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Clinicians often face a dilemma in diagnosing bipolar disorder patients with complex symptoms who spend more
time in a depressive state than a manic state. The current gold standard for such diagnosis, the Diagnostic and
Statistical Manual (DSM), is not objectively grounded in pathophysiology. In such complex cases, relying solely
on the DSM may result in misdiagnosis as major depressive disorder (MDD). A biologically-based classification
algorithm that can accurately predict treatment response may help patients suffering from mood disorders. Here
we used an algorithm to do so using neuroimaging data. We used the neuromark framework to learn a kernel
function for support vector machine (SVM) on multiple feature subspaces. The neuromark framework achieves
up to 95.45% accuracy, 0.90 sensitivity, and 0.92 specificity in predicting antidepressant (AD) vs. mood stabi-
lizer (MS) response in patients. We incorporated two additional datasets to evaluate the generalizability of our
approach. The trained algorithm achieved up to 89% accuracy, 0.88 sensitivity, and 0.89 specificity in predicting
the DSM-based diagnosis on these datasets. We also translated the model to distinguish responders to treatment
from nonresponders with up to 70% accuracy. This approach reveals multiple salient biomarkers of medication-
class of response within mood disorders.

1. Introduction

Many studies have reported fundamental differences between major
depressive disorder (MDD) and bipolar disorder (BD) (Osuch et al.,
2018; de Almeida and Phillips, 2013; Bowden, 2005; Perlis et al., 2006).
The complexity of symptoms exhibited by unipolar and bipolar disorder
patients often leads to the wrong diagnosis and treatment. The current
“gold standard” for such diagnosis, the Diagnostic and Statistical Manual
(DSM), may lead to misdiagnosis as MDD without any evident symptoms
of mania (American Psychiatric Association, 2013). BD patients tend to
spend more time in depressive states, which may mislead clinicians to
prescribe antidepressants (ADs) and worsen BD type I (Judd et al.,
2002). On the other hand, mood stabilizers (MSs) may fail to treat MDD
effectively. The patient’s recovery can be vastly improved with the
correct mood diagnosis and selection of treatment. This study uses a

kernel support vector machine (SVM) classification algorithm in
multi-dataset and multi-feature cases to predict medication-class of
response (MS vs. AD) from fMRI data.

Functional magnetic resonance imaging (MRI) has been used in
numerous studies to distinguish unipolar and bipolar disorders diag-
nosed by DSM. He et al. demonstrated that the striatum-precuneus
connectivity estimated from fMRI could serve as a marker for differen-
tiating these groups (N = 84,50 patients) (He et al., 2019). In their study,
Rai et al. also showed the role of default mode and fronto-parietal
network connectivity in distinguishing (N = 116,77 patients) (Rai
et al., 2021). On the other hand, Han et al. found that the functional
network switching rate is altered differently in BD and MDD (N = 162,
101 patients) (Han et al., 2020). These recent studies demonstrate the
utility of fMRI data of small sample patients to understand these con-
ditions. Furthermore, it validates our goal of investigating treatment
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response to augment DSM-based diagnosis using the same modality
(fMRI).

Group independent component analysis (ICA) is a popular and highly
used among data-driven algorithms for multi-subject fMRI studies
(Calhoun et al., 2001; Mckeown et al., 1998). The spatial group ICA
approach estimates spatial patterns of brain activity, or spatial maps
(SMs), which are maximally spatially independent across subjects. In the
subsequent back-reconstruction step, each subject’s data is decomposed
into unique time courses (TCs) and significantly variable SMs (Erhardt
et al., 2011). Asynchronous multi-dataset analyses can be challenging
with this data-driven approach because all the data must be analyzed
together. Selecting and labeling the components can also be an arduous
task. Spatially constrained ICA (scICA) is an automatic and adaptive
approach for estimating the subject-specific features using a priori
network templates, hence suitable for multi-dataset analyses. Several
algorithms for performing scICA are available in the Group ICA of fMRI
Toolbox (GIFT) (https://trendscenter.org/software/gift/) (Lin et al.,
2010; Du and Fan, 2013). We use the neuromark component templates
derived from multiple large-N (N>800) studies combined with the scICA
algorithm to estimate features from the individual subjects. These fea-
tures are then used to classify the subjects based on known
medication-class of treatment response. We use an SVM-based algorithm
to perform the classification. The algorithm is closely related to prior
work in which a single feature (SMs) estimated from the patient data
collected at Western University was used (Osuch et al., 2018; Fan et al.,
2011). Osuch et al. used known DSM-based BD type-I and MDD patients
to create the algorithm, whereas we used the patients’ known treatment
response (AD vs. MS) to create ours (Osuch et al., 2018).

Our study aims to predict treatment response in patients with mood
disorders using resting-state fMRI features. In doing so, we intend to
demonstrate the superior efficacy of neuroimaging and data-driven
techniques over DSM-based diagnosis. Following are our novel contri-
butions. We use BD and MDD subjects from the Western dataset to create
a new SVM-based classification algorithm. We use two independent
datasets (Establishing Moderators and Biosignatures of Antidepressant
Response for Clinical Care for Depression (EMBARC) and UCLA Con-
sortium for Neuropsychiatric Phenomics LA5c (LA5C)) to validate the
trained algorithm (Osuch et al., 2018; Poldrack et al., 2016; Trivedi
et al., 2016). We reveal neurophysiological differences in these pop-
ulations using a stepwise forward feature selection algorithm. This work
extends our prior work in several ways (Salman et al., 2021). Previously,
we reported results using thresholded SMs as features. Here we use the
unthresholded SMs, which lowers the number of false positives and false
negatives and results in better sensitivity/specificity. We also fuse the
unthresholded SM with functional network connectivity (FNC) to
perform multi-feature prediction in Western data and extend the
framework in LA5C and EMBARC data. Finally, we also include the
prediction of MDD treatment response improvement scores in the
EMBARC dataset using the same algorithm. We hope that in the longer
term, the algorithm will help predict AD vs. MS response in complex
patients with unclear DSM diagnoses. The emphasis on medication-class
response potentially provides a clinically useful "DSM-free’ approach to
identifying biomarkers of medication-class of response within mood
disorders.

2. Methods
2.1. Data

Our medication-class of response predictor model is trained on the
resting-state fMRI data collected on MDD and BD patients from Western
University. These individuals were followed up over an extended period
and categorized based on cumulative knowledge, including medication
class response and clinical and research diagnosis. We validated the
trained model on two independent datasets: EMBARC and LA5C. These
datasets are described below and also summarized in Table 1.
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Table 1

Summary of data.
Dataset Western LA5C EMBARC
Population info
BD 44 49
MDD 43 545
Nonresponder 14
Control 39 121 78
Total 140 170 623
Age range 16-27 21-50 18-65
Acquisition parameters
Scanner type Siemens Siemens GE/Siemens/Phillips
TR 2000 ms 2000 ms 2000 ms
TE 30 ms 30 ms 28 ms
Slices 40 34
Slice thickness 3 mm 4 mm 3.1 mm
Flip angle 90° 90° 90°
FOvV 240 mm 192 mm 205 mm
Matrix size 80 x 80 64 x 64 64 x 64
Scan duration 8 min 304 s 2 x 6 min
Volumes 164 142 178 (—4)

2.1.1. Western data

The University of Western Ontario Research Ethics Board approved
the data collection. Written informed consent was obtained from all
participants. We divide the data collection into two rounds. The first
round of data was collected before 2018 and used in a prior study
(Osuch et al., 2018). The subjects were between 16 and 27, with no
significant effect of age between groups (p = 0.1492). They were divided
into four groups: 33 controls, 32 patients with BD type-I, 34 with MDD,
and 12 with unknown diagnosis (Osuch et al., 2018). The second round
includes data collected at the same site between 2018 and 2021 and the
data collected in the first round. The division is because we can use the
first round of data in a replication experiment of the prior study. The
second round of data includes additional treatment response informa-
tion to use in our experiments. For the patient group, diagnoses were
made using the Structural Clinical Interview for DSM disorders-IV
(SCID-1V) or the Diagnostic Interview for Genetic Studies (DIGS). They
were confirmed by clinical psychiatric diagnostic assessment. Agree-
ment between SCID-IV/DIGS diagnosis and clinical diagnosis was
required for the patients. If there was disagreement between DIGS and
clinical diagnosis or if patients had one or more first-degree relatives
with mental illness, they were categorized as the “unknown” group. In
the second round of data collected until 2021, there were 147 subjects.
They were again divided into four groups: 33 controls, 35 patients with
BD type-I, 67 with MDD, and 12 with unknown diagnoses.

The medication-class was determined by the clinician using chart
review to treat each patient to attain sustained euthymia, lasting at least
six months. Medication-class was simplified to either an AD or MS
(lithium, lamotrigine, carbamazepine, divalproex sodium) (Osuch et al.,
2018). Based on medication class, we divided the 147 subjects into four
groups: 33 controls, 47 patients responding to AD, 45 responding to MS,
8 nonresponders, and 14 remitted without medication.

MRI data were acquired at the Lawson Health Research Institute
using a 3.0T Siemens Verio MRI scanner and a 32-channel phased-array
head coil. The data included gradient-echo, echo-planar imaging (EPI)
scans with the following acquisition parameters: repetition time (TR) =
2000 ms, echo time (TE) = 30 ms, 40 axial slices and thickness = 3 mm,
with no parallel acceleration, flip angle = 90°, field of view (FOV) = 240
% 240 mm, matrix size = 80 x 80. The length of the resting fMRI scan
was approximately 8 min, and 164 brain volumes were collected.

2.1.2. LA5C data

MRI images were collected on two 3.0T Siemens Trio scanners at the
Ahmanson-Lovelace Brain Mapping Center (Siemens version syngo MR
B15) and the Staglin Center for Cognitive Neuroscience (Siemens
version syngo MR B17) at UCLA. 130 healthy individuals from the
community and individuals diagnosed with schizophrenia (SZ) (50), BD
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(49), and attention deficit hyperactivity disorder (ADHD) (43) partici-
pated in the study. The age range of the participants was 21 — 50, and
there was a significant effect of age between groups (p = 0.0025). fMRI
scans were acquired using a T2*-weighted EPI sequence with the
following parameters: TR = 2000 ms, TE = 30 ms, slice thickness = 4
mm, 34 slices, oblique slice orientation, flip angle = 90°, matrix 64 x 64,
and FOV = 192 mm. Scans covered the whole brain for a total time of
304 s. Previous work can be consulted for additional data descriptions
(Poldrack et al., 2016).

2.1.3. EMBARC data

Controls and MDD patients diagnosed using the Structured Clinical
Interview for DSM-IV Axis I Disorders (SCID) at four sites participated in
this study. There were 337 subjects in total: 40 controls and 297 pa-
tients. The age range of the participants was 18—65. There was no sig-
nificant age difference among the participants (p = 0.8015). Functional
imaging was acquired during the resting-state for two scans of 6 min
each. The functional image acquisition parameters were: TR = 2000 ms,
TE = 28 ms, flip angle = 90°, FOV = 205 mm, slice thickness = 3.1 mm,
matrix 64 x 64. Previous work can be consulted for additional data
descriptions (Trivedi et al., 2016).

The patients were divided into four groups based on the treatment
response on the Clinical Global Improvement (CGI) scale. They were
classed as nonresponders if their score was less than 3 or “much
improved” (Trivedi et al., 2016). The number of subjects with CGI scores
of 1 (no improvement), 2, 3 (much improved), and 4 (completely
improved) was 25, 20, 21, and 11 respectively.

2.2. Preprocessing

Data were preprocessed for all three datasets using the Statistical
Parametric Mapping (SPM) software (Friston, 2007). The preprocessing
steps included rigid body motion correction for head motion,
slice-timing correction for the timing difference in slice acquisition,
warping into the standard Montreal Neurological Institute (MNI) space
using an EPI template, resampling to 3 x 3 x 3 mm® isotropic voxels, and
smoothing using a Gaussian kernel with a full width at half maximum
(FWHM) of 6 mm.

We used a state-of-the-art motion correction technique (INRIAlign
toolbox in SPM) for motion correction to retain most of the subjects for
analysis. We still excluded a small number of subjects from the analysis
based on the following quality control criteria. Subjects were discarded
if they had more than 3° rotational and 3 mm transitional head motion
during the scanning period. Only subjects with more than 120 time
points were retained. We also ensured that the subjects included for
further analysis provided a successful normalization of the whole brain
(Fu et al., 2021b).

After preprocessing and quality control, we retained 135 subjects in
the second round of Western data, including 13 nonmedicated (remitted
without medication), 42 MS responders, 41 CE responders, and 39
controls. As for the LA5C data, 255 subjects were retained: 121 controls,
46 diagnosed with BD, 47 SZ, and 41 ADHD. For this analysis, we used
the controls and BD subjects. As for the EMBARC data, we retained 623
subjects (78 controls and 545 diagnosed with MDD).

2.3. Feature extraction

2.3.1. The neuromark template

We used a set of independent component (IC) templates called
neuromark (https://trendscenter.org/data/) (Du et al., 2020). This
reference set comprised 53 labeled and ordered components which were
replicated following separate analyses on the control subjects in Human
Connectome Project (HCP) and Brain Genomics Superstruct Project
(GSP) datasets (Smith et al., 2013; Buckner et al., 2014). The compo-
nents were divided into seven functional domains: subcortical network
(SCN), auditory network (ADN), sensorimotor network (SMN), visual
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network (VSN), executive control network (CON), default mode network
(DMN), cerebellar network (CBN). Fig. 2 presents a composite view of
the neuromark templates. These have been successfully applied in
numerous studies and validated as robust spatial priors that provide
reliable functional network features across subjects and datasets (Fu
et al., 2021¢,b,a).

2.3.2. Spatially-constrained ICA

We used the spatially-constrained ICA algorithm available in GIFT
(https:// trendscenter.org/software/gift/) to extract features from pre-
processed data of the subjects (Du and Fan, 2013; Lin et al., 2010; Sal-
man et al., 2019). In this fully automated approach, each subject’s
preprocessed fMRI data were the input, the neuromark fMRI 1.0 tem-
plates (available in GIFT and also at http://trendscenter.org/data) were
used as the reference, and the output included subject-specific SMs and
TCs. Furthermore, we estimated the FNC matrix for each subject using
the Pearson correlation coefficient between the TCs of 53 components,
the dimension of which was 53 x 53.

2.4. C(lassification

2.4.1. Kernel SVM

SVMs are a set of supervised binary classification algorithms which
can also be extended for regression and multiclass classification (Vap-
nik, 1999, 1998). The SVM algorithm incorporates a sample selection
mechanism, i.e., only the support vectors affect the decision function. It
constructs a maximal margin linear classifier in high-dimensional
feature space by mapping the original features via a kernel function.
We can define a unique kernel function for applying the SVM algorithm
to classify fMRI features such as SMs and TCs. We utilize the similarity
measures of subspaces in the commonly used kernel functions (Chang
and Lin, 2001).

We initially constructed an SVM kernel matrix in the SM feature
space of the subjects and later on constructed kernel matrices on
different/multiple feature spaces. The distance metric used in the kernel
matrix is the (cosine of the) principal angle between subspaces (PABS)
(Bjorck and Golub, 1973). Let F and G be given subspaces, and p = dim

(F),q = dim(G),p > g. Then the principal angles 6y € [0,%] between F and
G are recursively defined for k = 1,2,...,q by

cosf = max max uy = u i, ull, = |v]], = 1 W
subject to uH_/-u = v,-Hv =0,j=12,..,k—1

The vectors (uy,...,ug) and (vy,...,Vy) are principal vectors of the pair
of spaces. The spatial ICs estimated using ICA on the subject data
constitute a subspace in this SM space. Let F and G correspond to such
voxel x component spaces for two subjects, and q be the number of ICs.
The (cosine of the) principal angles 6 € [0,%] between F and G
numerically correspond to the ordered singular values of F'G (Bjorck and
Golub, 1973). Hence, the subspace distance metric can be obtained from
the ordered singular values of F'G, i.e.,

k
S(F,G) = Zs,», where s = svd(F G) (2)
i=1
Finally, the distance matrix S of all subjects is mapped into a high-
erdimensional feature space K using the sigmoid kernel function, i,e,

K(F,G) = tanh(yS(F,G)) 3

Fig. 1 presents a flowchart of the classification framework. The
(maximally) statistically independent nature of the subject-specific SMs
approximates an orthonormal set. It allows us to estimate a Riemannian
similarity metric between different subjects and construct a pairwise
similarity matrix of all subjects. We then map this similarity matrix into
a high-dimensional feature space using a sigmoid kernel function to
build the SVM classifier (Bjorck and Golub, 1973; Fan et al., 2011).
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A. Spatially-constrained ICA

Subject 1 preprocessed data
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B. Kernel SVM
Subject 1 Medication labels

53V ﬁ (AD vs. MS)

Kernel

Susb:j;ecl 2 5| Pairwise sul_:aspace L5/ funcion —>  104old CV
xV similarity N
xN l
Subject N J Trained model
53xV AD vs. MS

Subject spatial maps

D. Validation with Independent data

Independent data (LA5SC)
BD vs. controls

Western data Trained model P e &
AD vs. controls —> A';me m‘:rj LE '“%_”!e il act‘:ura:;y,
SM and/or FNC Uk LA sensitivity, specificity]

Western data . i i
MS vs. controls —> J{; Ic: dc::::;L Te:;:‘;?ﬁzsﬂfp(:;":;:;?-
SM and/or FNC : .

Independent data (EMBARC)
MDD vs. controls

Fig. 1. Flowchart of our classification
scheme. A. Resting-state fMRI data are
put through the Neuromark ICA pipe-
line for feature extraction (spatial
maps, time courses, and FNC). B.
Classification is performed using
kernel SVM algorithm & 10fold cross-
validation. Known medication-class of
treatment response (mood stabilizers
(MS)/antidepressants (AD)) is used as
the targets to train the models. C. Ex-
periments are run using spatial maps
(SMs), functional network connectiv-
ity (FNC), and their combination as
features. D. Trained models are tested
on independent data.

Cerebellar network

Fig. 2. The neuromark SM templates. These are obtained using group ICA analysis on HCP, GSP controls data, and a greedy algorithm to identify the most replicable
components. 53 spatial maps are divided into 7 functional domains. These templates can be used as references to estimate subject spatial maps and time courses from

new and unseen data.
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2.4.2. Multiple kernel learning

We have features extracted for the same subject from multiple
feature spaces (SMs, TCs, FNC, etc.). We can estimate an SVM kernel
matrix from each of these underlying subspaces and combine those for
even better predictive performance. Here we report results by averaging
the kernel matrices as follows. Given two subspaces (A3,A2) = ({aj1,a12,
..,a1x),{as,a2y,..,a0}) and (By,Ba) = ({b11,b1a...,bix},{ba1,bos,...,
box}), where Ay, B are subspaces for the subjects from one feature space,
and Ay,B, are subspaces from another, then we estimate the subspace
similarity between the two subjects using the following averaging
formula:

1

k 2
=133 @

j=1 i=1

2.4.3. Forward feature selection

We used the neuromark reference template SMs in the scICA algo-
rithm to extract the subjects’ features (SM and TC). The neuromark fMRI
1.0 template includes 53 components divided into seven functional
domains. We posit that using a subset (optimal set) of these 53 com-
ponents may result in a negligible loss in classification score while being
less computationally intensive. Therefore we used a stepwise forward
selection method to generate such an optimal set (Osuch et al., 2018).
The Matlab sequentialfs function implements this algorithm which can
be incorporated into a 10-fold cross-validation (CV) scheme. Algorithm
1 contains the pseudocode for implementing this step.

2.5. Main experiment

2.5.1. Prediction of treatment response in western data

We used the neuromark ICA framework to reproduce the result re-
ported in prior work on the first round of data collected at the Western
site (Osuch et al., 2018). We used 66 patients’ data as the input and their
treatment response (32 MS responders and 34 CE responders) classifi-
cation labels. We performed three experiments with different features
from the same subjects: SMs, FNC in the kernel SVM approach, and
combined SM+FNC in the multiple kernel learning approach, as out-
lined in the previous sections. In the next experiment, we used more data
from the second collection round at the same site (N = 83, 41 MS re-
sponders and 42 CE responders) for replication.

The Western data also included two more groups- controls and pa-
tients released without medication (nonmedicated). As such, we classi-
fied five more pairs of groups: nonmedicated vs. responders (MS or AD),
controls vs. responders (MS or AD), and a three-way classification be-
tween nonmedicated vs. MS vs. AD. We classified each group using the
three different feature spaces (SMs, FNC, and SM+FNC) with 100 re-
peats and shuffled CV folds at each repetition. This ensures the stability,
replicability, and robustness of the reported results. We use stratified
cross-validation folds to mitigate the issue of unbalanced samples in
responder vs. nonmedicated groups. This ensures that the model has
information about all types of samples present in the data at every
training step.

2.5.2. Most salient features

Previously, we performed a forward feature selection procedure to
reduce the 53 components estimated using neuromark ICA into a smaller
set of SMs. We performed this step in every CV step of each repeat

Algorithm 1
Algorithm.

1: Start with an empty set Y, = ¢ and some candidate features
2: Select the best next feature x* = arg max [J(Yx + x)]
@Y

3: Update Yy = Yx + xTk=k + 1
4: Return to step 2
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experiment, which gave us a collection of the most frequently occurring
discriminative SMs. We noted one SM from each functional domain as a
salient brain activity pattern for discussion.

2.6. Secondary experiments

2.6.1. Classification of BD vs. controls in LA5C data

We used controls and BD patient data from the LA5C project for a
validation experiment. We trained classification models using the con-
trols and patients with MS treatment response labels in Western data.
We used these models to predict the controls and patients with BD DSM
labels in the LA5C data. Identical to the main experiment, we trained
three models with different features from the same subjects (SMs, FNC,
and SM+FNC). We repeated the experiments 100 times with shuffled
training CV folds. According to Table 1, the LA5C data suffer from an
unbalanced sample issue. To mitigate this problem, we used a subject
selection step before classification. In this step, we selected an equal
number of BD patients and controls from LA5C data.

2.6.2. Classification of MDD vs. controls in EMBARC data

We used controls and MDD patient data from the EMBARC project for
another validation experiment. We used the controls and patients with
AD treatment response labels in the Western data to train a classification
model and to predict the controls and patients with MDD DSM labels in
the EMBARC data. Like the previous experiments, we trained three
models with different features from the same subjects and repeated them
100 times. According to Table 1 and similar to LASC, EMBARC data also
suffer from an unbalanced sample issue, which we mitigated using a
subject selection step.

2.6.3. Classification of MDD improvement scores in EMBARC data

We also classified the patients who responded well (improvement
score of 4) and nonresponders (improvement score of 1) in the EMBARC
data.

3. Results
3.1. Classification between different groups in western data

Table 2 lists the results of the primary classification experiments
based on treatment response labels in Western data. We ran every
experiment 100 times with shuffled CV folds for replicability. Below we
report the average metrics (accuracy, sensitivity, and specificity) and
standard deviations across those runs for each experiment in Table 2.
The results are detailed below.

The first row in Table 2 indicates the replication of the result re-
ported by Osuch et al. (2018). We used neuromark-generated features
from the SMs of the same 64 subjects to predict treatment response. We
obtained a hold-out testing accuracy of 92.8% (sensitivity 0.9, speci-
ficity 0.92). In prior work, there were also 12 subjects with unknown
diagnoses. Our model obtained 90.9% accuracy in predicting the even-
tual diagnosis of those “unknown” samples (not shown in Table 2).

When classifying the patients’ treatment response based on SM fea-
tures in the data collected in the second round of acquisition at the same
site (N = 83), the accuracy was 84.33% (sensitivity 0.87, specificity
0.80). In addition to SM, we also use FNC and a combination of SM and
FNC to predict treatment response. We obtained hold-out testing accu-
racy of 85.5% using FNC (sensitivity 0.91, specificity 0.79), and 86%
using SM+FNC (sensitivity 0.9, specificity 0.81).

When classifying nonmedicated subjects from MS responders using
SM features, we obtained 93.3% accuracy (sensitivity 0.99, specificity
0.71, N = 54). Using FNC features, the accuracy was 97.1% (sensitivity
1.0, specificity 0.86), and using SM+FNC it was also similar (97.1%
accuracy, sensitivity 1.0, specificity 0.87). The same classification
approach with AD responders resulted in 92.4% accuracy (sensitivity
0.99, specificity 0.68, N = 53). Using FNC features, the accuracy was
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Table 2
Main classification experiment results.
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Groups Features Training N Testing scores (hold-out data)

Osuch et al. (2018) Accuracy Sensitivity Specificity

MS-AD SM 64 92.8+1.9 0.90 0.92

Replication using Neuromark ICA

MS-AD SM 83 84.3+3.3 0.87+0.03 0.80+0.05
FNC 85.5+2.9 0.91:+£0.01 0.79-+0.05
SM-+FNC 86.0+2.6 0.90+0.01 0.81+0.05

MS-nonmedicated SM 54 93.3+2.9 0.99+0.01 0.71+0.12
FNC 97.1+1.3 1.00 0.86+0.05
SM-+FNC 97.1£1.2 1.00 0.87+0.05

AD-nonmedicated SM 53 92.4+2.3 0.99+0.01 0.68+0.11
FNC 97.3+0.9 1.00 0.88+0.04
SM+FNC 97.5+1.1 1.00 0.88-+0.04

MS-AD-nonmedicated SM 95 80.2+2.9 0.83+0.02 0.81+0.07
FNC 88.2+2.5 0.87+0.01 0.89+0.05
SM+FNC 87.3+2.6 0.86-0.01 0.87+0.05

97.3% (sensitivity 0.99, specificity 0.88), and using SM+FNC it was
97.5% (sensitivity 1.0, specificity 0.88). In a threeway classification
among MS, AD responders, and the nonmedicated subjects (N = 95), we
obtained 80.2% accuracy (sensitivity 0.83, specificity 0.81).

3.2. Classification in independent data

3.2.1. Classification of BD in LA5C data

Table 3 lists the results of the secondary classification experiments on
LA5C and EMBARC data. We performed a validation experiment with
the controls and BD population of the LA5C dataset. Using only the SM
features, the model achieved a hold-out testing accuracy of 79.8%
(sensitivity 0.50, specificity 0.90). Using the FNC features, the hold-out
testing accuracy was 82.6% (sensitivity 0.63, specificity 0.89), and using
the combination SM+FNC features, it was 82.5% (sensitivity 0.63,
specificity 0.89). The accuracy was 85.9% for BD-diagnosed patients in
Western data (sensitivity 0.85, specificity 0.85). Using the FNC features,
the hold-out testing accuracy was 85.7% (sensitivity 0.91, specificity
0.79), and using the combination SM+FNC features, it was 85.2%
(sensitivity 0.9, specificity 0.79).

3.2.2. Classification of MDD in EMBARC data

We performed another validation experiment with the controls and
MDD population of the EMBARC dataset. In this experiment, the model
achieved a hold-out testing accuracy of 89% (sensitivity 0.88, specificity
0.89). Using the FNC features, the hold-out testing accuracy was 87.6%
(sensitivity 0.0, specificity 1.0), and using the combination SM+FNC
features, it was 85.8% (sensitivity 0.9, specificity 0.81). The accuracy
was 85.2% for MDD-diagnosed patients in Western data (sensitivity
0.84, specificity 0.85). Using the FNC features, the hold-out testing ac-
curacy was 84.5% (sensitivity 0.9, specificity 0.78), and using the
combination SM-+FNC features, it was 84.4% (sensitivity 0.9, specificity

Table 3
Secondary (classification) experiment results.

Groups Features Training N Testing scores (hold-out data)
BD-control SM 166 79.8+1.8  0.50+0.06  0.90+0.02
(LA5C) FNC 82.6+0.8  0.63+0.01 0.89-+0.01
SM+FNC 82.5+0.8 0.63+0.02 0.89+0.01
BD-control SM 81 85.9+3.4  0.85+0.04  0.85+0.04
(Western) FNC 85.7+2.6  0.91+0.01 0.79+0.04
SM+FNC 85.2+2.5  0.90+0.02  0.79+0.05
MDD-control ~ SM 77 89.0+3.7  0.88+0.02  0.89+0.06
(EMBARC) FNC 87.6 0 1
SM+FNC 85.8+3.4  0.90+0.01 0.81+0.06
MDD-control SM 80 85.2+3.0 0.84+0.04 0.85+0.03
(Western) FNC 84.5+2.6  0.90+0.02  0.78+0.05
SM+FNC 84.4+2.5 0.90+0.02  0.78+0.05

Classification Based on MDD Patient Improvement Scores in EMBARC data.

0.78).

The algorithm was able to separate patients with an improvement
score of 1 (no improvement) and 4 (completely improved) with an ac-
curacy of 69.44% (sensitivity 0.96, specificity 0.09).

3.3. Most salient features

Fig. 3 shows multi-planar views of the most salient neuromark
templates. The corresponding subject-level features of these templates
were the best-performing predictors of treatment response in Western
data. The Automated Anatomical Labeling (AAL) labels for these tem-
plates are the following: superior temporal gyrus from the ADN network
(volume 21 in the neuromark template), cerebellum from the CBN
network (13), inferior parietal lobule from the CON network (68), pre-
cuneus from the DMN network (32), caudate from the SCN network
(69), postcentral gyrus from the SMN network (3), and calcarine gyrus
from the VSN network (16).

4. Discussion

In this work, we report our algorithm’s hold-out and testing perfor-
mance based on features extracted from resting-state fMRI data. We also
report the independent validation performance by testing the algorithm
on the LA5C and EMBARC data.

Several areas of agreement exist between the most salient (neuro-
mark) spatial maps and prior work (Osuch et al., 2018). Five ICs were
identified as the most salient features for classification. These included
bilateral inferior parietal lobule, posterior DMN regions, anterior
cingulate cortex, a combination of caudate, thalamus, and para-
hippocampal gyrus, and lastly, the insular region. In our experiments,
we also found, among others, the right inferior parietal lobule, pre-
cuneus (in the posterior DMN region), and caudate regions to be salient.

We replicated these results using the scICA approach based on the
neuromark template (Du et al., 2020). The prior work used the
group-informationguided ICA (GIG-ICA) framework, meaning the
group-level components were estimated from the same dataset on which
the classification was per-formed. The advantage of the scICA frame-
work over GIG-ICA is that it is an adaptive approach using a priori
network templates, suitable for multidataset analyses (Salman et al.,
2019).

We had the DSM diagnosis and the medication-class of treatment
response (AD or MS) data available for the patients in the Western data.
We used the latter (medication-class) as the hold-out/testing dataset
labels for developing the model. We also ran separate classification ex-
periments on the independent datasets (LASC and EMBARC). However,
the DSM-based diagnosis labels were the classification target values in
those datasets. In doing so, we demonstrate that the model trained on
treatment response data can also predict the DSM diagnosis, although
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Fig. 3. Best component(s) for treatment response prediction in each functional domain across different experiments.

slightly less accurate.

The other strengths of our approach include using a template derived
from higher model order group ICA analysis resulting in more granular
SMs. Also, we leveraged the TCs (or FNC) separately and combined them
with the SMs in a multiple kernel learning framework. We report FNC-
based classification results in each alternate row of Table 2. The FNC
outperformed the SM in classifying these cohorts in all experiments.

Another versatile feature of this model is the ability to predict the
MDD improvement scores with reasonable accuracy. The low specificity
of most of these experiments indicates comparatively high false positives
than false negatives when detecting the patients’ improvement scores,
which is more desirable clinically. The other strength is the ability to
predict the unknown samples from the first round of acquisition in
Western data. In prior work, there were 12 subjects with unknown di-
agnoses (Osuch et al., 2018), and our model obtained 90.9% accuracy in
predicting their eventual diagnosis. It indicates the robust efficacy and
utility of the model.

5. Limitations
We will discuss some of the limitations of the study next. There is an

age difference across the datasets. However, we use the analysis of
variance (ANOVA) test to show no significant effect of age on the

diagnosis or treatment response variables in two of the three datasets
used. Harmonization techniques such as ComBat can mitigate the effect
of varying acquisition parameters at various sites (Johnson et al., 2007;
Fortin et al., 2017, 2018; Bostami et al., 2022). The treatment response
information is available from Western data only; the other sites provide
DSM diagnosis. Efforts should be directed at collecting more data with
treatment response information included in the future to validate similar
results. The LA5C dataset contained individuals with diagnoses of ADHD
and SZ. Although these were not included in the analysis, these
comparator groups can be informative as symptoms and treatment
response overlap with mood disorders in future studies.

We generated a kernel function consisting of multiple modalities
using Eq. (4). A weighted approach or multiple kernel learning method
can significantly improve this process (Tanabe et al., 2008; Gonen and
Alpaydin, 2011). The Riemannian distance measure is most useful when
orthonormal basis vectors span the subspaces. However, the FNC feature
space consists of scalar values only. Moreover, one of the assumptions of
spatial ICA algorithms is that the components are maximally statistically
independent. It is valid for the SMs but not necessarily for the TCs.
Orthonormal features from the TCs may allow the kernel method to
perform better.

Some of the experiments conducted suffer from an unbalanced
sample issue. In such a case, conveying the method’s efficacy is
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impossible using only the accuracy metric. We have addressed this issue
by sampling balanced subjects, using stratified cross-validation folds,
and reporting more meaningful metrics such as sensitivity and
specificity.

We may treat the SMs and FNC as separate modalities in machine
learning. However, both are estimated from a single neuroimaging
modality (fMRI). Future multi-modal analysis may rely on including
data from structural magnetic resonance imaging (sMRI), diffusion
tensor imaging (DTI), and other neuroimaging modalities.

6. Conclusion

The goal of our study was to predict treatment response in patients
with mood disorders using resting-state fMRI features. In doing so, we
demonstrated the superior efficacy of neuroimaging and data-driven
techniques. The algorithm will help predict AD vs. MS response in
complex patients with unclear DSM diagnoses. The emphasis on
medication-class response potentially provides a clinically useful "'DSM-
free’ approach to identifying biomarkers of medication-class of response
within mood disorders.
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