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A B S T R A C T   

Clinicians often face a dilemma in diagnosing bipolar disorder patients with complex symptoms who spend more 
time in a depressive state than a manic state. The current gold standard for such diagnosis, the Diagnostic and 
Statistical Manual (DSM), is not objectively grounded in pathophysiology. In such complex cases, relying solely 
on the DSM may result in misdiagnosis as major depressive disorder (MDD). A biologically-based classification 
algorithm that can accurately predict treatment response may help patients suffering from mood disorders. Here 
we used an algorithm to do so using neuroimaging data. We used the neuromark framework to learn a kernel 
function for support vector machine (SVM) on multiple feature subspaces. The neuromark framework achieves 
up to 95.45% accuracy, 0.90 sensitivity, and 0.92 specificity in predicting antidepressant (AD) vs. mood stabi
lizer (MS) response in patients. We incorporated two additional datasets to evaluate the generalizability of our 
approach. The trained algorithm achieved up to 89% accuracy, 0.88 sensitivity, and 0.89 specificity in predicting 
the DSM-based diagnosis on these datasets. We also translated the model to distinguish responders to treatment 
from nonresponders with up to 70% accuracy. This approach reveals multiple salient biomarkers of medication- 
class of response within mood disorders.   

1. Introduction 

Many studies have reported fundamental differences between major 
depressive disorder (MDD) and bipolar disorder (BD) (Osuch et al., 
2018; de Almeida and Phillips, 2013; Bowden, 2005; Perlis et al., 2006). 
The complexity of symptoms exhibited by unipolar and bipolar disorder 
patients often leads to the wrong diagnosis and treatment. The current 
“gold standard” for such diagnosis, the Diagnostic and Statistical Manual 
(DSM), may lead to misdiagnosis as MDD without any evident symptoms 
of mania (American Psychiatric Association, 2013). BD patients tend to 
spend more time in depressive states, which may mislead clinicians to 
prescribe antidepressants (ADs) and worsen BD type I (Judd et al., 
2002). On the other hand, mood stabilizers (MSs) may fail to treat MDD 
effectively. The patient’s recovery can be vastly improved with the 
correct mood diagnosis and selection of treatment. This study uses a 

kernel support vector machine (SVM) classification algorithm in 
multi-dataset and multi-feature cases to predict medication-class of 
response (MS vs. AD) from fMRI data. 

Functional magnetic resonance imaging (MRI) has been used in 
numerous studies to distinguish unipolar and bipolar disorders diag
nosed by DSM. He et al. demonstrated that the striatum-precuneus 
connectivity estimated from fMRI could serve as a marker for differen
tiating these groups (N = 84,50 patients) (He et al., 2019). In their study, 
Rai et al. also showed the role of default mode and fronto-parietal 
network connectivity in distinguishing (N = 116,77 patients) (Rai 
et al., 2021). On the other hand, Han et al. found that the functional 
network switching rate is altered differently in BD and MDD (N = 162, 
101 patients) (Han et al., 2020). These recent studies demonstrate the 
utility of fMRI data of small sample patients to understand these con
ditions. Furthermore, it validates our goal of investigating treatment 
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response to augment DSM-based diagnosis using the same modality 
(fMRI). 

Group independent component analysis (ICA) is a popular and highly 
used among data-driven algorithms for multi-subject fMRI studies 
(Calhoun et al., 2001; Mckeown et al., 1998). The spatial group ICA 
approach estimates spatial patterns of brain activity, or spatial maps 
(SMs), which are maximally spatially independent across subjects. In the 
subsequent back-reconstruction step, each subject’s data is decomposed 
into unique time courses (TCs) and significantly variable SMs (Erhardt 
et al., 2011). Asynchronous multi-dataset analyses can be challenging 
with this data-driven approach because all the data must be analyzed 
together. Selecting and labeling the components can also be an arduous 
task. Spatially constrained ICA (scICA) is an automatic and adaptive 
approach for estimating the subject-specific features using a priori 
network templates, hence suitable for multi-dataset analyses. Several 
algorithms for performing scICA are available in the Group ICA of fMRI 
Toolbox (GIFT) (https://trendscenter.org/software/gift/) (Lin et al., 
2010; Du and Fan, 2013). We use the neuromark component templates 
derived from multiple large-N (N>800) studies combined with the scICA 
algorithm to estimate features from the individual subjects. These fea
tures are then used to classify the subjects based on known 
medication-class of treatment response. We use an SVM-based algorithm 
to perform the classification. The algorithm is closely related to prior 
work in which a single feature (SMs) estimated from the patient data 
collected at Western University was used (Osuch et al., 2018; Fan et al., 
2011). Osuch et al. used known DSM-based BD type-I and MDD patients 
to create the algorithm, whereas we used the patients’ known treatment 
response (AD vs. MS) to create ours (Osuch et al., 2018). 

Our study aims to predict treatment response in patients with mood 
disorders using resting-state fMRI features. In doing so, we intend to 
demonstrate the superior efficacy of neuroimaging and data-driven 
techniques over DSM-based diagnosis. Following are our novel contri
butions. We use BD and MDD subjects from the Western dataset to create 
a new SVM-based classification algorithm. We use two independent 
datasets (Establishing Moderators and Biosignatures of Antidepressant 
Response for Clinical Care for Depression (EMBARC) and UCLA Con
sortium for Neuropsychiatric Phenomics LA5c (LA5C)) to validate the 
trained algorithm (Osuch et al., 2018; Poldrack et al., 2016; Trivedi 
et al., 2016). We reveal neurophysiological differences in these pop
ulations using a stepwise forward feature selection algorithm. This work 
extends our prior work in several ways (Salman et al., 2021). Previously, 
we reported results using thresholded SMs as features. Here we use the 
unthresholded SMs, which lowers the number of false positives and false 
negatives and results in better sensitivity/specificity. We also fuse the 
unthresholded SM with functional network connectivity (FNC) to 
perform multi-feature prediction in Western data and extend the 
framework in LA5C and EMBARC data. Finally, we also include the 
prediction of MDD treatment response improvement scores in the 
EMBARC dataset using the same algorithm. We hope that in the longer 
term, the algorithm will help predict AD vs. MS response in complex 
patients with unclear DSM diagnoses. The emphasis on medication-class 
response potentially provides a clinically useful ’DSM-free’ approach to 
identifying biomarkers of medication-class of response within mood 
disorders. 

2. Methods 

2.1. Data 

Our medication-class of response predictor model is trained on the 
resting-state fMRI data collected on MDD and BD patients from Western 
University. These individuals were followed up over an extended period 
and categorized based on cumulative knowledge, including medication 
class response and clinical and research diagnosis. We validated the 
trained model on two independent datasets: EMBARC and LA5C. These 
datasets are described below and also summarized in Table 1. 

2.1.1. Western data 
The University of Western Ontario Research Ethics Board approved 

the data collection. Written informed consent was obtained from all 
participants. We divide the data collection into two rounds. The first 
round of data was collected before 2018 and used in a prior study 
(Osuch et al., 2018). The subjects were between 16 and 27, with no 
significant effect of age between groups (p = 0.1492). They were divided 
into four groups: 33 controls, 32 patients with BD type-I, 34 with MDD, 
and 12 with unknown diagnosis (Osuch et al., 2018). The second round 
includes data collected at the same site between 2018 and 2021 and the 
data collected in the first round. The division is because we can use the 
first round of data in a replication experiment of the prior study. The 
second round of data includes additional treatment response informa
tion to use in our experiments. For the patient group, diagnoses were 
made using the Structural Clinical Interview for DSM disorders-IV 
(SCID-IV) or the Diagnostic Interview for Genetic Studies (DIGS). They 
were confirmed by clinical psychiatric diagnostic assessment. Agree
ment between SCID-IV/DIGS diagnosis and clinical diagnosis was 
required for the patients. If there was disagreement between DIGS and 
clinical diagnosis or if patients had one or more first-degree relatives 
with mental illness, they were categorized as the ”unknown” group. In 
the second round of data collected until 2021, there were 147 subjects. 
They were again divided into four groups: 33 controls, 35 patients with 
BD type-I, 67 with MDD, and 12 with unknown diagnoses. 

The medication-class was determined by the clinician using chart 
review to treat each patient to attain sustained euthymia, lasting at least 
six months. Medication-class was simplified to either an AD or MS 
(lithium, lamotrigine, carbamazepine, divalproex sodium) (Osuch et al., 
2018). Based on medication class, we divided the 147 subjects into four 
groups: 33 controls, 47 patients responding to AD, 45 responding to MS, 
8 nonresponders, and 14 remitted without medication. 

MRI data were acquired at the Lawson Health Research Institute 
using a 3.0T Siemens Verio MRI scanner and a 32-channel phased-array 
head coil. The data included gradient-echo, echo-planar imaging (EPI) 
scans with the following acquisition parameters: repetition time (TR) =
2000 ms, echo time (TE) = 30 ms, 40 axial slices and thickness = 3 mm, 
with no parallel acceleration, flip angle = 90◦, field of view (FOV) = 240 
× 240 mm, matrix size = 80 × 80. The length of the resting fMRI scan 
was approximately 8 min, and 164 brain volumes were collected. 

2.1.2. LA5C data 
MRI images were collected on two 3.0T Siemens Trio scanners at the 

Ahmanson-Lovelace Brain Mapping Center (Siemens version syngo MR 
B15) and the Staglin Center for Cognitive Neuroscience (Siemens 
version syngo MR B17) at UCLA. 130 healthy individuals from the 
community and individuals diagnosed with schizophrenia (SZ) (50), BD 

Table 1 
Summary of data.  

Dataset Western LA5C EMBARC 

Population info 
BD 44 49  
MDD 43  545 
Nonresponder 14   
Control 39 121 78 
Total 140 170 623 
Age range 16–27 21–50 18–65 
Acquisition parameters 
Scanner type Siemens Siemens GE/Siemens/Phillips 
TR 2000 ms 2000 ms 2000 ms 
TE 30 ms 30 ms 28 ms 
Slices 40 34  
Slice thickness 3 mm 4 mm 3.1 mm 
Flip angle 90◦ 90◦ 90◦

FOV 240 mm 192 mm 205 mm 
Matrix size 80 × 80 64 × 64 64 × 64 
Scan duration 8 min 304 s 2 × 6 min 
Volumes 164 142 178 (−4)  
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(49), and attention deficit hyperactivity disorder (ADHD) (43) partici
pated in the study. The age range of the participants was 21 − 50, and 
there was a significant effect of age between groups (p = 0.0025). fMRI 
scans were acquired using a T2*-weighted EPI sequence with the 
following parameters: TR = 2000 ms, TE = 30 ms, slice thickness = 4 
mm, 34 slices, oblique slice orientation, flip angle = 90◦, matrix 64 × 64, 
and FOV = 192 mm. Scans covered the whole brain for a total time of 
304 s. Previous work can be consulted for additional data descriptions 
(Poldrack et al., 2016). 

2.1.3. EMBARC data 
Controls and MDD patients diagnosed using the Structured Clinical 

Interview for DSM-IV Axis I Disorders (SCID) at four sites participated in 
this study. There were 337 subjects in total: 40 controls and 297 pa
tients. The age range of the participants was 18−65. There was no sig
nificant age difference among the participants (p = 0.8015). Functional 
imaging was acquired during the resting-state for two scans of 6 min 
each. The functional image acquisition parameters were: TR = 2000 ms, 
TE = 28 ms, flip angle = 90◦, FOV = 205 mm, slice thickness = 3.1 mm, 
matrix 64 × 64. Previous work can be consulted for additional data 
descriptions (Trivedi et al., 2016). 

The patients were divided into four groups based on the treatment 
response on the Clinical Global Improvement (CGI) scale. They were 
classed as nonresponders if their score was less than 3 or “much 
improved” (Trivedi et al., 2016). The number of subjects with CGI scores 
of 1 (no improvement), 2, 3 (much improved), and 4 (completely 
improved) was 25, 20, 21, and 11 respectively. 

2.2. Preprocessing 

Data were preprocessed for all three datasets using the Statistical 
Parametric Mapping (SPM) software (Friston, 2007). The preprocessing 
steps included rigid body motion correction for head motion, 
slice-timing correction for the timing difference in slice acquisition, 
warping into the standard Montreal Neurological Institute (MNI) space 
using an EPI template, resampling to 3 × 3 × 3 mm3 isotropic voxels, and 
smoothing using a Gaussian kernel with a full width at half maximum 
(FWHM) of 6 mm. 

We used a state-of-the-art motion correction technique (INRIAlign 
toolbox in SPM) for motion correction to retain most of the subjects for 
analysis. We still excluded a small number of subjects from the analysis 
based on the following quality control criteria. Subjects were discarded 
if they had more than 3◦ rotational and 3 mm transitional head motion 
during the scanning period. Only subjects with more than 120 time 
points were retained. We also ensured that the subjects included for 
further analysis provided a successful normalization of the whole brain 
(Fu et al., 2021b). 

After preprocessing and quality control, we retained 135 subjects in 
the second round of Western data, including 13 nonmedicated (remitted 
without medication), 42 MS responders, 41 CE responders, and 39 
controls. As for the LA5C data, 255 subjects were retained: 121 controls, 
46 diagnosed with BD, 47 SZ, and 41 ADHD. For this analysis, we used 
the controls and BD subjects. As for the EMBARC data, we retained 623 
subjects (78 controls and 545 diagnosed with MDD). 

2.3. Feature extraction 

2.3.1. The neuromark template 
We used a set of independent component (IC) templates called 

neuromark (https://trendscenter.org/data/) (Du et al., 2020). This 
reference set comprised 53 labeled and ordered components which were 
replicated following separate analyses on the control subjects in Human 
Connectome Project (HCP) and Brain Genomics Superstruct Project 
(GSP) datasets (Smith et al., 2013; Buckner et al., 2014). The compo
nents were divided into seven functional domains: subcortical network 
(SCN), auditory network (ADN), sensorimotor network (SMN), visual 

network (VSN), executive control network (CON), default mode network 
(DMN), cerebellar network (CBN). Fig. 2 presents a composite view of 
the neuromark templates. These have been successfully applied in 
numerous studies and validated as robust spatial priors that provide 
reliable functional network features across subjects and datasets (Fu 
et al., 2021c,b,a). 

2.3.2. Spatially-constrained ICA 
We used the spatially-constrained ICA algorithm available in GIFT 

(https:// trendscenter.org/software/gift/) to extract features from pre
processed data of the subjects (Du and Fan, 2013; Lin et al., 2010; Sal
man et al., 2019). In this fully automated approach, each subject’s 
preprocessed fMRI data were the input, the neuromark fMRI 1.0 tem
plates (available in GIFT and also at http://trendscenter.org/data) were 
used as the reference, and the output included subject-specific SMs and 
TCs. Furthermore, we estimated the FNC matrix for each subject using 
the Pearson correlation coefficient between the TCs of 53 components, 
the dimension of which was 53 × 53. 

2.4. Classification 

2.4.1. Kernel SVM 
SVMs are a set of supervised binary classification algorithms which 

can also be extended for regression and multiclass classification (Vap
nik, 1999, 1998). The SVM algorithm incorporates a sample selection 
mechanism, i.e., only the support vectors affect the decision function. It 
constructs a maximal margin linear classifier in high-dimensional 
feature space by mapping the original features via a kernel function. 
We can define a unique kernel function for applying the SVM algorithm 
to classify fMRI features such as SMs and TCs. We utilize the similarity 
measures of subspaces in the commonly used kernel functions (Chang 
and Lin, 2001). 

We initially constructed an SVM kernel matrix in the SM feature 
space of the subjects and later on constructed kernel matrices on 
different/multiple feature spaces. The distance metric used in the kernel 
matrix is the (cosine of the) principal angle between subspaces (PABS) 
(Björck and Golub, 1973). Let F and G be given subspaces, and p = dim 

(F),q = dim(G),p ≥ q. Then the principal angles θk ∈
[
0,

pi
2

]
between F and 

G are recursively defined for k = 1,2,…,q by 

cosθk = max
u∈F

max
v∈G

uHv = uH
kvk, ||u||2 = ||v||2 = 1

subject to uH
ju = vj

Hv = 0, j = 1, 2, ..., k − 1
(1) 

The vectors (u1,…,uq) and (v1,…,vq) are principal vectors of the pair 
of spaces. The spatial ICs estimated using ICA on the subject data 
constitute a subspace in this SM space. Let F and G correspond to such 
voxel × component spaces for two subjects, and q be the number of ICs. 
The (cosine of the) principal angles θk ∈

[
0, pi

2

]
between F and G 

numerically correspond to the ordered singular values of F′G (Björck and 
Golub, 1973). Hence, the subspace distance metric can be obtained from 
the ordered singular values of F′G, i.e., 

S(F, G) =
∑k

i=1
si, where s = svd(F’G) (2) 

Finally, the distance matrix S of all subjects is mapped into a high
erdimensional feature space K using the sigmoid kernel function, i,e, 

K(F, G) = tanh(γS(F, G)) (3) 

Fig. 1 presents a flowchart of the classification framework. The 
(maximally) statistically independent nature of the subject-specific SMs 
approximates an orthonormal set. It allows us to estimate a Riemannian 
similarity metric between different subjects and construct a pairwise 
similarity matrix of all subjects. We then map this similarity matrix into 
a high-dimensional feature space using a sigmoid kernel function to 
build the SVM classifier (Björck and Golub, 1973; Fan et al., 2011). 
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Fig. 1. Flowchart of our classification 
scheme. A. Resting-state fMRI data are 
put through the Neuromark ICA pipe
line for feature extraction (spatial 
maps, time courses, and FNC). B. 
Classification is performed using 
kernel SVM algorithm & 10fold cross- 
validation. Known medication-class of 
treatment response (mood stabilizers 
(MS)/antidepressants (AD)) is used as 
the targets to train the models. C. Ex
periments are run using spatial maps 
(SMs), functional network connectiv
ity (FNC), and their combination as 
features. D. Trained models are tested 
on independent data.   

Fig. 2. The neuromark SM templates. These are obtained using group ICA analysis on HCP, GSP controls data, and a greedy algorithm to identify the most replicable 
components. 53 spatial maps are divided into 7 functional domains. These templates can be used as references to estimate subject spatial maps and time courses from 
new and unseen data. 
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2.4.2. Multiple kernel learning 
We have features extracted for the same subject from multiple 

feature spaces (SMs, TCs, FNC, etc.). We can estimate an SVM kernel 
matrix from each of these underlying subspaces and combine those for 
even better predictive performance. Here we report results by averaging 
the kernel matrices as follows. Given two subspaces (A1,A2) = ({a11,a12, 
…,a1k},{a21,a22,…,a2k}) and (B1,B2) = ({b11,b12,…,b1k},{b21,b22,…, 
b2k}), where A1,B1 are subspaces for the subjects from one feature space, 
and A2,B2 are subspaces from another, then we estimate the subspace 
similarity between the two subjects using the following averaging 
formula: 

Sp =
1
k

(
∑2

j=1

∑k

i=1
sji

)1
2

(4)  

2.4.3. Forward feature selection 
We used the neuromark reference template SMs in the scICA algo

rithm to extract the subjects’ features (SM and TC). The neuromark fMRI 
1.0 template includes 53 components divided into seven functional 
domains. We posit that using a subset (optimal set) of these 53 com
ponents may result in a negligible loss in classification score while being 
less computationally intensive. Therefore we used a stepwise forward 
selection method to generate such an optimal set (Osuch et al., 2018). 
The Matlab sequentialfs function implements this algorithm which can 
be incorporated into a 10-fold cross-validation (CV) scheme. Algorithm 
1 contains the pseudocode for implementing this step. 

2.5. Main experiment 

2.5.1. Prediction of treatment response in western data 
We used the neuromark ICA framework to reproduce the result re

ported in prior work on the first round of data collected at the Western 
site (Osuch et al., 2018). We used 66 patients’ data as the input and their 
treatment response (32 MS responders and 34 CE responders) classifi
cation labels. We performed three experiments with different features 
from the same subjects: SMs, FNC in the kernel SVM approach, and 
combined SM+FNC in the multiple kernel learning approach, as out
lined in the previous sections. In the next experiment, we used more data 
from the second collection round at the same site (N = 83, 41 MS re
sponders and 42 CE responders) for replication. 

The Western data also included two more groups- controls and pa
tients released without medication (nonmedicated). As such, we classi
fied five more pairs of groups: nonmedicated vs. responders (MS or AD), 
controls vs. responders (MS or AD), and a three-way classification be
tween nonmedicated vs. MS vs. AD. We classified each group using the 
three different feature spaces (SMs, FNC, and SM+FNC) with 100 re
peats and shuffled CV folds at each repetition. This ensures the stability, 
replicability, and robustness of the reported results. We use stratified 
cross-validation folds to mitigate the issue of unbalanced samples in 
responder vs. nonmedicated groups. This ensures that the model has 
information about all types of samples present in the data at every 
training step. 

2.5.2. Most salient features 
Previously, we performed a forward feature selection procedure to 

reduce the 53 components estimated using neuromark ICA into a smaller 
set of SMs. We performed this step in every CV step of each repeat 

experiment, which gave us a collection of the most frequently occurring 
discriminative SMs. We noted one SM from each functional domain as a 
salient brain activity pattern for discussion. 

2.6. Secondary experiments 

2.6.1. Classification of BD vs. controls in LA5C data 
We used controls and BD patient data from the LA5C project for a 

validation experiment. We trained classification models using the con
trols and patients with MS treatment response labels in Western data. 
We used these models to predict the controls and patients with BD DSM 
labels in the LA5C data. Identical to the main experiment, we trained 
three models with different features from the same subjects (SMs, FNC, 
and SM+FNC). We repeated the experiments 100 times with shuffled 
training CV folds. According to Table 1, the LA5C data suffer from an 
unbalanced sample issue. To mitigate this problem, we used a subject 
selection step before classification. In this step, we selected an equal 
number of BD patients and controls from LA5C data. 

2.6.2. Classification of MDD vs. controls in EMBARC data 
We used controls and MDD patient data from the EMBARC project for 

another validation experiment. We used the controls and patients with 
AD treatment response labels in the Western data to train a classification 
model and to predict the controls and patients with MDD DSM labels in 
the EMBARC data. Like the previous experiments, we trained three 
models with different features from the same subjects and repeated them 
100 times. According to Table 1 and similar to LA5C, EMBARC data also 
suffer from an unbalanced sample issue, which we mitigated using a 
subject selection step. 

2.6.3. Classification of MDD improvement scores in EMBARC data 
We also classified the patients who responded well (improvement 

score of 4) and nonresponders (improvement score of 1) in the EMBARC 
data. 

3. Results 

3.1. Classification between different groups in western data 

Table 2 lists the results of the primary classification experiments 
based on treatment response labels in Western data. We ran every 
experiment 100 times with shuffled CV folds for replicability. Below we 
report the average metrics (accuracy, sensitivity, and specificity) and 
standard deviations across those runs for each experiment in Table 2. 
The results are detailed below. 

The first row in Table 2 indicates the replication of the result re
ported by Osuch et al. (2018). We used neuromark-generated features 
from the SMs of the same 64 subjects to predict treatment response. We 
obtained a hold-out testing accuracy of 92.8% (sensitivity 0.9, speci
ficity 0.92). In prior work, there were also 12 subjects with unknown 
diagnoses. Our model obtained 90.9% accuracy in predicting the even
tual diagnosis of those ”unknown” samples (not shown in Table 2). 

When classifying the patients’ treatment response based on SM fea
tures in the data collected in the second round of acquisition at the same 
site (N = 83), the accuracy was 84.33% (sensitivity 0.87, specificity 
0.80). In addition to SM, we also use FNC and a combination of SM and 
FNC to predict treatment response. We obtained hold-out testing accu
racy of 85.5% using FNC (sensitivity 0.91, specificity 0.79), and 86% 
using SM+FNC (sensitivity 0.9, specificity 0.81). 

When classifying nonmedicated subjects from MS responders using 
SM features, we obtained 93.3% accuracy (sensitivity 0.99, specificity 
0.71, N = 54). Using FNC features, the accuracy was 97.1% (sensitivity 
1.0, specificity 0.86), and using SM+FNC it was also similar (97.1% 
accuracy, sensitivity 1.0, specificity 0.87). The same classification 
approach with AD responders resulted in 92.4% accuracy (sensitivity 
0.99, specificity 0.68, N = 53). Using FNC features, the accuracy was 

Algorithm 1 
Algorithm.  

1: Start with an empty set Y0 = ϕ and some candidate features 
2: Select the best next feature x+ = arg max

x∕∈Yk

[J(Yk + x)]

3: Update Yk+1 = Yk + x+;k = k + 1 
4: Return to step 2  

M.S. Salman et al.                                                                                                                                                                                                                              



Psychiatry Research: Neuroimaging 333 (2023) 111655

6

97.3% (sensitivity 0.99, specificity 0.88), and using SM+FNC it was 
97.5% (sensitivity 1.0, specificity 0.88). In a threeway classification 
among MS, AD responders, and the nonmedicated subjects (N = 95), we 
obtained 80.2% accuracy (sensitivity 0.83, specificity 0.81). 

3.2. Classification in independent data 

3.2.1. Classification of BD in LA5C data 
Table 3 lists the results of the secondary classification experiments on 

LA5C and EMBARC data. We performed a validation experiment with 
the controls and BD population of the LA5C dataset. Using only the SM 
features, the model achieved a hold-out testing accuracy of 79.8% 
(sensitivity 0.50, specificity 0.90). Using the FNC features, the hold-out 
testing accuracy was 82.6% (sensitivity 0.63, specificity 0.89), and using 
the combination SM+FNC features, it was 82.5% (sensitivity 0.63, 
specificity 0.89). The accuracy was 85.9% for BD-diagnosed patients in 
Western data (sensitivity 0.85, specificity 0.85). Using the FNC features, 
the hold-out testing accuracy was 85.7% (sensitivity 0.91, specificity 
0.79), and using the combination SM+FNC features, it was 85.2% 
(sensitivity 0.9, specificity 0.79). 

3.2.2. Classification of MDD in EMBARC data 
We performed another validation experiment with the controls and 

MDD population of the EMBARC dataset. In this experiment, the model 
achieved a hold-out testing accuracy of 89% (sensitivity 0.88, specificity 
0.89). Using the FNC features, the hold-out testing accuracy was 87.6% 
(sensitivity 0.0, specificity 1.0), and using the combination SM+FNC 
features, it was 85.8% (sensitivity 0.9, specificity 0.81). The accuracy 
was 85.2% for MDD-diagnosed patients in Western data (sensitivity 
0.84, specificity 0.85). Using the FNC features, the hold-out testing ac
curacy was 84.5% (sensitivity 0.9, specificity 0.78), and using the 
combination SM+FNC features, it was 84.4% (sensitivity 0.9, specificity 

0.78). 
The algorithm was able to separate patients with an improvement 

score of 1 (no improvement) and 4 (completely improved) with an ac
curacy of 69.44% (sensitivity 0.96, specificity 0.09). 

3.3. Most salient features 

Fig. 3 shows multi-planar views of the most salient neuromark 
templates. The corresponding subject-level features of these templates 
were the best-performing predictors of treatment response in Western 
data. The Automated Anatomical Labeling (AAL) labels for these tem
plates are the following: superior temporal gyrus from the ADN network 
(volume 21 in the neuromark template), cerebellum from the CBN 
network (13), inferior parietal lobule from the CON network (68), pre
cuneus from the DMN network (32), caudate from the SCN network 
(69), postcentral gyrus from the SMN network (3), and calcarine gyrus 
from the VSN network (16). 

4. Discussion 

In this work, we report our algorithm’s hold-out and testing perfor
mance based on features extracted from resting-state fMRI data. We also 
report the independent validation performance by testing the algorithm 
on the LA5C and EMBARC data. 

Several areas of agreement exist between the most salient (neuro
mark) spatial maps and prior work (Osuch et al., 2018). Five ICs were 
identified as the most salient features for classification. These included 
bilateral inferior parietal lobule, posterior DMN regions, anterior 
cingulate cortex, a combination of caudate, thalamus, and para
hippocampal gyrus, and lastly, the insular region. In our experiments, 
we also found, among others, the right inferior parietal lobule, pre
cuneus (in the posterior DMN region), and caudate regions to be salient. 

We replicated these results using the scICA approach based on the 
neuromark template (Du et al., 2020). The prior work used the 
group-informationguided ICA (GIG-ICA) framework, meaning the 
group-level components were estimated from the same dataset on which 
the classification was per-formed. The advantage of the scICA frame
work over GIG-ICA is that it is an adaptive approach using a priori 
network templates, suitable for multidataset analyses (Salman et al., 
2019). 

We had the DSM diagnosis and the medication-class of treatment 
response (AD or MS) data available for the patients in the Western data. 
We used the latter (medication-class) as the hold-out/testing dataset 
labels for developing the model. We also ran separate classification ex
periments on the independent datasets (LA5C and EMBARC). However, 
the DSM-based diagnosis labels were the classification target values in 
those datasets. In doing so, we demonstrate that the model trained on 
treatment response data can also predict the DSM diagnosis, although 

Table 2 
Main classification experiment results.  

Groups Features Training N Testing scores (hold-out data) 
Osuch et al. (2018)   Accuracy Sensitivity Specificity 

MS-AD SM 64 92.8±1.9 0.90 0.92 
Replication using Neuromark ICA 
MS-AD SM 83 84.3±3.3 0.87±0.03 0.80±0.05  

FNC  85.5±2.9 0.91±0.01 0.79±0.05  
SM+FNC  86.0±2.6 0.90±0.01 0.81±0.05 

MS-nonmedicated SM 54 93.3±2.9 0.99±0.01 0.71±0.12  
FNC  97.1±1.3 1.00 0.86±0.05  
SM+FNC  97.1±1.2 1.00 0.87±0.05 

AD-nonmedicated SM 53 92.4±2.3 0.99±0.01 0.68±0.11  
FNC  97.3±0.9 1.00 0.88±0.04  
SM+FNC  97.5±1.1 1.00 0.88±0.04 

MS-AD-nonmedicated SM 95 80.2±2.9 0.83±0.02 0.81±0.07  
FNC  88.2±2.5 0.87±0.01 0.89±0.05  
SM+FNC  87.3±2.6 0.86±0.01 0.87±0.05  

Table 3 
Secondary (classification) experiment results.  

Groups Features Training N Testing scores (hold-out data) 

BD-control SM 166 79.8±1.8 0.50±0.06 0.90±0.02 
(LA5C) FNC  82.6±0.8 0.63±0.01 0.89±0.01  

SM+FNC  82.5±0.8 0.63±0.02 0.89±0.01 
BD-control SM 81 85.9±3.4 0.85±0.04 0.85±0.04 
(Western) FNC  85.7±2.6 0.91±0.01 0.79±0.04  

SM+FNC  85.2±2.5 0.90±0.02 0.79±0.05 
MDD-control SM 77 89.0±3.7 0.88±0.02 0.89±0.06 
(EMBARC) FNC  87.6 0 1  

SM+FNC  85.8±3.4 0.90±0.01 0.81±0.06 
MDD-control SM 80 85.2±3.0 0.84±0.04 0.85±0.03 
(Western) FNC  84.5±2.6 0.90±0.02 0.78±0.05  

SM+FNC  84.4±2.5 0.90±0.02 0.78±0.05 

Classification Based on MDD Patient Improvement Scores in EMBARC data. 
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slightly less accurate. 
The other strengths of our approach include using a template derived 

from higher model order group ICA analysis resulting in more granular 
SMs. Also, we leveraged the TCs (or FNC) separately and combined them 
with the SMs in a multiple kernel learning framework. We report FNC- 
based classification results in each alternate row of Table 2. The FNC 
outperformed the SM in classifying these cohorts in all experiments. 

Another versatile feature of this model is the ability to predict the 
MDD improvement scores with reasonable accuracy. The low specificity 
of most of these experiments indicates comparatively high false positives 
than false negatives when detecting the patients’ improvement scores, 
which is more desirable clinically. The other strength is the ability to 
predict the unknown samples from the first round of acquisition in 
Western data. In prior work, there were 12 subjects with unknown di
agnoses (Osuch et al., 2018), and our model obtained 90.9% accuracy in 
predicting their eventual diagnosis. It indicates the robust efficacy and 
utility of the model. 

5. Limitations 

We will discuss some of the limitations of the study next. There is an 
age difference across the datasets. However, we use the analysis of 
variance (ANOVA) test to show no significant effect of age on the 

diagnosis or treatment response variables in two of the three datasets 
used. Harmonization techniques such as ComBat can mitigate the effect 
of varying acquisition parameters at various sites (Johnson et al., 2007; 
Fortin et al., 2017, 2018; Bostami et al., 2022). The treatment response 
information is available from Western data only; the other sites provide 
DSM diagnosis. Efforts should be directed at collecting more data with 
treatment response information included in the future to validate similar 
results. The LA5C dataset contained individuals with diagnoses of ADHD 
and SZ. Although these were not included in the analysis, these 
comparator groups can be informative as symptoms and treatment 
response overlap with mood disorders in future studies. 

We generated a kernel function consisting of multiple modalities 
using Eq. (4). A weighted approach or multiple kernel learning method 
can significantly improve this process (Tanabe et al., 2008; G̈onen and 
Alpaydın, 2011). The Riemannian distance measure is most useful when 
orthonormal basis vectors span the subspaces. However, the FNC feature 
space consists of scalar values only. Moreover, one of the assumptions of 
spatial ICA algorithms is that the components are maximally statistically 
independent. It is valid for the SMs but not necessarily for the TCs. 
Orthonormal features from the TCs may allow the kernel method to 
perform better. 

Some of the experiments conducted suffer from an unbalanced 
sample issue. In such a case, conveying the method’s efficacy is 

Fig. 3. Best component(s) for treatment response prediction in each functional domain across different experiments.  
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impossible using only the accuracy metric. We have addressed this issue 
by sampling balanced subjects, using stratified cross-validation folds, 
and reporting more meaningful metrics such as sensitivity and 
specificity. 

We may treat the SMs and FNC as separate modalities in machine 
learning. However, both are estimated from a single neuroimaging 
modality (fMRI). Future multi-modal analysis may rely on including 
data from structural magnetic resonance imaging (sMRI), diffusion 
tensor imaging (DTI), and other neuroimaging modalities. 

6. Conclusion 

The goal of our study was to predict treatment response in patients 
with mood disorders using resting-state fMRI features. In doing so, we 
demonstrated the superior efficacy of neuroimaging and data-driven 
techniques. The algorithm will help predict AD vs. MS response in 
complex patients with unclear DSM diagnoses. The emphasis on 
medication-class response potentially provides a clinically useful ’DSM- 
free’ approach to identifying biomarkers of medication-class of response 
within mood disorders. 
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