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Abstract

Diffusion Models (DMs) have exhibited superior perfor-
mance in generating high-quality and diverse images. How-
ever, this exceptional performance comes at the cost of ex-
pensive architectural design, particularly due to the atten-
tion module heavily used in leading models. Existing works
mainly adopt a retraining process to enhance DM efficiency.
This is computationally expensive and not very scalable. To
this end, we introduce the Attention-driven Training-free
Efficient Diffusion Model (AT-EDM) framework that lever-
ages attention maps to perform run-time pruning of redun-
dant tokens, without the need for any retraining. Specifi-
cally, for single-denoising-step pruning, we develop a novel
ranking algorithm, Generalized Weighted Page Rank (G-
WPR), to identify redundant tokens, and a similarity-based
recovery method to restore tokens for the convolution oper-
ation. In addition, we propose a Denoising-Steps-Aware
Pruning (DSAP) approach to adjust the pruning budget
across different denoising timesteps for better generation
quality. Extensive evaluations show that AT-EDM per-
forms favorably against prior art in terms of efficiency
(e.g., 38.8% FLOPs saving and up to 1.53× speed-up over
Stable Diffusion XL) while maintaining nearly the same
FID and CLIP scores as the full model. Project webpage:
https://atedm.github.io.

1. Introduction
Diffusion Models (DMs) [9, 29] have revolutionized com-
puter vision research by achieving state-of-the-art perfor-
mance in various text-guided content generation tasks, in-
cluding image generation [28], image editing [12], super
resolution [17], 3D objects generation [27], and video gen-
eration [10]. Nonetheless, the superior performance of DMs
comes at the cost of an enormous computation budget. Al-
though Latent Diffusion Models (LDMs) [28, 34] make
text-to-image generation much more practical and afford-
able for normal users, their inference process is still too
slow. For example, on the current flagship mobile phone,

*Work was partly done during an internship at Adobe.
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generating a single 512px image requires 90 seconds [19].

To address this issue, numerous approaches geared at ef-
ficient DMs have been introduced, which can be roughly
categorized into two regimes: (1) efficient sampling strat-
egy [24, 30] and (2) efficient model architecture [19, 38].
While efficient sampling methods can reduce the number of
denoising steps, they do not reduce the memory footprint
and compute cost for each step, making it still challeng-
ing to use on devices with limited computational resources.
On the contrary, an efficient architecture reduces the cost
of each step and can be further combined with sampling
strategies to achieve even better efficiency. However, most
prior efficient architecture works require retraining of the
DM backbone, which can take thousands of A100 GPU
hours. Moreover, due to different deployment settings on
various platforms, different compression ratios of the back-
bone model are required, which necessitate multiple retrain-
ing runs later. Such retraining costs are a big concern even
for large companies in the industry.

To this end, we propose the Attention-driven Training-
free Efficient Diffusion Model (AT-EDM) framework,
which accelerates DM inference at run-time without any
retraining. To the best of our knowledge, training-free ar-
chitectural compression of DMs is a highly uncharted area.
Only one prior work, Token Merging (ToMe) [1], addresses
this problem. While ToMe demonstrates good performance
on Vision Transformer (ViT) acceleration [2], its perfor-
mance on DMs still has room to improve. To further en-
rich research on training-free DM acceleration, we start our
study by profiling the floating-point operations (FLOPs)
of the state-of-the-art model, Stable Diffusion XL (SD-
XL) [26], through which we find that attention blocks are
the dominant workload. In a single denoising step, we thus
propose to dynamically prune redundant tokens to accel-
erate attention blocks. We pioneer a fast graph-based al-
gorithm, Generalized Weighted Page Rank (G-WPR), in-
spired by Zero-TPrune [35], and deploy it on attention maps
in DMs to identify superfluous tokens. Since SD-XL con-
tains ResNet blocks, which require a full number of to-
kens for the convolution operations, we propose a novel
similarity-based token copy approach to recover pruned to-
kens, again leveraging the rich information provided by the
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Figure 1. Examples of applying AT-EDM to SD-XL [26]. Compared to the full-size model (top row), our accelerated model (bottom row)
has around 40% FLOPs reduction while enjoying competitive generation quality at various aspect ratios.

attention maps. This token recovery method is critical to
maintaining image quality. We find that naive interpolation
or padding of pruned tokens adversely impacts generation
quality severely. In addition to single-step token pruning,
we also investigate cross-step redundancy in the denoising
process by analyzing the variance of attention maps. This
leads us to a novel pruning schedule, dubbed as Denoising-
Steps-Aware Pruning (DSAP), in which we adjust the prun-
ing ratios across different denoising timesteps. We find
DSAP not only significantly improves our method, but also
helps improve other run-time pruning methods like ToMe
[1]. Compared to ToMe, our approach shows a clear im-
provement by generating clearer objects with sharper details
and better text-image alignment under the same acceleration
ratio. In summary, our contributions are four-fold:

• We propose the AT-EDM framework, which leverages
rich information from attention maps to accelerate pre-
trained DMs without retraining.

• We design a token pruning algorithm for a single de-
noising step. We pioneer a fast graph-based algo-
rithm, G-WPR, to identify redundant tokens, and a novel
similarity-based copy method to recover missing tokens
for convolution.

• Inspired by the variance trend of attention maps across de-
noising steps, we develop the DSAP schedule, which im-
proves generation quality by a clear margin. The schedule
also provides improvements over other run-time acceler-
ation approaches, demonstrating its wide applicability.

• We use AT-EDM to accelerate a top-tier DM, SD-XL, and
conduct both qualitative and quantitative evaluations. No-
ticeably, our method shows comparable performance with
an FID score of 28.0 with 40% FLOPs reduction relative
to the full-size SD-XL (FID 27.3), achieving state-of-the-
art results. Visual examples are shown in Fig. 1.

2. Related Work

Text-to-Image Diffusion Models. DMs learn to reverse
the diffusion process by denoising samples from a normal
distribution step by step. In this manner, the diffusion-based
generative models enable high-fidelity image synthesis with
variant text prompts [4, 9]. However, DMs in the pixel space
suffer from large generation latency, which severely lim-
its their applications [36]. The LDM [28] was the first to
train a Variational Auto-Encoder (VAE) to encode the pixel
space into a latent space and apply the DM to the latent
space. This reduces computational cost significantly while
maintaining generation quality, thus greatly enhancing the
application of DMs. Subsequently, several improved ver-
sions of the LDM, called Stable Diffusion Models (SDMs),
have been released. The most recent and powerful open-
source version is SD-XL [26], which outperforms previous
versions by a large margin. SD-XL is our default backbone
in this work.
Efficient Diffusion Models. Researchers have made enor-
mous efforts to make DMs more efficient. Existing efficient
DMs can be divided into two types:
(1) Efficient sampling to reduce the required number of
denoising steps [22, 30–32]. A recent efficient sampling
work [24] managed to reduce the number of denoising steps
to as low as one. It achieves this by iterative distillation,
halving the number of denoising steps each time.
(2) Architectural compression to make each sampling step
more efficient [11, 19, 36, 38]. A recent work [13] removes
multiple ResNet and attention blocks in the U-Net through
distillation. Although these methods can save computa-
tional costs while maintaining decent image quality, they re-
quire retraining of the DM backbone to enhance efficiency,
needing thousands of A100 GPU hours. Thus, a training-
free method to enhance the efficiency of DMs is needed.
Note that our proposed training-free framework, AT-EDM,
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is orthogonal to these efficiency enhancement methods and
can be stacked with them to further improve their efficiency.
We provide corresponding experimental evidence in Sup-
plementary Material.
Training-Free Efficiency Enhancement. Training-free
(i.e., post-training) efficiency enhancement schemes have
been widely explored for CNNs [14, 33, 39] and ViTs
[2, 7, 15, 35]. However, training-free schemes for DMs
are still poorly explored. To the best of our knowledge, the
only prior work in this field is ToMe [1]. It uses token em-
bedding vectors to obtain pair-wise similarity and merges
similar tokens to reduce computational overheads. While
ToMe achieves a decent speed-up when applied to SD-v1.x
and SD-v2.x, we find that it does not help much when ap-
plied to the state-of-the-art DM backbone, SD-XL, whilst
our method achieves a clear improvement over it (see exper-
imental results in Section 4). This is mainly due to (1) the
significant architectural change of SD-XL (see Supplemen-
tary Material); (2) our better algorithm design to identify
redundant tokens.
Exploiting Attention Maps. We aim to design a method
that exploits information present in pre-trained models.
ToMe only uses embedding vectors of tokens and ignores
the correlation between tokens. We take inspiration from
recent image editing works [3, 5, 8, 25], in which attention
maps clearly demonstrate which parts of a generated image
are more important. This inspires us to use the correlations
and couplings between tokens indicated by attention maps
to identify unimportant tokens and prune them. Specifically,
we can convert attention maps to directed graphs, where
nodes represent tokens, without information loss. Based on
this idea, we develop the G-WPR algorithm for token prun-
ing in a single denoising step.
Non-Uniform Denoising Steps. Various existing works
[6, 18, 21, 37] demonstrate that denoising steps contribute
differently to the quality of generated images; thus, it is not
optimum to use uniform denoising steps. OMS-DPM [21]
builds a model zoo and uses different models in different de-
noising steps. It trains a performance predictor to assist in
searching for the optimal model schedule. DDSM [37] em-
ploys a spectrum of neural networks and adapts their sizes
to the importance of each denoising step. AutoDiffusion
[18] employs evolutionary search to skip some denoising
steps and some blocks in the U-Net. Diff-Pruning [6] uses
a Taylor expansion over pruned timesteps to disregard non-
contributory diffusion steps. All existing methods either re-
quire an intensive training/fine-tuning/searching process to
obtain and deploy the desired denoising schedule or are not
compatible with our proposed G-WPR token pruning algo-
rithm due to the U-Net architecture change. On the con-
trary, based on our investigation of the variance of attention
maps across denoising steps, we propose DSAP. Its sched-
ule can be determined via simple ablation experiments and
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Figure 2. U-Net FLOPs breakdown of SD-XL [26] measured with
1024px image generation. Among components of U-Net (convolu-
tion blocks, ResNet blocks, and attention blocks), attention blocks
cost the most.

it is compatible with any token pruning scheme. DSAP can
potentially be migrated to existing efficient DMs to help im-
prove their image quality.

3. Methodology

We start our investigation by profiling the FLOPs of the
state-of-the-art DM, SD-XL, as shown in Fig. 2. Notice-
ably, among compositions of the sampling module (U-Net),
attention blocks, which consist of several consecutive at-
tention layers, dominate the workload for image genera-
tion. Therefore, we propose AT-EDM to accelerate atten-
tion blocks in the model through token pruning. AT-EDM
contains two important parts: a single-denoising-step token
pruning scheme and the DSAP schedule. We provide an
overview of these two parts and then discuss them in detail.

3.1. Overview

Fig. 3 illustrates the two main parts of AT-EDM:

Part I: Token pruning scheme in a single denoising step.
Step 1: We obtain the attention maps from an attention
layer in the U-Net. We can potentially obtain the attention
maps from self-attention or cross-attention. We compare
the two choices and analyze them in detail through ablation
experiments.
Step 2: We use a scoring module to assign an importance
score to each token based on the obtained attention map.
We use an algorithm called G-WPR to assign importance
scores to each token. This is described in Section 3.2.
Step 3: We generate pruning masks based on the calculated
importance score distribution. Currently, we simply use the
top-k approach to determine the retained tokens, i.e., prune
tokens with less importance scores.
Step 4: We use the generated mask to perform token prun-
ing. We do this after the feed-forward layer of attention
layers. We may also perform pruning early before the feed-
forward layers. We provide ablative experimental results
for it in Supplementary Material.
Step 5: We repeat Steps 1-4 for each consecutive attention
layer. Note that we do not apply pruning to the last attention
layer before the ResNet layer.
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Figure 3. Overview of our proposed efficiency enhancement framework AT-EDM. Single-Denoising-Step Token Pruning: (1) We get
the attention map from self-attention. (2) We calculate the importance score for each token using G-WPR. (3) We generate pruning masks.
(4) We apply the masks to tokens after the feed-forward network to realize token pruning. (5) We repeat Steps (1)-(4) for each consecutive
attention layer. (6) Before passing feature maps to the ResNet block, we recover pruned tokens through similarity-based copy. Denoising-
Steps-Aware Pruning Schedule: In early steps, we propose to prune fewer tokens and to have less FLOPs reduction. In later steps, we
prune more aggressively for higher speedup.

Step 6: Finally, before passing the pruned feature map to
the ResNet block, we need to fill (i.e., try to recover) the
pruned tokens. A simple approach is to pad zeros, which
means we do not fill anything. The method that we currently
use is to copy tokens to corresponding locations based on
similarity. This is described in detail in Section 3.2.

Part II: DSAP schedule. Attention maps in early de-
noising steps are more chaotic and less informative than
those in later steps, which is indicated by their low vari-
ance. Thus, they have a weaker ability to differentiate unim-
portant tokens [8]. Based on this intuition, we design the
DSAP schedule that prunes fewer tokens in early denoising
steps. Specifically, we select some attention blocks in the
up-sampling and down-sampling stages and leave them un-
pruned, since they contribute more to the generated image
quality than other attention blocks [19]. We demonstrate the
schedule in detail in Section 3.3.

3.2. Part I: Token Pruning in a Single Step

Notation. Suppose A(h,l) ∈ RM×N is the attention map
of the h-th head in the l-th layer. It reflects the correla-
tions between M Query tokens and N Key tokens. We re-
fer to A(h,l) as A for simplicity in the following discus-
sion. Let Ai,j denote its element in the i-th row, j-th col-

umn. A can be thought of as the adjacency matrix of a
directed graph in the G-WPR algorithm. In this graph, the
set of nodes with input (output) edges is referred to as Φin

(Φout). Nodes in Φin (Φout) represent Key (Query) tokens,
i.e., Φin = {kj}Nj=1 (Φout = {qi}Mi=1). Let stK (stQ) de-
note the vector that represents the importance score of Key
(Query) tokens in the t-th iteration of the G-WPR algorithm.
In the case of self-attention, Query tokens are the same as
Key tokens. Specifically, we let {xi}Ni=1 denote the N to-
kens and s denote their importance scores in the description
of our token recovery method.

The G-WPR Algorithm. WPR [35] uses the attention map
as an adjacency matrix of a directed complete graph. It uses
a graph signal to represent the importance score distribu-
tion among nodes in this graph. This signal is initialized
uniformly. WPR uses the adjacency matrix as a graph op-
erator, applying it to the graph signal iteratively until con-
vergence. In each iteration, each node votes for which node
is more important. The weight of the vote is determined
by its importance in the last iteration. However, WPR, as
proposed in [35], constrains the used attention map to be a
self-attention map. Based on this, we propose the G-WPR
algorithm, which is compatible with both self-attention and
cross-attention, as shown in Algorithm 1. The attention
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from Query qi to Key kj weights the edge from qi to kj
in the graph generated by A. In each iteration of the vanilla
WPR, by multiplying with the attention map, we map the
importance of Query tokens stQ to the importance of Key to-
kens st+1

K , i.e., each node in Φout votes for which Φin node
is more important. For self-attention, st+1

Q = st+1
K since

Query and Key tokens are the same. For cross-attention,
Query tokens are image tokens and Key tokens are text
prompt tokens. Based on the intuition that important im-
age tokens should devote a large portion of their attention to
important text prompt tokens, we define function f(A, sK)
that maps st+1

K to st+1
Q . One entropy-based implementation

is

st+1
Q (qi) = f(A, st+1

K ) =

∑N
j=1 Ai,j · st+1

K (kj)

−
∑N

j=1 Ai,j · lnAi,j

(1)

where Ai,j is the attention from Query qi to Key kj . This
is the default setting for cross-attention-based WPR in the
following sections. We discuss and compare other imple-
mentations in Supplementary Material. Note that for self-
attention, f(A, st+1

K ) = st+1
K . The G-WPR algorithm has

an O(M × N) complexity, where M (N ) is the number
of Query (Key) tokens. We employ this algorithm in each
head and then obtain the root mean square of scores from
different heads (to reward tokens that obtain very high im-
portance scores in a few heads).

Algorithm 1 The G-WPR algorithm for both self-attention
and cross-attention
Require: M,N > 0 is the number of nodes in Φout,Φin; A ∈
RM×N ; sQ ∈ RM , sK ∈ RN ; f(A, sk) maps the importance
of Key to that of Query

Ensure: s ∈ RM represents the importance score of image tokens
s0Q ← 1

M
× eM

t← 0
while (|stQ − st−1

Q | > ϵ) or (t = 0) do
st+1
K ← AT × stQ
st+1
Q ← f(A, st+1

K )

st+1
Q ← st+1

Q /|st+1
Q |

t← t+ 1
end while
s← stQ

Recovering Pruned Tokens. We have fewer tokens after
token pruning, leading to efficiency enhancement. How-
ever, retained tokens form irregular maps and thus cannot
be used for convolution, as shown in Fig. 4. We need to re-
cover the pruned tokens to make them compatible with the
following convolutional operations in the ResNet layer.
(I) Padding Zeros. One straightforward way to do this is
to pad zeros. However, to maintain the high quality of gen-
erated images, we hope to recover the pruned tokens as pre-
cisely as possible, as if they were not pruned.
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Figure 4. Our similarity-based copy method for token recovering
resolves the incompatibility between token pruning and ResNet.
Token pruning incurs the non-square shape of feature maps and
thus is not compatible with ResNet. To address this issue, we pro-
pose similarity-based copy to recover the pruned tokens. It first
averages the attention map across heads and deletes the rows of
pruned tokens to avoid selecting them as the most similar one.
Then, it finds the source of the highest attention received for each
pruned token and copies the corresponding retained tokens for
recovery. After recovering, the tokens can be translated into a
spatially-complete feature map to serve as input to ResNet blocks.

(II) Interpolation. Interpolation methods, such as bicubic
interpolation, are not suitable in this context. To use the in-
terpolation algorithm, we first pad zeros to fill the pruned
tokens and form a feature map of size N × N . Then we
downsample it to N

2 × N
2 and upsample it back to N × N

with the interpolation algorithm. We keep the values of re-
tained tokens fixed and only use the interpolated values of
pruned tokens. Due to the high pruning rates (usually larger
than 50%), most tokens that represent the background get
pruned, leading to lots of pruned tokens that are surrounded
by other pruned tokens instead of retained tokens. Interpo-
lation algorithms assign nearly zero values to these tokens.
(III) Direct copy. Another possible method is to use the
corresponding values before pruning is applied (i.e., before
being processed by the following attention layers) to fill
the pruned tokens. The problem with this method is that
the value distribution changes significantly after being pro-
cessed by multiple attention layers, and copied values are
far from the values of these tokens if they are not pruned
and are processed by the following attention layers.

To avoid the effect of distribution shift, we propose the
similarity-based copy technique, as shown in Fig. 4. In-
stead of copying values that are not processed by attention
layers, we select tokens that are similar to pruned tokens
from the retained tokens. We use the self-attention map to
determine the source of the highest attention received for
each pruned token and use that as the most similar one. This
is based on the intuition that attention from token xa to to-
ken xb, Aa,b, is determined by two factors: (1) importance

5



Va
ria
nc
e

Step

Region I Region II Region III Region IV

Figure 5. Variance of attention maps in different denoising steps.
We divide the denoising steps into four typical regions: (I) Very-
early steps: Variance of attention maps is small and increases
rapidly. (II) Mid-early steps: Variance of attention maps is large
and increases slowly. (III) Middle steps: Variance of attention
maps is large and almost constant. (IV) Last several steps.

of token xb, i.e., s(xb), and (2) similarity between token xa

and xb. If we observe the attention that xb receives, i.e.,
compare {Ai,b}i∈N , since s(xb) is fixed, index i = η that
maximizes {Ai,b}i∈N is the index of the most similar to-
ken, i.e., xη . Finally, we copy the value of token xη to fill
(i.e., recover) the pruned token xb.

3.3. Part II: Denoising-Steps-Aware Pruning

Early denoising steps determine the layout of generated im-
ages and, thus, are crucial. On the contrary, late denoising
steps aim at refining the generated image, natively including
redundant computations since many regions of the image do
not need refinement. In addition, early denoising steps have
a weaker ability to differentiate unimportant tokens, and late
denoising steps yield informative attention maps and differ-
entiate unimportant tokens better. To support this claim, we
investigate the variance of feature maps in different denois-
ing steps, as shown in Fig. 5. It indicates that attention
maps in early steps are more uniform. They assign similar
attention scores to both important and unimportant tokens,
making it harder to precisely identify unimportant tokens
and prune them in early steps. Based on these intuitions, we
propose DSAP that employs a prune-less schedule in early
denoising steps by leaving some of the layers unpruned.
The Prune-Less Schedule. In SD-XL, each down-stage in-
cludes two attention blocks and each up-stage includes three
attention blocks (except for stages without attention). The
mid-stage also includes one attention block. Each atten-
tion block includes 2-10 attention layers. In our prune-less
schedule, we select some attention blocks to not perform
token pruning. Since previous works [13, 19] indicate that
the mid-stage contributes much less to the generated im-
age quality than the up-stages and down-stages, we do not
select the attention block in the mid-stage. Based on the
ablation study, we choose to leave the first attention block
in each down-stage and the last attention block in each up-
stage unpruned. We use this prune-less schedule for the first
τ denoising steps. We explore setting τ in different regions
shown in Fig. 5 and find τ = 15 is the optimal choice.

We present all the related ablative experimental results in
Section 4.4. A detailed description of the less aggressive
pruning schedule is provided in Supplementary Material.
To further consolidate our intuitions, we also investigate a
more aggressive pruning schedule in early denoising steps
and find it is inferior to our current approach (see Supple-
mentary Material).

4. Experimental Results

In this section, we evaluate AT-EDM and ToMe on SD-XL.
We provide both visual and quantitative experimental re-
sults to demonstrate the advantages of AT-EDM over ToMe.

4.1. Experimental Setup

Common Settings. We implement both our AT-EDM
method and ToMe on the official repository of SD-XL and
evaluate their performance. The resolution of generated im-
ages is 1024×1024 pixels and the default FLOPs budget for
each denoising step is assumed to be 4.1T, which is 38.8%
smaller than that of the original model (6.7T) unless other-
wise noted. The default CFG-scale for image generation is
7.0 unless otherwise noted. We set the total number of sam-
pling steps to 50. We use the default sampler of SD-XL,
i.e., EulerEDMSampler.
AT-EDM. For a concise design, we only insert a pruning
layer after the first attention layer of each attention block
and set the pruning ratio for that layer to ρ. To meet the
FLOPs budget of 4.1T, we set ρ = 63%. For the DSAP
setting, we choose to leave the first attention block in each
down-stage and the last attention block in each up-stage un-
pruned. We use this prune-less schedule for the first τ = 15
denoising steps.
ToMe. The SD-XL architecture has changed significantly
compared to previous versions of SDMs (see Supplemen-
tary Material). Thus, the default setting of ToMe does not
lead to enough FLOPs savings. To meet the FLOPs budget,
it is necessary to use a more aggressive merging setting.
Therefore, we expand the application range of token merg-
ing (1) from attention layers at the highest feature level to all
attention layers, and (2) from self-attention to self-attention,
cross-attention, and the feedforward network. We set the
merging ratio r = 50% to meet the FLOPs budget of 4.1T.
Evaluations. We first compare the generated images with
manually designed challenging prompts in Section 4.2.
Then, we report FID and CLIP scores of zero-shot image
generation on the MS-COCO 2017 validation dataset [20]
in Section 4.3. Tested models generate 1024×1024 px im-
ages based on the captions of 5k images in the validation set.
We provide ablative experimental results and analyze them
in Section 4.4 to justify our design choices. We provide
more implementation details in Supplementary Material.
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“Ultra realistic illustration of an old man cyborg, cyberpunk, sci-fi fantasy”

“close up of mystic dog, like a phoenix, red and blue colors digital”

(a) SD-XL (b) ToMe (d) ToMe(c) Ours (e) Ours (AT-EDM)

“15mm wide-angle lens photo of a rapper in 1990 New York holding a kitten up to the camera”

w/o DSAP w/ DSAP

“A single beam of light enters the room from the ceiling. The beam of light is illuminating an easel. On the 
easel there is a Rembrandt painting of a raccoon.”

Figure 6. Comparing AT-EDM to the state-of-the-art approach, ToMe [2]. While the full-size SD-XL [26] (Col. a) consumes 6.7 TFLOPs,
we compare the accelerated models (Col. b-e) at the same budget of 4.1 TFLOPs. Compared to ToMe, we find that AT-EDM’s token
pruning algorithm provides clearer generated objects with sharper details and finer textures, and a better text-image alignment where it
better retains the semantics in the prompt (see the fourth row). Moreover, we find that DSAP provides better structural layout of the
generated images, which is effective for both ToMe and our approach. AT-EDM combines the novel token pruning algorithm and the
DSAP schedule (Col. e), outperforming the state of the art.

4.2. Visual Examples for Qualitative Analysis

We use manually designed challenging prompts to evalu-
ate ToMe and our proposed AT-EDM framework. The gen-
erated images are compared in Fig. 6. We compare more
generated images in Supplementary Material. Visual exam-
ples indicate that with the same FLOPs budget, AT-EDM
demonstrates better main object preservation and text-
image alignment than ToMe. For instance, in the first ex-

ample, AT-EDM preserves the main object, the face of the
old man, much better than ToMe does. AT-EDM’s strong
ability to preserve the main object is also exhibited in the
second example. ToMe loses high-frequency features of the
main object, such as texture and hair, while AT-EDM retains
them well, even without DSAP. The third example again il-
lustrates the advantage of AT-EDM over ToMe in preserv-
ing the rapper’s face. The fourth example uses a relatively
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Figure 7. FID-CLIP score curves. The used CFG scales are [1.0,
1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 12.0, 15.0]. This figure
is zoomed in to the bottom-right corner to show the comparison
between the best trade-off points. AT-EDM outperforms ToMe by
a clear margin. See complete curves in Supplementary Material.

complex prompt that describes relationships between mul-
tiple objects. ToMe misunderstands ”a Rembrandt painting
of a raccoon” as being a random painting on the easel and
a painting of a raccoon on the wall. On the contrary, the im-
age generated by AT-EDM understands and preserves these
relationships very well, even without DSAP. As a part of
our AT-EDM framework, DSAP is not only effective in AT-
EDM but also beneficial to ToMe in improving image qual-
ity and text-image alignment. When we deploy DSAP in
ToMe, we select corresponding attention blocks to not per-
form token merging, while keeping the FLOPs cost fixed.

4.3. Quantitative Evaluations

FID-CLIP Curves. We explore the trade-off between the
CLIP and FID scores through various Classifer-Free Guid-
ance (CFG) scales. We show the results in Fig. 7. AT-
EDM† does not deploy pruning at the second feature level
(see Supplementary Material). It indicates that for most
CFG scales, AT-EDM not only lowers the FID score but
also results in higher CLIP scores than ToMe, implying that
images generated by AT-EDM not only have better quality
but also better text-image alignment. Specifically, when the
CFG scale equals 7.0, AT-EDM results in [FID, CLIP] =
[28.0, 0.321], which is almost the same as the full-size one
([27.3, 0.323], CFG scale=4.0). For comparison, ToMe
results in [35.3, 0.320] with a CFG scale of 7.0. Thus, AT-
EDM reduces the FID gap from 8.0 to 0.7.
Various FLOPs Budgets. We deploy ToMe and AT-EDM
on SD-XL under various FLOPs budgets and quantitatively
compare their performance in Table 1. The FLOPs cost in
this table refers to the average FLOPs cost of a denoising
step. Table 1 indicates that AT-EDM achieves better im-
age quality than ToMe (lower FID scores) under all FLOPs
budgets. When the FLOPs budget is extremely low (less
than 50% of the full model), ToMe achieves higher CLIP

Table 1. Deploying ToMe and AT-EDM in SD-XL under different
FLOPs budgets. We generate all images with the CFG-scale of
7.0, except for SD-XL†, for which we use a CFG-scale of 4.0.

Model FID CLIP TFLOPs

SD-XL 31.94 0.3284 6.7
SD-XL† 27.30 0.3226 6.7
ToMe-a 58.76 0.2954 2.9

AT-EDM-a 52.00 0.2784 2.9
ToMe-b 40.94 0.3154 3.6

AT-EDM-b 29.80 0.3095 3.6
ToMe-c 35.27 0.3198 4.1

AT-EDM-c 28.04 0.3209 4.1
ToMe-d 32.46 0.3235 4.6

AT-EDM-d 27.23 0.3245 4.5

scores than AT-EDM. When the FLOPs saving is 30-40%,
AT-EDM achieves not only better image quality (lower FID
scores) but also better text-image alignment (higher CLIP
scores) than ToMe. Note that under the same CFG-scale,
AT-EDM achieves a lower FID score than the full-size
model while reducing FLOPs by 32.8%. In the case that
it trades text-image alignment for image quality (via reduc-
ing the CFG scale to 4.0), AT-EDM achieves not only a
lower FID score but also a higher CLIP score than the
full-size model while reducing FLOPs by 32.8%. We pro-
vide more visual examples under various FLOPs budgets in
Supplementary Material.
Latency Analysis. SD-XL uses the Fused Operation (FO)
library, xformers [16], to boost its generation. The Current
Implementation (CI) of xformers does not provide attention
maps as intermediate results; hence, we need to addition-
ally calculate the attention maps. We discuss the sampling
latency for three cases: (I) without FO, (II) with FO un-
der CI, and (III) with FO under the Desired Implementation
(DI), which provides attention maps as intermediate results.
Table 2 shows that with FO, the cost of deploying prun-
ing at the second feature level exceeds the latency reduc-
tion it leads to. Hence, AT-EDM† is faster than AT-EDM.
Fig. 8 shows the extra latency incurred by different pruning
steps shown in Fig. 3. With a negligible quality loss, AT-
EDM achieves 52.7%, 15.4%, 17.6% speed-up in terms
of latency w/o FO, w/ FO under CI, w/ FO under DI, re-
spectively, which outperforms the state-of-the-art work by
a clear margin. We present the memory footprint of AT-
EDM in Supplementary Material.

4.4. Ablation Study

Self-Attention (SA) vs. Cross-Attention (CA). G-WPR
can potentially use attention maps from self-attention (SA-
based WPR) and cross-attention (CA-based WPR). We pro-
vide a detailed comparison between the two implementa-
tions. We visualize their pruning masks and provide gener-
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Table 2. Comparison between sampling latency in different cases.
† means not deploying pruning at the second feature level.

Model SD-XL ToMe AT-EDM AT-EDM†

Ave. FLOPs/step 6.7 T 4.1 T 4.1 T 4.5 T

w/o FO 31.0s 21.0s 20.3s 22.1s
w/ FO under CI 18.0s 17.7s 18.3s 15.6s
w/ FO under DI 18.0s 17.7s 16.3s 15.3s

0 500 1000 1500 2000

Step 1
Step 2
Step 3
Step 4
Step 6

Latecncy (ms)

AT-EDM
AT-EDM†

Figure 8. Latency incurred by different pruning steps shown in
Fig. 3. Measured w/ FO under CI. Note that under DI, the latency
of Step 1 (get the attention map) is eliminated.

(a) SD-XL (b) CA-WPR (c) SA-WPR (d) CA-WPR (e) SA-WPR

Generated Image Pruning Mask 
(Black: Pruned Tokens)

Figure 9. Comparison between different implementations of G-
WPR: CA-based WPR and SA-based WPR. In general, CA-based
WPR may remove too many background tokens, making the back-
ground not recoverable, while SA-based WPR preserves the image
quality better.

ated image examples for a visual comparison in Fig. 9. This
figure indicates that SA-based WPR outperforms CA-based
WPR. The reason is that CA-based WPR prunes too many
background tokens, making it hard to recover the back-
ground via similarity-based copy.
Similarity-based Copy. We provide comparisons between
different methods to fill the pruned pixels in Fig. 10, which
demonstrate the advantages of our similarity-based copy
method. Images generated by bicubic interpolation are
quite similar to those generated by padding zeros because
interpolation usually assigns near-zero values to pruned to-
kens that are surrounded by other pruned tokens and can
hardly recover them. Direct copy means directly copying
corresponding token values before the first pruning layer in
the attention block to recover the pruned tokens, where the
following attention layers do not process the copied values.
Thus, the copied values cannot recover the information in
pruned tokens and even negatively affect the retained to-
kens. On the contrary, similarity-based copy uses attention
maps and tokens that are retained to recover the pruned to-

(a) SD-XL (b) Padding Zeros (c) Bicubic 
Interpolation (d) Direct Copy (e) Similarity-based 

Copy

G
en
er
at
ed
 im
ag
e

Fe
at
ur
e 
m
ap

Figure 10. Different methods to recover the pruned tokens. Zero
padding (Col. b), bicubic interpolation (Col. c), and direct copy
(Col. d) can hardly recover pruned tokens and result in noticeable
image degradation with blurry background (incomplete moon).
On the other hand, similarity-based copy (Col. e) provides better
image quality and keeps the complete moon in the original image.
Better viewed when zoomed in.

(a) SD-XL (b) 0 Step (d) 15 Steps (e) 30 Steps (f) 45 Steps(c) 5 Steps

Figure 11. Comparison between different numbers of early prune-
less steps where 0 step is the same as without DSAP. We find that
pruning less on the first 15 steps achieves the best quality.

kens, providing significantly higher image quality.

Denoising-Steps-Aware Pruning. We explore different de-
sign choices for DSAP.

(1) The prune-less schedule selects one attention block from
each down-stage and up-stage in the U-Net and skips the
token pruning in it. According to ablation results shown
in Supplementary Material, F-L (First-Last) appears to be
the best one, i.e., leaving the first attention block of down-
stages and the last attention block of up-stages unpruned in
early denoising steps.

(2) We then explore how the number of early prune-less de-
noising steps affects the generated image quality in Fig. 11.
Note that we keep the FLOPs budget fixed and adjust the
pruning rate accordingly when we change the number of
prune-less steps. This figure shows that the setting of 15
early prune-less steps provides the best image quality. Note
that the setting of zero prune-less step is identical to the set-
ting without DSAP, and 5, 15, 30, 45 prune-less steps rep-
resents setting the boundary in Region I, II, III, IV of Fig. 5,
respectively. The results indicate that placing the bound-
ary between the prune-less and normal schedule in Region
II performs best. This meets our expectation because the
variance of attention maps becomes high enough to identify
unimportant tokens well in Region II.
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5. Conclusion
In this article, we proposed AT-EDM, a novel framework for
accelerating DMs at run-time without retraining. AT-EDM
has two components: a single-denoising-step token prun-
ing algorithm and a cross-step pruning schedule (DSAP). In
the single-denoising-step token pruning, AT-EDM exploits
attention maps in pre-trained DMs to identify unimportant
tokens and prunes them to accelerate the generation pro-
cess. To make the pruned feature maps compatible with
the latter convolutional blocks, AT-EDM again uses atten-
tion maps to reveal similarities between tokens and copies
similar tokens to recover the pruned ones. DSAP further
improves the generation quality of AT-EDM. We find such
a pruning schedule can also be applied to other methods
like ToMe. Experimental results demonstrate the superior-
ity of AT-EDM with respect to image quality and text-image
alignment compared to state-of-the-art methods. Specifi-
cally, on SD-XL, AT-EDM achieves a 38.8% FLOPs saving
and up to 1.53× speed-up while obtaining nearly the same
FID and CLIP scores as the full-size model, outperforming
prior art.
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Attention-Driven Training-Free Efficiency Enhancement of Diffusion Models

Supplementary Material

The Supplementary Material is organized as follows. We
first provide more implementation details of AT-EDM in
Section A, including a detailed illustration of the SD-XL
backbone. Then, we provide a more comprehensive com-
parison with the state-of-the-art method, ToMe [1], in Sec-
tion B, including an analysis of why ToMe performs worse
on SD-XL [26] than on previous versions of Stable Diffu-
sion Models (SDMs). We provide more ablation results in
Section C to justify our design choices in the main article.
We analyze the memory footprint of AT-EDM in Section
D. AT-EDM is orthogonal to various efficient DM methods,
such as sampling distillation, thus can further boost their ef-
ficiency. To support this claim, we deploy AT-EDM in the
distilled version of SD-XL, SDXL-Turbo1, and show cor-
responding experimental results in Section E. We discuss
limitations and trade-offs of AT-EDM in Section F and po-
tential negative social impacts of AT-EDM in Section G.

A. Implementation Details
In this section, we provide more details of the implementa-
tion of AT-EDM. We first introduce the architecture of our
SD-XL backbone as background material and then describe
our single-step and cross-step pruning schedules in detail.
We describe details of the evaluation and our calibration
block for FLOPs measurement in the end.

A.1. The SD-XL Backbone

The state-of-the-art version of SDM is SD-XL. Compared
with previous versions of SDM, it increases the quality of
generated images significantly. Thus, we select SD-XL as
the backbone model in this article. Specifically, we deploy
AT-EDM and ToMe on SDXL-base-0.9. The architec-
ture has two main differences from that of previous SDMs,
such as SD-v1.5 and SD-v2.1: (1) attention blocks at the
highest feature level (i.e., with the most tokens) are deleted;
(2) attention blocks can potentially include multiple atten-
tion layers (an attention layer is composed of self-attention,
cross-attention, and feed-forward network), such as A2 (in-
cludes 2 attention layers) and A10 (includes 10 attention
layers).

To validate the conclusion that the cost of attention lay-
ers dominates the sampling cost, we investigate the FLOPs
cost of SD-XL. Its FLOPs profile is shown in Fig. 12. This
figure indicates that the attention block dominates the com-
putational cost of all stages that include attention. We also
investigate the scaling law of SD-XL at different genera-
tion resolutions, as shown in Fig. 13. We observe that the

1https://huggingface.co/stabilityai/sd-turbo
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Figure 12. The FLOPs breakdown of SD-XL. Measured with
1024×1024 px image generation.
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Figure 13. The FLOPs breakdown of ResNet blocks and attention
blocks in SD-XL at different image resolutions.

attention block dominates the cost at all resolutions. Note
that the FLOPs cost of attention blocks does not scale much
faster than that of ResNet blocks when the generation res-
olution increases. We believe this is due to the elimination
of attention blocks at the highest feature level and the addi-
tion of attention layers at the lowest feature level, making
the cost of feed-forward layers, which scales linearly with
an increment in token numbers, a huge part of the cost of
attention layers.

A.2. Pruning in a Single Denoising Step

For a concise design, we always insert the pruning layer
after the first attention layer of each attention block. All
the other attention layers in this attention block can benefit
from the reduction in token numbers. We may also insert
multiple pruning layers at various locations in an attention
block, which prunes tokens gradually. However, this re-
quires a more thorough hyperparameter search to ensure a
good balance between FLOPs cost and image quality.
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Figure 14. The U-Net architecture of SD-XL. Residual connections are not shown here for brevity. The example in this figure generates
a 8H × 8W pixel image. The input/output size of each stage is shown in the C × H ×W format, where C is the number of channels;
H and W represent the resolution. There are two attention blocks {F(First), L(Last)} in each downsampling stage and three {F(First),
M(Middle), L(Last)} in each upsampling stage. In the prune-less schedule, we do not apply pruning to attention blocks in the gray
rectangles. Downsampling stage 1, 2, and 3 is at the first, second, and third feature level, respectively. AT-EDM† does not apply pruning
to attention blocks at the second feature level.

A.3. The Prune-Less Schedule

Early denoising steps determine the layout of the generated
images and have a weaker ability to differentiate between
unimportant tokens [8]. Thus, we need heterogeneous de-
noising steps and, hence, use a less aggressive pruning
schedule for some of the early denoising steps.

In the normal pruning setting, when we target 4.1
TFLOPs for each sampling step, we use a pruning rate of
63% (i.e., retain 37% tokens) after the first attention layer
of A2 and A10; in the prune-less schedule, we do not ap-
ply pruning to attention blocks in the gray rectangles shown
in Fig. 14. We validate the choice of not deploying prun-
ing through ablative experimental results shown in the main
article.

A.4. Details of Evaluation

When measuring the FID and CLIP scores on MS-COCO
2017 [20], we deduplicate captions to make sure each im-
age corresponds to a single caption. We center cropped im-
ages in the validation set, resize them to 1024×1024 px,
and use the clean-fid library2 to calculate FID scores.
We use the ViT-G/14 model of Open-CLIP3 to calculate the
CLIP scores of generated images. We set the batch size to 3

2https://github.com/GaParmar/clean-fid/tree/main
3https://github.com/mlfoundations/open clip

when we generate images for visual comparison and quanti-
tative analysis. We run all experiments on a single NVIDIA
A100-40GB GPU.

A.5. Calibration Block for FLOPs Measurement

The popular library for FLOPs measurement, fvcore4,
is not natively compatible with SDMs. Thus, we use
the THOP5 library instead to measure the FLOPs cost of
SDMs. However, we found it does not correctly compute
the FLOPs cost of self-attention. The FLOPs cost of sam-
pling steps given by this library scales linearly as the num-
ber of image tokens. This is unreasonable because the cost
of self-attention in sampling steps scales quadratically when
the number of tokens increases (other parts of a sampling
step scale linearly). After a thorough investigation of the
behavior of THOP, we found it basically does not take the
cost of self-attention into account. Thus, we design a cali-
bration block to supplement the missed term of FLOPs cost
for each attention block:

Fcali = 4×B ×Na × (HW )2 × C (2)

where B is the batch size; Na is the number of attention
layers in this attention block; HW is the number of image

4https://github.com/facebookresearch/fvcore
5https://github.com/Lyken17/pytorch-OpCounter
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Figure 15. Complete FID-CLIP score curves. The used CFG
scales are [1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 12.0, 15.0].

tokens; and C is the number of channels. The factor 4 is
due to the fact that (1) there are two images processed at
the same time for each generated image in a batch (one is
guided by the prompt, and another is not); (2) there are two
Matrix-Matrix Multiplications (MMMs) in self-attention.

B. Comprehensive Comparison with ToMe

In this section, we first analyze why ToMe cannot replicate
on SD-XL its good performance on previous SDMs in Sec-
tion B.1. Then, we provide complete FID-CLIP curves to
compare AT-EDM with ToMe in Section B.2. In the end,
we present cases in which both AT-EDM and ToMe per-
form well and visually compare AT-EDM and ToMe under
various FLOPs budgets in Section B.3.

B.1. Deploying ToMe on SD-XL

For SD-v1.x and SD-v2.x, ToMe maintains the generated
image quality quite well after token merging. However, as
we demonstrate in the main article, ToMe incurs obvious
quality degradation on SD-XL after token merging.

In the default setting of ToMe, it only merges tokens for
attention blocks at the highest feature level and their self-
attention. However, SD-XL eliminates attention blocks at
the highest abstraction level and native ToMe does not do
anything to this backbone. Thus, it is necessary to expand
its merging range to attention blocks at all feature lev-
els. In addition, since SD-XL adds a lot more attention
layers at the lowest feature level, where tokens are signif-
icantly fewer than at higher feature levels, self-attention no
longer dominates the cost of attention layers. Given that
the merging ratio of ToMe has an upper limit of 75%, it is
not enough to only merge tokens for self-attention to meet
the 4.1 TFLOPs budget. Thus, it is necessary to expand
its merging range to Cross-Attention (CA), Self-Attention
(SA), and the Feed-Forward (FF) network. We believe
the expanded deployment range of token merging leads to
the relatively poor performance of ToMe on SD-XL. Note

(a) SD-XL (b) ToMe (c) AT-EDM

Figure 16. Examples on which both AT-EDM and ToMe perform
well. Each row of this figure corresponds to the following typical
cases: (1) simple single main object with a simple background; (2)
multiple main objects; (3) complex single main object; (4) com-
plex scene without a main object.

that to meet the 4.1 TFLOPs budget for each sampling step,
we set the merging ratio to 50% for ToMe under the ex-
panded merging range.

B.2. Complete FID-CLIP Curves

We explore the trade-off between the CLIP and FID scores
through various CFG scales. We show the complete FID-
CLIP curves in Fig. 15. AT-EDM† does not deploy pruning
at the second feature level (as mentioned in the caption of
Fig. 14). This figure illustrates that for most CFG scales,
AT-EDM not only lowers the FID score but also results in
higher CLIP scores than ToMe, implying that images gener-
ated by AT-EDM not only have better quality but also better
text-image alignment.

B.3. More Images from AT-EDM and ToMe

In some cases, ToMe performs fairly well and has its mer-
its. We present several typical examples in Fig. 16. The first
example in the first row represents the case of a simple main
object with a simple background. Both ToMe and AT-EDM
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Figure 17. Comparison between AT-EDM and ToMe under different FLOPs budgets. Note that for Col.e, the average cost of each sampling
step for AT-EDM (ToMe) is 4.52 (4.56) TFLOPs. Prompts are selected from the MS-COCO 2017 validation dataset.

preserve the main object quite well. The second row repre-
sents a more complex case in which there are multiple main
objects in the generated image. Although ToMe loses some
texture details, it preserves the overall layout quite well.
The third row is the case of a typical complex main object,
a human face. In this example, ToMe preserves the face
without artifacts. The last row of this figure demonstrates
the case of generating a complex scene without a main ob-
ject. In this case, both ToMe and AT-EDM can maintain the
layout well while supplementing some details. These exam-
ples show that ToMe is a strong baseline and it is non-trivial

to outperform it.
We also provide visual examples of ToMe and AT-EDM

under different FLOPs budgets in Fig. 17. It indicates that
AT-EDM outperforms ToMe under any FLOPs budget. We
also observe that AT-EDM needs at least 3.6 TFLOPs bud-
get to ensure an acceptable image quality.

C. More Ablation Experiments

In this section, we supplement ablation experiments to val-
idate our design choices. We first discuss the deployment
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(a) SD-XL (b) After-FF (c) Before-FF

Figure 18. Comparison between inserting the pruning layer after
the FF and before the FF layer.

location for run-time pruning and then compare different
implementations of the mapping function f(A, sK) for CA-
based WPR. Note that CA-based WPR and SA-based WPR
are two implementations of G-WPR and we mainly focus
on CA-based WPR in this section. We also investigate the
schedule that prunes more in early denoising steps and ver-
ify our intuition of pruning less in early steps.

C.1. Deployment Location for Run-Time Pruning

In our default setting, we use generated masks after the FF
layer to perform token pruning. Another option is to per-
form pruning early before the FF layers, which results in a
little bit of extra FLOP savings at the cost of image quality.
We provide several visual examples in Fig. 18. Note that
here, we simply change the pruning layer insertion location
without keeping the total FLOPs cost fixed, which is differ-
ent from what we do in the ablation experiments in the main
article. We find that inserting the pruning layer before the
FF layer indeed hurts image quality (although slightly). For
example, the plant in the first example and the UFO in the
second example become worse. Given that pruning before
the FF layer only results in marginal extra FLOPs savings
(reduces the cost from 4.1 TFLOPs to 4.0 TFLOPs), we
choose to prune after the FF layer to obtain better image
quality.

C.2. Implementations of CA-based WPR

To generalize WPR to cross-attention, we need to design
a function f(A, sK) that maps the importance of Key to-
kens to that of Query tokens. The intuition behind design-
ing this function is that vital Query tokens should devote
much of their attention to important Key tokens. Thus, the
desired attention distribution should satisfy: (1) similarity
to the importance distribution of Key tokens; (2) concen-

tration on a few tokens. Then, when designing f(A, sK),
we need to (1) reward the similarity between the attention
distribution (i.e., each row of A) and the importance distri-
bution (i.e., sK); (2) penalize uniform attention distribution.
Based on these points, we obtain several implementations of
f(A, sK). We had mentioned an entropy-based implemen-
tation in the main article, which rewards similarity through
the dot-product and penalizes uniform distribution through
entropy. We provide additional implementations here:
(I) Hard-clip-based implementation

st+1
Q (xi) = f(A, st+1

K ) =
N∑
j=1

ϵ(Ai,j − η) · st+1
K (xj) (3)

where ϵ(x) = 1 if x ≥ 0, ϵ(x) = 0 if x < 0; η is the
threshold of attention (we set it to 0.2 as the default setting);
Ai,j is the attention from Query qi to Key kj .
(II) Soft-clip-based implementation

st+1
Q (xi) = f(A, st+1

K ) =

N∑
j=1

Sig(Ai,j−η)·st+1
K (xj) (4)

where Sig(x) = 1
1+e−x .

(III) Power-based implementation

st+1
Q (xi) = f(A, st+1

K ) =

N∑
j=1

(β · st+1
K (xj))

α·Ai,j (5)

where α and β are scaling factors to ensure that β ·
st+1
K (xj) > 1 and α · Ai,j > 1 for large st+1

K (xj) and Ai,j .
Here, we let α = 5 and β = Nt

2 , where Nt denotes the
number of Key tokens.

We compare these implementations visually in Fig. 19.
We find that among these implementations, the hard-clip-
based implementation performs the worst. Although the
entropy-based implementation and the power-based imple-
mentation are better than other implementations for CA-
based WPR, none of them can outperform SA-based WPR.
Thus, we use SA-based WPR as our default setting in AT-
EDM.

C.3. Prune-Less Schedule for Early Denoising Steps

The prune-less schedule selects one attention block from
each down-stage and up-stage in the U-Net and skips the
token pruning in it. We generate images with the same
prompts and different selections, as shown in Fig. 20. It
indicates that F-L appears to be the best choice. F-L is the
schedule that we show in Fig. 14.
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(a) SD-XL (b) SA-WPR
(c) Entropy

CA-WPR

(d) Hard Clip (e) Soft Clip (f) Power

Figure 19. Comparison between different implementations of Cross-Attention-based WPR. None of them can outperform Self-Attention-
based WPR.

(a) SD-XL (b) F-F (c) F-M (d) F-L (e) L-F (f) L-M (g) L-L

Figure 20. Comparison between different prune-less settings. There are two attention blocks {F(First), L(Last)} that are left unpruned in
the downsampling stages and three {F(First), M(Middle), L(Last)} in the upsampling stages. Results indicate that F-L is the best schedule.

C.4. The Number of Prune-Less Steps

The intuitions that we use to design the prune-less sched-
ule in the early denoising steps are (1) early denoising steps
determine the layout of generated images and thus are cru-
cial; (2) early denoising steps have a weaker ability to dif-
ferentiate unimportant tokens. The first intuition prohibits
us from pruning more tokens in the early steps (see Section
C.5). The second intuition guides us to choose the number
of prune-less steps. The variance of attention maps reflects
their ability to differentiate unimportant tokens since the at-
tention score of unimportant tokens deviates significantly
from that of normal tokens. We show the variance of atten-
tion maps given by different denoising steps in Fig. 5. The
figure indicates that the variance is more than 1.0E-5 after

the first 15 denoising steps. This supports our hyperparam-
eter choice.

C.5. Prune More in Early Denoising Steps

In AT-EDM, we design a cross-step pruning schedule that
is less aggressive in early denoising steps. This is based
on the intuition that (1) early denoising steps determine the
layout of generated images and thus are very important; (2)
the ability of early denoising steps to differentiate between
unimportant tokens is weaker than that of later steps. To
verify our intuition, we investigate the schedule that prunes
more in early denoising steps. Note that for symmetry,
“prune more in the first 15 steps” selects corresponding at-
tention blocks in the last 35 steps for not pruning tokens
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(a) SD-XL (b) 15 Steps (c) 15 Steps (d) 30 Steps
Prune Less Prune More

Figure 21. Comparison between different DSAP schedules. Ex-
amples indicate that pruning more tokens in early denoising steps
changes the layout of generated images significantly.

while keeping the total FLOPs cost fixed. We provide vi-
sual examples in Fig. 21 for comparison. These examples
clearly support our intuition that pruning more in early de-
noising steps not only affects the layout of generated images
but also hurts image quality.

D. Memory Footprint of AT-EDM

Since we need to obtain the attention map from the first
attention layer, AT-EDM cannot reduce the peak memory
footprint. However, benefiting from the significantly re-
duced number of tokens in the following attention lay-
ers, AT-EDM reduces the average memory footprint sig-
nificantly. Since PyTorch does not automatically release
the redundant assigned memory when the memory require-
ment reduces in the later layers, we theoretically estimate
the average footprint of AT-EDM, assuming the redundant
occupied memory will be released in the layers with fewer
tokens. We believe this is practical when the implementa-
tion is good enough. The peak and theoretical average foot-
print of full-size SD-XL (AT-EDM) are 19.5GB (19.5GB)
and 18.8GB (12.6GB), respectively. This indicates that if
we have a fine-grained pipeline schedule, AT-EDM allows
us to run 49.2% more generation tasks with the given
VRAM restriction.

E. Stack with Sampling Distillation

Methods like consistency distillation [23, 32] can greatly
reduce the cost of DMs. Note that AT-EDM does not con-
tradict these methods and can be deployed to speed them
up further. To support this, we deploy AT-EDM in SDXL-

Turbo, which is a distilled version of SD-XL. Our exper-
imental results show that although SDXL-Turbo reduces
around 95% FLOPs cost of SD-XL, AT-EDM can further
reduce the FLOPs cost of SDXL-Turbo by 33.4% while
reducing FID by 14.5% and only incurring 2.1% CLIP
reduction on MSCOCO-2017. AT-EDM works as a regu-
larizer and slightly improves the quality of images.

F. Limitations and Trade-Offs

AT-EDM demonstrates state-of-the-art results for accelerat-
ing DM inference at run-time without any retraining. How-
ever, as a machine learning algorithm, it inevitably has some
limitations.

(1) AT-EDM requires a pre-trained DM; since it saves com-
putation to accelerate the model, its performance is inher-
ently upper-bounded by the full-sized one. While most of
the time, AT-EDM matches the performance of the pre-
trained model, both quantitatively and qualitatively (see ex-
perimental results in the main article), with around 40%
FLOPs reduction, there exist some samples where the full-
sized model outperforms AT-EDM (see Fig. 17). Nonethe-
less, AT-EDM outperforms prior art by a clear margin. In
addition, AT-EDM is differentiable. We will fine-tune the
pruned model to further improve quality in the future.

(2) AT-EDM leverages the rich information stored in the
attention maps, which could be inaccessible without incur-
ring overhead due to the open-sourced nature of the imple-
mentation. For instance, SD-XL [26] adopts an efficient
attention library, xFormers [16], which fuses computation
to directly obtain succeeding tokens without providing in-
termediate attention maps. As shown in Table 2, in the case
that Fused Operation (FO) is not used, using AT-EDM leads
to significant latency savings. With FO under the Current
Implementation (CI), AT-EDM does not result in a huge la-
tency saving due to the cost of calculating attention maps.
Reusing attention maps across steps and obtaining an ap-
proximation for them could alleviate this issue. With FO
under the Desired Implementation (DI) that provides atten-
tion maps, AT-EDM’s potential is fully unlocked and leads
to a decent speedup.

AT-EDM is especially good at generating object-centric
images, such as a portrait. It can employ a high pruning
rate without hurting the main object. Generating complex
scenes or tens of objects is relatively tricky for AT-EDM
since it may lose some details in corner cases. In some rare
corner cases where the texture details are not significant,
ToMe might perform slightly better, as our algorithm may
prune too many tokens in that small region. ToMe is indeed
a strong baseline, but it is remarkable that our AT-EDM still
outperforms it in most cases.
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G. Potential Negative Social Impacts
Text-to-image generative models like SD-XL have signif-
icantly advanced the field of AI and digital art creation.
However, they may also potentially have negative social im-
pact. For example, they can create highly realistic images
that may be indistinguishable from real photographs. As
the technology can be used to create convincing but false
images, this can potentially lead to confusion and misinfor-
mation spread. In addition, the use of these models to create
inappropriate or harmful content, such as realistic images of
violence, hate speech, or explicit material, raises significant
ethical questions. There is also the potential for perpetuat-
ing biases if the AI model is trained on biased datasets.
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