
DynaMo: Accelerating Language Model Inference with Dynamic
Multi-Token Sampling

Shikhar Tuli1,2*, Chi-Heng Lin2, Yen-Chang Hsu2, Niraj K. Jha1, Yilin Shen2, Hongxia Jin2

1Department of Electrical and Computer Engineering, Princeton University
2Samsung Research America

{shikhar.tuli,chiheng.lin,yenchang.hsu,yilin.shen,hongxia.jin}@samsung.com,
jha@princeton.edu

Abstract
Traditional language models operate autore-
gressively, i.e., they predict one token at a
time. Rapid explosion in model sizes has re-
sulted in high inference times. In this work,
we propose DynaMo, a suite of multi-token
prediction language models that reduce net in-
ference times. Our models dynamically pre-
dict multiple tokens based on their confidence
in the predicted joint probability distribution.
We propose a lightweight technique to train
these models, leveraging the weights of tradi-
tional autoregressive counterparts. Moreover,
we propose novel ways to enhance the esti-
mated joint probability to improve text gener-
ation quality, namely co-occurrence weighted
masking and adaptive thresholding. We also
propose systematic qualitative and quantitative
methods to rigorously test the quality of gen-
erated text for non-autoregressive generation.
One of the models in our suite, DynaMo-7.3B-
T3, achieves same-quality generated text as the
baseline (Pythia-6.9B) while achieving 2.57×
speed-up with only 5.87% and 2.67% parame-
ter and training time overheads, respectively.

1 Introduction

Recent research has demonstrated the tremendous
promise of large language models (LLMs) as com-
petent artificial intelligence (AI) assistants (Tou-
vron et al., 2023b). This has led to their rapid
and widespread adoption as chatbots in diverse
applications, e.g., healthcare, e-commerce, educa-
tion, etc. However, the high computational require-
ments of LLM training and inference and the use
of massive closed-source corpora have restricted
their development to a few laboratories. The in-
creasing number of open-source LLMs, including
Pythia (Biderman et al., 2023) and LLaMA-2 (Tou-
vron et al., 2023b), democratizes research in natural
language processing (NLP). For instance, Vicuna-
13B (Chiang et al., 2023), an instruction-finetuned

*Work done as an intern at Samsung Research America.

LLaMA model (Touvron et al., 2023a), has gained
significant interest among researchers due to its ex-
ceptional instruction-following capabilities for its
relatively compact size. Nevertheless, access and
study of LLMs remain limited due to challenges
involved in their efficient evaluation on resource-
constrained devices.

1.1 Challenges and Motivation
LLM training and inference are typically limited
to large GPU clusters in data centers, causing high
latencies and privacy concerns for end-users. Edge
computing offers a promising solution by process-
ing data closer to the source, reducing latency and
costs while enhancing data security and privacy.
However, efficient deployment of conversational
AI agents on resource-constrained edge platforms
remains challenging, as even compact language
models result in significant latencies (Wang et al.,
2020a; Tuli and Jha, 2023b). Increasing model
sizes exacerbates this issue (Kaplan et al., 2020),
highlighting the need for significant inference/text-
generation speed-ups and a range of models tai-
lored to diverse platforms with varying resource
constraints.

Existing models, trained with the causal lan-
guage modeling (CLM) objective, predict one to-
ken at a time (Radford et al., 2019; Brown et al.,
2020). We conceptualize such models as V -way
(V is the vocabulary size) classifiers or unigram
predictors. Mathematically, given the context, i.e.,
the set of past tokens x1:t := x1,x2, . . . ,xt, tra-
ditional LLMs model the probability distribution
p(xt+1|x1:t) = fθ(x1:t), where fθ is the LLM
parameterized by θ. In this context, traditional
models generate sequences of text autoregressively.
In other words, we sample xt+1 from fθ(x1:t)
and then concatenate it with the input sequence
to produce x1:t+1 := x1,x2, . . . ,xt,xt+1. Then,
we sample xt+2 from the predicted distribution
fθ(x1:t+1). Fig. 1(a) shows a schematic of this

ar
X

iv
:2

40
5.

00
88

8v
1

 [c
s.C

L]
 1

 M
ay

 2
02

4

Lorem ipsum

LRR

Lorem ipsum

L

This is an

amazing

LRR

This is an amazing

idea

LRR

Lorem ipsum

L

LRR

This is an amazing idea

!

This is an

amazing idea !

(a) (b)

Input/Output
Embedding

Decoder
Layer

Sampling

Figure 1: Multi-token prediction in DynaMo. (a) Traditional autoregressive prediction requires three forward passes. (b)
Non-autoregressive multi-token prediction requires only one forward pass.

process with existing autoregressive LLMs.
Research in psycholinguistics shows that hu-

mans do not necessarily think of words one at
a time when articulating thought (Sridhar, 2012);
instead they employ a parallel network of cogni-
tive and linguistic processes. In line with this,
we propose predicting multiple tokens simulta-
neously to accelerate inference. By estimating
p(xt+1:t+3|x1:t) = fθ (now, a V 3-way classifier),
we aim to achieve reliable multi-token prediction,
potentially resulting in a 3× inference speed-up
(assuming no latency overhead). However, simulta-
neous prediction of three tokens may compromise
generation quality (we provide sample generations
in Appendix D). Hence, there is a need to dynam-
ically back off to lower-order n-gram prediction
when the model lacks confidence.

1.2 Our Contributions

In this work, we propose DynaMo: a suite of
dynamic multi-token prediction language models.
We target inference speed-up by improving upon
traditional LLMs in terms of model architecture,
training methodology, and non-autoregressive de-
coding schemes. Further, we propose novel meth-
ods to evaluate multi-token prediction for the next
generation of non-autoregressive models. More
concretely, we summarize the contributions of this
work next.

• We augment the suite of Pythia (Biderman
et al., 2023) models for multi-token prediction.
We explore various architectures for multi-
token prediction (label shifts, masking strate-
gies, multi-token heads, etc.). Further, we de-
vise efficient ways to train augmented versions
of existing pre-trained LLMs for multi-token
prediction.

• We propose novel ways to dynamically pre-

dict multiple tokens based on the current con-
text and probabilities of predicted tokens. We
model the joint probability distributions of
predicted tokens and back off to lower-order
n-gram prediction when the joint probabili-
ties are not above a given threshold (ϵb). We
propose co-occurrence weighted masking and
adaptive thresholding to improve generated
text quality.

• We perform rigorous experiments to evalu-
ate the downstream performance of our pro-
posed models. We show that training with our
modified-CLM objective enhances the first
token prediction quality as well. We eval-
uate the open-ended text generation quality
of our models and its dependence on model
size, desired speed-up, and multi-token pre-
diction hyperparameters (e.g., ϵb). In fact, this
is the first non-greedy, non-batched-parallel-
decoding work that proves to deliver same-
quality generation as the base model with sys-
tematic qualitative and quantitative tests.

The rest of the article is organized as follows.
Section 3 details the multi-token prediction method-
ology adopted in the DynaMo suite of models along
with the proposed evaluation methods. Section 4
presents the experimental results. Section 5 dis-
cusses the implications of multi-token prediction
and points out future work directions. Finally, Sec-
tion 6 concludes the article.

2 Background and Related Works

Previous research explores various approaches
to reduce token prediction latency in LLMs. It
includes distillation (Hinton et al., 2015), com-
plexity reduction (Wang et al., 2020b), sparsifi-
cation (Jaszczur et al., 2021), quantization (Shen

et al., 2020), etc., to reduce model size or complex-
ity, leveraging specialized hardware (Tuli and Jha,
2023a). Other engineering solutions include Flash
attention (Dao et al., 2022) that reduces memory
reads/writes. Recently, skeleton-of-thought decod-
ing (Ning et al., 2023) was proposed, wherein the
LLM first generates the skeleton of the answer and
then conducts batched decoding to complete the
contents of each skeleton point in parallel.

Speculative decoding (Stern et al., 2018; Chen
et al., 2023a) is yet another approach that has
gained recent prominence. It leverages a small
draft model (which can be combined with the main
model, Cai et al. 2023) to anticipate the main model
predictions and queries it for batch verification.
The batch size depends on the targeted number
of token positions in the future, for draft predic-
tion, and the number of top-k samples at each po-
sition. Despite attempts at improving inference
efficiency (Spector and Re, 2023; Liu et al., 2023),
such methods incur high computational overhead
due to high-batch operations and result in poor
compute utilization (e.g., sparse tree attention used
by Cai et al. 2023; Spector and Re 2023). For the
greedy decoding scheme, such methods enable up
to n× speed-up, however, at the cost of at least n×
the compute. Instead, in this work, we propose
a low-compute approach that directly maps the
joint probability distribution and implements co-
occurrence weighted masking and adaptive thresh-
olding, obviating the need for batched verification.
Further, Medusa (Cai et al., 2023) exploits sim-
ple feed-forward layers for draft prediction. This
work explores various architectural modifications
for draft prediction. Nevertheless, the abovemen-
tioned approaches are orthogonal to the proposed
method and can be used in conjunction to further
boost performance.

3 Method

In this section, we discuss the implementation de-
tails of multi-token prediction in the DynaMo suite.

3.1 Going Beyond One-token Prediction
We propose a modified-CLM objective for multi-
token prediction,

LTn = − 1

N

N∑
j=1

L−n+1∑
t=1

log p(xj
t+n|x

j
1:t) (1)

for the nth-token head. Here, N is the number of
sequences in the training set and the length of the

jth sequence is L. The first-token head predicts the
labels shifted by one position. The second-token
head predicts the labels shifted by two positions,
and so on. Note that the above equation trains each
token head to predict the tokens independently. We
approximate the joint probability distribution using
independent token predictions. We represent this
mathematically as follows:

p(xt+1:t+n|x1:t) =
n∏

i=1

p(xt+i|x1:t+i−1)

≈
n∏

i=1

p(xt+i|x1:t) =
n∏

i=1

f i
θ(x1:t)

(2)

where f i
θ(x1:t) is the prediction by the i-th-token

head in the DynaMo model.
We use the Pythia (Biderman et al., 2023) suite

of models as base models. All decoder layers up to
the penultimate layer form the model “stem” (like
the stem of a plant). The final decoder layer of
the base model and the output embedding form
the first-token-predicting head (or simply the first-
token head). Fig. 1 shows the data flow for the
base model in blue. It assumes a base model with
only two decoder layers. The first layer of the
base model forms the stem for the DynaMo model,
while the second layer is part of the first-token
head. The other decoder layers (dataflows shown
in green) are part of the second- and third-token
heads. The output embeddings for these heads
reuse the weights of that of the first head. Hence,
the extra parameters for this three-token model are
from only two extra decoder layers.

Thanks to the above weight transfer process,
most weights (the model stem and the first-token
head) in an initialized DynaMo model are already
trained. Therefore, we train the DynaMo models
on a much smaller dataset (5% randomly sampled
version of the Pile dataset, Gao et al. 2020) relative
to that used to train the Pythia models. This limits
the computational overhead of training our models.
We provide further details on the training and eval-
uation methods for our models in Appendix A.1.

3.2 Dynamic Text Generation

Fig. 2 summarizes the proposed dynamic text gen-
eration pipeline. We extend the popular top-k sam-
pling scheme (Fan et al., 2018; Radford et al., 2019)
for autoregressive language models to multi-token
generation. First, we obtain logits for all token

LRR

Lorem ipsum

L

Joint Estimation

Co-occurrence
Weighted Masking Adaptive Thresholding

Joint >
No

Yes

Back o�

Figure 2: Flowchart of the proposed dynamic multi-token prediction pipeline.

heads. We then obtain the top-k probabilities for
the predictions. Then, since we approximate the
predicted tokens to be independent, we estimate
the joint probability using Eq. (2). We bridge the
gap between the true and the estimated (using inde-
pendent predictions) joint probability distributions
using co-occurrence weighted masking, taking in-
spiration from optimal transport (Peyré et al., 2019).
We fix the sparsity in higher-dimensional distribu-
tions using adaptive thresholding and backing off
to lower-order n-gram prediction. We then sample
from the joint probability distribution to output the
generated sequence of tokens. Hence, DynaMo
dynamically generates one or more tokens based
on the given context and the model’s confidence in
its predictions. We describe the abovementioned
methods next.

3.2.1 Co-occurrence Weighted Masking
To bridge the gap between the true and the es-
timated joint probability distribution in Eq. (2),
we mask the estimated distribution using the co-
occurrence weights. Mathematically,

p(xt+1:t+n|x1:t)

=
n∏

i=1

p(xt+i|x1:t)
p(xt+1:t+n|x1:t)∏n
i=1 p(xt+i|x1:t)

≈
n∏

i=1

f i
θ(x1:t)

p̂(xt+1:t+n)∏n
i=1 p̂(xt+i)︸ ︷︷ ︸

co-occurrence mask
(3)

where p̂(xt+1:t+n) and p̂(xt+i) are sampled esti-
mates of the joint probability and the prediction
of the i-th token, respectively. We estimate these
probabilities based on the token counts in the train-
ing dataset. Note that the approximation in Eq. (3)
ignores the history x1:t.
Theorem 1. When the cost function
c(xt+1,xt+2, . . . ,xt+n) = − log

(p̂(xt+1:t+n)∏n
i=1 p̂(xt+i)

)

and ϵ2 = 0 [defined in Eq. (5)], the joint probabil-
ity distribution in Eq. (3) is the optimal solution to
the optimal transport problem (Peyré et al., 2019).

We describe the optimal transport problem in the
multi-token prediction setting and provide a proof
of the above theorem in Appendix B.

3.2.2 Dynamic Back-off and Adaptive
Thresholding

Intuitively, when generating multiple tokens, the
goal is to find the peaks in the predicted joint prob-
ability distribution and sample those peaks. If none
of the probability values is beyond a threshold (de-
termined by ϵb), i.e., there are no peaks in the joint
probability distribution, our model backs off to
lower-order n-gram prediction. To implement this,
we adopt a static threshold ϵb. If no probability
value is > ϵn−1

b , we back off to sampling a lower-
order joint probability distribution. We set all prob-
abilities less than ϵb to 0.

Static thresholding is too naïve for joint proba-
bility distributions, which can vary with the pre-
dicted tokens and input context. Taking inspiration
from computer vision methods, we test adaptive
thresholding, leveraging Otsu’s binarization algo-
rithm (Otsu, 1979). It adapts the threshold for dy-
namic back-off based on the predicted joint proba-
bility distribution. We apply adaptive thresholding
on top of the static thresholding explained above.
In other words, we first set all values in the joint
probability distribution less than ϵb to 0. Then, we
set all values less than ϵAT to 0 (where ϵAT is the
threshold found using Otsu’s algorithm). In the
computer vision domain, researchers implement
Otsu’s algorithm after applying Gaussian blur to
the input image. We thus explore the effect of
using Gaussian blur and adaptive thresholding on
the predicted joint probability distribution (ablation
analysis in Appendix C.1).

Alg. 1 summarizes the multi-token generation

Algorithm 1 DynaMo multi-token generation

Require: input sequence x1:t, DynaMo model
with token heads f i

θ, ∀ i = 1, . . . , n.
1: p(xt+1|x1:t)← f1

θ (x1:t),
2: p(xt+2|x1:t)← f2

θ (x1:t),
3: p(xt+3|x1:t)← f3

θ (x1:t),
4: n = 3 (for three-token model)
5: while n > 1 do
6: Obtain top-k values for token predictions

p(xt+i|x1:t)

7: J←
∏n

i=1 f
i
θ(x1:t)

p̂(xt+1:t+n)∏n
i=1 p̂(xt+i)

8: ▷ Co-occurrence weighted masking
9: J← adaptiveThresholding(J)

10: ▷ Adaptive thresholding
11: J← penalizeRepetition(J)
12: if j < ϵn−1

b , ∀ j ∈ J then
13: n← n− 1 ▷ Back-off
14: else
15: xt+1:t+n ← sample(J)
16: return xt+1:t+n

17: end if
18: end while
19: return xt+1:t+n ← sample(p(xt+1|x1:t))

algorithm. We depict the probability distribution
output by the i-th-token head by f i

θ. This prob-
ability distribution is a vector of length V (or k
after top-k sampling). We calculate the joint prob-
ability distribution J by taking the outer product
of the individual token predictions. The function
adaptiveThresholding (line 9) implements adap-
tive thresholding explained above. The function
penalizeRepetition (line 11) divides all proba-
bilities that correspond to repetitions by a penalty
value (Keskar et al., 2019). The sample function
(lines 15 and 19) samples the tokens using multi-
nomial sampling, i.e., weighted by the correspond-
ing probability values. Based on n, we output
the sequence of generated tokens xt+1:t+n. For
the proposed set of DynaMo models, we initial-
ize n = 3. Thus, we dynamically generate new
tokens depending on the output predictions (and
the corresponding probabilities). A low value of ϵb
generates more tokens (a three-token model with
ϵb = 0 will always generate three tokens). On the
other hand, a high value of ϵb results in few tokens
being generated (ϵb = 1 will always generate only
one token).

3.3 Evaluation Methods

We propose various methods to evaluate our multi-
token models. They include evaluating single-
token prediction on standard natural language un-
derstanding (NLU) benchmarks, multi-token per-
plexity, and open-ended generation performance.

3.3.1 NLU Benchmarks
Evaluating multi-token prediction on NLU bench-
marks is challenging. This is because most down-
stream benchmarks only require one-token pre-
diction. However, we hypothesize that training
a multi-token prediction transformer results in bet-
ter prediction of even the first token. We call this a
better transformer. We evaluate our models on pop-
ular benchmarks with the first-token head. We use
the lm-evaluation-harness (Gao et al., 2021) to
carry out our evaluations on common benchmarks
in both zero-shot and few-shot settings. For fair
comparisons, we report the performance of the cor-
responding base Pythia model as well.

3.3.2 Multi-token Perplexity
To test multi-token text generation quality, we eval-
uate the models based on perplexity. However, the
traditional definition of perplexity is only defined
for single token prediction. We extend this to nth

token prediction and also n-gram prediction. Math-
ematically,

PPLn = exp

(
− 1

T

T−n∑
t=1

log p(xt+n|x1:t)

)
,

PPL1:n = exp

(
− 1

nT

T−n∑
t=1

log p(xt+1:t+n|x1:t)

)
(4)

For a three-token model, we calculate PPL1,
PPL1:2, and PPL1:3. We can also extend perplex-
ity calculation to dynamic multi-token prediction,
wherein we decide n based on the joint probability
distribution and the back-off threshold. We refer to
it as PPLd. It varies with ϵb.

3.4 Open-ended Text Generation

Perplexity is a very restrictive evaluation measure.
It constrains model text generation to the text in
the validation set. A fairer approach to test multi-
token generation would be to evaluate open-ended
generated texts. Zheng et al. (2023) propose us-
ing strong LLMs like GPT-3.5 (OpenAI, 2023a)
and GPT-4 (OpenAI, 2023b) and show that they

Table 1: Zero-shot performance on common sense reasoning tasks.

Model ARC-c ARC-e BoolQ COPA HellaSwag OBQA PIQA WinoG

Pythia-70M 15.5±1.0 38.7±1.0 55.9±0.8 53.0±5.0 26.6±0.4 14.6±0.2 58.6±1.2 50.8±1.4

DynaMo-77M-T3 17.3±1.1 41.0±1.0 55.7±0.9 56.0±5.0 26.9±0.4 14.7±1.6 59.8±1.1 49.8±1.4

Pythia-160M 20.7±1.2 44.0±1.0 49.4±0.9 65.0±4.8 29.1±0.5 17.0±1.7 62.0±1.1 50.6±1.4

DynaMo-180M-T3 19.4±1.1 45.3±1.0 48.0±0.9 66.0±4.8 29.3±0.5 16.6±1.7 62.7±1.1 51.7±1.4

Pythia-410M 20.5±1.2 51.6±1.0 58.6±0.9 71.0±4.6 34.5±0.5 17.8±1.7 67.2±1.1 53.3±1.4

DynaMo-430M-T3 21.2±1.2 52.6±1.0 57.1±0.9 70.0±4.6 34.6±0.5 17.9±1.7 67.5±1.1 53.3±1.4

Pythia-1B 24.3±1.2 58.5±1.0 60.8±0.9 74.0±4.4 38.9±0.5 21.8±1.8 70.1±1.1 52.9±1.4

DynaMo-1.1B-T3 25.3±1.3 58.4±1.0 60.9±0.9 76.0±4.3 38.9±0.5 22.2±1.9 70.2±1.1 53.8±1.4

Pythia-1.4B 27.3±1.3 61.8±1.0 58.0±0.9 76.0±4.3 41.7±0.5 22.8±1.9 72.0±1.0 56.9±1.4

DynaMo-1.5B-T3 27.7±1.3 61.5±1.0 59.2±0.9 78.0±4.2 41.9±0.5 22.4±1.9 72.5±1.0 56.0±1.4

Pythia-2.8B 29.9±1.3 53.5±1.0 64.2±0.8 75.0±4.4 45.4±0.5 24.0±1.9 74.1±1.0 58.2±1.4

DynaMo-2.9B-T3 30.4±1.3 64.7±1.0 64.0±0.8 80.0±4.0 45.7±0.5 24.3±1.9 74.2±1.0 59.1±1.4

Pythia-6.9B 33.2±1.4 68.5±1.0 64.4±0.8 74.0±4.4 49.6±0.5 27.0±1.9 75.7±1.0 62.7±1.4

DynaMo-7.3B-T3 33.6±1.4 68.1±1.0 65.1±0.8 76.0±4.3 49.9±0.5 28.0±2.0 75.7±1.0 62.9±1.4

can match both controlled and crowdsourced hu-
man preferences in evaluating generated texts well.
Since human evaluation of open-ended generated
texts from our models would be very expensive and
time-consuming, we use a strong LLM to evalu-
ate the quality of generated text from our DynaMo
suite of models.

Vicuna and MT benchmarks (Zheng et al., 2023)
require the pre-trained LLM to be finetuned on
instruction-following datasets. To disambiguate
the effect of instruction finetuning, we evaluate
our models with different target speed-ups on a
novel sentence-completion benchmark. The task
is to complete a sentence for a given prompt. We
categorize the sentences into simple declarative,
compound declarative, W/H interrogative, Y/N in-
terrogative, affirmative imperative, negative imper-
ative, and exclamatory. We test the text genera-
tions of our models for grammatical correctness,
creativity, depth, logical flow, coherence, and infor-
mativeness of the generated text. The benchmark
has ten prompts. For every prompt, we generate
ten sentences with different random seeds for ev-
ery ϵb ∈ {0.00, 0.02, . . . , 1.00}. Thus, for every
model, we generate 5100 sentences at different
speed-ups. We evaluate the quality of every gen-
erated sentence using single-mode and pairwise
evaluations. For single-mode evaluation, we ask
GPT-3.5 to score the generated response from one
to ten. For pairwise evaluation, we ask GPT-3.5
to compare the response against one generated by
the corresponding Pythia base model. DynaMo ei-
ther wins, loses, or ties against the baseline Pythia
model. We provide further details on the sentence
completion benchmark along with the evaluation
setup in Appendix A.3.

Finally, we also evaluate the performance of

instruction-finetuned DynaMo models on the Vi-
cuna benchmark. We use the Alpaca dataset (Taori
et al., 2023) filtered by GPT-3.5 for high-quality
instruction-response pairs (Chen et al., 2023b). The
dataset contains 9,229 instruction-response pairs.
We follow the evaluation setup from (Zheng et al.,
2023).

4 Experiments

In this section, we present experimental results
and comparisons of the proposed approach with
the Pythia baseline, which we used to instantiate
the DynaMo models. We provide test results for
architectural and training variations in multi-token
prediction in Appendix C.2.

4.1 Downstream Performance

We hypothesize that training the decoder layers
using the second- and third-token loss terms makes
them better. We test this hypothesis next.

We consider eight standard common sense
reasoning benchmarks: ARC challenge (ARC-
c) and ARC easy (ARC-e, Clark et al. 2018),
BoolQ (Clark et al., 2019), COPA (Roemmele
et al., 2011), HellaSwag (Zellers et al., 2019),
OpenBookQA (OBQA, Mihaylov et al. 2018),
PIQA (Bisk et al., 2020), and WinoGrande
(WinoG, Sakaguchi et al. 2021). We perform
evaluations in the zero-shot setting as done in the
language modeling community. Table 1 shows a
comparison between each model in the DynaMo
suite with that of the corresponding baseline Pythia
model. As we can see, DynaMo models outperform
their respective baselines on most benchmarks. We
report additional downstream performance results
in Appendix C.3.

Table 2: Multi-token perplexity results for models in the
DynaMo and Pythia suites.

Model PPL1 PPL2 PPL3 PPL1:2 PPL1:3

Pythia-70M 20.2±1.5 - - - -
DynaMo-77M-T3 18.3±1.5 111.4±1.7 262.0±1.6 45.2±1.5 81.2±1.6

Pythia-160M 13.5±1.4 - - - -
DynaMo-180M-T3 12.9±1.4 78.5±1.6 199.4±1.6 31.8±1.5 58.7±1.5

Pythia-410M 9.9±1.4 - - - -
DynaMo-430M-T3 9.6±1.4 59.8±1.6 162.4±1.6 24.0±1.5 45.4±1.5

Pythia-1B 8.5±1.4 - - - -
DynaMo-1.1B-T3 8.4±1.4 44.1±1.6 116.6±1.7 19.3±1.5 35.1±1.6

Pythia-1.4B 7.9±1.6 - - - -
DynaMo-1.5B-T3 7.8±1.6 41.9±2.0 112.7±2.1 18.3±1.9 33.6±1.9

Pythia-2.8B 7.4±1.6 - - - -
DynaMo-2.9B-T3 7.1±1.9 37.1±2.7 100.3±3.0 16.2±2.2 29.8±2.4

Pythia-6.9B 6.6±1.8 - - - -
DynaMo-7.3B-T3 6.5±1.8 31.4±2.6 83.5±3.0 14.4±2.2 25.8±2.4

4.2 Multi-token Perplexity

Table 2 shows the multi-token perplexity on the
validation set for all models in the DynaMo and
Pythia suites. The DynaMo models achieve lower
PPL1 relative to their Pythia counterparts due to
further training of the first-token head and better
decoder layers in the model stem (i.e., all layers
up to the penultimate layer). We provide further
test results in Appendix C.2. The multi-token per-
plexity drops as models become larger, making the
prediction of multiple tokens easier and better. We
describe results for dynamic multi-token perplexity
(PPLd) in Appendix C.4.

4.3 Text Generation Performance and
Speed-up

We now compare the open-ended text generation
performance of the DynaMo models with that
of the baseline Pythia models on the sentence-
completion benchmark.

Since pairwise evaluations by strong LLMs bet-
ter align with human evaluations (Zheng et al.,
2023), we evaluate our models against the Pythia
baseline in the pairwise mode (details in Ap-
pendix A.3; single-mode evaluations in Ap-
pendix C.5.1). As ϵb increases, the text quality
improves, but the speed-up decreases. Thus, the
win rate (i.e., the number of wins/losses against the
baseline) decreases as speed-up increases.

Fig. 3 shows the effect of speed-up on the win
rate of the proposed models (we describe how we
obtain this plot in Appendix C.5.2). When the win
rate is 1.0, the text generation quality would, on av-
erage, be the same for the models being compared.
We call the speed-up for this case the “same-quality
speed-up.” If the win rate for a model is always

Figure 3: Win rate vs. speed-up for pairwise comparisons
on the sentence-completion benchmark with corresponding
Pythia models as baselines. GPT-3.5 is used as a judge. Re-
gression plotted with 95% confidence intervals. Same-quality
speed-ups are shown in parentheses. Theoretical same-quality
speed-ups are marked with an asterisk (*).

greater than 1.0, we extrapolate the plot to obtain
the “theoretical same-quality speed-up.” However,
in further discussions, we refer to the minimum
of (theoretical) same-quality speed-up and 3× (for
three-token models) as, simply, the “speed-up.”

4.4 Instruction Finetuning

We finetune models in the Pythia and DynaMo
suites on an instruction-following dataset (details
in Section 3.4). Fig. 4 shows the pairwise perfor-
mance of the DynaMo (with respect to Pythia) mod-
els on the Vicuna benchmark (Zheng et al., 2023).
We run the DynaMo models at different speed-ups
(we set ϵb = 1.0, 0.75, 0.5, 0.25, 0.0) shown on the
x-axis. We compare each model against the corre-
sponding Pythia baseline. In the case of compar-
isons with small models, neither model results in a
reasonable answer. Hence, GPT-4 classifies many
response pairs as ties. The number of ties decreases
as model sizes increase. As the speed-up increases,
the win rate decreases. DynaMo-7.3B-T3 provides
around the same-quality responses as Pythia-6.9B
(win rate = 0.98) even for a high speed-up of 2.57×
(we ablate the effect of dynamic text generation
methods in Appendix C.1).

5 Discussion

In this section, we discuss the implications of the
proposed DynaMo suite of multi-token prediction
models and future work directions.

Figure 4: Pairwise performance of the DynaMo and Pythia models on the Vicuna benchmark. GPT-4 was used as a judge. The
actual number of wins, ties, and losses are colored green, yellow, and red, respectively.

Table 3: Effect of better transformer training on zero-shot performance in common sense tasks.

Model ARC-c ARC-e BoolQ COPA HellaSwag OBQA PIQA WinoG

Pythia-70M 15.5±1.0 38.7±1.0 55.9±0.8 53.0±5.0 26.6±0.4 14.6±0.2 58.6±1.2 50.8±1.4

Pythia-70M+ 15.6±1.0 38.8±1.0 55.9±0.8 53.1±5.0 26.8±0.4 14.6±0.2 58.6±1.2 50.9±1.4

DynaMo-77M-T3 17.3±1.1 41.0±1.0 55.7±0.9 56.0±5.0 26.9±0.4 14.7±1.6 59.8±1.1 49.8±1.4

5.1 Effect of Better Transformer Training

Another observation that supports the hypothesis
that better transformer training results in superior
first-token prediction is as follows. For fair com-
parisons, we test our three-token model against
Pythia-70M further trained on the 5% Pile dataset
using a learning rate of 10−5 (we refer to this ver-
sion as Pythia-70M+) on commonsense tasks. We
present the result in Table 3 (perplexity results in
Appendix C.2.2). Training the decoder layers based
on the modified-CLM loss in Eq. (1) results in bet-
ter first-token prediction, which we use to evaluate
common sense tasks as presented here. This key
result is worth further exploration, which we leave
for future work.

5.2 Contribution of Unigram, Bigram, and
Trigram Generations to Speed-up

Fig. 5 shows the percentage of one-token, two-
token, and three-token generations as we sweep
ϵb with DynaMo-70M-T3. When ϵb = 1.0, the
model always generates one token at a time. When
ϵb = 0.0, the model always generates three tokens
at a time, regardless of its confidence in the gener-
ations. Surprisingly, we note that the contribution
of two-token generations is low; the model banks
on three-token generations instead. We defer fur-
ther exploration to balance multi-token generations

Figure 5: Percentage of unigram, bigram, and trigram genera-
tions vs. ϵb for DynaMo-70M-T3.

during dynamic back-off to future work.

5.3 Baseline Comparisons

Table 4 shows comparisons with other approaches
that target inference speed-up. Speculative sam-
pling (Chen et al., 2023a) and skeleton-of-thought
decoding (Ning et al., 2023) are orthogonal to the
DynaMo approach and can be used in conjunction
with the proposed multi-token generation scheme
to boost performance further. Nevertheless, Dy-
naMo can be seen to require the least overhead
in FLOPS-per-generation and provide the highest
speed-up. The high computational efficiency of Dy-

Table 4: Comparisons with other approaches. ∗Ning et al.
(2023) evaluate models of different sizes.

Method Base Model Size FLOPS Overhead Speed-up

Speculative Sampling 70B 340% 1.92-2.46×

Skeleton-of-Thought 7B-13B∗ 560% 1.13-2.39×

RecycleGPT 1.3B 15% 1.34-1.40×

DynaMo-77M-T3 70M 8.95% 3.00×
DynaMo-180M-T3 160M 8.73% 2.19×
DynaMo-430M-T3 410M 6.22% 3.00×
DynaMo-1.1B-T3 1B 9.95% 2.15×
DynaMo-1.5B-T3 1.4B 7.12% 2.07×
DynaMo-2.5B-T3 2.4B 5.67% 2.06×
DynaMo-7.3B-T3 6.9B 5.87% 2.57×

naMo is attributed to its avoidance of high-batch
operations necessitated by speculative sampling
and skeleton-of-thought decoding.

5.4 How Many Tokens Can We
Simultaneously Predict?

Fig. 6 shows the win rates with respect to speed-
ups on the sentence-completion benchmark using
pairwise analysis against Pythia-70M (see Sec-
tion 3.4 and Appendix A.3). DynaMo-77M-T3
shows much better win rates relative to DynaMo-
74M-T2 for speed-ups < 2.0 despite similar PPL1:2.
Further, DynaMo-77M-T3, being a three-token
model, can provide much higher speed-ups than
DynaMo-74M-T2, however, at the cost of a slight
parameter overhead. Since the extra parameter
overhead is marginal, especially for larger mod-
els, we stick with three-token models.

We also explore simultaneous token prediction
beyond the three-token model. Fig. 6 also shows
the performance of DynaMo-80M-T4. Due to the
better transformer training through the modified-
CLM objective, the four-token model achieves
higher win rates than the three-token counterpart
for speed-ups < 2.0. DynaMo-80M-T4 achieves a
same-quality speed-up of 3.89×, however, at an ad-
ditional parameter overhead. Apart from the param-
eter overhead, the quadruplet co-occurrence mask
incurs additional memory overhead. While the pair-
wise and triplet masks (calculated over 5% of the
Pile dataset) only occupy 53.43MB and 152.59MB,
respectively, the quadruplet mask (calculated over
0.05% of the Pile dataset) occupies 3.33GB mem-
ory. We store all co-occurrence masks using the
sparse coordinate format. This overhead may still
be negligible for very large models (>7B parame-
ters). We leave simultaneous prediction of more
than four tokens and optimized implementation of
corresponding co-occurrence masks to future work.

Figure 6: Win rate vs. speed-up for pairwise comparisons on
the sentence-completion benchmark with Pythia-70M as the
baseline. GPT-3.5 is used as a judge. Theoretical same-quality
speed-up is marked with an asterisk (*).

5.5 Additional Benchmarking

We show the performance of the DynaMo models
on most downstream benchmarking tasks. These re-
sults show that the better transformer trained using
loss terms for predicting subsequent tokens gener-
ally leads to improved downstream performance
while incurring no significant adverse effect on
the model’s bias and misinformation abilities (see
Appendix C.3.4). While Mukherjee et al. (2023)
suggest evaluating world knowledge acquisition
through tasks like AGIEval (Zhong et al., 2023)
and Big-Bench Hard (Suzgun et al., 2023), we de-
fer assessing larger multi-token models on such
complex benchmarks to future work.

6 Conclusion

In this work, we presented DynaMo, a suite
of multi-token prediction language models. We
trained the proposed model suite efficiently by
reusing weights of existing pre-trained LLMs. We
proposed novel ways to dynamically predict multi-
ple tokens for a given context. The DynaMo mod-
els dynamically back off to lower-order n-gram
prediction based on a threshold. We also proposed
adaptive thresholding and co-occurrence weighted
masking on the modeled joint probability distribu-
tion to improve text generation quality. One of our
proposed models, DynaMo-7.3B-T3, achieved the
same-quality generated text as the baseline (Pythia-
6.9B) while achieving 2.57× speed-up with only
5.87% and 2.67% parameter and training time over-
heads (see Appendix A.2).

7 Limitations

We trained DynaMo models on only 5% of the Pile
dataset (Gao et al., 2020). However, training the
models on the entire dataset would further boost
performance due to improved estimates of the joint
probability distributions. Future multi-token mod-
els can directly be trained on the entire language
corpus without the complex multi-learning-rate
learning employed here (details in Appendix A.1).
Finally, the current suite of DynaMo models was
trained with the Pythia backbone. One could also
leverage state-of-the-art open-source foundation
models (Touvron et al., 2023b) to train the DynaMo
suite.

Acknowledgments

This work was supported by Samsung Research
America, Mountain View. N. K. J. was supported
by NSF under Grant No. CCF-2203399.

References
Stella Biderman, Hailey Schoelkopf, Quentin Gregory

Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In Proceedings of the In-
ternational Conference on Machine Learning, pages
2397–2430.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. PIQA: Reasoning about physical com-
monsense in natural language. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7432–7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in Neural Information Processing
Systems, 33:1877–1901.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
and Tri Dao. 2023. Medusa: Simple framework for
accelerating LLM generation with multiple decoding
heads. https://github.com/FasterDecoding/
Medusa.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023a. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023b. Al-

paGasus: Training a better Alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez,
Ion Stoica, and Eric P. Xing. 2023. Vicuna:
An open-source chatbot impressing GPT-4 with
90%* ChatGPT quality. https://lmsys.org/
blog/2023-03-30-vicuna/.

Krishna Teja Chitty-Venkata, Murali Emani, Venkatram
Vishwanath, and Arun K. Somani. 2022. Neural
architecture search for transformers: A survey. IEEE
Access, 10:108374–108412.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, volume 1,
pages 2924–2936.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? Try ARC, the AI2 reasoning challenge.
arXiv preprint arXiv:1803.05457.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. 2021. A continual learning sur-
vey: Defying forgetting in classification tasks. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 44(7):3366–3385.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics, volume 1, pages 889–898.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The Pile: An 800GB dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.
https://doi.org/10.5281/zenodo.5371628.

Xinyang Geng and Hao Liu. 2023. OpenLLaMA: An
open reproduction of LLaMA. https://github.
com/openlm-research/open_llama.

https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.5281/zenodo.5371628
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. In Proceedings of the International Conference
on Learning Representations.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Edward J. Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. LoRA: Low-rank adaptation of large lan-
guage models. In Proceedings of the International
Conference on Learning Representations.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mo-
hiuddin, Lukasz Kaiser, Wojciech Gajewski, Henryk
Michalewski, and Jonni Kanerva. 2021. Sparse is
enough in scaling transformers. Advances in Neural
Information Processing Systems, 34:9895–9907.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019. CTRL: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale reading
comprehension dataset from examinations. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 785–794.

Benjamin Lefaudeux, Francisco Massa, Diana
Liskovich, Wenhan Xiong, Vittorio Caggiano,
Sean Naren, Min Xu, Jieru Hu, Marta Tin-
tore, Susan Zhang, Patrick Labatut, and Daniel
Haziza. 2022. xFormers: A modular and hack-
able transformer modelling library. https:
//github.com/facebookresearch/xformers.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics,
volume 1, pages 3214–3252.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto-
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang.
2023. Online speculative decoding. arXiv preprint
arXiv:2310.07177.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? A new dataset for open book question an-
swering. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
2381–2391.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of GPT-4. arXiv preprint
arXiv:2306.02707.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, pages 1953–1967.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang,
and Yu Wang. 2023. Skeleton-of-Thought: Large
language models can do parallel decoding. arXiv
preprint arXiv:2307.15337.

OpenAI. 2023a. ChatGPT. https://chat.openai.
com.

OpenAI. 2023b. GPT-4 Technical Report. arXiv
preprint arXiv:2303.08774.

Nobuyuki Otsu. 1979. A threshold selection method
from gray-level histograms. IEEE Transactions on
Systems, Man, and Cybernetics, 9(1):62–66.

Gabriel Peyré, Marco Cuturi, et al. 2019. Computa-
tional optimal transport: With applications to data
science. Foundations and Trends in Machine Learn-
ing, 11(5-6):355–607.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics, volume 2, pages 784–789.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of plausible alterna-
tives: An evaluation of commonsense causal reason-
ing. In Proceedings of the AAAI Spring Symposium
Series.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. WinoGrande: An adver-
sarial Winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Thibault Séjourné, Jean Feydy, François-Xavier Vialard,
Alain Trouvé, and Gabriel Peyré. 2019. Sinkhorn
divergences for unbalanced optimal transport. arXiv
preprint arXiv:1910.12958.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-BERT: Hessian based ultra low
precision quantization of BERT. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
https://chat.openai.com
https://chat.openai.com

Benjamin Frederick Spector and Christopher Re. 2023.
Accelerating LLM inference with staged speculative
decoding. In Workshop on Efficient Systems for Foun-
dation Models@ ICML2023.

Shikaripur N. Sridhar. 2012. Cognition and Sentence
Production: A Cross-linguistic Study, volume 22.
Springer Science & Business Media.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information
Processing Systems, 31.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-Bench
tasks and whether chain-of-thought can solve them.
In Proceedings of the Association for Computational
Linguistics, pages 13003–13051.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford Alpaca:
An instruction-following LLaMA model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. LLaMA: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Shikhar Tuli and Niraj K. Jha. 2023a. AccelTran:
A sparsity-aware accelerator for dynamic inference
with transformers. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
42(11):4038–4051.

Shikhar Tuli and Niraj K. Jha. 2023b. EdgeTran:
Device-aware co-search of transformers for efficient
inference on mobile edge platforms. IEEE Transac-
tions on Mobile Computing, pages 1–18.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han. 2020a.
HAT: Hardware-aware transformers for efficient nat-
ural language processing. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7675–7688.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020b. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Brian Yan, Siddharth Dalmia, Yosuke Higuchi, Graham
Neubig, Florian Metze, Alan W. Black, and Shinji
Watanabe. 2023. CTC alignments improve autore-
gressive translation. In Proceedings of the 17th Con-
ference of the European Chapter of the Association
for Computational Linguistics, pages 1615–1631.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a machine really finish your sentence? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4791–4800.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging LLM-as-a-judge with MT-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. AGIEval: A human-centric
benchmark for evaluating foundation models. arXiv
preprint arXiv:2304.06364.

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

A Experimental Setup Details

In this section, we provide details on the train-
ing and evaluation processes along with other hy-
perparameters. We then describe the sentence-
completion benchmark. Finally, we present the
overheads in training time for our DynaMo suite of
models.

A.1 Training and Evaluation Processes

To train the DynaMo suite of models, we first trans-
fer the weights from the base Pythia model. Then,
we train the models on a randomly sampled 5%
set of sentences in the Pile dataset1. We train for
one epoch on this dataset. We choose a subset of
the same dataset on which the base Pythia model
was trained to avoid catastrophic forgetting when
being trained on a different dataset. In the future,
we plan to train the models on other datasets using
standard continual learning approaches (De Lange
et al., 2021).

We now describe the training procedure for the
DynaMo suite of models. First, we transfer the
weights for the base model (i.e., the model stem
and the final decoder layer). Then, we train the
base model with a low learning rate (LRB). On the
other hand, we train subsequent token heads using
a higher learning rate (LRM) since we randomly
initialize their weights. However, when backpropa-
gating those gradients to the model stem, we use a
much lower learning rate (LRMB). We hypothesize
that when the decoder layers learn from the first
and subsequent token predictions, they make the
transformer better in predicting multiple tokens.
Table 5 shows the learning rates used for different
models in the DynaMo suite. Fig. 7 shows the gra-
dient flow when training an example three-token
DynaMo model.

We train our models using the AdamW op-
timizer (Loshchilov and Hutter, 2017) with the
following hyperparameters: β1 = 0.9, β2 =
0.95, ϵ = 1×10−8. We use the cosine learning rate
scheduler such that the learning rate warms up for
1% of the dataset (758 steps) and then drops to 0 at
the end of training. We use a batch size of 64 sen-
tences, i.e., 131,072 tokens (each sentence is 2,048
tokens long). The dataset has 5M sentences, which
we divide into a training set (97%) and validation
set (3%). Thus, a batch size of 64 results in 75,782
training steps in one training epoch. We evaluate

1Dataset source: https://huggingface.co/datasets/
EleutherAI/pile-deduped-pythia-random-sampled.

Table 5: Learning rates used for training different models in
the DynaMo suite.

Model LRB LRM LRMB

DynaMo-77M-T3 10−5 10−3 10−6

DynaMo-180M-T3 6× 10−6 6× 10−4 6× 10−7

DynaMo-430M-T3 3× 10−6 3× 10−4 3× 10−7

DynaMo-1.1B-T3 2× 10−6 2× 10−4 2× 10−7

DynaMo-1.5B-T3 2× 10−6 2× 10−4 2× 10−7

DynaMo-2.9B-T3 1.6× 10−6 1.6× 10−4 1.6× 10−7

DynaMo-7.3B-T3 1.2× 10−6 1.2× 10−4 1.2× 10−7

Lorem ipsum

L

LRB LRM LRM

LRMB

Figure 7: Gradient flow when training a DynaMo model.

0 10000 20000 30000 40000 50000 60000 70000
Steps

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Lo
ss

DynaMo-77M-T3
DynaMo-180M-T3
DynaMo-430M-T3
DynaMo-1.1B-T3
DynaMo-1.5B-T3
DynaMo-2.9B-T3
DynaMo-7.3B-T3

Figure 8: Loss curves for three-token models in the DynaMo
suite.

the model at every 5,000 steps. Fig. 8 shows the
three-token validation loss (logarithm of PPL1:3)
for models in the DynaMo suite.

We train the models on A100 GPUs with
80GB memory. For efficient implementation
of our models, we use the flash-attention li-
brary (Dao et al., 2022). Our models also sup-
port memory-efficient attention in the xformers
library (Lefaudeux et al., 2022). Since DynaMo-
7.3B-T3 did not fit in memory, we resorted to Py-
Torch’s fully-sharded data parallel (FSDP) training
feature. Table 6 provides the hyperparameters used
for the FSDP configuration.

For text generation, we use k = 50 for top-k de-
coding, temperature = 0.7, and repetition penalty
= 1.1. The default text generation hyperparame-
ters for the DynaMo models are αc = 1.0 (see Ap-

https://huggingface.co/datasets/EleutherAI/pile-deduped-pythia-random-sampled
https://huggingface.co/datasets/EleutherAI/pile-deduped-pythia-random-sampled

Table 6: FSDP configuration used for training DynaMo-7.3B-
T3.

Configuration Key Value

Sharding strategy SHARD_GRAD_OP
Transformer-based wrap DYNAMO_LAYER
All-gather backward prefetch policy BACKWARD_PRE
All-gather forward prefetch policy NONE
Mixed precision FP16

Table 7: Training (with overheads) and instruction-finetuning
times for the DynaMo suite of models.

Model Training GPU Hrs. Instruction-FT GPU Mins.

Pythia-70M 510 -
DynaMo-77M-T3 15 (2.94%) 8

Pythia-160M 1,030 -
DynaMo-180M-T3 36 (3.49%) 15

Pythia-410M 2,540 -
DynaMo-430M-T3 46 (1.81%) 30

Pythia-1B 4,830 -
DynaMo-1.1B-T3 80 (1.65%) 60

Pythia-1.4B 7,120 -
DynaMo-1.5B-T3 88 (1.24%) 72

Pythia-2.8B 14,240 -
DynaMo-2.9B-T3 176 (1.24%) 180

Pythia-6.9B 33,500 -
DynaMo-7.3B-T3 896 (2.67%) 864

pendix C.1), adaptive thresholding with Gaussian
blur (kernel size = 3), and using co-occurrence
weighted masking unless otherwise specified.

A.2 Training Overheads

Table 7 shows the overhead of training models in
the DynaMo suite. We report training times for
modified-CLM training on 5% of the Pile dataset
and instruction-finetuning. We present the reported
CLM training times for the Pythia models (Bider-
man et al., 2023).

A.3 Sentence-completion Benchmark

In this section, we provide details of the sentence-
completion benchmark. This benchmark is moti-
vated by the Vicuna benchmark (Zheng et al., 2023).
However, it is meant for pre-trained LLMs that are
not instruction-finetuned. This dissociates any ef-
fects of instruction-finetuning from model perfor-
mance. The benchmark consists of ten prompts re-
quiring the model to complete the sentence. These
prompts correspond to sentences of different types.
Table 8 outlines the prompts.

To obtain the GPT score, we ask GPT-3.5 to
rate the generated sentence on a scale from 1 to
10. For pairwise evaluations, we ask GPT-3.5
to compare the generated text (by our DynaMo

Table 8: Prompts in the sentence-completion benchmark.

Prompt Type

I am a student at the Simple Declarative
This is going to be a very Simple Declarative
He wanted to play, but Compound Declarative
How can we W/H Interrogative
What will W/H Interrogative
Will you Y/N Interrogative
Please explain Affirmative Imperative
Do not Negative Imperative
Wow! I can’t believe that Exclamatory
This is amazing! We Exclamatory

Please act as an impartial judge
and evaluate the quality of
the response provided by an AI
assistant to the input prompt. The
AI assistant provides an open-ended
generation for the input prompt.
Your evaluation should be based
on the grammatical correctness,
creativity, depth, logical flow,
coherence, and based on how
informative the response is. Do
not let the length of the generated
text influence your evaluation. Be
as objective as possible. Begin
your evaluation by providing a
short explanation. Explain the
mistakes, if any. After providing
your explanation, you must rate the
response on a scale of 1 to 10
by strictly following this format:
"[[rating]]", for example: "Rating:
[[5]]"

Figure 9: Prompt template to rate the sentence quality of the
candidate assistant model on an absolute scale (single-mode
evaluation).

model) against a baseline (the corresponding base-
line Pythia model) and rate it as a “win,” “lose,”
or a “tie.” We use gpt-3.5-turbo-0613 for our
evaluations. Fig. 9 shows the prompt template
used for single-mode evaluations and Fig. 10 shows
the prompt template used for pairwise evaluations.
However, this benchmark also suffers from the
same drawbacks as the Vicuna benchmark (Zheng
et al., 2023), which we attempt to alleviate. To
address position bias in pairwise comparisons, we
randomly order the responses of the assistants.

B Optimal Transport Theory

Eq. (2) approximates the output joint probability
by directly multiplying the independent marginal
distributions. This implicitly assumes that xt+2 is
independent of xt+1 conditioned on history x1:t,

Please act as an impartial
judge and evaluate the quality
of the responses provided by
two AI assistants to the input
prompt. Both AI assistants provide
open-ended generations for the
input prompt. You should choose
the assistant that produces a
better generation. Your evaluation
should be based on the grammatical
correctness, creativity, depth,
logical flow, coherence, and based
on how informative the responses
are. Do not let the lengths of
the generated texts influence your
evaluation. Do not favor certain
names of the assistants. Begin
your evaluation by comparing the
two responses and provide a short
explanation. Explain the mistakes,
if any. Avoid any positional biases
and ensure that the order in which
the responses were presented does
not influence your decision. Be
as objective as possible. After
providing your explanation, output
your final verdict by strictly
following this format: "[[A]]" if
assistant A is better, "[[B]]" if
assistant B is better, and "[[C]]"
for a tie.

Figure 10: Prompt template to rate the sentence quality of the
candidate assistant model against a baseline model (pairwise-
mode evaluation).

xt+3 is independent of xt+1 and xt+2, and so on.
The downside of this decoding strategy is that it
ignores the fact that the prediction of xt+2 depends
heavily on which xt+1 is chosen (and similarly for
subsequent predictions). A simple example is to
consider x1:t = I; here, to is a plausible second-
word prediction as many sentences lead to that
word, such as I like to, I want to, and I went
to. On the other hand, am is a plausible first-word
prediction. However, as long as one chooses it, the
weight for to as the second-word prediction should
be minimal unless we want to make our English
teacher cry. This motivates us to weight the joint
probability distribution based on co-occurrence of
words (or, more precisely, tokens).

What follows is a theoretical motivation be-
hind the use of co-occurrence weighted mask-
ing. Formally, according to optimal transport the-
ory (Peyré et al., 2019), we define a cost function
c(xt+1, . . . ,xt+n), ∀ xt+1, . . . ,xt+n. Once we
define the cost function, we pose the joint estima-

tion problem as follows,

argmin
p

∑
p(xt+1:t+n|x1:t)c(xt+1, . . . ,xt+n)

∆xt+1 . . .∆xt+n

+ ϵ1KL

(
p(xt+1:t+n|x1:t)||

n∏
i=1

f i
θ(x1:t)

)

+ ϵ2

n∑
i=1

KL
(
p(xt+i|x1:t)||f i

θ(x1:t)
)

(5)

Although solving an optimal transport prob-
lem is fast, using the celebrated Sinkhorn algo-
rithm (Séjourné et al., 2019), we propose the use
of Eq. (3) as an approximation that works well in
practice, as we demonstrate in our experimental
results. Next, we show that the approximation in
Eq. (3) is indeed the closest to preserving the true
joint probability distribution, when the correction
term (co-occurrence mask) is not dependent on the
history x1:t.

Proof of Theorem 1. Recall that the optimiza-
tion in Eq. (5) is subject to the constraint∫
p(xt+1:t+n|x1:t)∆xt+1 . . .∆xt+n = 1. Thus,

the Lagrangian of the objective is given by

L =
∑

p(xt+1:t+n|x1:t)c(xt+1, . . . ,xt+n)

∆xt+1 . . .∆xt+n

+ ϵ1KL

(
p(xt+1:t+n|x1:t)||

n∏
i=1

f i
θ(x1:t)

)

+ ϵ2

n∑
i=1

KL
(
p(xt+i|x1:t)||f i

θ(x1:t)
)

+ λ
(∑

p(xt+1:t+n|x1:t)∆xt+1 . . .∆xt+n

− 1
)

Setting the derivative of L w.r.t. p(xt+1:t+n|x1:t)
to zero, we get

p∗(xt+1:t+n|x1:t)

∝
n∏

i=1

f i
θ(x1:t) exp (c(xt+1, . . . ,xt+n)/ϵ1)

=

n∏
i=1

f i
θ(x1:t)

p̂(xt+1:t+n)∏n
i=1 p̂(xt+i)

(a) (b) (c)

(d) (e) (f)

Figure 11: Joint probability distribution with top 10 tokens sorted in decreasing order of probabilities using the DynaMo-2.9B-T2
model for the input prompt: Please explain. Probabilities corresponding to repetition have been penalized by a factor of 100.
(a) and (d) are vanilla distributions. Co-occurrence masked distribution with (b) αc = 0.5 [CO-0.5] and (c) αc = 1.0 [CO].
Adaptive thresholding (e) without Gaussian blur [AT], and (f) with Gaussian blur (kernel size = 3) [AT + G-3].

C Additional Results

In this section, we report additional supporting re-
sults.

C.1 Ablation of Dynamic Text Generation
Methods

In this section, we ablate the effect of adaptive
thresholding (with and without Gaussian blur) and
co-occurrence weighted masking (see Section 3.2).
Figs. 11(a)-(c) show the effect of co-occurrence
masking on the two-token joint probability with de-
creasing masking transparency αc. Mathematically,
we modify Eq. (3) for the two-token prediction case
as follows:

p(xt+1,xt+2|x1:t)

≈ f1
θ (x1:t)f

2
θ (x1:t)

(
p̂(xt+1,xt+2)

p̂(xt+1) p̂(xt+2)

)αc

(6)

where αc = 1.0 implies that the co-occurrence
weights mask the joint probability distribution with
no transparency. On the other hand, we do not use
co-occurrence masking when αc = 0.0. Neverthe-
less, αc = 0.5 partially masks the joint probabil-
ity distribution using the co-occurrence weights.

Figure 12: Ablation analysis using adaptive thresholding
(with and without Gaussian blur) and co-occurrence mask-
ing. Win rates for pairwise tests against Pythia-70M on the
sentence-completion benchmark are shown for different speed-
ups. GPT-3.5 is used as the judge. Theoretical same-quality
speed-ups are marked with an asterisk (*).

Figs. 11(d)-(f) show the effect of adaptive thresh-
olding with and without Gaussian blur.

Fig. 12 shows the win rates vs. speed-up for
DynaMo-77M-T3, where we generated the texts
in the sentence-completion benchmark using dif-
ference schemes. We observe that co-occurrence
masking (with αc = 1.0, i.e., the default setting

(a) (b)

Figure 13: Multi-token prediction using a single-token head. The input sequence is shown below the transformer layer. The
model predicts the output sequence above. Attention arrows correspond to the modified CLM objective. The attention masks are
shown below the input sequences. (a) T1-L2-M0: labels are shifted by two positions (i.e., the model predicts x′

t+2 with xt as
input). Under the modified CLM objective, the model learns to predict x′

t+2 = xt+2. (b) T1-L2-M(-1)R: labels are shifted by
two positions but masks are shifted in the opposite direction (i.e., for predicting x′

t+2, the model can sometimes see xt+1).

Table 9: Ablations analysis of dynamic text generation meth-
ods with the instruction-finetuned DynaMo-7.3B-T3 model
on the Vicuna benchmark. We use ϵb = 0.5.

Method Speed-up Win rate

CO + AT + G-3 2.57× 0.98
CO + AT 2.44× 0.96
CO 2.61× 0.82
CO-0.5 + AT + G3 2.55× 0.77
AT + G-3 2.49× 0.38

used in our experiments) used along with adaptive
thresholding (after application of Gaussian blur
with a kernel size = 3) results in the flattest win
rate vs. speed-up curve, thus, providing the highest
theoretical same-quality speed-up.

We ablate the effect of dynamic text generation
methods with the instruction-finetuned DynaMo-
7.3B-T3 model on the Vicuna benchmark in Ta-
ble 9. We take the case ϵb = 0.5 (that re-
sults in 2.57× speed-up in Fig. 4) and present
the win rates against Pythia-6.9B. Leveraging co-
occurrence weighted masking along with adaptive
thresholding using Gaussian blur (kernel size = 3)
results in the highest win rate.

C.2 Exploration of Multi-token Prediction
Methods

In this section, we provide a detailed overview of
various architectural and training variations tested
for multi-token prediction.

C.2.1 Design Variations
Under the CLM objective, the attention mask pre-
vents the model from seeing future tokens, i.e., we

only compute the attentions corresponding to the
lower triangular matrix (we refer to this case as
M0). In summary, we represent traditional autore-
gressive models as T1-L1-M0. We study different
variations of the above formulation for multi-token
prediction. These include multiple token heads, la-
bel shifts, and mask shifts. We explore them below.
After testing various approaches, we observe that
for, say, three-token prediction, the T3-L1-M0 set
of choices performs the best. Thus, in all discus-
sions in the main paper, we represent DynaMo-T3-
L1-M0 as simply DynaMo-T3.

Fig. 13 shows the information flow for T1-L2-
M0 and T1-L2-M(-1)R cases. In the former case,
for predicting xt+2, the model only sees the input
context x1:t. Hence, we shift the mask in the latter
case. However, T1-L2-M(-1) would be equivalent
to the traditional T1-L1-M0 (ignoring residual con-
nections that result in information leakage). Hence,
we randomly mask out some tokens so that the
model learns to predict the next and the second-next
token at each position. Another position-equivalent
modeling approach to T1-L2-M(-1)R is T1-L1-
M1R. However, both these modeling approaches
suffer from information leakage. T1-L2-M(-1)R
suffers from information leakage due to expanding
receptive fields along model depth. We fix this by
incorporating negative mask shifts only in the first
layer of the LLM. T1-L1-M1R suffers from infor-
mation leakage due to the residual/skip connections
in the LLM. Hence, we do not use this approach
and test T1-L2-M(-1)R instead.

LRR

Lorem ipsum

*

LRR

LoRA

LRR

*

*

LRR

. .
 .

Lorem ipsum

. .
 .

Lorem ipsum

. .
 .

Lorem ipsum

. .
 .

Lorem ipsum

. .
 .

LRR

Lorem ipsum

. .
 .

(a) (b) (c)

(d) (e) (f)

Figure 14: Architectural variations of the two-token predic-
tion model that we tested: (a) DynaMo-96M-T2, (b) DynaMo-
74M-T2 (C), (c) DynaMo-70M-T2 (LoRA), (d) DynaMo-
99M-T2, (e) DynaMo-74M-T2 (NP), and (f) DynaMo-77M-
T2.

Fig. 14 shows different architectural variations
of the two-token model we tested. We initialize
all these models from the base Pythia-70M model.
Fig. 14(a) shows the schematic of DynaMo-96M-
T2 that randomly initializes the output embedding
for the second-token head (we denote newly initial-
ized weights by ∗ while other variations reuse these
weights). The output embedding has 26M trainable
parameters. Fig. 14(b) shows DynaMo-74M-T2
(C), which copies the weights of the decoder layer
for the second-token head from the last layer of
the first-token head (or the base model). Its output
embedding for the second-token head reuses the
weights from the first-token head. Since we copy
the weights, we train the copied weights with a low
learning rate (LRB). Fig. 14(c) shows DynaMo-
70M-T2 (LoRA) with only 65K trainable parame-
ters (Hu et al., 2021). The LoRA module includes
a low-rank matrix (we use rank = 32). We add its
output to that of the last decoder layer for second-
token prediction. Fig. 14(d) shows DynaMo-99M-
T2. We train a decoder layer and the output embed-
ding for the second-token head, where we randomly
initialize the weights of both modules. Fig. 14(e)
shows DynaMo-74M-T2 (NP), where we feed the
output of the last layer of the base model to the de-

Table 10: Multi-token perplexity results for various archi-
tectural variations. +Model was further trained on 5% Pile
dataset.

Model PPL1 PPL2 PPL3 PPL12 PPL123

Pythia-70M 20.2±1.5 - - - -
Pythia-70M+ 20.1±1.5 - - - -

DynaMo-70M-T1-L2 21.4±1.6 1455.8±6.4 - 189.3±2.2 -
DynaMo-70M-T1-L2-M(-1)R 20.3±1.5 645.3±1.9 - 87.4±1.7 -

DynaMo-96M-T2 19.9±1.5 252.4±1.9 - 68.0±1.5 -

DynaMo-74M-T2 (C) 18.3±1.5 296.4±1.5 - 73.7±1.5 -
DynaMo-70M-T2 (LoRA) 20.2±1.5 1368.1±1.8 - 161.2±1.6 -

DynaMo-74M-T2 (CTC) 18.5±1.5 115.4±1.7 - 46.0±1.6 -

DynaMo-99M-T2 18.3±1.5 111.5±1.7 - 45.2±1.5 -
DynaMo-74M-T2 (NP) 18.8±1.5 131.1±1.6 - 49.0±1.5 -
DynaMo-74M-T2-H 20.2±1.5 119.1±1.7 - 49.0±1.5 -
DynaMo-74M-T2 18.3±1.5 112.4±1.7 - 45.4±1.5 -
DynaMo-77M-T2 18.3±1.5 86.7±1.7 - 39.9±1.6 -

DynaMo-77M-T3 18.3±1.5 111.4±1.7 262.0±1.6 45.2±1.5 81.2±1.6

coder layer for the second-token head. All models
in the DynaMo suite use the outputs of the penulti-
mate layer of the base model for subsequent token
prediction. Instead, this model uses the output of
the final (non-penultimate or NP) layer. Finally,
Fig. 14(f) shows the use of two decoder layers for
the second-token head.

C.2.2 Evaluations

Table 10 shows the multi-token perplexity results
for various architectural and training variations
of the DynaMo model with Pythia-70M as the
baseline. For fair comparisons, we also add the
perplexity results for Pythia-70M+ (trained using
LRB = 10−5). It does not result in a lower PPL1.
This shows that with traditional CLM training,
PPL1 has converged. However, with the modified-
CLM training (details in Appendix A.1), PPL1 for
models in the DynaMo suite goes down further.
The architectural variations are as explained above.
DynaMo-74M-T2 (CTC) shows the perplexity re-
sults for the model trained using CTC loss (Yan
et al., 2023). DynaMo-74M-T2-H is the model
where we only train the decoder layer of the second-
token head. Training this model is much faster than
training DynaMo-74M-T2, as we need to calculate
only a few gradients. However, this does not make
the decoder layers in the model stem better. We
see that PPL1 of this model is the same as that of
Pythia-70M. One could increase the parameter bud-
get for multi-token prediction by either adding an-
other decoder layer for predicting the second token
(DynaMo-77M-T2) or using a decoder layer for the
third-token head (DynaMo-77M-T3). In the Dy-
naMo suite of models, we traded the parameter bud-
get for higher speed-up (using three-token models).
We leave the exploration and search among various

Table 11: Five-shot ex-
act match performance
on the TriviaQA bench-
mark.

Model TriviaQA

Pythia-70M 0.2±0.0

DynaMo-77M-T3 0.2±0.0

Pythia-160M 2.1±0.1

DynaMo-180M-T3 2.2±0.1

Pythia-410M 7.4±0.2

DynaMo-430M-T3 7.9±0.2

Pythia-1B 12.0±0.2

DynaMo-1.1B-T3 14.2±0.3

Pythia-1.4B 6.2±0.2

DynaMo-1.5B-T3 18.9±0.3

Pythia-2.8B 7.1±0.2

DynaMo-2.9B-T3 25.1±0.3

Pythia-6.9B 8.9±0.2

DynaMo-7.3B-T3 33.6±0.3

Table 12: Zero-shot accuracy
for the RACE benchmark along
with exact match performance and
F1 scores (in parenthesis) for the
SquAD2.0 benchmark.

Model RACE SQuAD2.0

Pythia-70M 23.5±1.3 1.2 (2.5)
DynaMo-77M-T3 24.4±1.3 4.2 (5.6)

Pythia-160M 28.3±1.4 0.6 (3.5)
DynaMo-180M-T3 27.9±1.4 0.4 (3.0)

Pythia-410M 31.5±1.4 2.0 (7.4)
DynaMo-430M-T3 32.9±1.5 2.0 (7.2)

Pythia-1B 32.3±1.4 4.2 (5.3)
DynaMo-1.1B-T3 31.9±1.4 4.9 (11.5)

Pythia-1.4B 34.1±1.5 4.4 (5.8)
DynaMo-1.5B-T3 34.0±1.5 6.6 (13.5)

Pythia-2.8B 34.9±1.5 5.2 (8.5)
DynaMo-2.9B-T3 34.5±1.5 7.1 (15.0)

Pythia-6.9B 37.1±1.5 8.0 (9.5)
DynaMo-7.3B-T3 38.3±1.5 11.3 (19.0)

Table 13: Five-shot accuracy on the MMLU benchmark.

Model Humanities Social Sciences STEM Other Average

Pythia-70M 24.1±3.0 26.0±3.2 27.6±3.8 23.9±3.2 25.6±3.3

DynaMo-77M-T3 23.6±2.9 27.4±3.3 26.6±3.7 24.8±3.2 25.7±3.3

Pythia-160M 24.2±3.0 26.0±3.2 27.3±3.7 24.1±3.2 25.6±3.3

DynaMo-180M-T3 24.7±3.0 26.6±3.2 25.7±3.6 24.9±3.2 25.5±3.3

Pythia-410M 25.6±3.1 25.0±3.2 26.9±3.7 26.5±3.4 26.1±3.4

DynaMo-430M-T3 25.2±3.1 23.5±3.1 27.7±3.8 27.2±3.4 26.1±3.4

Pythia-1B 25.2±3.0 22.3±3.0 24.0±3.6 25.7±3.3 24.3±3.3

DynaMo-1.1B-T3 24.6±3.0 22.7±3.1 25.2±3.7 26.2±3.3 24.8±3.3

Pythia-1.4B 25.2±3.0 22.4±3.1 27.2±3.8 26.4±3.4 25.5±3.4

DynaMo-1.5B-T3 25.8±3.0 22.2±3.1 27.7±3.8 24.7±3.3 25.4±3.4

Pythia-2.8B 26.5±3.1 25.9±3.2 27.3±3.8 27.8±3.4 27.0±3.4

DynaMo-2.9B-T3 26.6±3.1 24.7±3.2 27.0±3.7 28.2±3.4 26.7±3.4

Pythia-6.9B 26.1±3.1 24.8±3.2 27.3±3.7 26.9±3.4 26.4±3.4

DynaMo-7B-T3 26.3±3.1 25.3±3.1 27.8±3.7 26.6±3.4 26.6±3.4

architectural decisions (Chitty-Venkata et al., 2022;
Tuli and Jha, 2023b) targeting text generation per-
formance and speed-up to future work.

C.3 Additional Downstream Performance
Results

We now present additional results on downstream
benchmarks.

C.3.1 Closed-book Question Answering
Next, we compare the performance of DynaMo
with that of the baseline Pythia models on the Triv-
iaQA closed-book question answering benchmark.
We test the five-shot performance of models and
report the exact match results. Table 11 shows the
results. We can see that the DynaMo models sig-
nificantly outperform the baselines, especially as
the models become larger.

C.3.2 Reading Comprehension
We evaluate the models on the RACE (Lai et al.,
2017) and SQuAD2.0 (Rajpurkar et al., 2018)

Table 14: Likelihood difference (lower is better) and percent-
age stereotype (50% is better) on the CrowS-Pairs benchmark
along with scores (higher is better) on the MC1 and MC2 tasks
in the TruthfulQA benchmark.

Model CrowS-Pairs TruthfulQA
LLD Stereotype MC1 MC2

Pythia-70M 3.7±0.1 55.4±1.2 25.3±1.5 47.5±1.6

DynaMo-77M-T3 3.7±0.1 54.9±1.2 25.1±1.5 47.0±1.6

Pythia-160M 4.3±0.1 54.7±1.2 24.7±1.5 44.4±1.5

DynaMo-180M-T3 4.3±0.1 53.6±1.2 24.0±1.5 43.2±1.5

Pythia-410M 3.5±0.1 58.6±1.2 23.6±1.5 41.0±1.5

DynaMo-430M-T3 3.6±0.1 58.7±1.2 23.7±1.5 41.1±1.5

Pythia-1B 3.4±0.1 63.1±1.2 22.6±1.5 38.9±1.4

DynaMo-1.1B-T3 3.5±0.1 63.3±1.2 22.8±1.5 39.3±1.4

Pythia-1.4B 3.5±0.1 61.4±1.2 23.0±1.5 38.6±1.4

DynaMo-1.5B-T3 3.6±0.1 61.0±1.2 23.6±1.5 39.0±1.4

Pythia-2.8B 3.4±0.1 63.4±1.2 21.2±1.4 35.6±1.4

DynaMo-2.9B-T3 3.4±0.1 62.3±1.2 20.4±1.4 35.8±1.4

Pythia-6.9B 3.8±0.1 63.2±1.2 21.7±1.4 35.2±1.3

DynaMo-7.3B-T3 3.7±0.1 62.8±1.2 21.8±1.4 35.2±1.3

benchmarks in Table 12. Again, DynaMo outper-
forms Pythia on most model sizes.

C.3.3 Massive Multitask Language
Understanding

Next, we report performance on the massive multi-
task language understanding (MMLU) benchmark,
introduced by Hendrycks et al. (2021). It con-
sists of multiple-choice questions that cover various
knowledge domains, including humanities, STEM,
and social sciences. We present five-shot accuracy
results in Table 13. We observe that most mod-
els have accuracy close to random chance (25%).
Recent literature reports that models trained with
much more data break the random performance
barrier for these model sizes (Geng and Liu, 2023;
Touvron et al., 2023b). We plan to train multi-token
counterparts of such models in the future.

C.3.4 Bias and Misinformation

Table 14 shows the effect of multi-token train-
ing on bias and misinformation in the DynaMo
suite of models. We report performance on the
CrowS-Pairs (Nangia et al., 2020) and the Trth-
fulQA benchmarks (Lin et al., 2022). The former
tests the model’s biases along nine categories: gen-
der, religion, race/color, sexual orientation, age,
nationality, disability, physical appearance, and so-
cioeconomic status. The latter tests the model’s
ability to generate false claims, i.e., to hallucinate.
We observe that multi-token training does not sig-
nificantly affect the model’s bias and misinforma-
tion abilities.

(a)

(b) (c)

Figure 15: Dynamic multi-token perplexity (PPLd) for differ-
ent models in the DynaMo suite. Effect of ϵb on (a) PPLd and
(b) speed-up. (c) Plot of PPLd vs. speed-up.

C.4 Dynamic Multi-token Perplexity
For a given threshold ϵb, the DynaMo model dy-
namically backs off to lower-order prediction based
on input context and predicted joint probability dis-
tribution. We calculate the dynamic multi-token
perplexity PPLd based on the number of tokens
generated. Fig. 15 plots PPLd against the resul-
tant mean speed-up on the validation set. We ob-
serve that PPL1 (i.e., PPLd at 1× speed-up) drops
as models become larger. The slope of the curve
also reduces. This shows promise for multi-token
prediction by larger models beyond those in the
current DynaMo suite.

C.5 Sentence Completion Benchmark
We now present additional results on the sentence
completion benchmark. We use LLMs trained
under the CLM (or modified-CLM) objective to
complete the sentence for a given prompt in the
sentence-completion benchmark (details in Ap-
pendix A.3). We use GPT-3.5 to rate the text gen-
erations in single-mode and pairwise evaluations
against Pythia.

C.5.1 Single-mode Evaluation
Fig. 16 shows the histograms for the GPT scores on
the sentence-completion benchmark for text gener-
ations by Pythia-70M and DynaMo-77M-T3. We
evaluated 100 generations (ten for each prompt,
with a separate random seed) for both models.

Fig. 17 shows the GPT scores for DynaMo-77M-
T3 on the sentence-completion benchmark for dif-
ferent speed-ups. Since the speed-up varies for dif-
ferent text generations (even for the same prompt)
with ϵb, we plot a regression line to predict the GPT
for a target speed-up. We leveraged these predicted

(a) (b)

Figure 16: Histograms of GPT scores for single-mode evalu-
ations on the sentence-completion benchmark for (a) Pythia-
70M and (b) DynaMo-77M-T3 (ϵb = 1.0). GPT-3.5 is used
as the judge.

Figure 17: GPT scores for DynaMo-77M-T3 on the sentence-
completion benchmark plotted against speed-up. GPT-3.5 is
used as the judge. The mean GPT score for Pythia-70M is
plotted as a black dashed line. Regression plotted with 95%
confidence intervals.

GPT scores to plot Fig. 18, which shows the evo-
lution of GPT scores with increasing model sizes.
We plot the mean GPT scores of the Pythia models.
Further, we plot the mean GPT scores of the Dy-
naMo models at different speed-ups. We regress
the GPT scores at a target speed-up using GPT
score vs. ϵb and wallclock speed-up vs. ϵb plots. As
ϵb increases, the GPT score increases, but speed-up
decreases. The DynaMo models outperform the
baseline at 1× speed-up, improving performance
as the model size increases.

C.5.2 Pairwise Evaluation
Fig. 19 shows the pairwise performance and speed-
ups for DynaMo-77M-T3 against baseline Pythia-
70M. For every prompt, at every ϵb, each bar plots

Figure 18: Effect of model size on GPT scores. We plot
the GPT scores for DynaMo models at different speed-ups.
GPT-3.5 used to judge generation quality on a scale 1-10.

the wins, ties, and losses of DynaMo-77M-T3 over
ten text generations (in green, yellow, and red, re-
spectively). We show a regression plot for win-
rates (wins/losses) against speed-ups (for different
ϵb’s) in Fig. 3.

Next, we study the effect of model sizes and
parameter overheads on the obtained speed-ups.
Every DynaMo model instantiated from a base
Pythia model trains additional decoder layers for
the second- and third-token heads. This results in
a parameter overhead for each DynaMo model rel-
ative to its Pythia counterpart. Fig. 20 shows that
speed-up increases with model size and decreases
with parameter overhead, albeit with low statistical
significance. Nevertheless, this shows promise for
high speed-ups in larger multi-token LLMs. Note
that, for the models in the DynaMo suite, model
sizes and their parameter overheads are not uncor-
related [see inset in Fig. 20(a)]. Thus, we need
more rigorous scaling experiments to test the ef-
fect of model sizes and parameter overheads on the
obtained speed-up, which we leave to future work.

Fig. 21 shows the variation of win rates and
speed-ups across different sentence types for
the DynaMo-77M-T3 model on the sentence-
completion benchmark.

D Sample Text Generations

Figs. 22, 23, and 24 show the generated responses
at different speed-ups along with GPT-4’s judg-
ments. We observe that as the target speed-up
increases, the grammatical mistakes in the gen-
erated response also increase. For 3× speed-up,
DynaMo-7.3B-T3 generated unrelated text. De-
spite using the repetition penalty, we also observe

Figure 19: Normalized pairwise performance and speed-ups
of DynaMo-77M-T3 on the sentence-completion benchmark
plotted against ϵb.

(a) (b)

Figure 20: Speed-up, i.e., the minimum of (theoretical) same-
quality speed-up and 3× for three-token models, with (a)
model sizes and (b) parameter overheads. Results are shown
for pairwise evaluation on the sentence-completion bench-
mark. Only points below 3× speed-up were used to plot the
regression line (shown with 95% confidence intervals). Pa-
rameter overheads with model sizes are shown in the inset.

repetitive n-grams generated for smaller models.
Grammatical mistakes during multi-token genera-
tion should decrease with larger training corpora
for subsequent token-head training and with more
representative models (e.g., LLaMA-2-70B, Tou-
vron et al. 2023b).

(a) (b)

Figure 21: Pairwise performance on the sentence-completion benchmark categorized by different sentence types. Radar charts
for mean (a) win rates and (b) speed-ups for different ϵb’s are shown.

Question: How can I improve my time management skills?

Pythia-6.9B-Chat’s [Assistant A] response : To improve your time management
skills, you should set realistic goals, create a plan for completing tasks,
break down large tasks into smaller ones that you can complete more quickly,
prioritize tasks, track your progress, and reward yourself for accomplishments.
Additionally, it is important to take regular breaks throughout the day in
order to replenish your energy levels and stay motivated.

DynaMo-7.3B-T3-Chat’s [Assistant B] response @1×: To improve your time
management skills, you should set realistic goals, create a weekly schedule,
keep track of your tasks, prioritize them, and break down large projects into
smaller, more manageable chunks. Additionally, it is important to practice
good habits such as setting aside specific periods for specific tasks, taking
regular breaks, and making sure that you are giving yourself enough time to
complete each task.

GPT-4’s judgment: Both assistants provided similar advice on improving time
management skills, including setting realistic goals, breaking down large tasks,
prioritizing tasks, and taking regular breaks. However, Assistant B added the
suggestion of creating a weekly schedule and setting aside specific periods for
specific tasks, which provides a bit more detail and practical advice for the
user. Therefore, Assistant B’s response is slightly more helpful and detailed.
Final Verdict: [[B]]

Figure 22: Question, Pythia-6.9B’s and DynaMo-7.3B-T3’s responses at 1× speed-up, along with GPT-4’s judgements.

Question: How can I improve my time management skills?

Pythia-6.9B-Chat’s [Assistant A] response : To improve your time management
skills, you should set realistic goals, create a plan for completing tasks,
break down large tasks into smaller ones that you can complete more quickly,
prioritize tasks, track your progress, and reward yourself for accomplishments.
Additionally, it is important to take regular breaks throughout the day in
order to replenish your energy levels and stay motivated.

DynaMo-7.3B-T3-Chat’s [Assistant B] response @2.62×: There are several ways you
can improve your time management skills. These include setting realistic and
achievable goals by setting milestones and take regular breaks. Additionally,
make sure to delegate tasks to others to prioritize your work and make sure
you have enough time for yourself. Lastly, implement successful planning
strategies such as a to-do list and list out specific tasks to break them down
into manageable chunks. Finally, practice mindfulness meditation as it will
help you become better aware of your thoughts and emotions and help them stay
under control.

GPT-4’s judgment: Both assistants provide useful advice on improving time
management skills, including setting realistic goals, breaking down tasks, and
taking regular breaks. However, Assistant B goes a step further by suggesting the
practice of mindfulness meditation to help control thoughts and emotions, which
can indirectly improve time management. This additional piece of advice makes
Assistant B’s response more comprehensive and detailed. Therefore, Assistant
B’s response is better. Final Verdict: [[B]]

Figure 23: Question, Pythia-6.9B’s and DynaMo-7.3B-T3’s responses at 2.62× speed-up, along with GPT-4’s judgements. A
blatant grammatical mistake is highlighted in yellow.

Question: How can I improve my time management skills?

Pythia-6.9B-Chat’s [Assistant A] response : To improve your time management
skills, you should set realistic goals, create a plan for completing tasks,
break down large tasks into smaller ones that you can complete more quickly,
prioritize tasks, track your progress, and reward yourself for accomplishments.
Additionally, it is important to take regular breaks throughout the day in
order to replenish your energy levels and stay motivated.

DynaMo-7.3B-T3-Chat’s [Assistant B] response @3×: There are several ways you
can improve your time management skills. You can take regular breaks throughout
the day to focus on other activities. You can also set realistic goals and
prioritize tasks to help you stay out of the current task. It is also good to
develop more efficient and effective systems such as using lists, calendars,
reminders, and even automation software to make use of these tasks. Finally,
be sure that you have adequate sleep and sleep enough in it to improve overall
performance. Additionally, make sure to keep track of your time to make sure
you’re doing the most efficient work with you limited time available. Lastly,
don’t forget to ask yourself if you are taking the best course of action for
any tasks at hand. Make sure you are not clear-headed and make decisions about
activities that effectively manage your time. This will help you get the most
out of your work and maximize life in satisfaction. Make sure you start engaging
your time management practice today and make significant changes in the near
future. Good luck! About Me: I am a graduate student at Harvard University
specializing in East Asian languages and social sciences. I’m currently working
on the dissertation projects titled "The Relationship Between Emo and the Korean
Language in the Digital Age". In an effort to create a better understanding of
Chinese culture and I am interested in learning Mandarin Chinese.

GPT-4’s judgment: Assistant A’s response is concise, clear, and directly
addresses the user’s question about improving time management skills. The
assistant provides practical steps and strategies that the user can implement.
Assistant B’s response starts off well by providing some strategies for improving
time management skills. However, the response then veers off into unrelated
topics about the assistant’s personal background and unrelated text. This
makes the response confusing and less helpful to the user. Therefore, Assistant
A’s response is more helpful, relevant, and accurate in answering the user’s
question. Final verdict: [[A]]

Figure 24: Question, Pythia-6.9B’s and DynaMo-7.3B-T3’s responses at 3× speed-up, along with GPT-4’s judgements. Blatant
grammatical mistakes are highlighted in yellow.

	Introduction
	Challenges and Motivation
	Our Contributions

	Background and Related Works
	Method
	Going Beyond One-token Prediction
	Dynamic Text Generation
	Co-occurrence Weighted Masking
	Dynamic Back-off and Adaptive Thresholding

	Evaluation Methods
	NLU Benchmarks
	Multi-token Perplexity

	Open-ended Text Generation

	Experiments
	Downstream Performance
	Multi-token Perplexity
	Text Generation Performance and Speed-up
	Instruction Finetuning

	Discussion
	Effect of Better Transformer Training
	Contribution of Unigram, Bigram, and Trigram Generations to Speed-up
	Baseline Comparisons
	How Many Tokens Can We Simultaneously Predict?
	Additional Benchmarking

	Conclusion
	Limitations
	Experimental Setup Details
	Training and Evaluation Processes
	Training Overheads
	Sentence-completion Benchmark

	Optimal Transport Theory
	Additional Results
	Ablation of Dynamic Text Generation Methods
	Exploration of Multi-token Prediction Methods
	Design Variations
	Evaluations

	Additional Downstream Performance Results
	Closed-book Question Answering
	Reading Comprehension
	Massive Multitask Language Understanding
	Bias and Misinformation

	Dynamic Multi-token Perplexity
	Sentence Completion Benchmark
	Single-mode Evaluation
	Pairwise Evaluation

	Sample Text Generations

