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Networks extracted fromnonlinear fMRI
connectivity exhibit unique spatial variation
and enhanced sensitivity to differences
betweenindividuals with schizophrenia
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Schizophreniais a chronicbrain disorder associated with widespread
alterationsin functional brain connectivity. Although data-driven
approaches such asindependent component analysis are often used to study
how schizophreniaimpacts linearly connected networks, alterations within
the underlying nonlinear functional connectivity structure remain largely
unknown. Here we report the analysis of networks from explicitly nonlinear
functional magnetic resonance imaging connectivity in a case-control
dataset. We found systematic spatial variation, with higher nonlinear weight
within core regions, suggesting that linear analyses underestimate functional
connectivity within network centers. We also found that a unique nonlinear
network incorporating default-mode, cingulo-opercular and central
executive regions exhibits hypoconnectivity in schizophrenia, indicating
that typically hidden connectivity patterns may reflect inefficient network
integration in psychosis. Moreover, nonlinear networks including those
previously implicated in auditory, linguistic and self-referential cognition
exhibit heightened statistical sensitivity to schizophrenia diagnosis,
collectively underscoring the potential of our methodology to resolve
complex brain phenomena and transform clinical connectivity analysis.

Schizophrenia is a brain disorder thought to be underpinned by
altered neural interactions at various spatial and temporal scales’. At
the whole-brainlevel, functional magnetic resonance imaging (fMRI)
functional connectivity (FC) analysis is a non-invasive approach that
has commonly been used to study how schizophrenia-related brain
alterations are reflected within statistical relationships between blood-
oxygenation-level-dependent (BOLD) time series. Although the rela-
tionship between the BOLD signal and neural activity is indirect?,

experimentally induced and resting-state BOLD fluctuations are typi-
cally associated with changes in local field potentials across multiple
frequency bands®*, indicating that fMRIFC analysis is a promising tool
for advancing the identification of task-related and spontaneously
emerging networks of interacting brain regions. Moreover, fMRI FC
analysisis deployable within awide range of predictive clinical contexts.
For example, multiple large-scale meta-analyses have shown that FC
measures reliably distinguish healthy controls (HC) from individuals
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with schizophrenia (SZ)"’. Such studies have contributed to an accu-
mulation of evidence for the SZ ‘dysconnection hypothesis™, which
posits FC alterationas acentral endophenotype of the disorder result-
ing from neuromodulatory and synaptic pathogenesis.

However, FC studies are typically designed to estimate networks
that reflect linear statistical relationships between brain areas' ™",
Although the remarkably complex nonlinear interactionsinherent to
brain networks have been recognized and investigated* ™, there is a
need to develop data-driven methods capable of estimating networks
that accurately reflect the structure of these nonlinear connectivity
patterns' and thus fill the gap in knowledge concerning their contri-
butions tobrain functionand alterationsin psychiatric disorders such
as SZ. In this Article we highlight three ways in which decomposing
nonlinear brain connectivity patterns into data-driven networks has
the potential to advance systems, cognitive and predictive clinical
neuroscientific research. First, effectively capturing networks from
nonlinear patternsinadata-driven fashion may lead to a more precise
and thorough characterization of the organization and dynamics
of neural ensembles at multiple scales'®**?. Second, networks that
accurately reflect underlying nonlinear connectivity patterns may
reveal unique associations with cognitive and behavioral capacities.
In principle, nonlinearity is thought to underpin a high-dimensional
state space capable of supporting a set of flexible and diverse neural
computations™”, such thatanalyzing the functional role of nonlinear
encoding ofinformation” may shed light on the structure of cognitive
processes and deficiencies associated with psychiatric disorders such
as SZ and their symptoms. Third, networks captured from measures
thatare sensitive to nonlinearity can be leveraged to develop biomark-
ers that can be incorporated within brain-based predictive models of
mentalillness, or ‘predictomes’.

Among the available network estimation methods, independent
component analysis (ICA) is known to be a powerful multivariate
source separation technique®**. ICA assumes that the data are a
linear mixture of statistically independent source signals and aims to
estimate an unmixing matrix, yielding components that approximate
these signals optimally***. In the context of fMRI FC analysis, spatial
ICA has commonly been used to decompose fMRI time-series data
into asetofintrinsic connectivity networks (ICNs), where the spatial
pattern of anetwork describes its distribution across voxels and the
temporal pattern describes its activity over time?*%, ICNs can be
robustly and consistently identified from both resting-state®®?*
fMRI (rsfMRI) and task-based'-****' fMRI (tfMRI) time-series data
at different spatial scales?>?"*?, ICNs can also be reliably extracted
from FC matrices constructed from second-order statistics such
as Pearson correlation (that is, from the connectivity domain)****,
Connectivity-domain ICA is a type of feature-based analysis® that
yields cross-validating components, and it is distinguished from
time-domain ICA by unique benefits such as consistency across
changes in particular analysis parameters and reproducibility®.
Moreover, an expanding range of FC metrics can be used to construct
the connectivity basis, making connectivity-domain ICA anincred-
ibly versatile tool*.

Connectivity- and time-domain ICA have become valuable tools
for investigating fMRI data. However, both methods are typically
designed to identify ICNs composed of covarying brain regions,
thereby capturing ensembles explained by linear connectivity infor-
mation****, Although recent advancements have made strides in
incorporating nonlinearity, such as learninglocal spatial or temporal
nonlinear structures®?, the extent to which the estimated sources
reflect nonlinear connectivity patterns remains unclear. To address
this gap in knowledge, we advance an approach to extract ICNs from
distance correlation®® patterns that move beyond those constructed
from Pearson correlation (Fig. 1). We first estimate explicitly nonlinear
whole-brain FC (ENL-wFC) by using alinear regression-based approach
to remove the nonlinear whole-brain FC information (NL-wFC;
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Fig.1|Schematic of the analysis pipeline. Preprocessed rsfMRI dataare
transformed to the connectivity domain using Cov (as alinear FC estimator) and
dCorrasanonlinear FC estimator. ENL-wFC is obtained by removing the NL-wFC
information which s linearly explained by LIN-wFC. Gr-sICA is implemented
inthe connectivity domain on LIN-wFC and ENL-wFC to estimate separate sets
of intrinsic connectivity networks (LIN and ENLICNs). GIG-ICA is then used

to estimate subject-specific ICNs, and statistical analysis is conducted on the
subject-level spatial maps.

operationalized as distance correlation) explained by linear whole-
brain FC (LIN-wFC), and we subsequently implement group-level spa-
tial ICA (gr-sICA) in the connectivity domain®, resulting in a targeted
analysis of network features that are inaccessible to approaches that
aim to compute brain connectivity using methods that incorporate
bothlinear and nonlinear information. Although alternate metrics can
be used to quantify fMRI connectivity while accounting for higher-
order statistics**™*?, distance correlation is a powerful and flexible
dependence metric that remains underexplored in the context of
FC research. Moreover, the proposed method is unique, in that we
conceive of ENL-wFC as a global feature of the connectivity space
rather thanasacomposite feature constructed from pairwise associa-
tions**2, This allows us to leverage information present within global
connectivity features beyond those found within macroscopiclinear
connectivity patterns. In this Article we use this approach to assess
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Fig.2|Strengthening the reporting of observational studies in epidemiology (STROBE) flowchart. COBRE, Center for Biomedical Research Excellence; FBIRN,
Functional Imaging Biomedical Informatics Research Network; MPRC, Maryland Psychiatric Research Center. EPI, echo-planar imaging.

Table 1| Subject demographic information

Dataset Diagnosis (no.) Sex (no.) Race (AMR/EUR/AFR/other) Age (years)® Age (years)®
COBRE HC (75) Male (56) 20/32/4/0 39.27+1213 39/(18-65)
Female (19) 13/3/3/0 35.47+10.02 34/(18-58)
SZ (51) Male (45) 19/23/3/0 37.36+15.28 33/(19-64)
Female (6) 4/1/1/0 40.83+17.70 44/(20-65)
FBIRN HC (88) Male (60) 12/48/0/0 36.58+10.74 39/(19-59)
Female (28) 6/22/0/0 36.61+11.07 33/(19-58)
SZ (60) Male (52) 17/35/0/0 39.54+11.12 41/(18-60)
Female (8) 1/7/0/0 35.88+9.85 34/(24-51)
MPRC HC (152) Male (69) 6/43/19/1 38.99+13.22 41/(18-68)
Female (83) 8/44/30/1 39.93+14.93 43/(16-64)
SZ(82) Male (57) 3/33/19/2 36.25+13.54 33/(13-63)
Female (25) 0/13/11 44.68+11.92 47/(13-61)

COBRE, Center for Biomedical Research Excellence. FBIRN, Functional Imaging Biomedical Informatics Research Network. MPRC, Maryland Psychiatric Research Center. HC, healthy control.
SZ, schizophrenia. AMR, mixed American. EUR, European. AFR, African. *Meanzs.d. "Median/range.

differences in spatial variation between explicitly nonlinear (ENL)
and linear (LIN) network estimates and to investigate SZ-associated
network alterations in a multi-study rsfMRI dataset sourced from
three major psychosis projects: the Center for Biomedical Research
Excellence (COBRE)*, the Functional Imaging Biomedical Informatics
Research Network (FBIRN)****and the Maryland Psychiatric Research
Center (MPRC) (Fig. 2 and Table 1)*°.

Results

Goodness of fit

Goodness-of-fit statistics (R?) for the linear regression of NL-wFC on
LIN-wFC were as follows: mean + s.d. = 0.5337 + 0.2009; minimum-
maximum = 0.0173-0.9413. This indicates that, on average, much
of the NL-wFC variance is captured by a linear fit. After accounting
for confounding factors (Methods), R? is significantly higher for
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HC versus SZ (n=508; P=0.0002, observed difference = 0.1203,
Hedges’s g=0.6971). The observed Hedges’s g value indicates the
presence of amedium to large effect size. HC residual indices were
mean ts.d. = 0.0457 + 0.1660; minimum-maximum =-0.4912-0.4936.
SZ residual indices were mean + s.d. = —0.0746 + 0.1827; minimum-
maximum =-0.4725-0.3800.

Component estimation reliability is greater for ENL versus LIN
Components estimated from ENL-wFC exhibit significantly higher esti-
mationreliability ICASSOI1Q) compared tocomponents estimated from
LIN-wFC (n=40 components; P=0.0006, observed difference = 0.037,
Hedges’s g=0.6441). The observed Hedges’s g-value indicates the
presence of a medium to large effect size. ENL stability indices were
mean +s.d. = 0.9694 + 0.0057; minimum-maximum = 0.9579-0.9800.
LIN stability indices were mean + s.d. = 0.9324 + 0.0810; minimum-
maximum = 0.6186-0.9770.

Common and unique ICNs identified from ENLand LIN

Within our 20-model-order gr-sICA framework, 13 ENL ICNs and 14
LIN ICNs were identified (Fig. 3). Among the identified networks, ten
exhibited maximum spatial similarity values exceeding 0.80 between
their ENL and LIN estimates. We classified these networks as com-
mon to both ENL-wFC and LIN-wFC based on the defined criterion
(Methods). Among those remaining, two ENL and three LIN ICNs
exhibited maximum spatial similarity values between 0.40 and 0.80.
Although several of these networks attained relatively high maximum
spatial similarity, we noticed distinct intensity differences across their
neuroanatomical distributions that prevented common classification
andlabeling. Furthermore, our analysis uncovered a LIN network and an
ENL network exhibiting amaximum spatial similarity less than 0.40. We
classified these networks as unique based on our uniqueness criterion
(Methods), and we validated the uniqueness of the ENLICN in question
across100 additionaliterations of gr-sICA (Supplementary Note 1and
Supplementary Fig.1).

ENL and LIN ICNs exhibit unique spatial patterns

ENL and LIN ICNs exhibit distinctive spatial distributions (Fig. 4a-j).
Visible gradients are present within networks associated with both
lower and higher cognitive functioning, and many core regions
(defined as regions that attain higher values across the spatial distri-
bution) exhibit greater ENL weight. For the subcortical (SUB) network
(Fig.4a), LINweightis greater within the bilateral caudate and putamen,
and ENL weightis greater within the bilateral thalamus. The cerebellum
(CER; Fig.4b) exhibits higher ENL weight within vermis lobules -V, and
higher LIN weight within lobules VII-IX and the bilateral hemisphere.
Among networks associated with visual*” and auditory and linguistic*®
functioning, ENL weight is predominantly greater within spatially cen-
tralregions, whereas LIN weight is greater within peripheral areas. For
instance, the primary visual (VIS1) network (Fig. 4c) exhibits a medial-
lateral gradient in the bilateral cortex surrounding the calcarine fis-
sure, with greater ENL weight within the cuneus. The secondary visual
(VIS2) network (Fig. 4d) shows higher ENL weight within the cuneus
and higher LIN weight within the bilateral inferior and middle occipital
gyri. Temporal (TEMP) network (Fig. 4e) variation follows a similar
center—periphery pattern, with greater ENL weight in the superior
temporal gyri and greater LIN weight within the supramarginal gyri
and bilateral inferior frontal triangularis.

Whereasboth the primary and secondary sensorimotor networks
(MTR1and MTR2) exhibit gradients (Fig. 4f-g), MTR1 comparisons
reveal amedial-lateral pattern between the paracentral lobules and
pre-and postcentral gyri, while MTR2 comparisons reveal an inferior-
superior gradient between the superior temporal lobe and pre- and
postcentral gyri. Networks implicated in higher cognitive functions
such as attention*’, social cognition and self-referential processes™,
and executive control® exhibit core-periphery gradients. The dorsal

LIN ICNs ENL ICNs
09578 £ ¢ s Q &"", & Q B"’,
& S @& Q
0.9261 E et \__',. 8 o {;"f\.\;. Ao @ {
- ) o
( ¢ p W Ky P,
09219 & ‘ S0 i 3 .
. S & ( &, v ;
09100 & ’b Q O !",‘. 49 OF
t RID Lus \ sig £J { \
i . )
0.9065 & [ N
© Q b ‘O/;"'z
3 i L)
= .
> T
£ o QR SEn Lw
i BEE 'a‘.) R A
(2]
s < N
S [ 0.8663 3 ;é P ’6" N
£ Q& et
£ 3 ,
x o .
&) 08187 = %% f SR
: B ody ol & (W @ |
08090 £ iz gha A& et ghm A
< %f P o3 %/ frar . §
" N 00
0.7793 DR @i= .
Sy CX \ X
07125 2 £9%
£ oD \3 Nk O
& G
0.4271 _.9“"5 5 &% o,‘%
‘ ‘ s
odes @15 AN A% g
t 7 GRS W3 )
9% B .
01687 a‘.‘;’ 9 G N .

Fig.3|ICNs obtained from LIN-wFC and ENL-wFC gr-sICA in the connectivity
domain. ICNs are displayed using an empirical threshold (Z>1.96; P < 0.05)
onthe ch2bet template in order of maximum spatial similarity. Common ICNs
(maximum similarity > 0.80) include primary visual (VIS1), primary sensorimotor
(MTR1), secondary sensorimotor (MTR2), secondary visual (VIS2), right
frontoparietal (rFP), cerebellum (CER), subcortical (SUB), posterior default mode
(pDM), temporal (TEMP) and dorsal attention (ATN). ICNs exhibiting maximum
similarity between 0.40 and 0.80 and unique ICNs (maximum similarity < 0.40)
are also displayed.

attention (ATN; Fig. 4h) network shows higher ENL weight in the
superior parietal lobules and higher LIN weight in the postcentral
gyri. The posterior default mode (pDM) network (Fig. 4i) exhibits
higher ENL values in the precuneus and bilateral angular gyri, with
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Fig. 4| Assessment of ICN spatial variation. Results are plotted according

to adual-coded® colormap, with transparency reflecting two-sided paired
sample ¢-statistic magnitudes and contours indicating FDR-corrected statistical
significance (g < 0.05). Warmer hues indicate ENL > LIN, and cooler hues indicate
LIN > ENL. a-j, Thedisplayed ICNs are subcortical (SUB) (a), cerebellum (CER)

(b), primary (VIS1) (c) and secondary (VIS2) (d) visual, temporal (TEMP) (e),
primary (MTRI) (f) and secondary (MTR2) (g) sensorimotor, dorsal attention
(ATN) (h), posterior default mode (pDM) (i) and right frontoparietal (rFP) (j).
Theresults are overlaid on the ch2bet template with x, y and z coordinates listed
relative to the origin in Montreal Neurological Institute 152 space.

higher LIN values in the middle and posterior cingulate. The right
frontoparietal (rFP) network (Fig. 4j) exhibits higher ENL values within
the angular gyri (particularly within the left angular gyrus) and higher
LIN values within therightinferior parietal lobule, right middle frontal
gyrus and right inferior frontal triangularis. The robustness of our
voxel-wise t-test assessment of spatial variation was confirmed by
permutation test results from pDM comparisons (p = 0.9653). Sum-
mary test information for the spatial variation analysis is provided
inSupplementary Table 1.

ENL ICN voxels exhibit enhanced sensitivity to SZ diagnosis

Collectively, ENL network voxels exhibit agreater degree of sensitivity
to SZ diagnosis versus LIN (y*=53.75; P< 0.00001; odds ratio =1.24),
and a greater number of ENL voxels are implicated (Supplementary
Table 2). Moreover, ENL counterparts of networks implicated in audi-
toryand linguistic***>* sensorimotor* and self-referential*’ cognitive
processes exhibit enhanced sensitivity to differences between HC and
SZ (Fig.5a-c).For example, although both sets of comparisons revealed
differences within TEMP regions comprising the primary auditory
and auditory association cortex, ENL comparisons are more sensitive
(¥*=851.3; P < 0.00001; odds ratio = 22.63), revealing clusters that are

more numerous, with augmented volumes and effect sizes (Fig. 5a).
LIN and ENL tests revealed higher values for HC within the bilateral
superior temporal gyri and temporal poles, bilateral insula, bilateral
Heschl’sgyrus, bilateral Rolandic operculum and right middle temporal
gyrus, along with higher values for SZ within the right supramarginal
gyrus. However, ENL tests revealed alarger number of significant voxels
acrossthese regions. Additionally, ENL tests revealed higher HC values
within the left middle temporal gyrus and higher SZ values within the
left supramarginal gyrus, both of which were missed for significance
by LIN tests.

ENL sensitivity was also greater for MTR2 (Fig. 5b; x* = 639.5;
P<0.00001; odds ratio =7.61) and pDM (Fig. 5c; x>=125.03;
P<0.00001; odds ratio = 128) tests. Both sets of MTR2 comparisons
revealed greater weight for HC within the bilateral postcentral gyri.
However, ENL tests revealed more extensive clusters and greater HC
values within the bilateral posterior insula. ENL pDM tests revealed
clusters of higher values for SZ within the precuneus and left angu-
lar gyrus, whereas LIN comparisons identified only two significant
voxels. However, we note that LIN tests were more sensitive for CER
(x*=445.7;P<0.00001; odds ratio = 3.93), VIS1 (y*= 76.85; P< 0.00001;
oddsratio =2.28), VIS2 (x*=391; P < 0.00001; odds ratio = 394), MTR1
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Fig. 5| Statistical comparisons between subject-level ICN estimates from
healthy controls and individuals with schizophrenia. a-d, Comparisons
between subject-level temporal (TEMP) (a), secondary sensorimotor (MTR2) (b),
posterior default mode (pDM) (c) and unique explicitly nonlinear (ENL) (d) ICN
estimates derived from healthy controls (HC) and individuals with schizophrenia
(SZ).Results are plotted according to a dual-coded colormap®®, with transparency
reflecting two-sided independent-samples ¢-statistic magnitudes and contours
indicating FDR-corrected statistical significance (g < 0.05). Ina-c, results from
LIN comparisons are located on the left, and results from ENL comparisons are
located on the right. Warmer hues indicate HC > SZ, and cooler hues indicate

SZ > HC. Results are overlaid on the ch2bet template with x, y and x coordinates
listed relative to the originin Montreal Neurological Institute 152 space.

(x*=6.868; P=0.0088; odds ratio = 1.76) and rFP (exact binomial test;
P<0.00001; odds ratio undefined) networks. Unique LIN network
comparisons failed to reveal any group differences (Supplementary
Fig.2h), but unique ENL network comparisons revealed a cluster within
theleftanterior insula that distinguished cohorts, with HC exhibiting
greater values than SZ (Fig. 5d, Fig. 2 and Table 1). The robustness of
our voxel-wise t-test assessment of cohort differences was confirmed

by permutation test results from LIN (p > 0.999) and ENL (p > 0.999)
pDM comparisons. Results for SUB, CER, VIS1, VIS2, MTR1, ATN, rFP
and unique LIN network cohort comparisons are depicted in Sup-
plementary Fig. 2. Summary cohort test information is provided in
Supplementary Table 2 and summary sensitivity test information in
Supplementary Table 3.

To validate the detection of SZ alterations within TEMP, MTR2,
pDM and unique ENL networks, we used a genetic matching algorithm®>
to balance HC and SZ cohorts for confounding factors and we subse-
quently analyzed networks derived from the balanced cohorts (detailed
methods are provided in Supplementary Note 2). The matched analysis
revealed a greater number of significant ENL voxels relative to LIN
(Supplementary Fig. 3 and Supplementary Table 4) and validated
our primary findings, strongly indicating that ENL estimates of the
networks in question outperform LIN in capturing SZ FC alterations
(summary testinformation is provided in Supplementary Table 4).

Discussion

Linear FC analysis remains a fruitful method for extracting valuable
information from fMRIdata. However, despiteits usefulness and ease
of interpretation, various brain processes exhibit nonlinear aspects™”,
suggesting that linear FC provides us with a limited view of the data
and the clinical neurocognitive hypothesis space. Previous rsfMRI
studies have identified evidence of nonlinearity and its prospective
rolein differentiating cohorts”**>, but our approach to ENL ICN esti-
mation demonstrates the potential of connectivity-domain ICA* and
nonlinear information to shape the predictive clinical landscape and
inform systems neuroscience theorizing.

We find that components extracted from ENL-wFC exhibit higher
reliability than those extracted from LIN-wFC, and that unique networks
areidentified from each FC estimator. Our validation analysis supports
these findings. We also find that corresponding networks exhibit strik-
ing spatial variation. Among potential explanations, the presence of
greater ENL weight within core regions could be reflective of stronger
signals within core areas. However, we note that such a hypothesis
probably cannot explain the detection of differences betweenthe HC
and SZ cohorts. Because ENLICNs represent independent datasources
composed of elements whose distance correlation values deviate from
alinearrelationship with Pearson correlation, the identified gradients
may reflect actual differences in the underlying FC complexity, which
merits further investigation of their potential cognitive and clinical
significance. Notably, higher ENL weight within core regionsindicates
that linear connectivity analyses may underestimate FC within network
centers. Future work will investigate potential explanations for the
observed gradients.

Therecovery of aunique ENL network underscores theimportance
of effectively capturing networks that accurately reflect nonlinear
connectivity information, as our results show that networks estimated
frominformation not explained by linear connectivity may be altered in
psychiatric conditions suchas SZ. For instance, the unique ENL network
consolidated regions typically associated with cingulo-opercular®,
anterior default mode™ and central executive®® networks, suggesting
that thisICN may act as anintegrator hub for multiple large-scale brain
ensembles. This hypothesis is consistent with mounting evidence
of arole for anterior insular regions in mediating information flow
between default mode and central executive regions®°'. Moreover,
anteriorinsular regions are associated with event and stimulus salience
processing, both of which are reported to be compromised in SZ%%.
Importantly, group comparisons revealed functional hypoconnectivity
for SZ within the left anterior insula of the unique ENLICN, suggesting
thatour method cancapture hidden patterns that reflect inefficiencies
intheintegration of brain networksin psychosis. This finding serves as
acaseinpoint connecting our methodology to the generation of novel
insights, and demonstrates the potential of our approach to contribute
tothe development of brain-based biomarkers of psychiatric disorders.
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Thefinding that ENL voxels collectively exhibit a greater degree of
sensitivity to SZ diagnosis further elaborates the potential of nonlin-
ear connectivity information to play a role within clinical FC analysis.
ENL TEMP comparisons revealed larger clusters of significant voxels
within auditory and language-related regions that have been previ-
ously associated with SZ and positive symptoms such as auditory
verbal hallucinations in both tfMRI®*** and rsfMRI®*“¢ analyses. For
example, ENL tests revealed expansive clusters within superior tempo-
ral regions known to implement acoustic-phonetic computations®*.
ENL tests also identified a sizable volume with higher SZ values within
the right supramarginal gyrus, which has been shown to play arolein
phonological decision-making®. By contrast, the right supramarginal
gyrus was almost entirely missed for significance by LIN TEMP compari-
sons. Notably, ENL MTR2 comparisons revealed greater numbers of
significant voxels within sensorimotor regions previously implicated
in SZ°¢%% as well as clusters within the bilateral posterior insula that
were not detected by LIN tests. Moreover, ENL pDM comparisons
revealed hyperconnectivity for SZ that was missed by LIN within core
regions of the pDM that have been associated with reflective, internally
focused cognitive processes thought to be relevant to SZ diagnosis
and symptoms®. This finding was validated by the matched cohort
analysis (Supplementary Fig. 3). Overall, our results demonstrate
that nonlinear statistical dependencies in fMRI data can be leveraged
to distinguish these cohorts and warrant further investigation of the
relationship between features extracted from measures that are sensi-
tive to nonlinearity and the presentation of psychosis.

Our previous work proposed this conceptual framework®. Here,
we advance and rigorously investigate the framework by providing
an in-depth quantitative analysis of ENL and LIN networks, their spa-
tial variation and their sensitivity to differences between HC and SZ.
However, the current analysis has several methodological and interpre-
tive limitations. First, although we utilized a large dataset collected
across multiple psychosis projects and sites to address representa-
tive sampling issues®, the generalizability of our results is limited to
populations of individuals with demographic characteristics similar
to that of the analyzed sample. For instance, reporting on race for
the present study utilized three super-population groupings (mixed
American, European and African), and our results cannot necessarily
be generalized to populations that fall outside these groups. Second,
we note that alternate models of the relationship between NL-wFC
and LIN-wFC can be leveraged when estimating ENL-wFC. Therefore,
we do not claim that the current method of estimation is decisive or
definitive to the potential exclusion of methods designed to estimate
ENL-wFC using alternate models. Future work will investigate the use
of other models with the aim of providing increasingly robust and
precise characterizations of whole-brain connectivity features not
explained by linear connectivity patterns. Third, we note that although
our approach may share conceptual similarities with methods that
construct nonlinear fMRI connectivity using features derived from
pairwise associations**>, we do not necessarily expect the findings of
these distinct approaches to converge due to substantial differences
inmethodology. Thus, we leave any speculation about the relationship
between features extracted from these methods as an open empirical
question for future investigation. Fourth, we note that attributing
context-invariant functions to macroscopic brain networks may over-
simplify their roles. The functions attributed in the present study are
suggested as those among the most supported by previous research
findings. Finally, although our results warrant further investigation into
the potential neurocognitive and psychiatric roles of ENL networks,
we maintain that moving beyond association will probably require
developinginterventions that can effectively tie the extracted features
to the causal outcomes of cognitive operations, psychiatric diagnosis
and symptoms.

The primary goal of the current study was to investigate the pres-
ence and clinical utility of nonlinear FC patterns that move beyond

linear FC. However, future work will investigate networks extracted
from nonlinear FC patterns in the context of task-based experimen-
tal designs. Additionally, future work will focus on replicating our
results in large-scale B-SNIP transdiagnostic rsfMRI datasets’”’,
on utilizing ENL networks to distinguish a broader array of clinical
cohorts, on analyzing associations with cognitive and symptom
scores, and on analyzing the temporal” and spatial*>*%**”>”* dynam-
ics exhibited by NL and ENL networks during task performance and
atrest.

Methods

Subject information, data acquisition and quality control

We analyzed 3-Tesla rsfMRI data sourced from three case-control
psychosis projects—COBRE, FBIRN and MPRC (Fig. 2 and Table 1).
Detailed subject recruitment information, as well as inclusion and
exclusion criteria for COBRE, FBIRN and MPRC studies, can respec-
tively be found in refs. 43,44,46 as well as in the Reporting Summary.
Sex was based on self-reported demographic assessment. Race was
based on a multi-dimensional scaling (MDS) analysis conducted on
combined local samples and data from the the 1000 Genomes Project”.
For each super-population of mixed American (AMR), European (EUR)
and African (AFR) individuals, a cluster centroid was obtained based
on 1000 Genomes data. Local samples were assigned to the nearest
reference population, and those that were distant (>3 s.d. away) from
any population cluster were assigned to the ‘other’ category. Subjects
provided informed written consent as required and approved by the
Institutional Review Boards (IRBs) of the corresponding institutions.
COBRE participants gave written informed consent as required and
approved by the IRB of the University of New Mexico*’. FBIRN partici-
pants gave writteninformed consent as required and approved by the
IRBs of the University of California Irvine, the University of California
Los Angeles, the University of CaliforniaSan Francisco, Duke University,
University of North Carolina, University of New Mexico, University of
lowa and University of Minnesota**. MPRC participants gave written
informed consentas required and approved by the IRB of the University
of Maryland, Baltimore*’.

Individuals with SZ from the COBRE dataset received a diagnosis
of schizophrenia performed by two research psychiatrists in consen-
sus via the Structured Clinical Interview for DSM-1V Axis I Disorders
(SCID) using the patient version of the SCID-DSM-IV-TR*. SZ subjects
were evaluated for comorbidities and for retrospective as well as pro-
spective clinical stability. Individuals with SZ from the FBIRN study
were diagnosed with schizophrenia based on the SCID-DSM-IV-TR
and were clinically stable for at least two months before scanning**.
For MPRC SZ subjects, a diagnosis of schizophreniawas confirmed via
the SCID-DSM-1V*¢. Case and control participants were compensated
for interviews, scan sessions and assessments conducted during the
referenced studies.

COBRE data were collected at a single site on a Siemens TIM
Trio scanner via an echo-planar imaging sequence (repetition
time (TR) =2,000 ms; echo time (TE) =29 ms)?. Voxel spacing was
3.75 % 3.75 x 4.5 mm, the slice gap was 1.05 mm, and the field of view
(FOV) was 240 x 240 mm. FBIRN data were collected from sevensites’,
with six sites utilizing Siemens TIM Trio scanners and one utilizing a
General Electric Discovery MR750 system?. All seven sites used an echo-
planar imaging sequence (TR =2,000 ms; TE =30 ms). The original
voxel spacing was 3.4375 x 3.4375 x 4 mm, the slice gap was 1 mm, and
the FOVwas 220 x 220 mm. MPRC data were collected from three sites
viaecho-planarimaging sequences®. Onesite used a Siemens Allegra
scanner (TR =2,000 ms; TE =27 ms; voxel spacing = 3.44 x 3.44 x 4 mm;
FOV =220 x 220 mm), another used a Siemens TIM Trio scanner
(TR=2,210 ms; TE =30 ms; voxel spacing = 3.44 x 3.44 x 4 mm;
FOV =220 x 220 mm), and the third site used a Siemens TIM Trio scan-
ner (TR =2,000 ms; TE =30 ms; voxel spacing =1.72 x 1.72 x 4 mm;
FOV =220 x 220 mm).
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The following subject quality control criteria” were used for the
currentstudy: (1) completeness of demographicinformation, (2) avail-
ability of T1 structural MRI, (3) availability of genomic information,
(4) maximum head rotation less than 3°, (5) maximum translation
less than 3 mm, (6) mean framewise displacement less than 0.25,
(7) quality registration to an echo-planarimaging template, (8) whole-
brain (inadditionto the top tenand bottom ten slices) spatial overlap
between the subject mask and group mask greater than 80% and (9)
removal of duplicate subjects. The final subject pool included 315HC
and 193 SZ (n=508) individuals.

Preprocessing

Preprocessing was performed primarily within the MATLAB software
environment using Statistical Parametric Mapping (SPM 12; http://
www.fil.ion.ucl.ac.uk/spm/) and the FMRIB Software Library (FSLv6.0;
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Preprocessing stepsincluded (1)
rigid body motion and slice timing correction, (2) nonlinear warping
tothe Montreal Neurological Institute 152 coordinate space, (3) spatial
resampling to 3-mmisotropic voxel spacing, (4) spatial smoothing with
a 6-mm full-width at half-maximum Gaussian kernel, (5) head motion
regression, detrending, despiking and low-pass filtering, (6) temporal
resampling to TR=2,000 ms and (7) voxel time-series Z-scoring to
normalize the variance.

Constructing LINand ENLFC

We constructed LIN as well as ENL global (voxel-wise) FC matrices for
every subject®. Let X € R be a sample of rsfMRI data where nis the
number of time points, vis the number of voxels within the brain, and
x and y represent any two preprocessed voxel time series such that
x, ye R, Thus, x;is the value of voxel x at time point i. We estimated
eachsubject’s LIN-wFC as the covariance (Cov) across all pairs of brain
voxels (equation (1)). Because voxel time courses were Z-scored during
preprocessing, the pairwise covariance was equal to the pairwise Pear-
son correlation, which was used conventionally to estimate linear FC:

LINyec,, = Cov (X, y) = % PHENED) o
i=1

Next, we calculated the voxel-wise distance correlation’® to con-
struct NL-wFC. Distance correlationis arepresentation of the associa-
tion between random vectors based on Euclidean distances between
sample observations® (equation (2)):

NLyfc, , = dCorr (x, y) = __dlovixy @
& dVar (x) dvar (y)
where
) 1 n n
dCov, (x, ) = — 2. 2 A Bk
J=1k=1
and
dvar? (0 = dCovi(x, ) = L 33 42
ar, (x) = dCovp(x, X) = Pl » k!

=~
I
—
Il
—

The squared sample distance covariance (dCov?) is calculated as
the arithmetic average of products AB, where A and B represent the
doubly centered Euclidean distance matrices of rsfMRI voxel time
seriesxandysuchthat

aje=1Ixj=xljk=12 ..,n

bik=1y;=y. jik=12,....n

Aj,k = aj,k—dj. _d-k_d--’

Bj,k :bj,k_bj- —b,k—b,,

We note that distance correlation is sensitive to both linear
and nonlinear dependence relations, and that the distance corre-
lation between random vectors is zero if and only if the vectors are
independent’®.

Because we are interested in extracting networks from distance
correlation patterns that are not explained by Pearson correlation,
we removed the effect of LIN-wFC on NL-wFC using an ordinary
least-squares approach to estimate the ENL-wFC for each subject
(equation (3)). Wefirst vectorized both NL-wFC and LIN-wFC. We then
removed the linear relationship between NL-wFC and LIN-wFC using
aregression-based method and reshaped the vector of residuals into
avxvFCmatrix:

ENLysc = vec™! (vec (NLype) — @ x vec (LINyrce)) (3)

where

2

min ) ((vec (NLyrc)); — (vec (LINyrc)),)?
T =

We treated the estimation of @ as an ordinary least-squares prob-
lem by finding the value of a that minimized the sum of squared errors
between NL-wFC and LIN-wFC. Thus, here we define the ENL-wFC for
a given subject as the NL-wFC information with the linear effect of
LIN-wFC removed. For each subject, the goodness of fit of the lin-
ear model was evaluated via the coefficient of determination (R?). To
assess the difference in R* between HC and SZ cohorts, we used a gen-
eral linear model (GLM) to remove the effect of confounding factors
commonly reported in psychosis studies, including age, sex, site and
motion (mean framewise displacement), on the goodness-of-fit data,
and we subsequently conducted a two-sided permutation test with
5,000 random permutations (Krol, 2023; https://github.com/Irkrol/
permutationTest)”.

ExtractingICNs

We used the Group ICA of the fMRI Toolbox (GIFT v4.0; http://trend-
scenter.org/software/gift)’” toimplement connectivity-domain ICA®
and obtain separate sets of group-level networks from the LIN-wFC
and ENL-wFC data. The implementation of gr-sICA was preceded by
aninitial subject-level, multi-power iteration’®, principal component
analysis step to reduce dimensionality and denoise the data’. The 30
principal components that explained the maximum variance of each
subject’s respective LIN-wFC and ENL-wFC were retained for further
analysis. Subject-level principal components from each estimator were
concatenated across the component dimension, and a group-level
principal component analysis step was applied to further reduce the
dimensionality of the data and decrease the computational demands
of gr-sICA™. The 20 group-level principal components that explained
the maximum variance of each estimator-specific dataset were used
as the input for gr-sICA. We selected a gr-sICA model order of 20 to
obtain large-scale functional networks**®’. To ensure the reliability of
our results, ICA was implemented via the Infomax optimization algo-
rithm®100 times, with both randominitialization and bootstrapping,
and the most stable runwas selected for further analysis. We evaluated
thereliability and quality of ENL and LIN components using the ICASSO
quality index (IQ), which quantifies component stability across runs®.
To assess the difference in stability between ENL and LIN components,
we conducted atwo-sided permutation test with 5,000 random permu-
tations on the 1Q data. Assessing component reliability was anecessary
step, as previous work has demonstrated that certain components may
be inconsistently extracted from the data of interest®. In the context
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of fMRI network estimation, ICASSO 1Q is often used to differentiate
reliable components from components that are unstable and unfit for
further analysis®®. A component was identified as an ICN if and only if
(1)itexhibited an ICASSO IQ value exceeding 0.80, (2) it exhibited high
visual overlap withgray matter, (3) it exhibited peak weight within gray
matter, and (4) it exhibited low visual similarity to motion, ventricular
and other known artefacts. To find corresponding networks, the spatial
correlation value was computed between every pair of extracted LIN
and ENL components, and components were matchedin agreedy fash-
ion.ICNs matched withaspatial correlation value exceeding 0.80 were
classified as common® and were labeled based on their neuroanatomi-
cal distributions and the identification of ICNs from previous studies®.
Networks exhibiting a maximum spatial correlation of less than 0.40
were classified as unique. We used the Group ICA of fMRI Toolbox
(GIFT v4.0) to implement group information-guided ICA (GIG-ICA)®
andreconstruct subject-specific networks from subject-level principal
components using the group-level spatial references.

Assessment of spatial variation among corresponding ICNs

To assess differences in spatial variation between matched networks,
we conducted voxel-wise, two-sided, paired-samples t-tests on their
Z-scored subject-level estimates. For a given matched network pair,
statistical comparisons were masked for voxels exceeding Z=1.96
(P=0.05) ineither group-level map (LIN or ENL), and the false discov-
ery rate (FDR)®** method was used to correct for multiple compari-
sons (g < 0.05). The robustness of the voxel-wise t-test procedure was
assessed viacomparison to the results of voxel-wise two-sided permuta-
tion tests with 5,000 random permutations for the pDM network. The
automated anatomical labeling atlas 3 (AAL3)® was used to localize
clusters of significant voxels to anatomically defined brain regions.

Assessment of ICN differences between HC and SZ

To assess the differences between HC and SZ, we conducted voxel-wise,
independent-samples t-tests between the estimates of common and
unique networks derived from each cohort. We first used a GLM to
remove the effects of confounding factors such as age, sex, site and
motion (mean framewise displacement) on Z-scored subject-level
network estimates. Voxel-wise, two-sided, independent-samples ¢-tests
were then conducted on the residual spatial maps derived from the
HC and SZ groups. Statistical comparisons between common net-
works were masked for voxels exceeding Z=1.96 (P= 0.05) ineither of
the group-level maps (LIN or ENL), and unique network comparisons
were masked for voxels exceeding the same threshold in the unique
group-level map. The FDR* method was used to correct for multiple
comparisons (g < 0.05). For both ENL and LIN, the robustness of the
voxel-wise t-test procedure was assessed viacomparison to the results
of voxel-wise, two-sided permutation tests with 5,000 random per-
mutations for the pDM network. The AAL3% atlas was used to localize
clusters of significant voxels to anatomically defined brain regions. A
two-sided McNemar’s test was used to assess the overall ENL versus
LIN difference in statistical sensitivity (across all voxels belonging to
commonly classified networks), and differences in statistical sensitivity
for matched network pairs were investigated separately using either
two-sided McNemar's tests or exact binomial tests (for n < 25).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this Article.

Data availability

Contact information and resources for obtaining further details for
the private datasets utilized in the present study are as follows. COBRE:
Vince D. Calhoun (vcalhoun@gsu.edu), Tri-Institutional Center for
Translational Research in Neuroimaging and Data Science (TReNDS),
Atlanta, GA, USA*. FBIRN: Theo G. M. van Erp (tvanerp@hs.uci.edu),

Clinical Translational Neuroscience Laboratory, Department of Psy-
chiatry and Human Behavior, University of California, Irvine, CA, USA®.
MPRC: Peter Kochunov (ms.psychiatry@uth.tmc.edu), Department of
Psychiatry and Behavioral Science, University of Texas Health Science
Center Houston, Houston, TX*.

Code availability

Preprocessing and data analysis were conducted primarily within the
MATLAB software environment mainly using MATLAB 9.9.0.1857802
(R2020b) Update 7, the Statistical Parametric Mapping toolbox (SPM
12), the FMRIB software library (FSLv6.0), the Group ICA of fMRI tool-
box (GIFT v4.0) and RStudio (R v4.1.2). MATLAB R2020b can be down-
loaded from https://www.mathworks.com. The FSL v6.0 toolbox can
be downloaded from https://fsl.fmrib.ox.ac.uk/fsl/fslwiki. The SPM 12
toolbox canbe downloaded from https://www.fil.ion.ucl.ac.uk/spm/.
GIFT v4.0 canbe downloaded from https://trendscenter.org/software/
gift/.Rv4.1.2canbe downloaded from https://cran.r-project.org/. The
samplescripts utilized for dual code data visualization® can be down-
loaded from https://trendscenter.org/x/datavis/. The permutation test
function utilized for statistical randomization analyses (Krol, 2023)"”’
canbe downloaded from https://github.com/Irkrol/permutationTest/.
TheR package used to balance HC and SZ cohorts for confounding fac-
tors and assess differences using Abadie-Imbens standard errors® can
be downloaded from https://CRAN.R-project.org/package=Matching.
The MATLAB function used to calculate ENL-wFC can be downloaded
from https://github.com/trendscenter/calc_ENLWFC. Other MATLAB
code used for this study can be obtained from the corresponding
authors upon reasonable request.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection. The present study was based on referenced datasets.

Data analysis Preprocessing and data analysis were conducted primarily within the MATLAB software environment mainly using MATLAB 9.9.0.1857802
(R2020b) Update 7, the Statistical Parametric Mapping toolbox (SPM 12), the FMRIB software library (FSL v6.0), the Group ICA of fMRI toolbox
(GIFT v4.0), and RStudio (R v4.1.2).
MATLAB R2020b can be downloaded from https://www.mathworks.com.
The FSL v6.0 toolbox can be downloaded from https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.

The SPM 12 toolbox can be downloaded from https://www fil.ion.ucl.ac.uk/spm/.

GIFT v4.0 can be downloaded from https://trendscenter.org/software/gift/.
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Rv4.1.2 can be downloaded from https://cran.r-project.org/.

The sample scripts utilized for dual code data visualization (Allen et al., 2012; https://doi.org/10.1016/j.neuron.2012.05.001) can be
downloaded from https://trendscenter.org/x/datavis/.

The permutation test function utilized for statistical randomization analyses (Krol, 2023) can be downloaded from https://github.com/Irkrol/
permutationTest/.




The R package used to balance healthy control (HC) and schizophrenia (SZ) cohorts for confounding factors can be downloaded from https://
CRAN.R-project.org/package=Matching.
Other MATLAB code used for this study can be obtained from the corresponding authors.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Contact information and resources for obtaining further details for the private datasets utilized in the present study are listed as follows:

COBRE: Vince D. Calhoun (vcalhoun@gsu.edu), Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, USA
(Aine et al., 2017; https://doi.org/10.1007/s12021-017-9338-9)

FBIRN: Theo G. M. van Erp (tvanerp@hs.uci.edu), Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of
California, Irvine, CA, USA
(Keator et al., 2016; https://doi.org/10.1016/j.neuroimage.2015.09.003)

MPRC: Peter Kochunov (ms.psychiatry@uth.tmc.edu), Department of Psychiatry and Behavioral Science, University of Texas Health Science Center Houston,

Houston, TX
(Adhikari et al., 2019; https://doi.org/10.1002/hbm.24723)

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Our findings apply to both male and female sexes. For each referenced dataset (COBRE, FBIRN, and MPRC), sex was based on
self-reported demographic assessment. For the present study, we sought to assess differences between aggregated HC and
SZ cohorts. Therefore, we used a general linear model (GLM) approach to control for sex as a covariate in all between-
subjects analyses.

Population characteristics Case (SZ) / Control (HC):
193 /315

Age (years) mean / standard deviation / median / range (minimum - maximum):
38.48/12.94/39/(13-68)

Sex (female / male):
169 /339

Race (mixed American (AMR) / European (EUR) / African (AFR) / other):
109/304/90/5

Recruitment The resting-state fMRI data analyzed in this study was sourced from three case-control psychosis projects: Center for
Biomedical Research Excellence (COBRE), Functional Imaging Biomedical Informatics Research Network (FBIRN), and
Maryland Psychiatric Research Center (MPRC).

COBRE individuals with schizophrenia (SZ) were recruited from the Raymond G. Murphy Veterans Affairs Medical Center and
from psychiatric clinics in metropolitan Albuguerque, New Mexico (Aine et al., 2017). SZ individuals received a diagnosis of
schizophrenia performed in consensus by two research psychiatrists via the Structured Clinical Interview for DSM-IV Axis |
Disorders (SCID) using the patient version of the SCID-DSM-IV-TR. SZ subjects were evaluated for comorbidities and for
retrospective as well as prospective clinical stability. Additional exclusion criteria were as follows: history of neurological
disorder, head trauma with loss of conscious exceeding five minutes, mental retardation, or history of active substance
dependence or abuse (except nicotine). Healthy control (HC) individuals from the same geographic location were recruited
via Institutional Review Board-approved advertisements and completed the SCID-Non-Patient Edition to exclude individuals
with Axis | conditions (Aine et al., 2017). Additional exclusion criteria were as follows: current or past psychiatric disorder
with the exception of one lifetime major depressive episode, head trauma with loss of conscious exceeding five minutes,
recent history of substance abuse or dependence, occurrence of depression or antidepressant use within the past 6 months,
history of antidepressant use exceeding one year, and history of psychotic disorder in any first-degree relative. Individuals did
not smoke for at least one hour prior to scanning.

FBIRN individuals were recruited across seven different sites within the United States (Damaraju et al., 2014; https://
doi.org/10.1016/j.nicl.2014.07.003). SZ individuals were diagnosed with schizophrenia based on the SCID-DSM-IV-TR and
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were clinically stable and on antipsychotic medication for at least two months prior to scanning. Exclusion criteria for
individuals were as follows: history of major medical illness, MRI contraindications, poor vision with MRI-compatible
corrective lenses, |Q under 75, current substance abuse disorder or a history of drug dependence in the last 5 years,
extrapyramidal symptoms (for SZ individuals), and current or past history of major neurological or psychiatric illness (SCIS-I/
NP) or first-degree relative with Axis | psychotic disorder (for HC).

MPRC individuals with SZ were recruited from outpatient clinics at the Maryland Psychiatric Research Center and mental
health clinics in the greater Baltimore area between 2004 and 2016, and HC individuals were recruited via advertisements in
the same geographic location (Adhikari et al., 2019). For SZ individuals, a diagnosis of schizophrenia was confirmed via the
SCID-DSM-IV. Exclusion criteria for SZ individuals were as follows: major medical or neurological illness, history of head
trauma with cognitive sequelae, and diagnosis of intellectual disability. HC exclusion criteria included a past or present
diagnosis of DSM-IV Axis | disorder or family history of psychosis in two prior generations.

Case and control participants were compensated for interviews, scan sessions, and assessments conducted during the
referenced studies.

Ethics oversight Subjects provided informed written consent as required and approved by the Institutional Review Boards (IRBs) of the
corresponding institutions as follows:
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COBRE: participants gave written informed consent as required and approved by the IRB of the University of New Mexico
(Aine et al., 2017).

FBIRN: participants gave written informed consent as required and approved by the IRBs of the University of California Irvine,
the University of California Los Angeles, the University of California San Francisco, Duke University, University of North

Carolina, University of New Mexico, University of lowa, and University of Minnesota (Damaraju et al., 2014).

MPRC: participants gave written informed consent as required and approved by the IRB of the University of Maryland,
Baltimore (Adhikari et al., 2019).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size This study was conducted on resting-state fMRI data collected from three large multi-site datasets. After quality control criteria were used for
subject exclusion, the final subject pool included 315 HC and 193 SZ (n = 508).

Data exclusions  The following subject quality control criteria (Iraji et al., 2023; https://doi.org/10.1002/hbm.26472) were used for the current study: 1)
completeness of demographic information, 2) availability of T1 structural MR, 3) availability of genomic information, 4) maximum head
rotation less than 3°, 5) maximum translation less than 3 mm, 6) mean framewise displacement (FD) less than 0.25, 7) quality registration to
an echo-planar imaging template, 8) whole-brain (in addition to the top ten and bottom ten slices) spatial overlap between the subject mask
and group mask greater than 80%, and 9) removal of duplicate subjects.

Replication No replication analysis was conducted for the present study.

Randomization  Participants were organized into case and control groups based on SZ diagnosis (see Recruitment). Between-subjects analyses controlled for
covariates including age, sex, site, and motion (mean framewise displacement) using a GLM approach.

The independent component analysis (ICA) approach to network estimation included a bootstrapped randomization protocol for each FC
metric-specific analysis to ensure component reliability across runs. For the unique ENL ICN validation protocol, ICA was conducted on subsets
of 80% of subjects drawn from the total subject pool with five bootstrapped runs per analysis. Statistical randomization (permutation) tests
were conducted with 5000 random permutations to assess differences in goodness-of-fit between HC and Sz, differences in estimation
reliability between ENL and LIN components, and the robustness of voxel-wise t-tests.

Blinding No blinding procedure was conducted for the present analysis of the referenced datasets.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms

Clinical data

XXX XXX s
OoOoOood

Dual use research of concern

Magnetic resonance imaging

Experimental design

Design type Resting-state fMRI
Design specifications No task-based fMRI data were included in the present study

Behavioral performance measures  No task-based fMRI data were included in the present study

Acquisition
Imaging type(s) Functional
Field strength 3T

Sequence & imaging parameters COBRE data were collected at a single site on a Siemens TIM Trio scanner via an echo-planar imaging sequence (TR =
2000 ms; TE = 29 ms) (Iraji et al., 2022; https://doi.org/10.1162/netn_a_00196). Voxel spacing was 3.75 x 3.75 x 4.5
mm, the slice gap was 1.05 mm, and the field of view (FOV) was 240 x 240 mm. FBIRN data were collected from seven
sites (Turner et al., 2013; https://doi.org/10.3389/fnins.2013.00137), with six sites utilizing Siemens TIM Trio scanners
and one utilizing a General Electric Discovery MR750 (Iraji et al., 2022). All seven sites used an echo-planar imaging
sequence (TR = 2000 ms; TE = 30 ms). Original voxel spacing was 3.4375 x 3.4375 x 4 mm, the slice gap was 1 mm, and
the FOV was 220 x 220 mm. MPRC data were collected from three sites via echo-planar imaging sequences (Iraji et al.,
2022). One site used a Siemens Allegra scanner (TR = 2000 ms; TE = 27 ms; voxel spacing = 3.44 x 3.44 x 4 mm; FOV =
220 x 220 mm), another used a Siemens TIM Trio scanner (TR = 2210 ms; TE = 30 ms; voxel spacing = 3.44 x 3.44 x 4
mm; FOV =220 x 220 mm), and the third site used a Siemens TIM Trio scanner (TR = 2000 ms; TE = 30 ms; voxel spacing
=1.72x1.72 x4 mm; FOV =220 x 220 mm).

Area of acquisition COBRE field of view (FOV): 240 x 240 mm; FBIRN FOV: 220 x 220 mm (all sites); MPRC FOV: 220 x 220 mm (all sites)

Diffusion MRI [ ] used Not used

Preprocessing

Preprocessing software MATLAB, FSL V6.0, SPM 12

Normalization Nonlinear

Normalization template EPI template

Noise and artifact removal Preprocessing was performed primarily within the MATLAB software environment using Statistical Parametric Mapping

(SPM12; http://www.fil.ion.ucl.ac.uk/spm/) and the FMRIB Software Library (FSL v6.0; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki).
Preprocessing steps included 1) rigid body motion and slice timing correction, 2) nonlinear warping to Montreal Neurological
Institute (MNI) 152 coordinate space, 3) spatial resampling to 3 mm isotropic voxel spacing, 4) spatial smoothing with a 6 mm
full width at half maximum (FWHM) Gaussian kernel, 5) head motion regression, detrending, despiking, low pass filtering, 6)
temporal resampling to TR = 2000 ms, and finally 7) voxel time series Z-scoring to normalize variance.

After the implementation of group-level ICA, components were screened and considered to be artifactual if they exhibited an
ICASSO 1Q.value less than .80, 2) exhibited low visual overlap with gray matter, 3) exhibited peak weight outside of white
matter, and 4) exhibited high visual similarity to motion, ventricular, and other known artifacts (Iraji et al., 2023). The subject-
level components corresponding to the non-artifactual group-level components were used for further analysis.

Volume censoring The following subject quality control criteria (Iraji et al., 2023) were used for the current study: 1) completeness of
demographic information, 2) availability of T1 structural MR, 3) availability of genomic information, 4) maximum head
rotation less than 3°, 5) maximum translation less than 3 mm, 6) mean framewise displacement (FD) less than 0.25, 7) quality
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registration to an echo-planar imaging template, 8) whole-brain (in addition to the top ten and bottom ten slices) spatial
overlap between the subject mask and group mask greater than 80%, and 9) removal of duplicate subjects.

Statistical modeling & inference

Model type and settings Independent component analysis (ICA), univariate parametric and non-parametric analysis, multivariate modeling to balance
HC and SZ cohorts for covariates.

Effect(s) tested No task-based fMRI data were analyzed. The present study tested for the effect of SZ diagnosis on regression of nonlinear
whole-brain functional connectivity (NL-wFC) on linear whole-brain functional connectivity (LIN-wFC) goodness-of-fit, effect
of explicitly nonlinear (ENL) vs. linear (LIN) connectivity metrics on independent component analysis component estimation
reliability (ICASSO 1Q), effect of ENL vs. LIN on intrinsic connectivity network (ICN) voxel weight, effect of SZ diagnosis on ENL
ICN voxel weight, and effect of SZ diagnosis on LIN ICN voxel weight. We considered age, sex, site, and motion (mean
framewise displacement) to be confounding factors and used a GLM approach to account for their effects in all between-
subjects statistical analyses.

Specify type of analysis: [ | Whole brain [ | ROI-based ~ [X] Both
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Statistic type for inference
(See Eklund et al. 2016)

Correction

Anatomical location(s)

Voxel-wise

We used the Group ICA of fMRI Toolbox (GIFT v4.0; http://trendscenter.org/software/gift) to implement
connectivity domain ICA (lIraji et al., 2016; https://doi.org/10.1016/j.neuroimage.2016.04.006) and obtain
separate sets of group-level brain networks from linear whole-brain functional connectivity (LIN-wFC) and
explicitly nonlinear whole-brain functional connectivity (ENL-wFC) data. The implementation of group-
level spatial independent component analysis (gr-sICA) was preceded by an initial subject-level multi-
power iteration (Rachakonda et al., 2016; https://doi.org/10.3389/fnins.2016.00017) principal
component analysis step to reduce dimensionality and denoise the data (Erhardt et al., 2011; https://
doi.org/10.1002/hbm.21170). The 30 principal components that explained the maximum variance of
each subject’s respective LIN-wFC and ENL-wFC were retained for further analysis. Subject-level principal
components from each estimator were concatenated across the component dimension, and a group-
level principal component analysis step was applied to further reduce the dimensionality of the data and
decrease the computational demands of gr-sICA (Calhoun et al., 2009; https://doi.org/10.1016/
j.neuroimage.2008.10.057). The 20 group-level principal components that explained the maximum
variance of each estimator-specific data set were used as the input for gr-sICA. We selected a gr-sICA
model order of 20 to obtain large-scale functional networks (Iraji et al., 2016; Ray et al., 2013; https://
doi.org/10.3389/fnins.2013.00237). To ensure the reliability of our results, ICA was implemented via the
Infomax optimization algorithm (Bell & Sejnowski, 1995; https://doi.org/10.1162/neco.1995.7.6.1129)
100 times with both random initialization and bootstrapping, and the most stable run was selected for
further analysis. We evaluated the reliability and quality of ENL and LIN components using the ICASSO
quality index (1Q), which quantifies component stability across runs (Himberg et al., 2004; https://
doi.org/10.1016/j.neuroimage.2004.03.027). To assess the difference in stability between ENL and LIN
components, we conducted a two-sided permutation test with 5000 random permutations on the 1Q
data. Assessing component reliability was a necessary step, as previous work demonstrates that certain
components may be inconsistently extracted from the data of interest (Himberg et al., 2004). In the
context of fMRI network estimation, ICASSO 1Q is often used to differentiate reliable components from
components that are unstable and unfit for further analysis (Iraji et al., 2019; https://doi.org/10.1002/
hbm.24580). A component was identified as an ICN if and only if 1) it exhibited an ICASSO 1Q value
exceeding .80, 2) it exhibited high visual overlap with gray matter, 3) it exhibited peak weight within gray
matter, and 4) it exhibited low visual similarity to motion, ventricular, and other known artifacts. To find
spatially corresponding networks, the spatial correlation value was computed between every pair of
extracted LIN and ENL components, and components were matched in a greedy fashion. ICNs matched
with a spatial correlation value exceeding .80 were classified as common (lIraji et al., 2023) and were
labeled based on their neuroanatomical distributions and the identification of ICNs from previous studies
(Iraji et al., 2016). Networks exhibiting maximum spatial correlation less than .40 were classified as
unique. We used the Group ICA of fMRI Toolbox (GIFT v4.0) to implement group information-guided ICA
(GIG-ICA) (Du & Fan, 2013; https://doi.org/10.1016/j.neuroimage.2012.11.008) and reconstruct subject-
specific networks from subject-level principal components using the group-level spatial references.

To assess differences in spatial variation between matched networks, we conducted voxel-wise two-sided
paired samples t-tests on their Z-scored subject-level estimates. For a given matched network pair,
statistical comparisons were masked for voxels exceeding Z = 1.96 (p = .05) in either group-level map (LIN
or ENL), and the False Discovery Rate (FDR) method was used to correct for multiple comparisons (q
<.05) (Benjamini & Hochberg, 1995; http://www.jstor.org/stable/2346101). The robustness of the voxel-
wise t-test procedure was assessed via comparison to the results of voxel-wise two-sided permutation
tests with 5000 random permutations for the posterior default mode (pDM) network. The automated
anatomical labeling atlas 3 (AAL3) (Rolls et al., 2020; https://doi.org/10.1016/j.neuroimage.2019.116189)
was used to localize clusters of significant voxels to anatomically defined brain regions.

To assess differences between HC and SZ, we conducted voxel-wise two-sided independent samples t-
tests between the estimates of common and unique networks derived from each cohort. We first used a
GLM to remove the effect of confounding factors including age, sex, site, and motion (mean framewise
displacement) on Z-scored subject-level network estimates. Voxel-wise independent samples two-sided t-
tests were then conducted on the residual spatial maps derived from the HC and SZ groups. Statistical
comparisons between common networks were masked for voxels exceeding Z = 1.96 (p = .05) in either of
the group-level maps (LIN or ENL), while unique network comparisons were masked for voxels exceeding
the same threshold in the unique group-level map. The FDR method (Benjamini & Hochberg, 1995) was
used to correct for multiple comparisons (q < .05). The robustness of the voxel-wise t-test procedure was
assessed via comparison to the results of voxel-wise two-sided permutation tests with 5000 random
permutations for the posterior default mode (pDM) network. The AAL3 atlas (Rolls et al., 2020) was used
to localize clusters of significant voxels to anatomically defined brain regions. A two-sided McNemar’s
test was used to assess the overall ENL vs. LIN difference in statistical sensitivity (across all voxels
belonging to commonly classified networks), and differences in statistical sensitivity for matched network
pairs were investigated separately using either two-sided McNemar’s tests or exact binomial tests (for n <
25).

FDR (Benjamini & Hochberg, 1995; http://www.jstor.org/stable/2346101)
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Models & analysis

n/a | Involved in the study
|:| g Functional and/or effective connectivity

IXI D Graph analysis

|:| g Multivariate modeling or predictive analysis

Functional and/or effective connectivity

Multivariate modeling and predictive analysis

Pearson correlation (to construct LIN-wFC), distance correlation (to construct NL-wFC), explicitly nonlinear
whole-brain functional connectivity (ENL-wFC)

We used the Group ICA of fMRI Toolbox (GIFT v4.0; http://trendscenter.org/software/gift) to implement
connectivity domain ICA (Iraji et al., 2016) and obtain separate sets of group-level brain networks from linear
whole-brain functional connectivity (LIN-wFC) and explicitly nonlinear whole-brain functional connectivity
(ENL-wFC) data. The implementation of group-level spatial independent component analysis (gr-sICA) was
preceded by an initial subject-level multi-power iteration (Rachakonda et al., 2016) principal component
analysis step to reduce dimensionality and denoise the data (Erhardt et al., 2011). The 30 principal
components that explained the maximum variance of each subject’s respective LIN-wFC and ENL-wFC were
retained for further analysis. Subject-level principal components from each estimator were concatenated
across the component dimension, and a group-level principal component analysis step was applied to further
reduce the dimensionality of the data and decrease the computational demands of gr-sICA (Calhoun et al.,
2009). The 20 group-level principal components that explained the maximum variance of each estimator-
specific data set were used as the input for gr-sICA. We selected a gr-sICA model order of 20 to obtain large-
scale functional networks (Iraji et al., 2016; Ray et al., 2013). To ensure the reliability of our results, ICA was
implemented via the Infomax optimization algorithm (Bell & Sejnowski, 1995) 100 times with both random
initialization and bootstrapping, and the most stable run was selected for further analysis. We evaluated the
reliability and quality of ENL and LIN components using the ICASSO quality index (1Q), which quantifies
component stability across runs (Himberg et al., 2004). To assess the difference in stability between ENL and
LIN components, we conducted a two-sided permutation test with 5000 random permutations on the IQ
data. Assessing component reliability was a necessary step, as previous work demonstrates that certain
components may be inconsistently extracted from the data of interest (Himberg et al., 2004). In the context
of fMRI network estimation, ICASSO IQ is often used to differentiate reliable components from components
that are unstable and unfit for further analysis (Iraji et al., 2019). A component was identified as an ICN if and
only if 1) it exhibited an ICASSO 1Q value exceeding .80, 2) it exhibited high visual overlap with gray matter, 3)
it exhibited peak weight within gray matter, and 4) it exhibited low visual similarity to motion, ventricular,
and other known artifacts. To find spatially corresponding networks, the spatial correlation value was
computed between every pair of extracted LIN and ENL components, and components were matched in a
greedy fashion. ICNs matched with a spatial correlation value exceeding .80 were classified as common (Iraji
et al., 2023) and were labeled based on their neuroanatomical distributions and the identification of ICNs
from previous studies (Iraji et al., 2016). Networks exhibiting maximum spatial correlation less than .40 were
classified as unique. We used the Group ICA of fMRI Toolbox (GIFT v4.0) to implement group information-
guided ICA (GIG-ICA) (Du & Fan, 2013) and reconstruct subject-specific networks from subject-level principal
components using the group-level spatial references.

For the supplementary analysis of balanced HC and SZ cohorts, we used multivariate genetic matching with
replacement (Sekhon et al., 2011; https://doi.org/10.18637/jss.v042.i07) to balance cohorts for confounding
factors including age, sex, site, and motion (mean framewise displacement).
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