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ABSTRACT

We introduce multimodal subspace independent vector anal-
ysis (MSIVA), a methodology to capture both joint and unique
latent sources across data modalities by defining shared and
modality-specific subspaces. We compared MSIVA to a
unimodal analysis (UA) baseline and tested both methods
with four distinct subspace structures on synthetic and mul-
timodal neuroimaging datasets. We demonstrated that both
approaches can identify and distinguish the correct subspace
structures from incorrect ones on synthetic datasets. We
then showed that MSIVA can better capture the subspace
structures across two neuroimaging modalities. Results from
subsequent per-subspace canonical correlation analysis and
brain-phenotype modeling showed that the sources from the
optimal subspace structure are significantly associated with
phenotype measures including age and sex.

Index Terms— multimodal fusion, MSIVA, MISA, IVA

1. INTRODUCTION

Multiple neuroimaging techniques such as magnetic reso-
nance imaging (MRI) have been developed to understand the
structural and functional relationships of the brain. However,
each neuroimaging modality has its own strengths and weak-
nesses, and only captures certain aspects of the brain. For
example, structural MRI (sMRI) can reveal high-resolution
anatomical structure of the brain but cannot capture temporal
dynamics, while functional MRI (fMRI) can measure blood-
oxygenation-level-dependent (BOLD) signals across time at
the cost of lower spatial resolution. To jointly analyze mul-
tiple data modalities and capture multifaceted information
of the brain, a multidataset independent subspace analysis
(MISA) [1] framework has been developed encompassing
many blind source separation methods such as independent
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Fig. 1. Proposed four subspace structures (S) in two modal-
ities (M ). Same-color blocks are linked across modalities.
Block size reflects number of linked sources within modality.

component analysis (ICA) [2], independent vector analysis
(IVA) [3, 4] and independent subspace analysis (ISA) [5].
Recently, a multimodal IVA (MMIVA) fusion method has
been proposed using MISA to identify linked biomarkers in
multimodal neuroimaging datasets, revealing joint biomark-
ers of age and sex in two large studies [6]. MMIVA assumes
that sources are independent within each modality, but there
may exist linkage among sources in neuroimaging data, po-
tentially grouped by their anatomical or functional properties.

Aiming to detect the linkage across sources and modali-
ties, we propose a novel methodology, multimodal subspace
independent vector analysis (MSIVA), to identify cross-modal
linkage of source groups by defining joint and unique sub-
spaces. MSIVA is built on MMIVA by defining a block diag-
onal matrix as the subspace instead of the identity matrix used
in MMIVA. MSIVA is designed to simultaneously capture
two types of latent sources, one is shared across all modal-
ities and the other is unique to a specific modality.

We first demonstrate that both MSIVA and a unimodal
analysis (UA) baseline can successfully reveal the correct
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subspace structures in multiple synthetic datasets. We then
run both UA and MSIVA methods on a large multimodal
neuroimaging dataset [7]. Our results indicate that MSIVA
can capture shared and modality-specific sources in the neu-
roimaging data. Using canonical correlation analysis (CCA)
[8], we conduct a follow-up assessment of each identified
subspace separately and find projections within the optimal
subspace structure yielding shared sources that are signifi-
cantly associated with age and sex. We finally performed
prediction tasks to validate the association between pheno-
type measures and shared sources.

2. METHODS

2.1. Subspace Structure

Subspaces with two to four dimensions are commonly used to
cluster functional networks [9, 10]. We propose four subspace
structures (S) in two modalities (M ), with 12 sources grouped
by different subspace dimensions in each modality (Fig. 1):

• S1: One 2-dimensional (2D) shared subspace, one 3D
shared subspace, one 4D shared subspace, and three 1D
modality-specific subspaces per modality.

• S2: Five 2D shared subspaces and two 1D modality-
specific subspaces per modality.

• S3: Three 3D shared subspaces and three 1D modality-
specific subspaces per modality.

• S4: Two 4D shared subspaces and four 1D modality-
specific subspaces per modality.

For each subspace structure, we generated a synthetic dataset
X[m] ∈ RV×N , where m is the modality index (m ∈ {1, 2}),
V is the feature dimensionality (V = 20000) and N is the
number of samples (N = 3000). X[m] was a linear mixture
of 12 sources spanning the defined subspaces. Each subspace
was independently sampled from a multivariate Laplace dis-
tribution (the distribution marginals correspond to different
sources). Sources in the same subspace, but assigned to dif-
ferent modalities, are dependent (or linked) with a correlation
coefficient ranging from 0.65 to 0.85. Sources in the 1D sub-
spaces are independent from all others.

We also utilized a large multimodal neuroimaging dataset
from UK Biobank [7] including two image modalities: T1-
weighted sMRI (M1) and fMRI (M2). 2907 subjects (mean
age ± std: 62.09 ± 7.32 years; 1452 males, 1455 females)
were used after excluding subjects missing phenotype mea-
sures. After subject selection, we preprocessed these two
imaging modalities to obtain the gray matter (GM) and am-
plitude of low frequency fluctuations (ALFF) feature maps,
respectively. Data preprocessing details can be found at [6].

2.2. Multimodal subspace independent vector analysis

The UA approach subsequently applied principal component
analysis (PCA) and ICA on each modality separately to ob-
tain 12 sources S[m] per modality. Greedy combinatorial op-

Fig. 2. Synthetic data experiment result: ISI (lower is bet-
ter). The diagonal has the smallest ISI values in both UA and
MSIVA cases, demonstrating that the correct subspace struc-
tures yield the best results for both UA and MSIVA.

timization (CO) and MISA were then run sequentially for 10
and 20 iterations on synthetic and neuroimaging data, respec-
tively. The MSIVA approach first used multimodal group
principal component analysis (MGPCA) to identify common
principal components across the two modalities and then ap-
plied ICA on the MGPCA reduced data from each modality
separately to get 12 sources S[m] per modality. Then we ran
greedy CO and MISA for 10 and 20 iterations on synthetic
and neuroimaging data, respectively. Finally, we identified
the optimal subspace structure based on the lowest loss value.
The loss function L [1] is defined as the Kullback-Leibler
(KL) divergence between the joint Kotz distribution [11] of
all sources p(S) and the product of the joint Kotz distribu-
tion of sources at each of K subspaces q(S) =

∏K
k=1 p(Sk).

Subspaces are to be statistically independent and may include
multimodal sources. We want to minimize the loss L by solv-
ing the following optimization problem:

minL = minE[ln
p(S)

q(S)
]

= minE[ln p(S)]−
K∑

k=1

E[ln p(Sk)]

= min
W,Pk,

k=1,...,K

E[ln p(WX)]−
K∑

k=1

E[ln p(PkWX)],

where W is the demixing matrix such that S = WX and
Pk is the k-th subspace assignment matrix. Code is available
at https://github.com/trendscenter/MSIVA/
releases/tag/v0.0.0.

2.3. Experiments

For each of four subspace structures, we first generated the
synthetic dataset from the ground truth subspace structure.
For each dataset, we performed UA and MSIVA experiments
with all four subspace structures and measured the normal-
ized multidataset Moreau-Amari intersymbol interference
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Table 1. Synthetic data: Final MISA loss values (lower is
better). Rows are the ground truth structures used to generate
the synthetic data and columns are the test structures.

UA S1 S2 S3 S4

S1 42.69 42.88 42.76 42.99
S2 42.65 42.30 42.85 42.87
S3 42.72 42.86 42.64 43.10
S4 43.09 43.24 43.17 42.98

MSIVA S1 S2 S3 S4

S1 42.68 42.86 42.75 43.04
S2 42.66 42.23 42.63 42.76
S3 42.69 42.86 42.62 43.04
S4 42.69 42.40 41.12 39.94

Table 2. Neuroimaging data: Final MISA loss values.
S1 S2 S3 S4

UA 47.74 47.81 47.77 47.78
MSIVA 46.79 46.77 46.80 46.89

(ISI) [1, 12, 13] to evaluate the difference between the recov-
ered sources and the ground truth sources, as well as the loss
values. The synthetic data experiments aim to verify whether
UA and MSIVA can identify and distinguish the correct sub-
space structure used for data generation from incorrect ones.

We then performed UA and MSIVA experiments on the
multimodal neuroimaging dataset using these four candidate
subspace structures, and identified the optimal structure yield-
ing the lowest final MISA loss. Separate follow-up CCA of
each subspace recovered projections with maximum cross-
modal correlation, for ease of interpretation. MANCOVA
was used to check for association of the post-CCA sources
with age and sex. To further evaluate that association, we
performed an age prediction task and a sex classification task.
Specifically, we trained a ridge regression model to predict the
age and a linear support vector machine to classify the sex.
2907 subjects were divided into a training set of 2000 sub-
jects and a hold-out test set of 907 subjects. We performed
10-fold cross-validation to choose the best hyperparameters
(regularization parameter range: [0.1, 1]) on the training set,
then trained the model using all 2000 training subjects and
evaluated it on the hold-out test set.

3. RESULTS

As shown in Table 1 and Fig. 2, the ISI and loss values along
the diagonal are the lowest (row-wise) in the synthetic data
experiments, demonstrating that both UA and MSIVA can
correctly identify and distinguish the ground truth subspace
structures from the incorrect ones. Also, note the MSIVA

Fig. 3. Synthetic data results: Interference matrices corre-
sponding to diagonal ISI values in Fig. 2.

Fig. 4. Neuroimaging data result: Correlation of the recov-
ered sources within each modality and across two modalities.
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Fig. 5. MSIVA S2 shared sources, color coded by phenotype.
Rows I and II show age effect (warm color: older group; cold
color: younger group). Rows III and IV show sex effect (blue:
male; red: female). M1: sMRI GM, M2: fMRI ALFF.

loss value is smaller than the UA loss value for each of the
four correct subspace structures, suggesting that MSIVA can
fit the data a bit better than UA. The recovered subspace struc-
tures align with the proposed ground-truths (Fig. 3). Block
permutation of the subspaces are acceptable, as long as align-
ment between modalities is retained, which is the case.

In the neuroimaging dataset, we observe within-modal
self-correlation patterns align with the predefined subspace
structures (Fig. 4, rows I-II and IV-V). We note that MSIVA
recovers stronger cross-modal correlation than UA for all pre-
defined subspace structures (Fig. 4, rows III and VI). MSIVA
S2 yields the lowest final MISA loss of 46.77 across all cases
tested (Table 2), suggesting the S2 subspace structure best fits
the latent structure of this neuroimaging dataset.

We then identified the associations between phenotype
measures and the sources captured by MSIVA S2. MAN-
COVA results suggest that the recovered subspaces are sig-
nificantly associated with age and sex. Visual inspection of
individual variability from the cross-modal CCA projections
in each shared subspace (Fig. 5) suggests that subspaces 1,
3, 4 and 5 are associated with aging (especially cross-modal
source 9 in subspace 5), while subspaces 2 and 4 show sex
effect (especially cross-modal source 7 in subspace 4). The
age regression and sex classification performance also con-
firmed this finding (Table 3). Specifically, the age prediction
mean absolute error (MAE) in subspace 5 is the lowest (5.400
years), and sex classification accuracy is the highest in sub-
space 4 (0.812). The spatial maps from sources 7 and 9 from
both modalities are presented in Fig. 6. The sex effect can
be found in the parietal lobe, the occipital lobe (sMRI, fMRI)
and the cerebellar region (sMRI). The age effect is shown in
sensorimotor and occipital areas in both sMRI and fMRI.

Table 3. Age regression MAE and sex classification accuracy
(acc.) using shared subspaces estimated with MSIVA S2.

Subspace 1 2 3 4 5
Age MAE 5.757 6.270 5.936 5.888 5.400
Sex acc. 0.594 0.610 0.576 0.812 0.530
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Fig. 6. Spatial maps of MSIVA S2 CCA projections related
to sex (source 7) and age (source 9).

4. DISCUSSION

We proposed a novel approach MSIVA to identify two types
of sources, one is linked across modalities and one is specific
to a modality. We first showed that both UA and MSIVA can
correctly identify the subspace structure from incorrect ones
and verified that the correct subspace structure always results
in the lowest loss value from synthetic data experiments. We
then applied both approaches on a large multimodal neu-
roimaging dataset and illustrated that MSIVA can identify
linked subspace structures across two imaging modalities.
Among all cases, MSIVA S2 yields the lowest loss and, thus,
is considered as the best fit to the latent structures in this
dataset. The CCA projections within each shared subspace
are significantly associated with age and sex, as verified
through the prediction tasks. The age- and sex-related spa-
tial maps align with previous findings [6]. Future work will
include comparing MSIVA with MMIVA and applying data-
driven subspace structures such as NeuroMark template [14].

5. CONCLUSION

Our proposed approach MSIVA can capture shared and
modality-specific sources on both synthetic and neuroimag-
ing datasets and yield a lower loss value compared with the
unimodal baseline. The sources in the shared subspaces are
significantly associated with age and sex according to statis-
tical analysis and brain-phenotype modeling.
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