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The precise control of complex reactions is critical for biological processes, yet our inability to design for
specific outcomes limits the development of synthetic analogs. Here, we leverage differentiable simulators
to design nontrivial reaction pathways in colloidal assemblies. By optimizing over external structures, we
achieve controlled disassembly and particle release from colloidal shells. Lastly, we characterize the role of
configurational entropy in the structure via both forward calculations and optimization, inspiring new
parameterizations of designed colloidal reactions.
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Both living and nonliving physical systems exhibit com-
plex dynamical behavior, ranging from repair to locomotion
to catalysis. Fundamentally, such behaviors arise from
sequences of reactions, in which a set of substances (i.e.,
the reactants) are transformed into a set of different sub-
stances (i.e., the products). A rich body of work aims to
characterize and tune systems of interacting agents spanning
a range of system descriptions, both theoretically [1–3] and
experimentally [4–9]. However, for many critical processes
in biological systems (e.g., DNA synthesis, protein folding),
the components themselves cannot be changed. Instead,
to modify these processes, researchers often introduce an
external structure (e.g., competitive inhibitors for enzyme
inhibition, protein folding chaperones). Thus far, the design
of such structures has been bespoke and application specific,
necessitating entirely new research programs for each new
reaction. For example, while some general theoretical
models have provided deep insights into catalysis [10,11],
they are largely too abstract to inform experimental design.
To overcome current limitations and tune reactions

through the design of external agents, we carry out inverse
design whereby we optimize the geometry and interactions
of such components to achieve a target reaction. While
inverse design has been successfully applied to self-
assembly [12–16], inverse designing reaction pathways
remains a challenge because design parameters must be
chosen to favor particular dynamical trajectories. The
advent of differentiable simulators [16,17], powered by
software libraries developed for machine learning [18], has
opened up the possibility of directly designing reactions as

the gradient of numerical procedures with respect to control
parameters can be computed efficiently.
Here, we design complex reactions using differentiable

molecular dynamics (MD) and gradient-based optimiza-
tion. As an example of a nontrivial reaction, we consider
the controlled disassembly of colloidal structures, whereby
a particle is extracted from an otherwise complete shell of
colloidal particles. Disassembly is central to the dynamic
functions of living systems, such as defect repair, self-
replication, and catalysis. Existing examples of controlled
disassembly in synthetic systems often rely on external
forcing to drive the disassembly process [19–22], which
provides a direct pathway to tuning behavior. However, for
many engineering applications, including those inherent to
living systems, the use of external fields is limiting. On the
other hand, controlled disassembly in living systems
typically relies on local energy consumption [e.g., biologi-
cal enzymes consuming adenosine triphosphate (ATP)]
rather than global fields, but the synthetic design of these
systems is significantly more complex.
Inspired by the symmetry of many viral capsids [23,24],

we design for the controlled disassembly of icosahedral
shells. We consider a fixed shell and only parametrize an
external structure that acts upon it, enabling control over
disassembly without modifying critical components of
the reaction. Importantly, our disassembly mechanism is
entirely passive and does not rely on external forcing. As a
model for potential engineering applications, we apply our
mechanism to provoke the release of a target small particle
initially trapped inside the shell. Controlled disassembly
serves here as a striking example of a complex reaction
because the reaction requires a finely-tuned interaction
energy to keep the remaining shell stabilized while still
performing the desired particle extraction. We start from a
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rigid structure and thereafter proceed to quantify the role of
flexibility in the structure by computing free energy land-
scapes both for predefined extrema and for structures
optimized via a chosen parameterization of configurational
entropy, opening the door to novel designed reactions.
Results—We implement controlled disassembly in a

colloidal patchy particle system. Patchy particles have long
been used to emulate interactions in soft materials [25,26]
and offer tremendous tunability in designed interactions.
Optimizing said systems to achieve specific behaviors has
been made possible by the recent development of patchy
particle simulations within a differentiable library [16]. In
particular, we aim to remove a single particle from a shell
composed of patchy particles in a controlled manner
without disrupting the remaining shell structure. To that
end, we tune disassembly without changing any properties
of the shell itself. Instead, we introduce an external
structure that interacts with the shell to disassemble it in
the desired manner. We term the external structure a
“spider” due to its geometry.
The shell is modeled as a collection of patchy particles

forming an icosahedron where each patch corresponds to a
contact with a neighboring particle. Each patchy particle
consists of a central sphere and a set of rigidly attached
patches. Patches interact via a Morse potential (ϵV ¼ 10.0,
αV ¼ 5.0) and central spheres interact via soft-sphere
repulsion (ϵss ¼ 104). Importantly, the geometry and inter-
action energy of shell-comprising particles are fixed
throughout the optimization. Although we focus on the
disassembly of the icosahedron, our framework can be
easily adapted for other shell geometries (see Supplemental
Material (SM) for octahedral shells [27]).
For the spider, we consider several different models with a

set of core similarities. All models contain a ring of “base”
particles and a “head” particle that sits above the ring along
its symmetry axis. The head is connected to the base particles
by repulsive bars, making the entire structure a cage-like
object that is open on one end. An attractive particle type
(either the head or a third particle species) interacts with the
shell-comprising particles via a Morse potential, whereas
base particles and connecting bars interact with shell particles
via soft sphere repulsion. Unlike the shell, the geometry
and interaction energy of the spider are parameters of the
optimization. See Fig. 1(c) for an overview of this parameter-
ization. All interaction energies in our system are para-
meterized with simple, physics-based potentials.
Given a specified parameterization for the spider geom-

etry and interactions, we run an ensemble of differen-
tiable molecular dynamics simulations (see Fig. 1(d) and
SM [27] ). To focus our optimization procedure on the
challenges specific to disassembly, we initialize the spider
bound to the shell and therefore ignore the period in which
the spider is freely diffusing. We optimize over the para-
meters that characterize the geometry of the spider and its
interaction with the shell (8 parameters for the optimizations

in Fig. 2). To optimize our system, we perform gradient
descent to minimize a loss function. The loss is constructed
from two competing terms: one that rewards a final state in
which the target particle is extracted, and one that penalizes
a strong interaction between the spider and non-target
particles. The second term, which we refer to as the
“remaining energy” term, tends to reward pathways in
which the remaining shell holds its shape after the spider
extracts the target particle.
We formalize the loss function as follows. Consider an

icosahedral shell comprised of a collection of particles V ¼
fv⃗1; v⃗2;…; v⃗ng where n ¼ 12. We seek to extract a target
particle v⃗j from the shell while leaving the remaining shell
Vnv⃗j intact. We can measure the degree to which v⃗j is
successfully extracted via the following expression:

LextractðVÞ ¼ −
X

i≠j
dðv⃗i; v⃗jÞ; ð1Þ

where dðv⃗i; v⃗jÞ denotes the Euclidean distance between
particles v⃗i and v⃗j. Note the negative sign as we formulate
our optimization problem to minimize the loss. Next, we

(a)

(b) (c)

(d)

FIG. 1. Tuning the interaction potential of an external structure,
the spider, to achieve a desired reaction of disassembly. (a) A
single particle is removed from an icosahedron. (b) A candidate
mechanism: the spider extracts the target particle via an attractive
potential and detaches from the remaining shell. (c) Parametriza-
tion of the spider geometry and interaction potential with the
shell. The red particle is the “head” particle, situated above the
four black “base” particles that constitute the ring. The interaction
energy between spider and shell is depicted as a green triangle.
We optimize over all labeled parameters, as well as the cutoff of
the interaction energy (not depicted). (d) High-level depiction of
our optimization pipeline: analytic gradients are computed via a
differentiable molecular dynamics simulator and parameters of
the spider are updated via gradient descent.
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minimize the interaction energy between attractive site(s)
and nontarget shell particles:

LremainðV; AÞ ¼
X

a⃗∈A

!X
i≠jUmða⃗; v⃗iÞ

"
2
; ð2Þ

where A denotes the set of attractive sites and Umða⃗; v⃗iÞ
represents the interaction energy between the attractive site
a⃗ and a shell particle v⃗i ∈V. For the spider depicted in
Fig. 1, the head particle is the only attractive site. We
calculate the “remaining energy” term, Lremain, of the total
loss with respect to the initial configuration, i.e. the first
timestep of the simulation. All other terms depend on the
dynamics of the system, so we evaluate them on the final
state. In all simulations, the spider is initially bound to the
target particle and we integrate the system for 1000 time
steps (see SM [27]).
Rigid spider—We begin with a minimal conception of

the spider: a rigid body consisting of only a head particle
and five base particles which reflect the five-fold symmetry

of the icosahedron. The base particles are attached to each
other by rigid bars, forming a cage-like structure that is
open on one end. The attractive interactions between the
spider and the icosahedron are restricted to interactions
between the head particle in the spider and the patches on
the icosahedral vertices.
We explore two limits of our optimization procedure

(Fig. 2). First, we perform an optimization where the spider
is initialized to interact weakly with the shell particles
(logðϵHÞ ¼ 3.0, αH ¼ 1.5). In this limit, the spider simply
diffuses away from the shell at long timescales without
extracting the target particle. Initially, we observe variable
changes consistent with increasing the interaction between
spider head and shell to achieve particle extraction: ϵH
increases, the head height decreases, and the head particle
radius increases. In the following iterations, we observe
parameter changes focused on maintaining extraction while
reducing the interaction strength between the spider and the
rest of the shell. The head height increases, consistent with
minimizing the remaining energy, but to maintain particle

(a)

(c)

(b)

FIG. 2. Optimizing the geometry and interaction potential of a rigid spider. (a) In the limit of a weak initial spider-shell interaction, the
initial spider simply diffuses away from the shell. By the 3000th iteration, the spider geometry and interaction energy are optimized to
extract the target particle while still diffusing away from the remaining particles, leaving them intact. (b) In the limit of a strong initial
spider-shell interaction, the initial spider extracts the target particle but does not diffuse away, disturbing the integrity of the remaining
shell. As optimization progresses, the interaction is tuned to only extract the particle without disrupting the remaining shell. Upon
convergence, the spider geometry and interaction energy are tuned to maintain extraction while diffusing away. Insets depict
representative states after 10 000 MD steps at the corresponding iteration. (c) Schematic of a simulation of an optimized spider
provoking the release of a particle from an icosahedral shell.
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extraction, αH decreases (increasing the range of the Morse
potential). This suggests that tightly coupled, nontrivial
parameter changes drive extraction while maintaining
minimal interaction with the remaining shell.
Next, we perform an optimization in the opposite limit in

which the spider is initialized to interact strongly with the
shell (logðϵHÞ ¼ 10.5, αH ¼ 1.5). Initially, this interaction
is so strong that the spider not only extracts the target
particle but it also disrupts the remaining shell. This can be
seen in the large value of the remaining energy loss term,
which penalizes the energy between the spider head and
non-target particles. Throughout the optimization, we
observe variable changes consistent with tuning the inter-
action strength to maintain extraction while minimizing
off-target interactions: ϵH decreases, αH increases, the
head radius decreases, the head height increases, and the
base particle radius increases. When evaluated on longer
simulations, the converged parameter set also achieves
spontaneous diffusion of the spider-particle complex away
from the remaining undisturbed shell. Note that neither
changes in the random seed nor perturbations to the initial
parameters consistently yield similar optimized parameters
(see SM [27]).
Contrasting the high and low energy optimization

regimes reveals the inherent delicacy in tuning the spider
to achieve extraction and subsequent diffusion from the
shell. The spider-shell interaction must be sufficiently
strong to extract the target particle, but simultaneously
weak enough to not disturb non-target particles and to
diffuse away from the shell within the timescale of our
simulations. This tension is reflected in the behavior of the
loss terms in each optimization. Overall, in the weak-
interaction limit, the term penalizing interactions with non-
target particles remains negligible while the extraction term
drives optimization; in the strong-interaction limit it is the
same energy-penalizing term that dominates the loss. Our
optimized reactions represent a notion of balance that is
necessary for biologically relevant functions, e.g. the
controlled release of a particle from a closed shell [see
simulation in Fig. 2(c)]. This serves as a toy example of a
potential target for engineering applications, such as drug
delivery via a viral shell.
Flexible spider—The configurational entropy of the

spider can serve as a control knob for tuning reactions.
While the optimized results in Fig. 2 highlight that spider
geometry dramatically impacts its performance, the rigid
formulation cannot access configurational entropy. Here,
we define a modified form of our spider permitting varying
degrees of flexibility. Rather than the head serving as the
sole attractive site, we introduce a ring of attractive sites
consisting of one site per spider leg positioned between the
base and head particles [Fig. 3(a)]. In this way, bonds at the
spider base connecting individual legs can be made flexible
or removed entirely. The resulting fluctuations due to leg
flexibility directly change the interaction strength between

spider and extracted particle and thus modulate the entropic
contribution to the interaction. In this scheme, the head
particle only interacts repulsively with the icosahedron.
Instead of considering the probability of extraction, we

focus on the release of an already extracted particle since
this process is likely to be strongly influenced by configu-
rational entropy. We reason that increased entropy in the
extracted state (i.e., the extracted particle bound to the
spider) would favor particle release compared to the fully
rigid spider because fluctuations in the spider configuration
would reduce the effective attraction. To test this hypoth-
esis, we quantitatively measure free energy differences
corresponding to particle release between three versions of
the modified spider with varying flexibility: (i) a fully rigid
spider with fixed bonds between all adjacent base particles,
(ii) a partially flexible spider resulting from the removal of
two base bonds, and (iii) a fully flexible spider via the
removal of all base bonds.
We compute the free energy of release using each of the

three models. The distance from the extracted particle
to the head directly relates to its release. We therefore use
this metric as the order parameter for free energy calcu-
lations [Fig. 3(b)]. We compute the free energy diagrams
for each spider using the weighted histogram analysis
method (WHAM; see SM [27] and Refs. [28,29]) and
use a fixed set of parameters for the spider geometry and
interaction determined via a single optimization with the
fully rigid spider (see SM [27]). As expected, the more
flexible the geometry, the more favorable the released state:
there is a smaller change in free energy between the
attached and released states for more flexible geometries
[Fig. 3(c)].
Next, we optimize configurational entropy directly. We

define a spider in which all pairs of (i) adjacent and
(ii) next-nearest neighbor base particles are connected
with springs whose spring constants are free parameters
[Fig. 3(d)]. To bias the optimization procedure toward a
spider with an increased likelihood of release, we define an
additional loss term representing the total interaction
energy between attractive sites and extracted particle:

Lreleaseðv⃗; AÞ ¼
X

a⃗∈A

½Umða⃗; v⃗Þ%2: ð3Þ

The weaker the interaction, the easier the release. Here, we
optimize over a longer (1500 step) simulation than in the
rigid case. We average the new loss term over states
sampled from the final 500 simulation steps, while main-
taining extraction within the first 1000 steps (see SM [27]).
To give the optimization algorithm more freedom to
promote release, we rescale the loss describing extraction
such that it changes minimally beyond a specified maxi-
mum value. The optimization algorithm can then reduce
extraction efficiency without penalty.
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We optimize these spring constants using the modified
loss function while keeping all other parameters fixed. We
initialize all spring constants to be the same value (i.e.,
logðkÞ ¼ 2.0) and fix the spider geometry and interaction
parameters to those used in Fig. 3(c). The optimized
solution has a wider well but maintains the same well
depth. As a result, the free energy difference between the
extracted and released states is lower in the optimized
configuration than in the initial one at intermediate dis-
tances. Interestingly, the optimization procedure naturally
converges to a solution with an asymmetric distribution of
spring constants. Directly tuning this asymmetry is a
promising avenue for future work.
Discussion—In this Letter, we achieve nontrivial reac-

tions via designed external structures. We consider the case
of controlled disassembly of an icosahedral shell composed
of patchy particles, in which there is an inherent tension
between initiating disassembly and maintaining the integ-
rity of the remaining substructure. We show how the para-
meters governing a rigid external structure can be finely

tuned to minimize a loss function representing this tension.
We find that the optimized spider provokes particle release.
We then add configurational entropy by introducing a
flexible spider geometry, and quantify the influence
of flexibility by comparing free energy landscapes for
varying degrees of flexibility. Our framework naturally
accommodates parameterizations of configurational
entropy. Upon optimization, a spider with asymmetrically
flexible base legs favors release over the initialized uniform
configuration.
Since we optimize directly with respect to the numeri-

cally integrated dynamics, our method is general enough to
study a wide range of systems. Foremost, it may enable
experimental realizations of theoretical models that were
otherwise limited by an inability to finely tune interaction
energies. For example, Ref. [30] introduces a model of self-
replicating colloidal clusters in which kinetic traps can be
avoided by tuning the interaction energies, but dissociation
of a new cluster from its parent (a necessary step for
replication) required an artificial trigger event in numerical

(a)

(c) (e)

(b) (d)

FIG. 3. Role of configurational entropy in the release of a target particle. (a) A modified version of the original spider in which a ring of
attractive sites are positioned between the base and head particles on each spider leg. (b) We use the distance from the extracted particle
to the spider head as the order parameter approximating particle release. (c) Free energy diagrams for the order parameter depicted in
(b) for three variants of the modified spider: (i) fully rigid, (ii) partially flexible, defining two rigid substructures which are free to rotate
about the head, and (iii) fully flexible, in which all base bonds are removed. The parameters for the spider geometry and interaction are
determined via an optimization of the rigid configuration. Free energy diagrams are computed via the Weighted Histogram Analysis
Method (WHAM). (d) A parameterization of the configurational entropy of the modified spider in which the base bonds are represented
as springs whose spring constants are free parameters. Identical springs are also placed between all next-nearest neighbors to
parameterize the bond angles (not shown). (e) The free energies of the initial spider with uniform spring constant and the optimized
spider as computed via WHAM. Inset: an optimization over the spring constants depicted in (d) to maintain extraction and minimize
remaining energy while also minimizing the average energy between extracted particle and attractive sites over an additional 500
simulation steps. The parameters defining the spider geometry and interaction are set to those used to compute free energies in (c).
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simulations. In contrast, our designed parameters lead to
spontaneous dissociation of the spider-particle complex
away from the remaining shell. The computational flexi-
bility of the method could also easily enable users to restrict
the parameter regime to experimentally realizable inter-
actions. This could be done for DNA coated colloids,
e.g., by optimizing the DNA sequences that define the
interaction strength [31–34].
Numerical instabilities can arise when optimizing over

dynamical simulations. The primary limitation we observe
is that gradients become unstable and very large for long
simulations. There are several possible approaches to
reducing instability in gradients in such cases. One standard
method to mitigate instabilities in the context of differ-
entiable programming is gradient clipping [35,36]. One
could also decrease the total number of time steps by training
an emulator to resolve the dynamics with a larger time step
than is possible with standard integrators, following similar
work for deterministic systems [37–39]. An alternative
approach would be to integrate differentiable simulations
with enhanced sampling methods to sample low probability
events without the need for long simulation times.
We rely on gradient-based optimization due to its scal-

ability and performance. Our method naturally scales to
larger and more complex systems since (i) gradient calcu-
lation via automatic differentiation only requires a single
simulation, (ii) reverse-mode automatic differentiation scales
efficiently with the number of parameters [40], and (iii) the
gradient explicitly captures interdependencies which is
essential to efficiently tuning complex behavior. We antici-
pate that our approach and proposed design rules will be
applicable to physical reactions beyond the colloidal regime.
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