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Abstract

Deployment of Transformer models on edge devices is
becoming increasingly challenging due to the exponentially
growing inference cost that scales quadratically with the
number of tokens in the input sequence. Token pruning is an
emerging solution to address this challenge due to its ease
of deployment on various Transformer backbones. How-
ever, most token pruning methods require computationally
expensive fine-tuning, which is undesirable in many edge
deployment cases. In this work, we propose Zero-TPrune,
the first zero-shot method that considers both the impor-
tance and similarity of tokens in performing token prun-
ing. It leverages the attention graph of pre-trained Trans-
former models to produce an importance distribution for
tokens via our proposed Weighted Page Rank (WPR) algo-
rithm. This distribution further guides token partitioning
for efficient similarity-based pruning. Due to the elimina-
tion of the fine-tuning overhead, Zero-TPrune can prune
large models at negligible computational cost, switch be-
tween different pruning configurations at no computational
cost, and perform hyperparameter tuning efficiently. We
evaluate the performance of Zero-TPrune on vision tasks
by applying it to various vision Transformer backbones and
testing them on ImageNet. Without any fine-tuning, Zero-
TPrune reduces the FLOPs cost of DeiT-S by 34.7% and
improves its throughput by 45.3% with only 0.4% accu-
racy loss. Compared with state-of-the-art pruning meth-
ods that require fine-tuning, Zero-TPrune not only elimi-
nates the need for fine-tuning after pruning but also does so
with only 0.1% accuracy loss. Compared with state-of-the-
art fine-tuning-free pruning methods, Zero-TPrune reduces
accuracy loss by up to 49% with similar FLOPs budgets.
Project webpage: https://jha-lab.github.io/zerotprune.

1. Introduction

The Transformer [37] architecture has emerged as a de facto
workhorse of contemporary machine learning paradigms,

showing impressive generalization across a swath of tasks
including Computer Vision (CV) [34], natural language
processing (NLP) [10], robotics [31], and games [26]. At
the heart of the architecture lies the multi-headed self-
attention that dynamically aggregates parallel-processed to-
kens, yielding a highly effective general-purpose comput-
ing framework. The implications are particularly apparent
in the case of CV where the Transformer’s ability to assimi-
late rich abstractions from large-scale data facilitates strong
transfer to downstream tasks, outperforming state-of-the-art
Convolutional Neural Networks (CNNs) [12].

Studies on empirical scaling laws for Vision Transform-
ers (ViTs) [41] point to the possibility of improvement in
model performance with model capacity; recent models
have indeed been scaled to billions of parameters. While
model scaling brings with it the promise of remarkable gen-
eralization, it poses serious obstacles to deploying such ar-
chitectures on compute-constrained devices like the edge
and executing real-time inference workloads under limited
energy and memory. How does one reduce the compu-
tational complexity of the forward pass while still main-
taining the richness of learned representations? To this
end, Token Pruning opens up a promising avenue. Draw-
ing a simple analogy to the human vision system, when
trying to identify an exotic bird perched on the window
on an idyllic afternoon, we tend to prune away inconse-
quential visual details like the cup of piping hot tea lying
nearby, the ambling pedestrians on the walkway or the sun-
lit foliage in the background. The attention heads induce
quadratic computational complexity with respect to the in-
put sequence length. Thus, pruning unimportant tokens
can result in significant speedups, especially in the case of
longer sequences. Since token pruning only prunes the in-
formation that passes through the sequential layers of the
Transformer and does not necessitate architectural modi-
fications to the backbone, it can be widely deployed on
most Transformer backbones and any computational hard-
ware can fully exploit the resultant sparsity. However, most
existing token pruning methods rely on token scoring mod-
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Figure 1. Comparing existing efficiency enhancement methods and Zero-TPrune. ρ represents the retention ratio measured by FLOPS cost.
Most existing methods require re-training of the model after deploying it; each different pruning configuration requires separate re-training
of the model, which is extremely expensive. On the contrary, Zero-TPrune is training-free and can switch between different pruning
configurations at no computational cost. This benefits from our graph-based algorithm exploiting correlations between image tokens.

ules that must be trained together with the backbone, requir-
ing computationally-expensive re-training or fine-tuning for
deployment. This is impractical for edge applications and
users, given the scarcity of computing resources. For ex-
ample, the state-of-the-art token pruning method Dynam-
icViT [30] requires 150 hours of fine-tuning on an NVIDIA
A100 GPU to prune the DeiT-S [36] model. Moreover, the
memory and computational resources available may differ
widely across edge devices; they may also have wide vari-
ations in throughput requirements. Fine-tuning-required
pruning methods need to train the model repeatedly under
different pruning configurations imposed by hardware con-
straints, as shown in Fig. 1, making the pruning process
even more expensive. In addition, these methods are im-
practical for pruning very large models due to the high com-
putation overhead of training after pruning. For instance,
thousands of A100 GPU hours are needed to apply Dynam-
icViT [30] to the DeiT-B and DeiT-L models [36].

In this work, we propose a training-free zero-shot token
pruning method called Zero-TPrune. How does one prune
tokens without fine-tuning? The soft attention between to-
kens induces a directed graph with tokens as nodes and at-
tention as edges. Edge strengths indicate attention values.
We posit and later show through a rigorous and compre-
hensive set of experiments that the attention graph is a rich
information source for inferring important tokens and, con-

versely, tokens that can readily be pruned. How does one
identify important tokens from the attention graph? The
weights of the directed edges on the attention graph can be
interpreted as information routing volume between nodes.
Utilizing the underlying assumption that other important to-
kens attend to important tokens, we iteratively assign rela-
tive importance to tokens. Such ranking methods [4] have
been ubiquitously used by search engines to organize web
pages on the Internet. Can one further exploit redundancy
among tokens? Our experiments show that tokens often
learn similar abstractions and, therefore, copies of the same
feature can be pruned without loss of information. We aug-
ment importance ranking with similarity-driven pruning to
account for similar tokens. Although Zero-TPrune can po-
tentially be applied to any Transformer-based tasks, we fo-
cus on vision tasks to evaluate its performance in this article.

The main contributions of this work can be summarized
as follows. (1) We present Zero-TPrune, a zero-shot token
pruning method that efficiently leverages the feature identi-
fication capability (considers the attention matrix as an ad-
jacency matrix of a directed graph) of pre-trained Trans-
formers. It exploits both the importance and similarity of
tokens to perform pruning. (2) We use a graph signal to
represent the importance score distribution on tokens and
propose the Weighted Page Rank (WPR) algorithm to infer
unimportant tokens during iterative importance assignment.
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This iterative scheme reduces noise from unimportant to-
kens during assignment. (3) Instructed by the importance
distribution, we partition tokens into two groups and per-
form similarity-based pruning. Input-dependent partition-
ing controls the importance distribution of tokens pruned by
the similarity metric. (4) We apply Zero-TPrune and base-
line methods to various Transformer backbones and eval-
uate their performance on ImageNet [9]. The used back-
bones include DeiT [36], LV-ViT [18], AugReg [33], etc.
Compared with state-of-the-art fine-tuning-required Trans-
former pruning methods, Zero-TPrune eliminates the need
for fine-tuning after pruning DeiT-S with only around 0.1%
accuracy reduction while achieving the same FLOPs saving.
Moreover, Zero-TPrune outperforms state-of-the-art fine-
tuning-free methods in terms of both accuracy and through-
put. Zero-TPrune reduces accuracy loss by 33% on DeiT-S
when compared with state-of-the-art fine-tuning-free meth-
ods. In terms of throughput, Zero-TPrune provides 45.3%
off-the-shelf speed-up at a cost of only 0.4% in accuracy.

2. Related Works
In the first few years after the Transformer model was pro-
posed in 2017, it was mainly employed in the NLP field
[10]. ViT [12] was the first work to directly apply an
encoder-only Transformer architecture to non-overlapping
image patches in an image classification task without em-
ploying any convolution operations. Relative to state-of-
the-art CNNs, ViT was able to achieve better performance
through large-scale pre-training. DeiT [36] was another
convolution-free Transformer that was trained only on Im-
ageNet [9] and achieved better performance than ViT by
relying on several training techniques. Both ViT and its
follow-up architectures split the input image into multiple
non-overlapping image patches and transform them into to-
kens for further processing. This provides a new dimension
to sparsity exploitation that is quite different from sparsity-
enhancing techniques employed in CNNs.

Most of the previous token pruning works focus on
NLP tasks, including PoWER-BERT [15], Length-Adaptive
Transformer [19], SpAtten [39], TR-BERT [42], and
Learned Token Pruning [20]. For CV tasks, a typical to-
ken pruning work is DynamicViT [30]. It inserts prediction
modules between transformer blocks to predict and drop
less informative tokens. The prediction modules are neural
networks that can be jointly trained with the vision Trans-
former backbone. Instead of using a deterministic strategy
to prune tokens, A-ViT [43] introduces a stochastic prun-
ing process. It uses adaptive halting modules to compute
the halting probability per token. A token is pruned (i.e.,
discarded) upon reaching the halting condition. As a result,
the number of tokens is gradually reduced, leading to faster
inference. Other recent works on token pruning for ViT
include SPViT [21], TPS [40], Adaptive Sparse ViT [24],

DToP [35], and HeatViT [11]. Although the pruning meth-
ods mentioned above require few or even no extra param-
eters for pruning, they require computationally-expensive
fine-tuning after pruning. On the contrary, our proposed
Zero-TPrune can eliminate the training process after prun-
ing with only 0.1% accuracy reduction.

There are a few previous works that have explored prun-
ing tokens without requiring fine-tuning. ATS [14] uses
an inverse transform to accomplish adaptive token sam-
pling based on the importance score distribution. When the
importance scores are concentrated on several tokens, the
number of sampled tokens automatically reduces. However,
ATS only uses the attention probability of the classification
(CLS) token in the attention matrix and ignores the effect
of similarity between tokens. ToMe [3], on the other hand,
focuses on merging tokens instead of pruning them, thereby
reducing the inference overhead of pre-trained Transform-
ers without fine-tuning. Tokens are progressively merged
based on their similarity as the layers become deeper. How-
ever, ToMe solely relies on embedding vectors from pre-
trained models and its matching process lacks appropriate
guidance (more details in Section 3.3). In contrast, Zero-
TPrune effectively utilizes both the complete attention ma-
trix and embedding vectors from pre-trained Transformers,
while simultaneously considering the importance and simi-
larity of tokens.

3. Methodology

In this section, we first provide an overview of Zero-
TPrune in Section 3.1, then describe its components, I-
stage (Section 3.2) and S-stage (Section 3.3). Note that
Zero-TPrune is potentially differentiable, which enables the
pruned model to be further fine-tuned for better perfor-
mance. This optional training-after-pruning paradigm is de-
scribed in Supplementary Material Section C.

3.1. Overview: Zero-TPrune

The overall Zero-TPrune framework is shown in Fig. 2.
Each pruning layer is composed of multiple stages and can
be inserted anywhere between Transformer blocks. The I-
stage and S-stage enable Zero-TPrune to take both impor-
tance and similarity into consideration. The objective of the
I-stage is to obtain an importance score distribution on to-
kens and retain the top-k important tokens. To achieve this
objective, we propose the WPR algorithm and use the atten-
tion matrix from the pre-trained Transformer block. In the
S-stage, we measure the similarity between tokens based
on their embedding vectors and retain only one token in
the top-r similar pairs. To reduce computational overheads
from all pair-wise combinations, we partition tokens into
bipartite groups. Tokens in the same group are never paired
to measure similarity. To have improved control over the
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Figure 2. The overall Zero-TPrune framework. Pruning layers can be inserted between Transformer blocks to reduce the number of tokens.
Pruning layers comprise I-stage and S-stage: I-stage aims at pruning unimportant tokens of an image, such as background tokens (see
(b)); S-stage aims at pruning tokens that are too similar to others, such as repetitive texture tokens (see (c)). A combination of the stages
then maximally exploits token redundancy (see (d)).

importance distribution of pruned tokens, we guide the par-
titioning by their importance rank.

A straightforward way to combine the two stages is to
consecutively connect the I-stage and S-stage: some to-
kens are pruned based on the obtained importance score
distribution in the I-stage; this distribution is then used to
guide the partition in the S-stage and some other tokens are
pruned based on similarity. However, we empirically ob-
served that such a trivial combination may cause the seman-
tically unimportant tokens to eventually crowd out semanti-
cally significant tokens in the I-stage. For example, some-
times background tokens received high importance scores
compared to the main object tokens. Details of this phe-
nomenon can be found in Supplementary Material Section
A.1. We resolve this issue by interchanging the I-stage and
S-stage. This method enables the early elimination of simi-
lar tokens in the S-stage, consequently reducing the adverse
impact of similarity in the I-stage to a significant extent.
We present a comparison of the two patterns in Supplemen-
tary Material Section A.2. To facilitate partitioning in the
S-stage, we introduce a pre-ranking I′-stage to assign im-
portance scores to tokens with a single round of voting. No-
tably, no token is pruned in the I′-stage. Consequently, the
pruning layer comprises sequential application of I′-stage,
S-stage, and I-stage.

3.2. I-stage: Importance-based Pruning

To retain the top-k important tokens, we introduce a rank-
ing metric called importance score. In order to obtain the
importance score, we treat attention matrix A(h,l) as the ad-
jacency matrix of a complete, directed graph, called the at-
tention graph, as shown in Fig. 3(a). Ranking nodes in the
graph is challenging because of several reasons. (i) The at-
tention graph is dense, usually including hundreds of nodes
and many more edges when the input is an image. (ii) We
have a strict budget for the computational overhead incurred
by the per-image algorithm during inference.

Inspired by the Page Rank [4] algorithm, we propose a

Figure 3. Overview of the I-stage: (a) from a 4×4 attention ma-
trix to an attention graph and (b) graph signal transformation from
initialization to convergence.

WPR algorithm to derive the importance scores. Page Rank
was used in Google Search for ranking web pages. In the
original Page Rank algorithm, links between web pages are
unweighted. In order to apply it to the weighted and di-
rected attention graph, we consider the signal of each node
in this graph as the importance of each token. We initialize
the graph signal uniformly and use the adjacency matrix as
a Graph Shifting Operator (GSO). When the GSO is applied
to the graph signal, each node votes for which node is more
important through the weight assigned to output edges, i.e.,
the attention that a token pays to other tokens. If the node
itself is more important, the voting of this node is more im-
portant. This is shown in Algorithm 1. The transition from
initialization to convergence is shown in Fig. 3(b).

We obtain the expression for the importance score of
each node (i.e., token) in the l-th layer, h-th head as fol-
lows:

s(h,l) (xi) =
1

N

N∑
j=1

A(h,l) (xi, xj) · s(h,l) (xj) (1)

where s(h,l)(xj) is the importance score of node xi in the
h-th head of the l-th layer, and N is the number of tokens
in the l-th layer . s(h,l)(xi) is derived from the weighted
sum of the received attention. WPR thus recursively as-
signs high importance to semantically significant tokens and
reduces noise from unimportant semantically weak tokens.
We retain the top-k important tokens (k is determined by
the retention rates and the total number of tokens).
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Algorithm 1 Graph-based Weighted Page Rank (WPR) al-
gorithm

Require: N > 0 is the number of nodes in the graph; A ∈
RN×N is the adjacency matrix of this graph; s ∈ RN

represents the graph signal
Ensure: s ∈ RN represents the importance score of nodes

in the graph
s0 ← 1

N × eN ▷ Initialize the graph signal uniformly
t← 0
while (|st − st−1| > ϵ)or(t = 0) do ▷ Continue
iterating if not converged

t← t+ 1
st ← AT × st−1 ▷ Use the adjacency matrix as a

graph shift operator
end while
s← st

Simply averaging the importance scores across different
heads is not the optimal choice. Different heads in an en-
coder layer usually pay attention to different parts of the
input image (a visual example is given in Supplementery
Material Section E.1). Thus, there are some tokens that are
very important in one or two heads, but not in others. On
the other hand, some tokens have low-to-medium impor-
tance in all heads. The former tokens are usually more in-
formative than the latter tokens. However, if there are mul-
tiple heads and the importance score is directly averaged
across all heads, the latter tokens may get the same or even
higher score than the former tokens, leading to incorrect
token ranking and pruning. In order to address this prob-
lem, we aggregate the importance scores across heads via
a root-mean of sum of squares. We call this the Emphasiz-
ing Informative Region (EIR) aggregation. We observe that
EIR effectively distinguishes informative areas from non-
informative ones. A concrete example that compares EIR
with other methods (such as argmax and average) is given
in Supplementary Material Section E.1.

Besides the issue mentioned above, sometimes the im-
portance scores given by the WPR algorithm may converge
to an undesired distribution in some heads: (1) tokens at
the edge of the input image may get very high importance
scores; (2) the importance score distribution may become
nearly uniform. We provide visual examples of these cases
in Supplementary Material Section E.2. Both heads in these
cases do not provide helpful information and are even mis-
leading. To mitigate the negative impact of these heads, we
introduce the Variance-based Head Filter (VHF). We com-
pute the variance of the distribution in each head and set
both a minimum and a maximum threshold for the variance.
Heads with a distribution variance exceeding the maximum
threshold or falling below the minimum threshold are ex-
cluded from the computation. Then the final importance

score equation becomes:

s(l) (xi) =

√√√√∑Nh

h=1 s
(h,l)(xi)

2 · η (vmin ≤ V arh ≤ vmax)∑Nh

h=1 η (vmin ≤ V arh ≤ vmax)

(2)
where η (vmin ≤ V arh ≤ vmax) equals 1 if vmin ≤ V arh ≤
vmax, otherwise it equals 0; vmin and vmax represent the min-
imum and maximum threshold, respectively; V arh is the
importance score variance of tokens in the h-th head; Nh

is the number of heads in the l-th layer. The complexity of
I-stage, including WPR, EIR, and VHF, is O(N2), where
N is the number of tokens.

3.3. S-stage: Similarity-based Pruning

As discussed previously, it is valuable to measure similarity
even between important tokens and perform further prun-
ing. Previous work [3] uses image-agnostic token partition-
ing to measure pair-wise similarity. Instead, we propose a
per-image importance-driven partition for similarity prun-
ing, as shown in Fig. 4.

Figure 4. The importance-based pruning process in the S-stage.
As an example, sequential partitioning (pruning unimportant part)
is used in this figure.

Fig. 4 (1&2): Based on the importance score of to-
kens, we sequentially partition them into groups of roughly
equal size, A and B, and prune the less important group.
We explore other importance-guided partitioning schemes,
including alternative partitioning and random partitioning,
and provide ablation results in Supplementary Material Sec-
tion G.3. Fig. 4 (3): We then identify the most similar token
in Group B for each token in Group A and record the cor-
responding similarity of each pair. To accomplish this, we
represent each token by a feature vector, which can be de-
rived from several available choices, such as corresponding
vectors in the Key, Query, or Value matrix. Our ablation
experiments indicate that using vectors from the Key ma-
trix is the optimal choice. We compute similarity on these
vectors using a designated metric, such as cosine similarity,
Manhattan distance, or Euclidean distance. Following the
results of our ablation experiments, we employ cosine sim-
ilarity. We provide a detailed account of our ablation ex-
periment outcomes in Supplementary Material Section G.3.
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Fig. 4 (4&5): In the next step, we select top-r similar pairs
and prune corresponding tokens in Group A. We prune one
token in each selected pair instead of merging them, due to
the following reasons: (i) since tokens in the selected pairs
are similar, pruning one of them results in minimal informa-
tion loss; (ii) merged tokens should have higher weights in
the following computation [3], which makes it incompati-
ble with certain backbones, such as Sparse Transformer [6].
Finally, we pass the remaining tokens to the next stage. The
complexity of S-stage is O(N2×d), where N is the number
of tokens and d is the dimension of token embeddings.

Importance-guided partitioning in the S-stage facilitates
stable control over the importance of the pruned tokens for
different input images. By pruning similar tokens instead
of merging them, our method maintains compatibility with
certain specialized backbones [6] while incurring only min-
imal information loss.

4. Experimental Results

In this section, we first describe the visualized token prun-
ing process of several images in the ImageNet validation
dataset, as shown in Fig. 5. We also present ablation exper-
iments to validate our design choices and the effectiveness
of our proposed methods. Then, we compare Zero-TPrune
with state-of-the-art token pruning methods.

Experimental Setup: To compare different pruning
methods, we apply them to various vision Transformer
backbones and evaluate the performance of pruned models
on ImageNet [9]. We evaluate the models on 224px images
unless otherwise noted. We estimate the inference GFLOPS
on a V100 GPU using the fvcore1 library. We measure
the inference throughput of pruned models on a single A100
GPU and perform fine-tuning after pruning on A100 GPUs.

Although our experiments focus on the classification
task, Zero-TPrune can potentially be applied to other tasks,
such as generation and segmentation. We refer to the design
that can be transferred to other tasks as “Zero-TPrune-
uni”, meaning “Zero-TPrune for universal purpose.” For
the classification task, the CLS token is known to be much
more important than other tokens, and its attention weights
are a much stronger signal for selecting tokens [14]. Thus,
instead of initializing the importance score of tokens uni-
formly, we assign the CLS token an importance score that
is
√
N times larger than other tokens during initialization in

the I-stage, where N is the number of tokens. We call this
design “Zero-TPrune” in the following experiments.

For ablation experiments, we implement Zero-TPrune on
the DeiT-S model [36] with different configurations and de-
sign choices. For comparisons with state-of-the-art token
pruning works, we divide them into two types: (1) meth-
ods that require fine-tuning of the pruned model, includ-

1https://github.com/facebookresearch/fvcore

ing DynamicViT [30] and A-ViT [43]; (2) fine-tuning-free
methods, including ATS [14] and ToMe [3] (which is a
token-merging instead of a token-pruning method, but is
also fine-tuning-free). For the first type, we compare im-
plementations on DeiT models. We use the official imple-
mentation of DynamicViT to reproduce its results and also
generate some new ones for comparison. For A-ViT, we
directly use the results presented in that article. For the
second type, we use the official open-source code of ATS
and ToMe to implement them on various pre-trained Trans-
former backbones, including DeiT [36], LV-ViT [18], MAE
[17], AugReg [33], and SWAG [32]. We compare the off-
the-shelf performance of Zero-TPrune with theirs. In ad-
dition, we compare the performance of pruned models on
downstream tasks to check their transfer learning capabil-
ity, following the selection of datasets in [5]. We provide
details of the selected datasets in Supplementary Material
Section F. Note that ToMe has an optional design, Propor-
tional Attention (PA), that is dedicated to classification [2]
and is not compatible with sparse attention design [6]. We
call ToMe with PA disabled “ToMe-uni” and ToMe with PA
enabled “ToMe.” ATS is a method solely based on the CLS
token; hence, it does not have a universal version.

To further validate the effectiveness of Zero-TPrune, we
supplement comparisons with depth-adaptive methods and
other straightforward attention-based token ranking meth-
ods (e.g., averaging the received attention) in Supplemen-
tary Material Section H.1 and H.2.

4.1. Ablation Experiments

We use ablation experiments to determine the optimal hy-
perparameters for Zero-TPrune. First, it is computationally
expensive to check whether the WPR algorithm converges
after each iteration. Thus, it would be desirable if we could
determine the number of its iterations in advance. By check-
ing the importance distributions after different numbers of
iterations and computing the Kullback-Liebler (KL) diver-
gence between them, we find 30-50, 5-10, and 1 iteration(s)
are enough to ensure convergence in the first three layers,
medium layers, and last three layers, respectively. We pro-
vide visual and quantitative comparisons in Supplementary
Material Section G.1. Second, we determine good enough
minimum and maximum thresholds for VHF through ran-
dom initialization and greedy search. We provide detailed
search configurations and results in Supplementary Mate-
rial Section G.2. The range found is [0.01,0.7], which is the
default setting in our experiments. Third, we explore opti-
mal design choices in the S-stage with ablation experiments
presented in Supplementary Material Section G.3.

To illustrate the effectiveness of the different techniques
employed in Zero-TPrune, we break down their contribu-
tion. We apply different combinations of techniques em-
ployed in Zero-TPrune to the DeiT-S model and evaluate

6
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Figure 5. Visualized examples of the pruning process conducted by Zero-TPrune. Images are randomly selected from ImageNet validation
dataset. When the pruning rate is aggressive and the main object occupies most of the image area, it is not enough to only prune background
tokens. Zero-TPrune exploits similarity between main object tokens and prunes redundant ones.

the performance of the pruned models. We insert pruning
layers after the [1,3,6,9,11]-th layer with a retention rate
of [1,0.9,0.8,0.7,1] and #iterations of [30,5,5,1,1] in the I-
stage, and prune 10 tokens in each S-stage. Before adding
the S-stage, we insert pruning layers after the [3,6,9,11]-
th layer with a retention rate of [0.8,0.7,0.7,0.6] and #it-
erations of [5,5,1,1]. We show the results in Table 1 (we
provide corresponding results of Zero-TPrune-uni in Sup-
plementary Material Section G.4). The WPR algorithm im-
proves the performance significantly. The EIR/VHF tech-
niques and the S-stage improve the performance further.

Table 1. Contribution breakdown of the different techniques em-
ployed in Zero-TPrune. The used batch size is 512.

Acc@1 Params FLOPS/img Throughput Method

79.8% (base) 22M 4.55G 1505.9 img/s Unpruned model
76.8% (-3.0%) 22M 3.08G 2164.4 img/s random drop
78.6% (+1.8%) 22M 3.08G 2136.5 img/s WPR
78.8% (+0.2%) 22M 3.08G 2132.6 img/s WPR+EIR
78.9% (+0.1%) 22M 3.08G 2103.1 img/s WPR+EIR+VHF (I-stage)
79.4% (+0.5%) 22M 3.08G 2063.9 img/s I-stage + S-stage

To further improve the performance of pruned models,
we can employ Monto Carlo Simulation (MCS) to ran-
domly explore the hyperparameter space, which includes
the number and location of pruning layers, corresponding
retention rates, number of iterations in each layer, and num-
ber of tokens to be pruned in each S-stage. After conduct-
ing thousands of trials, we select the optimal setting that ex-
hibits the best performance achieved by Zero-TPrune while
maintaining a fixed GFLOPS budget. In the case shown in
Table 1, MCS helps to achieve 79.5% accuracy with 3.08
GFLOPS. To ensure a fair comparison, we do not use MCS
in Zero-TPrune in subsequent comparisons with state-of-
the-art methods. Zero-TPrune is not sensitive to the hyper-
parameter choice, as illustrated with experimental results in
Supplementary Material Section G.5.

4.2. Comparison with State-of-the-Art Methods

In this section, we choose the number and location of prun-
ing layers with either constant or uniformly declining reten-
tion rates to match the given GFLOPS budget. We keep the

Figure 6. Performance comparison between Zero-TPrune and
state-of-the-art fine-tuning-required methods.

number of pruned tokens in each S-stage constant. We fix
the number of iterations to 30, 5, and 1 for the first three,
intermediate, and the last three layers, respectively.
Comparison with Fine-Tuning-Required Methods: To
illustrate the advantages of Zero-TPrune, we compare
its performance with that of DynamicViT and A-ViT
with/without fine-tuning after pruning. Given the random
initialization and the fact that the pruning modules in Dy-
namicViT and A-ViT need to be trained, the performance of
DynamicViT and A-ViT without fine-tuning after pruning is
based on randomly-pruned tokens. Fig. 6 clearly demon-
strates the advantages of Zero-TPrune over state-of-the-
art fine-tuning-required pruning methods, i.e., DynamicViT
and A-ViT. Without fine-tuning after pruning, Zero-TPrune
outperforms DynamicViT and A-ViT (using random drop in
this case) by around 1%. This means Zero-TPrune reduces
the accuracy drop by more than 60%. The performance
of Zero-TPrune without fine-tuning after pruning is com-
parable to that of DynamicViT and A-ViT with fine-tuning
after pruning (e.g., 0.1% accuracy loss relative to the best,
given a 3.5 GFLOPS budget on DeiT-S). With fine-tuning
after pruning, Zero-TPrune outperforms both DynamicViT
and A-ViT. Zero-TPrune can also be easily applied to larger
models (e.g., given a 13.6 GFLOPS budget on DeiT-B) for
higher accuracy. On the contrary, applying DynamicViT
and A-ViT to large models is very computationally expen-
sive due to their expensive fine-tuning after pruning.
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Comparison with Fine-Tuning-Free Methods: ATS and
ToMe provide an off-the-shelf option to prune Transformer
models without the requirement of fine-tuning after prun-
ing. We first apply them and Zero-TPrune to the DeiT-S
model to compare off-the-shelf performance after pruning
without fine-tuning. The results are shown in Fig. 7 and Ta-
ble 2. We provide more results related to throughput in Sup-
plementary Material Section H.3. As shown in Fig. 7, com-
pared with state-of-the-art fine-tuning-free methods, Zero-
TPrune reduces the accuracy loss by 33% on the DeiT-
S model with a 3 GFLOPS budget. If we change the
pruning configuration and give a lower budget (e.g., re-
duce GFLOPS by 45%), the accuracy loss introduced by
Zero-TPrune is still only 0.7%. Zero-TPrune can reduce
GFLOPS by 13% at nearly no cost. Note that these re-
sults are obtained without fine-tuning.

Figure 7. Performance comparison between Zero-TPrune and
state-of-the-art fine-tuning-free methods. The applied Trans-
former backbone is DeiT-S.

Table 2. Performance of pruned DeiT-S models without fine-
tuning. Throughput is measured on a single NVIDIA A100 GPU.

Method Acc@top1 GFLOPS Throughput(img/s)

DeiT-S 79.8% 4.55 1505.9
+ ATS 79.2% (-0.6%) 3.00 (-33.4%) 2062.3 (+36.9%)
+ ToMe 78.9% (-0.9%) 2.95 (-35.2%) 2263.9 (+50.3%)
+ Zero-TP-a 79.4% (-0.4%) 2.97 (-34.7%) 2188.4 (+45.3%)
+ Zero-TP-b 79.1% (-0.7%) 2.50 (-45.1%) 2458.4 (+63.2%)
+ Zero-TP-c 79.8% (-0.0%) 3.97 (-12.7%) 1673.2 (+11.1%)

We further evaluate Zero-TPrune and baselines on vari-
ous backbones with different sizes. The results are shown in
Table 3. We find that when the original model is medium-
sized, e.g., AugReg and LV-ViT-S, Zero-TPrune outper-
forms baseline methods by a large margin (it reduces accu-
racy loss by up to 49%). For large models, if the pruning is
moderate (i.e., reduce GFLOPS by 20%), Zero-TPrune still
outperforms baseline methods. However, we found when
large models are aggressively pruned (i.e., reduce GFLOPS
by 50%), Zero-TPrune does not outperform baselines. Note
that aggressively pruning large models is usually not a good
idea, which is indicated by comparing the optimal pruned
LV-ViT-M model (ToMe, 81.6% with 6.3 GFLOPS) and
the optimal pruned LV-ViT-S model (Zero-TPrune, 81.5%

with 3.5 GFLOPS). The latter requires only 60% of the
GFLOPS at the cost of 0.1% accuracy loss. Compared
with aggressively-pruned large models, using a smaller pre-
trained model instead is often a better choice. We provide a
detailed discussion in Supplementary Material Section I.

We also evaluate the performance of pruned models on
downstream tasks to measure their transfer learning capabil-
ity. We select several small image datasets for this purpose.
Zero-TPrune outperforms baselines on most datasets, indi-
cating its strong transfer learning capability after pruning.
We introduce selected datasets and present detailed experi-
mental results in Supplementary Material Section F.

Table 3. Performance of pruned AugReg, LV-ViT, and SWAG
models without fine-tuning. SWAG models perform inference on
384px images.

Method Acc@top1 GFLOPS Method Acc@top1 GFLOPS

AugReg 81.41% 4.55 MAE 83.62% 55.4
+ ATS 79.21% 2.80 +ATS 82.07% 42.3
+ ToMe 79.30% 2.78 +ToMe 82.69% 42.2
+ Zero-TP 80.22% 2.79 +Zero-TP 82.93% 42.3

LV-ViT-S 83.3% 6.6 SWAG 85.30% 55.6
+ ATS 80.4% 3.5 +ATS 84.21% 43.8
+ ToMe 79.8% 3.6 +ToMe 85.09% 43.8
+ Zero-TP 81.5% 3.5 +Zero-TP 85.17% 43.8

5. Conclusion
In this article, we proposed Zero-TPrune, a zero-shot to-
ken pruning method that exploits both the importance and
similarity of tokens to eliminate the fine-tuning process for
pruning. In the I-stage, it considers the attention matrix
to be an adjacency matrix of an attention graph, which
reduces noise from unimportant tokens. In the S-stage,
it uses importance distribution to guide token partitioning
and similarity-based pruning, making them more stable and
precise. Through the implementation of Zero-TPrune and
baseline methods on various Transformer backbones and
evaluation on ImageNet, we showed that it can eliminate the
fine-tuning process for pruning with very small accuracy re-
duction. Moreover, when compared to state-of-the-art off-
the-shelf pruning methods, Zero-TPrune not only outper-
forms them by reducing accuracy loss by up to 49% but also
enhances the transfer learning capability of pruned models.
These findings emphasize the effectiveness of Zero-TPrune
in balancing model compression and preservation of per-
formance, making it a promising approach for efficient and
accurate pruning of Transformer models. Future work can
enhance the capabilities of Zero-TPrune further. One in-
triguing topic of future study is examining the applicability
of Zero-TPrune on tasks such as image reconstruction, seg-
mentation, and generation. Investigating the potential bene-
fits and efficiency gains of employing Zero-TPrune in these
domains holds promise for advancing the field further.
Acknowledgment. This work was supported by NSF under
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Zero-TPrune: Zero-Shot Token Pruning through Leveraging of the Attention
Graph in Pre-Trained Transformers

Supplementary Material

A. The I-S Pattern and the I′-S-I Pattern

In this section, we first demonstrate the overwhelming of
the major group issue caused by the I-S pattern and then
compare it with the I′-S-I pattern visually.

A.1. Overwhelming of the Major Group with the
I-S Pattern

Sometimes, unimportant parts of an image may be iden-
tified as important and important parts as unimportant by
our graph-based WPR algorithm. In the I-stage, each to-
ken votes for ”more important tokens” and the weight of
their votes is determined by their importance in the last
round of voting. Besides the semantically significant to-
kens, tokens also intend to vote for tokens that are similar to
them. When semantically significant tokens (e.g., main ob-
ject tokens) are only a small part of an image and unimpor-
tant background tokens dominate, sometimes background
tokens vote for each other and gradually obtain high impor-
tance scores after multiple rounds of voting. An example is
shown in Fig. 8. It shows that the background of the image
is considered important in the Transformer heads. The fish
itself, surprisingly, is considered unimportant.

Figure 8. An example illustrating that a large unimportant group
may overwhelm a small important group: (a) input image and (b)
three examples showing that unimportant background tokens over-
whelm the important fish tokens.

In this image, the background and fish tokens form two
sets: A and B. In the beginning, because tokens in set B are
more semantically significant than those in set A, they have
relatively high importance scores. However, both tokens in
set A and set B mainly intend to vote for tokens in their own
set. Thus, it is easier for set A to form tokens with high im-
portance scores because set A includes more tokens. These
“highly important” tokens have larger voting weights in the
next iteration. This makes it even easier for other tokens in
set A to get “high importance.” This is a positive feedback
loop, with the result that the most “important” tokens end
up in set A.

A.2. Comparison

As shown in Fig. 9, by pruning similar background tokens
in advance, the overwhelming of the major group problem
is alleviated significantly.

B. Attention Probability Matrix

ViT [12] and its variants contain multiple Transformer
encoder layers that are stacked up together. The basic
Transformer encoder layer includes a multi-head atten-
tion (MHA) block followed by a feed-forward network
(FFN) block, with residual connections and layer normal-
ization around each. We make the assumption that an
MHA block consists of H independently parameterized
heads. An attention head h in layer l can be parame-
terized by the Key, Query, and Value weight matrices:
W

(h,l)
k ,W

(h,l)
q ,W

(h,l)
v ∈ Rdh×d, and the output weight

matrix W
(h,l)
o ∈ Rd×dh , where dh is typically set to

d/H and d is the embedded feature dimension. Suppose
x ∈ Rd×n is the input sequence and n is the input sequence
length. For each head, the attention probability between to-
ken xi and xj is given as an element of matrix A(h,l):

A(h,l) (xi, xj) = softmax

(
xTWT

q Wkx√
d

)
(i,j)

∈ R (3)

This matrix measures how much token xj attends to to-
ken xi. The output of an MHA block can be formulated as
follows:

xMHA = LN

(
Wo

n∑
i=1

WvxiA
(h,l) (xi, xj) + x

)
(4)

The output of a Transformer encoder layer can be formu-
lated as follows:

xout = LN(σ (W2 (W1xMHA + b1)) + b2 + xMHA)
(5)

where W1,W2, b1, and b2 are FFN parameters, and σ and
LN denote the activation function and layer normalization,
respectively. We can see that the computation overhead of a
Transformer encoder layer undergoes a quadratic reduction
when tokens are pruned.
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Figure 9. Visual comparison between the I-S pattern and the I′-S-I pattern.

C. Optional Training Paradigm after Pruning
Zero-TPrune can eliminate the fine-tuning process after
pruning with a very small accuracy reduction. However, in
some scenarios, we may have adequate samples and compu-
tational resources. In such cases, the performance of Zero-
TPrune can be improved further by training (fine-tuning)
after pruning. In this section, we introduce techniques used
to accomplish this.

Given that it is very expensive to make importance-based
ranking differentiable [8], we eliminate the S-stage and re-
tain only the I-stage when we aim to further train (fine-tune)
the pruned model. Besides this, to make Zero-TPrune dif-
ferentiable, it is necessary to replace normal token pruning
with “soft token pruning.” Instead of completely discard-
ing pruned tokens, soft token pruning assigns them small
weights to reduce their effect on later computation and pre-
serves compatibility with back-propagation during training.
In this way, the non-differentiable token mask M is re-
placed with a differentiable soft mask M̃ using the sigmoid
operation:

M̃ (l) (xi) = σ

(
s(l) (xi)− θ(l)

T

)
(6)

where s(l) (xi) is the importance score of token xi and θ(l)

is the importance threshold for the l-th layer. θ(l) is de-
termined based on the chosen pruning rate and GFLOPS
budget. Details of soft token pruning can be found in [20].

For simplicity, we use a similar loss function to Dynam-
icViT [30], which includes three terms:

L = Lcls + λdistill Ldistill + λKLLKL (7)

The first term is the standard classification cross-entropy
loss:

Lcls = CrossEntropy (y,y) (8)

During fine-tuning, we use the original backbone network
as the teacher model and push the behavior of the Zero-
TPrune model to be as close to the teacher model as pos-
sible. First, we push the finally retained tokens of Zero-
TPrune close to the ones of the teacher model. This con-
tributes to the second distillation term above. We also mini-
mize the difference in predictions between Zero-TPrune and
its teacher via Kullback-Liebler (KL) divergence. This con-
tributes to the third term. Details of the loss function can be
found in [30].

D. Visualization
In this section, we use some visualization examples to pro-
vide high-level insights.

D.1. An Input Image Example

Fig. 10 shows a simple test sample of a fish from the Ima-
geNet dataset and the corresponding importance score dis-
tributions in different layers and heads. We can see that
most heads can successfully capture the important part of
this image with the help of the graph-based WPR algorithm.

D.2. Averaged Importance Distribution over Thou-
sands of Images

Another interesting visualization example is related to the
general functionality of different layers in the Transformers.
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Figure 10. The important part of input images can be successfully captured by the graph-based WPR algorithm: (a) a test sample of fish in
the ImageNet dataset and (b) the corresponding importance score distributions given by the WPR algorithm in different layers. The used
backbone is DeiT-S.

Fig. 11 shows the importance score distributions averaged
over thousands of images. It indicates that different layers
of the Transformer behave differently. Shallow layers focus
more on the edge of input images and deep layers focus
more on the center.

E. Combining Results of Different Heads
In this section, we introduce the techniques we propose to
nontrivially combine the importance score distribution of
different heads from the WPR algorithm.

E.1. Emphasizing Informative Region

Different heads in an encoder layer usually pay attention to
different parts of the input image, as shown in Fig. 12. For
the input image of a boy holding a fish, some heads pay
more attention to the body of this boy, some to the head of
this boy, and some to the fish in hand.

We propose EIR to address this issue. Suppose there are
three heads in all and the importance scores of tokens A, B,
and C are [9,9,9], [9,0,0], [3,3,3], respectively. The ideal
importance order is A > B > C. Table 4 shows the out-
come of application of different importance score calcula-
tion methods. The traditional averaging method assigns the
same importance to tokens A and B. If we only select the
highest score across all heads, tokens A and B will be as-
signed the same importance, which is also not desired. The
proposed EIP technique balances the two situations and re-

Table 4. Application of different importance score calculation
methods to the example.

Importance Score Average{Si} max{Si} EIP

Token A 9 9 5.2
Token B 3 9 3
Token C 3 3 1.7
Rank A > B = C A = B > C A > B > C

sults in the ideal importance order.

E.2. Variance-based Head Filter

The importance scores given by the WPR algorithm may
converge to an undesired distribution. Two typical exam-
ples are shown in Fig. 13. Tokens at the edge of the input
image get very high importance scores in Fig. 13(b) and
the importance score distribution in Fig. 13(c) is nearly uni-
form. We introduce VHF to mitigate the negative impact of
these heads.

F. Downstream Tasks
Table 5 shows the number of categories and test instances in
the selected datasets. DTD is a describable textures dataset;
Indoor67 is an indoor scene recognition dataset; CUB200 is
a challenging dataset of 200 bird species. The other datasets
have self-explanatory names.
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Figure 11. Importance score distributions averaged over thousands of images. The first row is derived from the first layer and the second
(third) row from the 10th (11th) layer of the DeiT-S model.

Figure 12. The distribution of importance score from different heads for an input image: (a) an image of a boy holding a fish and (b)
importance score distributions. The results are obtained by the WPR algorithm with 30 iterations in the tenth layer of the DeiT-S model.

Figure 13. Examples of undesired importance score distributions
in certain heads obtained by the WPR algorithm: (a) input image,
(b) second head in the second layer of the DeiT-S model, and (c)
fourth head in the third layer of the DeiT-S model.

The experimental results are shown in Table 6. Zero-
TPrune outperforms baselines on most datasets, indicating
its strong transfer learning capability after pruning. ToMe
has worse performance on small-sized models due to a lack
of enough layers to merge tokens gradually.

Table 5. Datasets for downstream image classification.

Datasets #Categories #Test Instances

Flowers [27] 102 6149
Pets [28] 37 3669
DTD [7] 47 1880
Indoor67 [29] 67 1340
CUB200 [38] 200 5794
Aircrafts [25] 100 3333
Cars [22] 196 8041

G. Ablation Experiments

In this section, we show results for further ablation experi-
ments we performed. We explore the convergence speed of
WPR and determine the appropriate number of iterations for
each layer in Section G.1. Then we identify a good enough
variance threshold for VHF in Section G.2. Furthermore,
we describe optimal design choices in the S-stage in Sec-
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Table 6. Performance of pruned models on downstream tasks.

Model GFLOPS Flowers Pets DTD Indoor67 CUB200 Aircrafts Cars

Deit-T 1.26 97.3 88.6 73.2 75.6 76.8 78.7 90.3
+ ATS 0.90 94.6 86.1 71.0 72.9 73.8 76.0 88.4
+ ToMe 0.90 93.2 84.7 69.9 71.6 72.9 75.2 87.1
+ Zero-TP 0.91 95.1 86.9 70.9 73.7 74.4 76.7 88.2

Figure 14. The importance score distributions of tokens in 2,560 images. The distribution changes with both the number of iterations and
layer location: (a) layer 2, (b) layer 5, and (c) layer 12 in DeiT-S.

tion G.3, demonstrate the performance of Zero-TPrune-uni
in Section G.4, and discuss hyperparameter search in Sec-
tion G.5.

G.1. Convergence Speed of the WPR Algorithm

It is computationally expensive to check whether the WPR
algorithm converges after each iteration. Thus, it would be
desirable if we could determine the number of its iterations
in advance. In order to do so, we need to derive the gen-
eral convergence behavior of the WPR algorithm. Fig. 14
shows the importance score distributions of tokens in 2,560
images. In the shallow layers, such as the first layer, the dis-
tributions corresponding to 30 iterations and five iterations
are obviously different. This indicates that five iterations
are not enough to make the WPR algorithm converge in the
shallow layers. On the other hand, in the deep layers, such
as the 12th layer, the distribution corresponding to 30 iter-
ations is quite similar to the distribution corresponding to
just one iteration. This means that one iteration is enough
to make the WPR algorithm converge in the deep layers. In
addition, in the fifth layer, five iterations are enough to make
it converge.

To quantitatively verify the assertions we made above,
we calculate the KL divergence between the importance dis-
tribution given by 30, 5, 1 iteration(s) and that given by
50 iterations in different layers. The results are shown in

Fig. 15. Thus, to ensure convergence, we set the number
of iterations to 30-50, 5-10, and 1 in the first three layers,
medium layers, and last three layers, respectively. Another
interesting thing to note is that the Transformer model and
the WPR algorithm assign low-importance scores to most
tokens in the deep layers.

2 4 6 8 10 12
Layers

0.0

0.5

1.0

1.5

2.0

2.5

KL
 d

iv
er

ge
nc

e 
to

 5
0 

ite
rs

1e6

30 iters
5 iters
1 iter (ave)

Figure 15. The KL divergence between the importance score dis-
tribution given by different numbers of iterations and that given by
50 iterations in different layers. The used backbone is DeiT-S.
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G.2. Variance Thresholds for VHF

To exclude noise from heads that converge to undesired im-
portance score distributions (as shown in Fig. 13), we pro-
pose VHF and set minimum and maximum thresholds for
the variance of head distributions. We perform an ablation
experiment to determine the optimal variance range. The
pruning configuration is shown in Table 7. We then use ran-
dom initialization and beam search (k = 2) to find a good
enough variance range setting. The results are shown in
Fig. 16, which points to the range [0.01,0.7].

Table 7. Pruning configuration used to search for optimal variance
thresholds.

Pruning Layers 0 2 4 6 8 10

Retention Rates 0.9 0.9 0.85 0.8 0.7 0.65
# Iterations 50 50 5 5 1 1

Figure 16. Results obtained in the process of searching for optimal
thresholds. A larger blue bubble represents higher accuracy with
that setting.

G.3. Optimal Design Choices in the S-stage

As discussed in Section 3.3, the design space of the S-stage
is composed of three dimensions: (1) source of feature vec-
tors, (2) partitioning method, and (3) similarity metric. We
find that the optimal choice is (1) key matrix, (2) sequen-
tial (prune unimportant part), and (3) cosine similarity, re-
spectively. This is the default setting in the following ex-
periments unless otherwise noted. For the results in this
section, pruning layers are inserted after the [1,3,6,9,11]-th
layer with a retention rate of [1,0.9,0.8,0.7,1] and #iterations
of [30,5,5,1,1] in the I-stage, and 10 tokens are pruned in
each S-stage. Note that all results in this subsection are
augmented by the CLS token by assigning it an importance
score that is

√
N times larger than other tokens during ini-

tialization in the I-stage, where N is the number of tokens.

Multi-Head
Attention

Add
&

Norm

Feed
Forward

Add
&
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Figure 17. Potential feature vectors that can be used to represent
tokens.

Table 8. Ablation experiment results for the source of feature
vectors.

Feature Acc@top1 GFLOPS

Xpre 79.113% 3.08
X 79.082% 3.08
K 79.351% 3.08
Q 79.205% 3.08
V 79.097% 3.08

Feature vectors: As shown in Fig. 17, feature vectors
that represent tokens can be the corresponding vectors in
the Key matrix, Query matrix, Value matrix, intermediate
embedding vectors in the Xpre matrix, or output embedding
vectors in the X matrix. We maintain the other settings and
change the feature vectors used. The performance of pruned
models is shown in Table 8. It indicates that the Key matrix
is the optimal source of feature vectors.

Partitioning method: After ranking tokens according
to their importance (e.g., token {1,2,3,4,5,6}; token 1 has
the highest score and token 6 has the lowest), we choose
from the following options: (i) Alternate: alternatively as-
sign them to Group A and B, then the average token im-
portance in two groups is nearly equal (e.g., A : {2, 4, 6},
B : {1, 3, 5}); (ii) Sequential-U: assign the less important
half of tokens to Group A and the other half to Group B,
which means we sequentially partition tokens and prune the
unimportant part (e.g., A : {4, 5, 6}, B : {1, 2, 3}); (iii)
Sequential-I: assign the more important half of tokens to
Group A and the other half to Group B, which means we
sequentially partition tokens and prune the important part
(e.g., A : {1, 2, 3}, B : {4, 5, 6}), (iv) Random: randomly
assign them to Group A or B; and (v) No partition: assign
all tokens to both groups without partitioning. To evalu-
ate the effectiveness of these options, we conducted experi-
ments while keeping all other settings at default values. The
results are shown in Table 9, where Sequential-U represents
choice (ii) and Sequential-I represents choice (iii). It clearly
indicates that Sequential-U is preferable to all the other par-
titioning methods.
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Similarity metric: We experimented with several met-
rics for measuring similarity between two vectors, including
cosine similarity, dot product, and Minkowski distance with
different p values. When using Minkowski distance to mea-
sure similarity between vectors, we negated the distance to
account for the fact that a longer distance indicates a lower
similarity. The results of these experiments, shown in Ta-
ble 10, indicate that cosine similarity is the best choice.

Table 9. Ablation experiment results for choosing the partitioning
method.

Method Acc@top1 GFLOPS

Random 79.055% 3.08
Alternate 79.179% 3.08
Sequential-U 79.351% 3.08
Sequential-I 78.898% 3.08
No partition 78.422% 3.08

Table 10. Ablation experiment results for choosing the similarity
metric.

Similarity Acc@top1 GFLOPS

dot product 79.257% 3.08
cosine 79.351% 3.08
Manhattan (p = 1) 79.208% 3.07
Euclidean (p = 2) 79.224% 3.07
Minkowski (p = 3) 79.246% 3.07
Minkowski (p = 4) 79.273% 3.07
Minkowski (p = 5) 79.189% 3.07
Minkowski (p =∞) 79.092% 3.07

G.4. Performance of Zero-TPrune-uni

The ablation experimental results of Zero-TPrune-uni are
shown in Table 11. The backbone for deployment is DeiT-
S, and the model is evaluated on the ImageNet validation
set.

G.5. Hyperparameter Search

The performance of Zero-TPrune, in terms of accuracy, is
not sensitive to the hyperparameter setting as long as the
number of pruning layers is more than two and the vari-
ance of their pruning rate is limited (i.e., the pruning pro-
cess is not concentrated on one or two layers). We ran-
domly choose different hyperparameter settings and show
their performance in Fig. 18. This figure indicates that ran-
domly selecting a hyperparameter setting does not hurt our
performance much.

For a fair comparison with baselines, we do not use
the best performance we can find through hyperparameter

Figure 18. One hundred randomly selected hyperparameter set-
tings and their corresponding performance after being applied to
DeiT-S without fine-tuning

search. Instead, we use a hyperparameter setting with ap-
proximately the average performance among the search re-
sults. It is also close to setting a constant pruning rate across
different layers.

Even the full hyperparameter search process is much
faster than fine-tuning. For hyperparameter search, we only
need to perform inference. Specifically, for MCS, we ran-
domly selected 1024 images in the validation dataset for
each hyperparameter setting and obtain the corresponding
accuracy. We tried 2000 settings on a single A100 GPU,
which only required 3.8 hours. On the contrary, fine-tuning
DeiT-S on the ImageNet dataset requires 144 A100 GPU
hours.

H. Comparison with State-of-the-Art Methods

In this section, we first supplement comparisons with more
depth-adaptive methods in Section H.1 and then compare
Zero-TPrune with more straightforward attention-based to-
ken ranking methods in Section H.2. Finally, we provide
performance comparisons with state-of-the-art fine-tuning-
free token pruning methods in terms of throughput in Sec-
tion H.3.

H.1. Depth-Adaptive Methods

Token pruning can be seen as a fine-grained variant of the
depth-adaptive transformer, such as layer dropping. One of
our baselines, A-ViT [43], is a token-wise depth-adaptive
method. Instead of inserting pruning layers and setting
pruning rates for them, it calculates the halting probability
per token at each layer and halts tokens at adaptive depth.
Zero-TPrune w/o fine-tuning competes with and even out-
performs A-ViT w/ fine-tuning, as shown in Fig. 6. A-ViT
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Table 11. Contribution breakdown of the different techniques employed in Zero-TPrune-uni. The “-uni” suffix represents uniform initial-
ization in the I-stage.

Acc@1 Params GFLOPS Throughput (img/s) Method

79.8% (base) 22M 4.55G 1505.9 Unpruned model
76.8% (-3.0%) 22M 3.08G 2164.4 random drop
78.0% (+1.2%) 22M 3.08G 2142.3 WPR
78.2% (+0.2%) 22M 3.08G 2139.6 WPR + EIR
78.4% (+0.2%) 22M 3.08G 2107.2 WPR + EIR + VHF (I-stage)
78.9% (+0.5%) 22M 3.08G 2066.4 I-stage + S-stage
79.1% (+0.2%) 22M 3.08G 2062.9 I-stage + S-stage + MC Simulation

Table 12. Comparison with depth-adaptive methods on the DeiT-T
model. The performance of Zero-TPrune is obtained without fine-
tuning, while other results are obtained with fine-tuning.

Method Acc@top1 GFLOPS

DeiT-T [36] 71.3% 1.3

ACT [16] 71.0% 1.0
Confidence threshold [23] 65.8% 1.1
Similarity gauging [13] 69.4% 1.1
PonderNet [1] 66.2% 1.0
DynamicViT [30] 70.9% 0.9
A-ViT [43] 71.0% 0.8
Zero-TPrune w/o FT 70.4% 0.9

outperforms prior art on depth-adaptive methods. We adopt
corresponding results and compare them with Zero-TPrune
in Table 12. Note that the result of Zero-TPrune is obtained
off the shelf without fine-tuning, while other results are ob-
tained after fine-tuning the adaptive models.

H.2. Attention-based Token Ranking Methods

One of our baselines, ATS [14], is an attention-based impor-
tance ranking method. It uses the attention given by the CLS
token to determine the importance of tokens. Simply aver-
aging attention scores in the attention matrix is the baseline
of ATS (Fig. 3 in [14]) and performs worse than ATS. For
the ablation study, we replace our I-stage with top-k impor-
tance selection based on (1) CLS token attention, (2) aver-
age attention, and (3) accumulated average attention to im-
prove the effectiveness of our method. Results are shown in
Table 13. The batch size is 512 and our S-stage is enabled
in all settings. We adjust pruning rates slightly to match
the FLOPs cost of different settings. Our proposed I-stage
uses information from all tokens while reducing noise from
unimportant tokens, leading to better performance.

Table 13. Performance of pruned DeiT-S models without fine-
tuning. Throughput is measured on a single NVIDIA A100 GPU.

Method Acc@top1 GFLOPS Throughput(img/s)

DeiT-S 79.8% 4.55 1505.9
CLS Attn. 78.9% 3.00 2179.3
Ave. Attn. 78.4% 2.99 2185.2
Accu. Ave. Attn. 78.5% 2.97 2189.2
I-stage 79.4% 2.97 2188.4
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Figure 19. Performance comparison between Zero-TPrune and
state-of-the-art fine-tuning-free methods. The applied Trans-
former backbone is DeiT-S.

H.3. Fine-Tuning-Free Token Pruning Methods

We conduct experiments on DeiT-S to show the superior-
ity of Zero-TPrune over state-of-the-art fine-tuning-free to-
ken pruning/merging methods. The experimental results
showing the trade-off between accuracy and throughput are
shown in Fig. 19.

I. Comparison between Scaling and Pruning
As shown in Table 14, Zero-TPrune cannot outperform all
baseline methods when a relatively high pruning rate (e.g.,
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Figure 20. Off-the-shelf performance of ViT models under ToMe [3]. This figure is adopted from [3].

Table 14. Performance of pruned AugReg, LV-ViT, and SWAG
models without fine-tuning. SWAG models perform inference on
384px images.

Method Acc@top1 GFLOPS

LV-ViT-M 84.0% 12.7
+ ATS 80.9% 6.4

+ ToMe 81.6% 6.3
+ Zero-TP 81.4% 6.3

MAE 83.62% 55.4
+ATS 78.39% 29.1

+ToMe 78.95% 28.8
+Zero-TP 78.94% 28.6

SWAG 85.30% 55.6
+ATS 81.03% 27.8

+ToMe 84.59% 28.4
+Zero-TP 84.04% 28.3

reduce GFLOPS by 50%) is applied to large models (e.g.,
DeiT-L). However, in this case, scaling to a smaller model
is often a better choice. ToMe outperforms Zero-TPrune
when large models are aggressively pruned. Thus, we use
the results from ToMe to illustrate this point.

In Fig. 20, ToMe is applied to different ViT backbones
with different configurations. Different points on the same
curve represent different configurations applied to the same
backbone. The first point from the left on each curve repre-
sents the unpruned model. Aggressively pruning a model
implies switching from the first point from the left on a
given curve to the last point on this curve, which increases
throughput but suffers from lower accuracy. Switching from
the first point from the left on a given curve to the first point
on another curve directly scales the size of the model with-
out pruning. Aggressively pruning large models (ViT-L and
ViT-B) underperforms scaling them in terms of both accu-
racy and throughput. On the contrary, for the ViT-S model,

although scaling outperforms aggressive pruning in terms
of throughput, it achieves lower accuracy than aggressive
pruning.
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