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ABSTRACT

In the era of rapidly growing astronomical data, the gap between data collection and
analysis is a significant barrier, especially for teams searching for rare scientific objects.
Although machine learning (ML) can quickly parse large data sets, it struggles to robustly
identify scientifically interesting objects, a task at which humans excel. Human-in-the-
loop (HITL) strategies that combine the strengths of citizen science (CS) and ML offer
a promising solution, but first, we need to better understand the relationship between
human- and machine-identified samples. In this work, we present a case study from
the Galaxy Zoo: Weird & Wonderful project, where volunteers inspected ~200,000
astronomical images—processed by an ML-based anomaly detection model—to
identify those with unusual or interesting characteristics. Volunteer-selected images
with common astrophysical characteristics had higher consensus, while rarer or more
complex ones had lower consensus. This suggests low-consensus choices shouldn’t be
dismissed in further explorations. Additionally, volunteers were better at filtering out
uninteresting anomalies, such as image artifacts, which the machine struggled with.
We also found that a higher ML-generated anomaly score that indicates images’ low-
level feature anomalousness was a better predictor of the volunteers’ consensus choice.
Combining a locus of high volunteer-consensus images within the ML learnt feature space
and anomaly score, we demonstrated a decision boundary that can effectively isolate
images with unusual and potentially scientifically interesting characteristics. Using this
case study, we lay important guidelines for future research studies looking to adapt and
operationalize human-machine collaborative frameworks for efficient anomaly detection
in big data.
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MOTIVATION

The classification of several million galaxies with the
Galaxy Zoo (GZ) project has been one of the cornerstones
of citizen science in astronomy over the past 15 years. A
key success of the GZ project is the unexpected discovery of
previously-unknown objects such as the Green Pea galaxies
(Cardamone et al. 2009) and phenomena like Hanny’s
Voorwerp (Lintott et al. 2009), where volunteer discussions
on project forum boards about “odd things” they found
played a critical role in the discovery process (see Straub
2016). Although such efforts worked when the largest data
products were about a million images (e.g., Sloan Digital
Sky Survey; York et al. 2000), it becomes nearly impossible
to have eyes on each image in the upcoming big-data
era anticipated to produce many millions of images total
per night.

While machine learning (ML) algorithms can now
quickly sift the data for rare objects (Margalef-Bentabol et
al. 2020), these objects are not necessarily scientifically
interesting (e.g., image artifacts, see Storey-Fisher et al.
2021). Human-in-the-loop (HITL) strategies (e.g., Lai et
al. 2020) enabled by citizen science offer a synergistic
middle ground where the relative strengths of humans
and machines can be combined to identify scientifically
interesting unknown-unknowns (e.g., Lochner and Bassett
2021; Sharifi et al. 2022; Walmsley et al. 2022). However,
implementing HITL-based anomaly detection pipelines
requires a thorough exploration of the overlap between
anomalies found by ML versus human-driven frameworks.
Specifically, on the same data set, we need to investigate
correlations between which images a machine-trained
anomaly detector determines are anomalous versus
which images humans determine contain “scientifically
interesting” anomalies. Note that data from other
modalities such as spectroscopy (1D representation of
collected light as a function of wavelength) have also been
considered for the purpose of anomaly detection (e.g.,
Hoyle et al. 2015 and Liang et al. 2023) and citizen science
efforts (Coffin et al. 2023). Nevertheless, with the very large
data sets involved, research teams will not have capacity
to make these “human” determinations. Therefore, to
test at scale whether the combination of human and
machine methods provides a list of scientifically interesting
anomalies, we need to determine whether people with
minimal domain knowledge (aka citizen scientists) can
reliably supply information on which images contain
unusually interesting features. Furthermore, we need to
show that the information supplied by the citizen scientists
complements the machine-driven anomaly finder such that
the combination provides the optimal set of scientifically
interesting anomalies. A research team could then develop
well-informed selection criteria for the data set to reduce

to a tractable number the images that need to be vetted
by the research team.

To carry out the investigations detailed above as a case
study and provide insights into how research teams could
apply this novel approach of a combined human-machine
anomaly detection pipeline, we designed a deep learning
anomaly detection framework and ran a citizen science
project on the Zooniverse (www.zooniverse.org) platform
called Galaxy Zoo: Weird and Wonderful (GZ:W&W,;
https://www.zooniverse.org/projects/zookeeper/galaxy-
zoo-weird-and-wonderful). In this work, we describe our
methodology and provide insights into the correlation
between machine- and GZ:W&W-based anomalies, and
comment on promising next steps for applying our methods
for much larger future datasets. This paper is structured
as follows: First, we describe the imaging-based data
used in this work, followed by a brief overview of our deep
learning-based anomaly detection model and methods,
we describe our citizen science project, GZZW&W. Next, we
comprehensively show various quantitative results from
the GZZW&W project alongside the anomaly detection-
based metrics and assess the correlation between these
quantities. Based on the insights from our results, we then
briefly discuss our recommendations for future research
teams towards applying our approach to new datasets and
potentially fine-tuning it for specific purposes. Finally, we
provide our concluding statements in Section 6.

IMAGING DATA USED IN THIS WORK

In this work, we use the data taken from the Subaru
Hyper-Suprime Cam (HSC) survey’s public data release 2
(PDR2), which imaged a large portion of the sky in multiple
optical wavelengths with the Subaru Telescope and serves
as one of the notable modern-era resources for images
containing nearby-to-distant galaxies. Specifically, we
chose approximately 1.5 million images, among which
we used a random selection of 250,000 images for our
deep learning model training and a subsequent randomly
chosen collection of 200,000 images for visual inspection.
The selection process of the images used in this work is
explained in more detail in Supplemental File 1: Appendix A.

DEEP LEARNING-BASED ANOMALY
DETECTION MODEL

Our anomaly detection framework is based on a generative,
convolutional neural network deep learning model.
Specifically, our model is based on a framework described
in Storey-Fisher et al. (2021) involving astronomical images
and the training strategy employed by the fast-AnoGAN
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model (Schlegl et al. 2019), a generative adversarial
network (GAN) (Goodfellow et al. 2014) framework applied
to medical imaging. This model comprises two separate
design and training steps: 1) a Wasserstein GAN with
gradient penalty (WGAN-GP); and 2) an encoder. Next, we
briefly describe our model architecture, training methods,
and the corresponding model outputs. We reserve our
detailed model descriptions and its involved training
hyper-parameters to our discussion in Supplemental File 1:
Appendix B. We show a schematic of our framework and
associated model outputs in Figure 1 in Supplemental File
1: Appendix B.

ARCHITECTURE OVERVIEW
Our wGAN-GP model contains two learnable modules: 1) a
convolutional generator (G) that takes in an N-dimensional
“latent space” vector (often represented by z) as input
and learns to generate realistic images with respect to
the input dataset; and 2) a convolutional discriminator
(D; sometimes called a “critic” network) that learns to
predict the realism of the generated images. Conceptually,
the z-vector serves as a compressed, lower-dimensional
encoding of the image-level information (e.qg., whiskers for
an image containing a cat versus striped pattern of a tiger)
and can serve as a landscape in which images with specific
(or different) features populate deterministic and distinct
locations within the z space. It is also important to note
that a wGAN-GP model is a variant of the traditional GANs,
which optimizes the Wasserstein distance (Rubner et al.
2000) metric and is known for its stability during training.
Although the WGAN-GP framework is set up to learn
the realistic generalization of the input dataset such that
it can randomly generate representative image samples,
it is not equipped to provide the exact feature space
representation corresponding to an input image. To do so
requires an additional model/module that learns to behave
as an inverse of the trained generator. Drawing inspiration
from the setup of the fast-AnoGAN framework, we thus
define an encoder (E) model, which outputs a feature
representation vector (z) for an input image that has the
same dimensions as the input vector used as input by the
generator network. In our work, we use D = 128 dimensions
for our feature representation vector z. This framework is
illustrated in Figure 1 in Supplemental File 1: Appendix B.

TRAINING STRATEGY

As mentioned previously, there are two steps in our
training strategy. First, we train our wGAN-GP model on the
previously described 250,000-image dataset with a batch
size of 1,024 and an Adam optimizer with 10 learning
rate for a total of 500 epochs. This model is optimized by
jointly minimizing specific loss parameterizations (see Loss
parameterizations during training section in Supplemental

File 1: Appendix B) of the generator (G) and discriminator
(D). Next, while holding the G and D models fixed, we train
our encoder (E) on the same set of 250,000 images with a
batch size of 256 and an Adam optimizer with 10-“learning
rate for 500 epochs. The encoder model is optimized by
minimizing the following two-component loss function
(Equation 1):

Loss,,.=0.8 x Loss,

image T 0.2 x Lossfemu,e

Here, the image loss (Loss, ) corresponds to the pixel-
level difference between the true and generated images
and serves as a quantitative metric of how unusual that
image is in a spatial context (i.e., high-level features). On
the other hand, the feature loss (Lossfeawre) is a difference
between the low-level features extracted from the true
and generated images, and as such quantifies how
unusual are two images in terms of low-level features. The
joint optimization of the Loss, and Lossg,,. conceptually
ensures that the encoder learns good image-to-z mapping.
This in turn yields a generated image (by G) that is similar
to the input real image, while simultaneously ensuring that
the set of discriminator features of the real and generated
images are also similar.

We followed common practices used in the literature
to gauge the convergence of our wGAN-GP and encoder
models by reserving 10% of our entire dataset for
validation purposes during the training phase. We assessed
the training and validation loss profiles and found that they
both reached stagnation around 500 epochs (i.e., no further
improvement in loss) while yielding similar loss values.

ANOMALY SCORES AND LATENT SPACE FEATURE

REPRESENTATION VECTORS

After our training procedure is complete, we are left with
three trained modules G, D, and E. Conceptually, for each
input image, the G model provides a Loss, . value that
encompasses how unusual that image is from a spatial
(high-level feature) context, the D model provides Lossfwwe
value that captures how unusual the input image is from a
low-level feature standpoint. Hereafter, we treat and refer
to the Loss, . and Loss,,. as the Image Score (S, )
and Feature Score (S...), respectively, the weighted
sum of which make up the “anomaly score” (S,  see
Equation 1). Simultaneously, the E model enables us to
compute a feature representation for each input image. By
inferring our trained G, D, and E models on a sample of 1.5
million images, we compute their corresponding anomaly
scores and the latent space feature representations (z).
Conceptually, a poor generalization by the Generator and
Discriminator directly translates to a poor representation
of that particular type of image in the dataset. As such, a
high anomaly score would be expected for an image that
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is rarely occurring in the dataset as it would yield a poorly-
matched G output and resultant D features (i.e., high image
and feature losses). For context on the general distribution
of S and S see Figure 3 in Supplemental File 1:

image feature?

Appendix B.

THE GALAXY ZOO WEIRD & WONDERFUL
PROJECT: SAMPLE CONSTRUCTION AND
STATISTICS

With the main aim to understand the relationship between
machine-based and human-driven anomaly detection,
we designed and launched the citizen science project
GZ:W&W, in which volunteers were given a tailored set of
images inter-mixed with our ML-based anomalous images
for inspection. In this section, we describe the construction
of the sample used in the GZZW&W project and briefly
outline the project completion statistics.

We start with the anomaly scores computed on the
1.5 million images and choose the top 1% from their
distribution to compile ~15,000 images that have the
highest anomaly scores within the entire dataset. Next,
we randomly select from the remaining sample of
images (i.e., <99% of the anomaly scores) to pool a set of
~185,000 images. Together, these amount to ~200,000
images with ~1:12 ratio of highly anomalous versus the
remaining images, which we use for our GZZW&W project.
For visual illustration, we show an example collage of non-
anomalous and anomalous images in Supplemental Figure
12 in Supplemental File 1: Appendix G.

We designed and launched our GZ:W&W project on the
Zooniverse platform (www.zooniverse.org), where each
volunteer was shown a random pool of images from the
200,000 on a 4 x 4 grid and were simply asked to “Click
on any galaxies which are particularly interesting to you.”
Additionally, volunteers could further discuss any images
within the discussion boards (called “Talk pages” on
Zooniverse) by posting comment threads and providing
hash (#) tags. Overall, the project took approximately 2
months to finish with ~2,000 participating volunteers. Each
image was taken out of circulation (i.e., “retired”) when
it had been seen by at least 10 volunteers. Among the
200,000 images, approximately 3,000 were discussed in
Talk, for which #tags were indicated.

ANALYSIS AND RESULTS

In this section, we derive simple statistical metrics from the
GZ:W&W project and assess their correlations with various
anomaly detection model metrics such as the anomaly
score and feature space representation.

VOLUNTEER CHOSEN FRACTION AND
EXPERIENCE WEIGHTING

For each image used in our GZZW&W sample, we quantified
the “volunteer chosen fraction” as the ratio of the number
of times volunteers selected that particular subject to the
total number of volunteers who have seen it. To provide
them with some context to what might be considered
“usual” galaxy images, we encourage volunteers to
classify on the standard Galaxy Zoo (GZ) project before
participating on GZ:W&W; however, no stringent gating
was employed. As such, 305 volunteers who participated
in GZZW&W have also participated in the GZ project with
at least 100 classifications each (Supplemental Figure 4
in Supplemental File 1: Appendix C). Hereafter, these 305
volunteers are referred to as GZ-participated, and the
classifications from them amount to ~40% of the total
GZ:W&W classifications. To take into account the prior
domain experience of volunteers who participated in the
GZ project, we also compute a “weighted volunteer chosen
fraction” which increases the weight of votes from previous
GZ participants by a factor of two compared with novice
volunteers. See Supplemental File 1: Appendix C for more
details on the weighting scheme.

This weighting scheme has the highest impact on
images that have low agreement between volunteers.
Since volunteers have only a binary choice (i.e., a source is
interesting or not), this results in chosen fractions of ~0.5
varying the most between the two weighting schemes. This
is because a strong agreement (i.e., a value that falls close
to a maximal value of 0 or 1) won’t have a strong effect
when taking volunteer experience into account because
the vote values do not vary significantly. A comparison
between weighted and unweighted chosen fraction
measurements along with relative differences are shown in
Supplemental Figure 5 in Supplemental File 1: Appendix D.

In Supplemental Figure 7 in Supplemental File 1:
Appendix G, we visually illustrate the impact of upweighting
the contribution from experienced volunteers, where the
top row (bottom row) shows images that had the most
decrease (increase) in the chosen fraction. By upweighting
the chosen fraction based on the experienced volunteer
participation, the number of galaxies with interesting,
but less unique features are reduced. Likewise, sources
with distinct and rarer features are ranked higher with
the introduction of domain experience weighting. For
example, the bottom row of Supplemental Figure 7 in
Supplemental File 1: Appendix G shows images with
increased percentages, notably those hosting gravitational
lenses - a rarer and scientifically interesting phenomenon.
This demonstrates that introducing a classification weight
based on volunteer experience can highlight rarer and
more anomalous features than those identified by the
general volunteer population.
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VOLUNTEER CHOSEN FRACTION DISTRIBUTIONS
FOR TALK DISCUSSED IMAGES

For the subset of images that were discussed in the
GZW&W project Talk discussion boards, we compile
information on their corresponding #tags and number
of comments made. We process the #tags to be more
uniform by taking into account any typographical errors
and singular or plural mentions. We then manually group
the #tags into broader categories if a particular tag has
been used at least 10 times. Some example images along
with their corresponding #tags are shown in Figure 1, which
also highlights the diversity of characteristics identified by
the volunteers.

To further explore potential relationships between
the volunteer chosen fraction and the variety of images
discussed in Talk, we analyzed the distribution of the
weighted volunteer chosen fraction(s) for a subset of
subjects that are discussed in the GZW&W Talk boards
and were marked with different tags (For example, see
Supplemental Figure 11 in Supplemental File: Appendix
G). The weighted volunteer chosen fraction distribution
(as shown in Figure 1) among the entire Talk-discussed
sample is a bimodal structure with peaks at ~0.25 and
~0.6. When assessing this distribution, separated into
different tag-based subsets, we found that the distribution
of chosen fractions for each category showed distinct
behavior. Notably, we found that subjects tagged with
more abundant or “easily noticeable” characteristics (e.g.,
#merger or #ring) tend to have higher median chosen
fractions, whereas the images containing more subtle
categories (e.g., #gravitational lens or #arc) have a lower
median chosen fraction. This insight highlights that the
observed range of chosen fractions encodes the diversity
of different categories of interesting characteristics as
well as the “knowledge model” of the volunteer pool who
participated in the project. This emphasizes the fact that
we should not discount low chosen fraction images if we

want to determine which images are of scientific interest;
all it takes is one person who knows what a gravitational
lens looks like (or thinks it just looks interesting).

Additionally, we assessed the frequency of Talk
comments for images tagged with different #tags (right
panel of Supplemental Figure 11 in Supplemental File: 1,
Appendix G). We found that images containing more subtle
features or phenomena (e.g., #gravitational lens) tend to
be discussed more extensively with higher numbers of Talk
comments compared with #mergers that are relatively
“easier” to comprehend and have a high median chosen
fraction. This is evident especially from the transition
between the N = 3-4 comments bins.

VOLUNTEER CHOSEN FRACTION VERSUS
MACHINE ANOMALY SCORES

InFigure 2, we assess the correlation between the volunteer
chosen fraction and the anomaly detection model scores
- anomaly score (S, ), and its two components: image
score (S.‘muge) and feature score (Steorure)-

Generally speaking, we note that there is no appreciable
correlation between the S and the weighted volunteer
chosen fraction; this is true even if we assessed the
subsample of subjects discussed in Talk (see Figure 2a). We
also notice a “ridge” inthe S_ _  space (Figure 2a) where it
seems to follow a bimodal distribution. Upon investigation,
we find that this is an artificial effect as a consequence of
the relative weighting values of 0.8 and 0.2 used to combine
the S_.and S, . components (see the aforementioned
equation). Motivated by these observations and taking
inspiration from the exploration by Storey-Fisher et al.
(2021), we assessed the correlation between the chosen
fraction individually for S and S

image feature®

It is worth noting that the S encodes information

image
about the generalizability on a spatial-level that can be
dominated by features such as galaxy morphology or other
image-level signatures, whereas the S is indicative

feature

#asteroids

#merger #grav_arc

#clumps #wd_candidate #ring

Figure 1 An example collage of images from the Galaxy Zoo: Weird & Wonderful (6Z:W&W) project that have been discussed in the Talk

boards and their corresponding volunteer-provided tags.
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respectively.

of generalizability across both high-level and low-level
features that a particular image bears. When comparing
the image score versus the feature score in the context of
the volunteer chosen fraction (Figure 2b), an interesting
trend emerges. We find that weighted (also unweighted)
volunteer chosen fraction values qualitatively have
higher correlation with S rather than the S_ . For
example, at a fixed S, images with higher S, have
preferentially higher chosen fraction values. Especially, a
majority of the images with chosen fractions >0.5 range
between S, .~100-300 and S, ~1000-2000 (i.e., top
left region of Figure 2b). This indicates that volunteers
mimic the conceptual task of a discriminator module of the
anomaly detection model towards finding interesting/rare
subjects within the dataset. One should note that, despite
this interesting relationship, there is still no quantitative
correlation between S_ . (or S for that matter) and
volunteer chosen fraction itself. That is, a higher value
of chosen fraction doesn’t necessarily correlate with the
quantitative value of S, corS, . Nonetheless, ourinsights
motivate the use of a different weighting factor for the
feature and image losses (than 0.8 and 0.2) while training
the machine model. This is to preferentially prioritize the
feature score while considering the information from S,
with a smaller weightage.

Additionally, we also note that thereis an anti-correlation
betweenS, . andchosen fractions, especially athighs, -
values. Upon visual inspection of these images, they tend
to be dominated by various image artefacts and were not
selected by the volunteers. We also explore this aspect
further while assessing the feature space learnt by our
anomaly detection model. We also show the image versus
feature score with both weighted and unweighted chosen
fraction in Supplemental Figure 8 in Supplemental File 1:

Appendix G.

Furthermore, in Figure 3, we show the distributions
Of S, o Simager ANd S, fOr weighted volunteer chosen
fraction >0.5 images in comparison with our entire sample.
WefindthatS, . is more predictive in terms of determining
if an image has a high volunteer chosen fraction versus
the S, . This reinforces our previous comments on
the observed correlations between volunteer chosen
consensus and S_ . .. More explicitly, this observation
addresses our motivation question on which machine-
derived metrics hold optimal potential to be combined with

human consensus for finding rare and interesting objects.

CORRELATIONS BETWEEN CHOSEN FRACTIONS
WITHIN THE FEATURE SPACE
As described in a previous section, our anomaly detection
model (specifically the encoder E) yields a latent space
feature vector z (dimensionality D = 128) for each input
image. Conceptually, this vector encodes the important
feature-level information that describes the overall
semantic meaning carried by each image. As such, this can
provide important insights into the landscape of images
containing different physical properties. In this section, we
discuss our assessment of the GZZW&W chosen fraction
metric alongside zand the S, | .and S, scores.
Although we encode the feature vector with D =128, not
all individual components of the feature vector contribute
equal importance towards the semantic information
captured within the images. A common practice in
computer vision literature is to reduce the feature space’s
dimensionality so that individual features are sorted in
decreasing order of importance and use them for any
downstream quantitative and qualitative assessment.
Following this approach, we first process the raw D = 128
feature vectors for all our 200,000 images used in the
GZ:W&W project to reduce their dimensionality to D = 3
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using the Uniform Manifold Approximation and Projection
(UMAP) technique (Mclnnes et al. 2018). In Figure 4a,b,c,
we show our images’ feature space in three UMAP axes,
color-coded with different metrics: S, 'S, . and S ..
We notice that the subjects with relatively high anomaly
scores preferentially populate the lower portion of the
UMAP space. However, it is quite interesting to note that
subjects with high S, ~and S_, . populate different parts
of the UMAP space. 1t is also worth noting that while the
majority of the high Simage SUbjECts span the lower portion
of the UMAP space, a substantial number of them also span
a broad range across the UMAP 3 dimension. However, this

is not the case for the images with high S where they

feature’

predominantly span only a localized region in the lower
portion of the UMAP space.

In Supplemental Figure 13 of Supplemental File 1:
Appendix G, we further illustrate the distribution of
volunteer chosen fractions within the feature space as a
function of the overall S scores. First, we note that the
images with higher weighted volunteer chosen fractions
localize within a specific portion of the UMAP (see top left
panel), with some overlap between the regions represented
by high S, .. and S . scores. When assessing the UMAP
locality by subsetting our images into those having high
(>99%), intermediate (>68% and <99%), and low S~

values (<68%), we find that a large portion of the chosen



Mantha et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.740

fraction ~O subjects do correspond to low S___ images
populated in the upper portions of the UMAP. This suggests
that a machine-based approach can be well-suited to filter
out images that are likely to be unusual, but is less adept
at clearly delineating which ones are interesting versus
uninteresting. As will be discussed later, this suggestion
comes with the caveat that the ability of the machine
filtering is also dependent on the categories of interesting
images. Of special note is a region in the lower part of the
UMAP where the volunteer chosen fraction is low (e.g., 6
< UMAP3 < 7), but has images with high image or feature
scores (as seen in Figure 4). We randomly sampled groups
of 50 images that span this UMAP region and visually
inspected by at least 3 domain experts. We find that a
preponderance (>95%) of these images are predominantly
image artifacts (colored streaks, large patches of noise,
or saturated images) that the volunteers didn’t select as
being unusual or interesting. We show some examples of
these in the Supplemental Figure 9 of Supplemental File
1: Appendix G. This observation particularly underscores
the value that humans bring towards filtering out unusual
but uninteresting objects within the data and highlights
the potential for combining human and machine learning
approaches.

Taking the above for context, we also assess the
distribution of images in the UMAP space with a weighted
volunteer chosen fraction >0.5 (shown in Supplemental
Figure 14 in Supplemental File 1: Appendix G). This again
highlights the specific region of localization of high
volunteer-consensus images in the feature space. It also
shows that when color-coding each data point with the
Simager AN S, @ More apparent correlation with Sc
can be seen where the majority of the images have higher
Seaure SCOTes as indicated by the red color. On the other
hand, no correlation is seen with Simage’ where most of the
images have low S, scores. For more context on the
overall ranges of the feature and image scores, see the
Supplementary Figure 3 in Supplementary File 1: Appendix
B, Figure 5 containing the distribution of S, | ~and S ..
FEATURE SPACE CORRELATIONS WITH TALK-
BASED CHARACTERIZATIONS
Extending our previous exploration of the feature space
correlations with the volunteer chosen fraction and
anomaly scores, we analyze the feature space distribution
of the subset of images (N = 3043) that were discussed
in the Talk boards with their corresponding #tags. In
Figure 4d, we show the images associated with a select
subset of #tags in the UMAP space. Broadly speaking, it
becomes evident that certain categories such as #mergers
and #barred are highly grouped towards the lower portion
of the UMAP space. While this is also generally true for the
#gravitational_lens, #asteroid category and #supernova_

candidates, a substantial portion of images with these
tags (esp. #gravitational lens and #asteroids) also are
dispersed diffusely away from the general locus of points
(see example images in Supplemental Figures 10 and 12
in Supplemental File 1: Appendix G). However, it is worth
noting that images tagged with #white_dwarf or #white_
dwarf_candidate (tags provided by a single volunteer to
six images) solely resides away from the general locus of
other categories. We show some examples of the images
tagged with #gravitational_lens in Supplemental Figure 10
of Supplemental File 1: Appendix G.

While a thorough follow-up of various images containing
interesting characteristics with expert verification is
beyond the scope of this work, we note some preliminary
advanced explorations done by engaged volunteers. For
example, images tagged by #white_dwarf_candidate
have been searched across existing astronomical
catalogs and one of them was identified (by a volunteer)
as known white dwarf (e.g., https://www.zooniverse.org/
projects/zookeeper/galaxy-zoo-weird-and-wonderful/
talk/subjects/87936472). Simultaneously, lists of images
tagged as #gravitational lens have also been explored
by volunteers and lists of objects identified (https://
www.zooniverse.org/projects/zookeeper/galaxy-zoo-
weird-and-wonderful/talk/4513/2899132) not identified
(https://www.zooniverse.org/projects/zookeeper/galaxy-
zoo-weird-and-wonderful/talk/4513/2912339) as being
part of any published papers have been assembled. Our
future work will focus on expert verification of these
images and deriving important scientific outcomes. An
example collage of images tagged by #gravitational lens
are shown in Supplemental Figure 10 of Supplemental
File 1: Appendix G and they indeed show gravitational
lensing arcs.

It is worth refreshing that one of our main motivations is
to enable research teams to make a well-informed selection
that would reduce a large dataset down to a tractable
number of scientifically interesting samples for further
investigation/vetting. With this motivation in context, our
above exploration highlights the caveat that if one were to
focus only on selectingimages within the general locus (see
Figure 4d), it would cover a wide range of images containing
a variety of characteristics; however, some rarer categories
might be excluded. This also highlights the need to have
additional modalities such as tagging (or potentially even
semantic descriptions) as a way to help further interpret
the feature space and volunteer consensus.

CLASSIFICATION BOUNDARY BASED ON
LOGISTIC REGRESSION

With the aim of defining an efficient method for
preselection of images from an unseen dataset, we
leverage various correlations and insights discussed so far
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between the GZ:ZW&W consensus and anomaly detection
model metrics to define a classification boundary within
the latent space that can maximize the retrieval of
volunteer-selected, interesting subjects. For this, we
follow standard practice of applying Principal Component
Analysis to extract the prominent features from D = 128
feature space vectors for all our images in the dataset. We
find that a D = 25 account for a substantial (75%) of the
total explained variance in the feature vectors, and as such
we use these features for our next steps. Then, we split
our 200,000 X, are given a class label = 1 (i.e., selected by
volunteers) and vice-versa.

As a demonstrative example exercise, in Figure 5, we
showcase the logistic regression decision boundary for
a case of X, = 0.5. Generally speaking, when applied to
our validation sample, the logistic regression selected
images align with the general locus of images with a high
volunteer chosen fraction. These selected images amount
to ~20% of the total validation sample. We also assess the
precision (fraction of correct positive predictions), recall
(fraction of positive predictions that are correct) and the
F1 score (measures the prediction accuracy by taking both
precision and recall into account; F1 = precision x recall/
precision+recall) of the decision boundary (see Figure 5c).

Owing to the correlation between the feature score and
the chosen fraction in the UMAP space, we are motivated
to explore the precision, recall, and the F1 scores as a
function of S, score by iteratively limiting the sample
to higher S . values. We found that the F1 score (and
as such the precision and recall) started around 0.2 and
improved as we limited to images with higher S.__ . This
behavior is reflected in the relative differences in the S,
distributions between the overall sample and the logistic
regression selected images (see Figure 3).

While a threshold value of X, = 0.5 yields a sample
of images that have a high chance of being chosen by
volunteers, it can be seen that the UMAP feature space
distribution of these images is quite restrictive. As discussed
in the previous section, some specific images containing
certain kinds of characteristics (e.g., #white dwarf
candidates) populate in the part of the feature space that
is not captured by the X, = 0.5 threshold. As such, the
definition and derivation of a decision boundary becomes
an optimization problem between effectively isolating the
interesting images while minimizing the contaminants,
all while ensuring that a maximal number of unwanted
samples are taken out of consideration. This translates to
understanding “what is the ideal value to choose for X_?”.

20,5
"0.5,
1.0 A A A A A a
A A
A
A —
NN Tep=05
0.8
)
c
)
8061 o Fiscore @
H A Precision
._:, + Recall e o .
204 ° .
5 o ¢
o + + i * °
o o .t A
0.2 + 1 +
+ + +
0.0
V] 500 1000 1500 2000 2500

Feature score threshold

UOpOEL UBSOYD 1833UNIOA PBIYBIOM

00

Precision

Logistic Regression Selected

0.9

o
o
>

e
N

14
o

® Weiahted chosen fraction
x  Feature score
. 4 Weighted chosen fraction x feature score

0.5

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 5 UMAP: Uniform Manifold Approximation and Projection distribution of a subset of images validated with our logistic regression
decision boundary (panel a) and those images that were chosen as satisfying the decision criteria (black points; panel b), respectively.
Panel ¢ shows the P: precision, R: recall, and the F1 score (2PR/P+R) as a function of an applied lower-limit on the feature score:

S

feature®

Panel d shows the precision vs recall of various logistic regression decision boundaries where each of the three parameters are

incrementally thresholded: weighted chosen fraction (red points), feature score (blue crosses), and a product of feature score and

weighted chosen fraction (green triangles).



Mantha et al. Citizen Science: Theory and Practice DOI: 10.5334/cstp.740

A liberal value of %, (e.g.,, 0.1) would aim at selecting a
more complete sampling of a variety of characteristics in
the data as opposed to, for example, X, = 0.5, which could
miss certain image characteristics but maintain a higher
purity with those that were selected.

Motivated by the previously discussed correlation
between images’ weighted chosen fraction, feature score,
and the locality in the feature representation space (see
Figure 4 and Supplemental Figure 10 in Supplemental File
1: Appendix G), we investigated whether a combination of
the weighted chosen fraction and the feature score could
better localize the interesting samples within the data than
either quantity alone. As such, we iteratively ran the logistic
regression decision boundary calculation by changing
the threshold at which a quantity used is binarized. In
Figure 5d, we show precision versus recall curve for the
decision boundaries calculated by changing the threshold
between 0.1 < X< 1. In the same figure, we also show the
precision vs recall curves for two other scenarios where we
usedtheS,  .andvariedit(as informed by their histograms)
across a range of 300 < X <3000, and a “combined”
score that is a product of weighted chosen fraction and the
Steatre ANd varied it across arange X < 600.

We notice that the combined product of weighted
chosen fraction and the S__ -based decision boundaries
are generally more separable than the weighted chosen
fraction, as evidenced by the systematically higher precision
and recall values of the former when compared with
the latter. While it is tempting to say that a simple S._,
based approach yields better distinguishing boundaries,
it should be noted that such an approach would select
specific localities within the feature space that only
sometimes overlap with the volunteer chosen consensus
(see Figure 4 and Figure 5a for more context), but does not
prioritize the selection of preferential selection of images
with scientific interest.
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In addition to the varying precision and recall values
as a function of X values discussed above, we also
showcase the fractional amount of sample selected by
the decision boundary from an overall validation set in
the context of the precision and recall values (black data
points in Figure 6). We show this information for two
scenarios: 1) binarization of weighted chosen fractions
and 2) binarization of the product of the feature score and
weighted chosen fractions. We interpret these results as
the following: Assuming that we have a new dataset of
images that haven’t been inspected by volunteers and have
been processed through our anomaly detection model,
if we were to apply a decision boundary classifier within
the feature space derived using a value of .= 0.1 (see
Figure 6a), then we would have a ~50% reduction in the
image sample size with ~75% precision and ~58% recall in
terms of containing images which would have a weighted
chosen fraction >0.1. Applying decision boundaries derived
using higher X, values (e.g., 0.5) will yield an ~80%
reduction in the image sample size, along with > 80%
precision and ~20% recall. However, as evidenced by the
feature space distribution of weighted chosen fraction in
Figure 4, employing a higher X value comes with the risk
of omitting certain images containing relatively unique
(and plausibly rarer) characteristics.

Ongoing and upcoming astronomical surveys will both
benefit from these methods and serve to vastly improve
them. For example, the Vera Rubin Observatory will obtain
20 billion galaxy images over the time span of a decade.
An 80% reduction in this data would still yield 400 million
galaxy images that require inspection. However, continued
implementation of HITL methods on incoming images will
strengthen these methods in terms of reducing the number
of images that require follow up, while also expanding the
known feature space of typical galaxy images to allow for
better characterization of potentially anomalous features.
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In addition to the above, comparing the trends shown
in panels a and b in Figure 6, for example, we find that at
threshold value X, ..~ 200 for the combined score
(product chosen fraction and the feature score) yields a
decision boundary with ~85% precision and ~40% recall
with ~20% effective remaining sample size of images (i.e.,
~80% reduction in samples to be inspected). To achieve a
similar recall of ~40% with the chosen fraction only case
(panel a), it would mean that the effective sample size
remaining would be at ~40%. Similarly, choosing a X,
value (e.g., ~0.7) to achieve a similar precision of ~85% will
yield an effective sample size of ~20%, but comes with a
cost of low recall of <5%. Our insights from Figures 5 and 6
indicate that a combination of the chosen fraction and the
machine-based feature score yields better discernibility in
the feature space for pre-selecting potentially interesting
images from a larger dataset.

CONCLUSIONS

Combining citizen science with machine learning
methodologies to efficiently parse large astronomical
data for finding anomalous and scientifically interesting
objects is one of the critical challenges in the era of big-
data astronomy. In this work, we explore some of the
key questions emerging from the task of operationalizing
a human-machine combined anomaly detection
framework. We developed and applied a deep learning-
based anomaly detection framework on a large dataset
of 1.5 million astronomy images, which yields their learnt
feature-level representations and an anomaly score metric
that indicates how unusual a given image is. Using a
subset of these images (~200,000) which also contained
interspersed highly anomaly-scored ones (~15,000), we
successfully ran a citizen science project (GZ:W&W), in
which volunteers were asked to select images that they
thought were interesting. By correlating the metrics from
the GZZW&W project (chosen fraction; the fraction of
volunteers selecting an image to be interesting) with the
anomaly detection based metrics (anomaly score which
quantifies the unusuality of an image compared to a
general population), in this case study, we present some
insights into the relationship(s) between citizen science
versus machine learning driven anomaly detection, and
offer general recommendations on road-mapping our
approach to other (potentially much larger) data domains.
Below, we outline some of the main points from our work,
split into high-level insights and summary of quantitative
findings.

11

HIGH-LEVEL INSIGHTS FROM OUR CITIZEN

SCIENCE PROJECT

1. When the volunteer choices based on their prior
participation and experience in working with images
containing galaxies were given more weight, we
found that the resultant high-consensus images
contained more rarer and anomalous features than
those identified by the general volunteer population.
Simultaneously, images containing more general
signatures were preferentially downweighed. As such,
volunteer experience weighting can enhance the
finding of rarer and more interesting samples within
the data.

2. Volunteers selected images containing a wide variety
of characteristics. Images containing relatively more
common but interesting features (e.g., colliding/
merging galaxies) usually had a higher consensus
(chosen fractions) compared with those low chosen
fraction images containing more subtle, rarer, or
challenging characteristics (e.g., gravitational arcs,
galaxies with rings). This suggests that the chosen
fraction consensus jointly traces a spectrum of
volunteer knowledge/experience and the rarity and
complexity of information that is being perceived.

3. While it is natural to consider discarding samples with
low consensus for any downstream purposes, in the
context of finding rare and scientifically interesting
objects, one should not discount low consensus
images as all it takes is one person to identify a specific
characteristic within an image.

4. Deep learning-based anomaly detection methods can
help swiftly identify images that are least likely to be
unusual. Humans are particularly efficient at filtering
out unusual and uninteresting objects, a task that
machine learning is particularly less adept at.

SUMMARY OF MACHINE LEARNING

CORRELATION FINDINGS

1. The experience-weighted chosen fraction has
a stronger correlation with the feature score, a
component of the overall anomaly score that is specific
to the unusualness of low-level features within a
particular image, than the image score. However, this
correlation is still quite weak quantitatively.

2. Assessing the feature space representations of the
images, those that have high feature scores occupy a
notably different distribution (and are more spatially
localized) when compared to those that have a high
image score (another component of the anomaly
score).
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3. Images corresponding to higher weighted chosen
fraction values formed a notable locus in the feature
space with some correlation with the locality of
those with high feature scores. Based on a subset of
images that were tagged by volunteers in the Talk
boards, images with certain relatively-high incidence
characteristics (e.g., #merger and #ring) tend to be
tightly grouped compared with some rarer categories
(e.g., supernova candidates, gravitational arcs) that
tend to have subtle characteristics.

4. We used logistic regression to define decision boundary
conditions based on the feature representation of
images to classify if it would be considered interesting.
We explored using the weighted chosen fraction and
feature scores as metrics to define if an image is to be
treated as interesting or not. We find that the product
of the feature score and the chosen fraction serves as
a better metric to distinguish images in the feature
space, while also ensuring that the selected number of
images by the decision boundary is small (~20% of a
total sample).

OPEN QUESTIONS AND MOTIVATIONS
FOR FUTURE WORK

Herein, we explore the combination of machine learning
and citizen science-based anomaly detection within
astronomical imaging data. Throughout, we have made
several choices, both from a machine learning standpoint
and for our citizen science project (GZ:W&W). These choices
naturally open various opportunities for further exploration
in future works, which we discuss in this section along with
potential next steps for consideration for the research
community.

Firstly, for our anomaly detection model, we used one
specific class of deep learning model (GAN). As elaborated
in Supplemental File 1: Appendix B, there are several
anomaly detection methods, including more recent (and
potentially more robust) architectures, for example, stable
diffusion (Rombach et al. 2022) transformer-GANs (Zhang
et al. 2022). Exploring the anomalous samples returned
by these different approaches is an open avenue for
exploration and will illuminate if specific methods are more
adept at identifying specific kinds of anomalies within data.

Even within the purview of our wGAN framework, we
have made several architectural and hyperparameter
assumptions. In fact, our Generator and Discriminator
architectures consist of simplistic convolutional layers. A
particularly interesting avenue of exploration could involve
introducing “ResNet” like layers or the novel attention
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mechanisms within the architecture and quantifying
the enhancements or differences in the feature level
representations learned by the wGAN. Additionally, we
made an important choice for the relative weightage
between the feature and image scores (0.8 and 0.2,
respectively) when optimizing the wGAN and encoder
frameworks. Understanding the variation in our models’
learning by smoothly varying the feature versus image
score weighting parameter is an open question.

Another potentially interesting avenue for future
exploration is to perform an iterative anomaly detection on
a set of identified anomalies. Such a model would learn to
re-generalize itself to a focused set of anomalies and will be
better at embedding their characteristics into a potentially
more separable feature space. This would yield a clustering
of anomalies as per their similar characteristics in which
deviations from individual clusters can be considered
candidates of interest, and truly anomalous objects would
stand out as outliers amongst all the clusters. Such an
approach might prove valuable if one is trying to identify
“rarest of the rare” objects within datasets.

In our citizen science project, GZW&W, we have also
made a couple of assumptions and analysis choices.
For example, we retired an image from further visual
inspection if it had been seen by 10 volunteers. While this
choice was motivated by various other citizen science
projects, it is nevertheless interesting to test the outcomes
and consequences of using a larger retirement limit and to
gauge whether such a choice provides benefits in detecting
certain anomalies (at the cost of longer completion
time). Additionally, while quantifying the consensus
chosen fraction of the selected images, we applied a
simplistic weighting scheme that enhanced the choices
of participants who had substantial participation (>100
classification) in the GZ project. More sophisticated weights
can be assigned, for example, a continuous weighting
scheme that is related to the number of GZ classifications.

Talk tags have played a key role in helping our
interpretation of the volunteer-identified interesting
images as well as correlating different categories of
anomalies within the anomaly detection model learned
feature space. It is worth noting that only a small fraction
of the overall volunteer identified images have been
discussed on Talk and tagged. Future works should aim to
include a simultaneous free-form tagging task in addition
to selecting the interesting images to procure a more
complete set of characteristics. Such a dataset would be
instrumental towards applying the latest ML methods
such as large language foundation models (e.g., LLaMA,
or vision-LLaMA) to unlock new exploration avenues for
human-machine combined anomaly detection.
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DATA ACCESSIBILITY STATEMENT

Machine learning model development and training were
performed using Python’s Tensorflow package (Abadi et
al. 2015). All the figures were generated using Matplotlib
(Hunter 2007). Tabular data analysis was made using
Astropy (Robitaille et al. 2013). Computational analysis
including machine model training and inference was
done using Minnesota Super Computing Institute (MSI).
In our work, we analyzed aggregated consensus of
overall classification export from the Galaxy Zoo: Weird &
Wonderful project across all participants (per image) and
their classification/task answers, and any Zooniverse Talk
participation information. We used the usernames of the
participants to crossmatch between the Galaxy Zoo project
and Galaxy Zoo: Weird & Wonderful project. Processed data
tables including anomaly scores, volunteer unweighted and
weighted chosen fractions along with talk tags (wherever
applicable) is available on GitHub along with scripts that are
able to parse the data produce key figures from this paper
at https://github.com/AgentM-GEG/galaxy-zoo-weird-and-
wonderful.

SUPPLEMENTAL FILE

The supplemental file for this article can be found as
follows:

+ Supplementary File 1. Appendix A - Details of
imaging data used in this work; Appendix B - Choice of
anomaly detection framework architecture; Appendix
C - Selection of experienced Galaxy Zoo (GZ) project
participants; Appendix D - Calculation of the experience
weighted chosen fraction; Appendix E - Expert
verification of volunteer-selected images; Appendix
F - General roadmap for our methodological steps; and
Appendix G - Additional Supplemental Visualizations.
DOL: https://doi.org/10.5334/cstp.740.51
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