vector, b.

1 func CompileCFIR(stmt):
2 match stmt with
3 | While (idx , seq , locs , body) ↦→
4 emit Init(seq)
5 emit while (Valid(seq)) {
6 emit int idx = Eval(seq);
7 for a, b ∈ locs
8 emit Locate(Eval(a), b)
9 emit CompileCFIR(body)
10 emit Next(seq) }
11 | Switch (idx , seqs , bodies) ↦→
12 emit i f (Equals(idx , seqs [0])) {
13 emit CompileCFIR(bodies [0]) }
14 for s, b ∈ zip(seqs , bodies)[1:]
15 emit else i f (Equals(idx , s)) {
16 emit CompileCFIR(b) }
17 | Pair (cfir0 , cfir1) ↦→
18 emit CompileCFIR(cfir0)
19 emit CompileCFIR(cfir1)
20 | Assign (array , idxs , expr) ↦→
21 emit CompileWrite(array , idxs)
22 emit CompileExpr(expr)
23 | Reduce (array , idxs , expr) ↦→
24 emit CompileReduction(array , idxs)
25 emit CompileExpr(expr)

(a) Recursive codegen via the iterator model.

4

5
6
8
4

5

6

12
21-22

13

10

10

int kp_a = a_pos [0];

while (kp_a < a_pos [1]) {
int i = a_crd[kp_a] / J;
int i_B = i;
int jp_B = B_pos[i];

while ((kp_a < a_pos [1]) &&
(i == a_crd[kp_a] / J) &&
(jp_B < B_pos[i_B+1 ])) {

int j0 = a_crd[kp_a] % J;
int j1 = B_crd[jp_B];
int j = min(j0, j1);
if ((j == j0) && (j == j1)) {

C[i * J + j] = a[kp_a] * B[jp_B];
}
kp_a += (j == j0);
jp_B += (j == j1);

}

while ((kp_a < a_pos [1]) &&
(i == a_crd[kp_a] / J)) {

kp_a++;
}

}

(b) Generated code from the CFIR in Figure 17e.

Fig. 23. (a) C code generation from CFIR. (b) shows the generated code for C(i, j) = split(a(k), k �
(i, j)) * B(i, j), where a is a compressed vector and B is a 𝐼 × 𝐽 CSR matrix. The labels to the left in (b)

correspond to the line numbers in (a) that generated that particular line of code.
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7.1.2 Combinators. The iterator model fully composes to enable code generation for all sequence

combinators. As examples, we provide the implementation of the iterator model for sequence prod-

ucts and slices in Figures 20 and 21, respectively. These implementations show the composability

of this interface. We also illustrate a labeled example of the full C code generated from Figure 16 in

Figure 22, with line labels corresponding to the interface that has generated each line.

7.2 Compiling CFIR
We give the algorithm for compiling CFIR based on the iterator model in Figure 23a. Intuitively,

each loop iterates until some sub-sequence runs out (the state is permanently changed), and after

execution of a loop’s body, steps the sequence forward. Conditional switch statements are used to

evaluate which sub-state the iterator may currently be in, and generate C++ if-else chains. The

iterator model allows for a very simple code generation algorithm to compile the abstract while

loops and switch statements of CFIR to the complex irregular loops over physical data structures

required to support both compute and shape operators. We provide an example of such code in

Figure 23b, which is annotated with the line numbers from Figure 23a that have generated each

line of the C++ code, in addition to the line-by-line annotations of Figure 22 that illustrates calls to

iterator model components for the first CFIR loop in Figure 16f.

8 Evaluation
Our evaluation provides evidence that demonstrates the following claims:

(1) Generated shape operators can match the performance of hand-written shape operators.

(2) Portability across data structures can improve performance over fixed-format kernels.

(3) Fusion of shape and compute operators can improve performance.

We first describe the existing state-of-the-art libraries that we compare to in Section 8.1, provide

our benchmarking methodology in Section 8.2, and then provide evidence for the above claims

in the following sections. We implemented Burrito in Racket [12], a language for designing

DSLs. Burrito generates C++ code that we call from our Python benchmarking infrastructure via

nanobind [20].

8.1 Baselines
We compare Burrito-generated code to scipy.sparse [37] v1.11.2 and pydata/sparse [2] v0.15.1,
the only libraries that we are aware of with support for both shape and compute operators. Both

libraries follow a simple reduction approach for shape operators. Each shape operator is imple-

mented for one or a few sparse data structures, and calling a shape operator on an unsupported

sparse data structure incurs a conversion cost to convert to a supported format. For example, to

reshape a CSR matrix with scipy, the library first converts the CSR
5
matrix to COO

6
and then calls

COO.reshape. Likewise, when a user requests a non-standard output format (e.g. reshape a COO

matrix into a CSR matrix), the library will perform the operation with a supported implementation

and then convert the output to the requested output format. Such data reorganization approaches

to generality naturally come at a performance cost.

For sparse tensor algebra alone, Burrito’s compilation technique produces equivalent code as

Taco. We therefore do not compare directly to Taco.

Note that both libraries we compare to call numpy [16] operators (hand-written C++ kernels) on

arrays that represent the sparse arrays whenever possible, so our evaluation is largely comparing

C++ loops to C++ loops, though there is a larger amount of Python overhead for small arrays in the

5
The Compressed-Sparse-Row format.

6
The COOrdinate list format.
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libraries versus Burrito-generated code. Our evaluations are performed on CSR/CSC and COO

matrices because scipy does not support other sparse types or higher-dimensional arrays. To the

best of our knowledge, there are no other systems that support multiple sparse shape operators for

comparisons, and Burrito generates the same loops as Taco for direct array slicing.

8.2 Methodology and Benchmark Notation
We evaluate on an Apple M1 Pro (3.2 GHz, 8 cores) with 16 GB of RAM. All benchmarks are

single-threaded (both libraries and the Burrito-generated code are single-threaded programs). Our

generated kernels are compiled with clang++ 14.0.3. Python 3.11.4 is used to run all benchmarks.

We evaluate on all real-valued matrices in the SuiteSparse [10] matrix data set, except the largest

matrix (MOLIERE_2016) because our machine did not have sufficient memory. These matrices span

several domains, including computer vision, structural engineering, economics, graph analytics,

and computational fluid dynamics. The x-axis of all graphs is the number of non-zero coordinates

in the SuiteSparse matrix being operated on.

In each benchmark, we report the minimum time out of 10 iterations, with a 5 second timeout

per iteration. For benchmarks that require multiple matrices (e.g. concatenation), we first split the

SuiteSparse matrix in half, and use the halves as operands to concatenation. For fusion benchmarks,

we use the same matrix with elements shifted by a small number (10), due to the need for shape

compatibility, as in prior evaluations of sparse tensor algebra [22]. Like Taco, Burrito’s compile

times are interactive, so compilation does not introduce noticeable overhead.

We label benchmarks with short descriptions of their compute kernels. vstack means vertical

stacking (concatenation along the first axis), and hstack means horizontal stacking (concatenation

along the second axis). Benchmarks label operands with their array types (e.g. "CSR" or "COO"),

and single letter labels ("C" and "D") correspond to compressed and dense vectores, respectively.

8.3 Comparison to Hand-Written Kernels
We compare Burrito’s generated shape operators to the shape operator implementations in

scipy.sparse and pydata/sparse that do not perform data structure conversions, shown in

Figure 24. This comparison shows that a compilation-based approach can match the performance

of hand-written code.

Reshape. Figure 24a shows the performance of collapsing a 2D matrix into a 1D sparse vector
7
.

Burrito outperforms scipy.sparse by geometric mean 15.3× and pydata/sparse by 10.5×. Both
libraries perform this reshaping operation by a series of three calls to numpy operations over the

same length of arrays, while Burrito generates a single loop that fuses the three operations.

Concatenation. Figures 24b, 24c, 24d, and 24e evaluates the performance of various forms of matrix

concatenation. They have geometric mean speed-ups of 3.52× over scipy.sparse and 16.7×
over pydata/sparse (Figure 24b), 4.48× and 1.69× (Figure 24c), 6.29× and 651× (Figure 24d), and

1.66× and 1.67× (Figure 24e) respectively. For vertically stacking matrices, the libraries sometimes

outperform Burrito-generated code on larger matrices by up to 11.4× and 11.7× for scipy.sparse
and pydata/sparse respectively. Upon investigation, we believe it is because the libraries rely on

hand-vectorized C++ kernels for these operations (that do little more than memcpys), while the C++
compiler used to compile Burrito-generated code did not produce the same vectorized loops. The

general loop structure for these kernels are the same between the libraries and Burrito-generated

code. Nonetheless, these benchmarks demonstrate that generated code can match or exceed the

7scipy.sparse does not directly support sparse vectors, but can represent them using a CSR matrix with a single row.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 312. Publication date: October 2024.



Compilation of Shape Operators on Sparse Arrays 312:21

101 102 103 104 105 106 107 108 109

nnz

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

T
im

e
(s
)

pydata

scipy

BURRITO

(a) C = collapse(COO)
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(b) COO = hstack(COO, COO)

101 102 103 104 105 106 107 108 109

nnz

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

T
im

e
(s

)

pydata

scipy

BURRITO

(c) COO = vstack(COO, COO)
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(d) CSR = hstack(CSR, CSR)
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(e) CSR = vstack(CSR, CSR)
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(f) CSR = slice(CSR)

Fig. 24. Runtimes of shape operators for kernels that scipy.sparse pydata/sparse have hand-implemented

kernels without performing data structure conversions. The performance shift around 10
6
non-zero values

correspond to each system shifting to u64 for matrix indices instead of u32.

performance of hand-written reshape kernels, and show that future work on optimizations such as

vectorization could be useful for Burrito.

Slicing. Figure 24f shows the performance of slicing the first dimension of a CSR matrix
8
. The

geometric mean speed-ups are 4.64× over scipy.sparse and 478× over pydata/sparse. The
scipy.sparse library and Burrito generated code perform similarly on large matrices, but

pydata/sparse’s implementation varies largely and performs significantly worse due to the code

being written to handle slicing any dimension of an array (the code is not specialized for a 2D array

like scipy.sparse and Burrito-generated code). This highlights a trade-off between generality

and performance in this system. Note that pydata/sparse also timed out on many test matrices,

and crashed on many as well for this operation.

8.4 Comparison to Reduced Kernels
To demonstrate the importance of allowing code specialization for particular input and output

data structures, we evaluate shape operators with data structures that SotA libraries perform data

structure conversions to compute. We compare Burrito-generated code against implementations

that perform a data structure conversion on the input or output array in addition to applying the

hand-written shape operator, and show that code that does not need to perform these conversions

can offer significant performance improvements, and use less memory than the library approaches,

as Burrito-generated code does not need to allocate the intermediate tensors that the SotA libraries

allocate. This encourages our compiler-based approach.

Reshape. Figures 25a and 25b show the performance of splitting a 1D sparse vector into a 2D

sparse matrix of different types. The geometric mean speed-ups across matrices are 7.29× over

8
The slice takes alternating elements from the first half of the array. We refer the reader to Henry et al. [18, Section 8.2.4]

for an in-depth evaluation of non-fused slicing operations on sparse arrays.
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(a) COO = split(C)
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(b) CSR = split(C)
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(c) CSR = hstack(COO, COO)
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(d) COO = vstack(CSR, CSR)
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(e) COO = hstack(CSR, CSR)
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(f) COO = slice(CSR)

Fig. 25. Runtimes of shape operators for kernels that the SotA libraries implement via data-structure conver-

sions and reductions to hand-written kernels. Performance shifts around 10
6
non-zero values correspond to

each system shifting to using u64 for indices instead of u32.

scipy.sparse and 246× over pydata/sparse, and 13.0× and 176×, respectively. scipy.sparse
performs a conversion on the compressed vector into a different compression scheme before

reshaping into a 2D COO matrix, while pydata/sparse performs the conversion after the reshape.

Note that this means the second benchmark, 25b, scipy.sparse performs two conversions, both

before and after the shape operator is applied.

Concatenation. Figures 25c, 25d, and 25e show the performance evaluation of various forms of

matrix concatenation where the the libraries perform conversions after the shape operator produces

a temporary matrix. They have geometric mean speed-ups of 12.7× over scipy.sparse and 52.6×
over pydata/sparse (Figure 25c), 8.13× and 21.3× (Figure 25d), and 8.33× and 384× (Figure 25e),

respectively. These performance gains are largely a result of reduced memory allocations (Burrito-

generated code does not need to allocate expensive temporaries like the libraries do).

Slicing. Figure 25f shows the performance of slicing the first dimension of a CSR matrix and

inserting into a COO matrix. The geometric mean speed-ups are 8.17× over scipy.sparse and

511× over pydata/sparse. Note that pydata/sparse also timed out on many test matrices, and

crashed on many as well for this operation.

8.5 Shape and Compute Operator Fusion
To evaluate the performance benefits of fusing shape and compute operators, we perform a series

of comparisons of kernels with and without fusion. For relevance to the state-of-the-art, we also

compare to scipy.sparse, the faster of the two SotA libraries.We provide a performance evaluation

of the speed-up gained by fusing shape and compute kernels on the following benchmarks:

(1) Element-wise multiplication of a flattened CSR matrix with a compressed vector in Figure 26a.

The geometric mean (geomean) speed-up across matrices is 1.42× over unfused Burrito,

and 3.08× over scipy.sparse.
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CSR matrix with a sparse vector.
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(b) SpMV with concatenated

CSR matrices on a dense vector.
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Fig. 26. Runtimes of fused Burrito code versus scipy and unfused Burrito code.

(2) Matrix-vector multiplication (SpMV) of two vertically stacked CSR matrices with a dense

vector in Figure 26b. The geomean speed-up is 2.23× over unfused Burrito, and 3.86× over

scipy.sparse.
(3) Element-wise multiplication of a slice of the first dimension of a CSR matrix with another

CSR matrix in Figure 26c. The geomean speed-up is 1.22× over unfused Burrito, and 3.24×
over scipy.sparse.

The benefit of fusing such operators is largely a result of increased temporal locality and removing

the allocation of intermediate tensors. This is especially important when the temporaries are large

enough to fall out of cache. There are some cases where scipy.sparse outperforms the unfused

Burrito-generated code (e.g. with the fused SpMV, where scipy.sparse’s fast vstack, discussed
in Section 8.3, outperforms Burrito’s vstack), but fused Burrito-generated code still performs

best across these benchmarks.

9 Related Works
Taco. Our work builds on the Taco line of work [9, 18, 21, 22, 29]. While our implementation of

Burrito subsumes the Taco work on tensor algebra compilation [22] and formats [9], it does not

yet directly support a scheduling language to control, e.g., loop tiling or parallelization [21, 29]
9
or

user-defined functions (UDFs) [18]. Although we believe that our ideas on reshape operations are

orthogonal to – but compatible with – scheduling languages, future work is needed to work out

how to schedule the highly irregular loops generated from fused shape operators. We additionally

believe that the Taco UDFs work [18] fits well into our programming model, as implementing set

complements fits cleanly into the iterator model. We leave implementing a feature-complete array

programming compiler as future work.

Sparse Shape Operator Compilation. As discussed in the introduction, most prior work in sparse

array compilation focuses on compiling compute operators [5, 22, 39], with the exceptions of two

compilers: Henry et al. [18] extended Taco to support iterating over slices of array operands,

and allows computing over a slice, but does not support slicing intermediate computation, which

limits fusion options; Looplets [3] can be used to express the concatenation of arrays, but does

not express concatenation as an operator in the front-end language. Burrito explicitly expresses

shape operators in the front-end language, and has no restrictions on mixing compute and shape

operators.

Abstracting Sparse Iteration. There are decades worth of work in abstracting sparse iteration. The

database community relied on the iterator model [14] to implement many relational operators,

and more recently, Kovach et al. [23] introduced the stream model for iterating over sparse arrays,

9
We are not aware of any work that combines sparse shape operations with such scheduling operations.
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which supports a similar iterator interface based on a model equivalent to init-valid-next. Our

iterator model builds on Kovach et al. [23], and we introduce additional primitives to support shape

operators. Chou et al. [9], Looplets [3], and SparseTIR [38] provide various abstractions over sparse

data formats, but do not use these abstractions to compile shape operators.

Avoiding Discordant Traversals. Sparse tensor algebra has a long history of shaping computation

to avoid discordant traversals [6, 7, 11, 13, 15, 26, 34, 40], and a compiler for efficient sparse shape

operators must do the same. Kjolstad et al. [21] introduced a simple loop IR and scheduling rewrites

that allow for avoiding discordant traversals, and Burrito uses that IR (CIN) and thus can be

extended to support the same transformations.

Sparse Array Libraries. There are a number of sparse array libraries [1, 25, 37] that implement

some number of shape operators. We compare to the most complete of these, scipy.sparse
and pydata/sparse, in Section 8. These array libraries are feature-incomplete, generally only

supporting a small number of array formats and a small number of operators. Burrito can be used

to generate custom shape operator implementations for each of these libraries, or replace them

entirely.

Array Languages. There are decades of work in dense array programming languages [4, 16, 17,

19, 24, 27, 31], many of which support shape operators, but only for dense arrays. For many of

these languages, shape operators correspond to zero-cost array metadata edits, and do not require

iteration over the data like sparse shape operators do.

Staged Compilation.While the database community typically uses the iterator model as a runtime

technique, recent work [32, 33] applies ideas from partial evaluation to enable using the iterator

model for code generation. Burrito’s code generation can be seen as an application of the same

idea to compiling iteration over sequence expressions.

10 Conclusion
We extend sparse iteration theory to handle shape operators in addition to compute operators,

and describe the first compiler for a sparse array programming language with multiple shape

operators in addition to compute operators. We show how a simple declarative array language can

be compiled to imperative loops over sequences, how to generate optimized loops that coiterate

these sequences, and lastly, how to generate data-structure-specific code via a simple iterator model.

With these ideas, sparse array programming moves one step closer to the completeness that dense

array programming systems have long since achieved.

Data-Availability Statement
Performance results were generated with a publicly available artifact [28] containing all bench-

marking code and scripts, as well as instructions for reproducibility. The Burrito compiler is also

available here. Benchmarking results may very based on the hardware used.
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A Sequence Simplification
Figure 27 provides the rewrite rules used to simplify sequences during iteration lattice construction

in Section 6.2.2 and Figure 12. These rewrites are iteratively applied to simplify a sequence expression

bottom-up after a particular index sequence (e.g. from a tensor) has been replaced with an empty

sequence, ∅, for sparse dimensions, or a full sequence, F , for dense dimensions.

As an example, consider the sequence expression (𝑎 × 𝑏) ∪ 𝑐 . The edge sequences (Section 6.2.1)

are 𝑎 and 𝑐 . Let us first consider removing 𝑐 : if 𝑐 is sparse, then we apply the union rewrite rule to

simplify the expression:

(𝑎 × 𝑏) ∪ 𝑐 � (𝑎 × 𝑏) ∪∅ � (𝑎 × 𝑏)
However, if 𝑐 is dense, then we apply a different rule: the union of a full sequence (dense-and-

empty) with any other sequence is full. This is because a dense sequence can only become empty if

the entire dimension has been iterated over, so the union itself must have been fully iterated. We

denote a full sequence as F . The series of rewrites for this case are then:

(𝑎 × 𝑏) ∪ 𝑐 � (𝑎 × 𝑏) ∪ F � F
Now, consider removing 𝑎. If 𝑎 is sparse, we perform the following rewrites:

(𝑎 × 𝑏) ∪ 𝑐 � (∅ × 𝑏) ∪ 𝑐 � ∅ ∪ 𝑐 � 𝑐

This is a consequence of a sparse 𝑎: the iteration space 𝑎 × 𝑏 is not fully iterated, so 𝑐 may not be

empty. The same is true if 𝑎 is dense but 𝑏 is sparse. However, if 𝑎 is dense and 𝑏 is dense, then

removing 𝑎 means fully iterating over the space 𝑎 × 𝑏 (the same space iterated over by 𝑐). Thus, the

following rewrites are performed because that space is fully iterated over:

(𝑎 × 𝑏) ∪ 𝑐 � (F × 𝑏) ∪ 𝑐 � F ∪ 𝑐 � F
Our treatment of full (dense-and-empty) and empty (sparse-and-empty) allows our iteration

lattice algorithm to avoid generating lattice points for states that are impossible to reach, just as

Taco [22]’s iteration lattice construction algorithm does via its filter step.

Union

𝑎 : F ∨ 𝑏 : F
𝑎 ∪ 𝑏 : F

𝑎 : ∅ ∧ 𝑏 : X
𝑎 ∪ 𝑏 : X

𝑎 : X ∧ 𝑏 : ∅
𝑎 ∪ 𝑏 : X

𝑎 : X ∧ 𝑏 : Y
𝑎 ∪ 𝑏 : X ∪ Y

Intersection

𝑎 : F ∨ 𝑏 : F
𝑎 ∩ 𝑏 : F

𝑎 : ∅ ∨ 𝑏 : ∅
𝑎 ∩ 𝑏 : ∅

𝑎 : X ∧ 𝑏 : Y
𝑎 ∩ 𝑏 : X ∩ Y

Product

𝑎 : F ∧ 𝑏 is dense

𝑎 × 𝑏 : F
𝑎 : F ∨ 𝑎 : ∅

𝑎 × 𝑏 : ∅
𝑎 : X ∧ 𝑏 : Y
𝑎 × 𝑏 : X × Y

Concatenation

𝑎 : F ∨ 𝑏 : F
𝑎 ⊔ 𝑏 : F

(𝑎 : F ∨ 𝑎 : ∅) ∧ 𝑏 : X
𝑎 ⊔ 𝑏 : |𝑎 | + X

(𝑏 : F ∨ 𝑏 : ∅) ∧ 𝑎 : X
𝑎 ⊔ 𝑏 : X + |𝑏 |

𝑎 : X ∧ 𝑏 : Y
𝑎 ⊔ 𝑏 : X ⊔ Y

Projection

𝑎 : F
𝜋𝑘 (𝑎, 𝐽 ) : F

𝑎 : ∅
𝜋𝑘 (𝑎, 𝐽 ) : ∅

𝑎 : X
𝜋𝑘 (𝑎, 𝐽 ) : 𝜋𝑘 (X, 𝐽 )

Slicing

𝑎 : F
𝑎[𝑠 :𝑒 :𝑟 ] : F

𝑎 : ∅
𝑎[𝑠 :𝑒 :𝑟 ] : ∅

𝑎 : X
𝑎[𝑠 :𝑒 :𝑟 ] : X[𝑠 :𝑒 :𝑟 ]

Fig. 27. Sequence simplification rules used for iteration lattice construction in Figure 12. ∅ represents a

sparse-and-empty set, and F represents a dense-and-empty set. X and Y are used to denote non-empty sets.

As in Section 4.2, the notation |𝑎 | represents the size of the dimension 𝑎 iterates over, not the size of the set 𝑎.
The notation 𝑥 + |𝑎 | and |𝑎 | + 𝑥 represent right padding and left padding the set 𝑥 by |𝑎 |, respectively.
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