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ABSTRACT
In the era of rapidly growing astronomical data, the gap between data collection and 
analysis is a significant barrier, especially for teams searching for rare scientific objects. 
Although machine learning (ML) can quickly parse large data sets, it struggles to robustly 
identify scientifically interesting objects, a task at which humans excel. Human-in-the-
loop (HITL) strategies that combine the strengths of citizen science (CS) and ML offer 
a promising solution, but first, we need to better understand the relationship between 
human- and machine-identified samples. In this work, we present a case study from 
the Galaxy Zoo: Weird & Wonderful project, where volunteers inspected ~200,000 
astronomical images—processed by an ML-based anomaly detection model—to 
identify those with unusual or interesting characteristics. Volunteer-selected images 
with common astrophysical characteristics had higher consensus, while rarer or more 
complex ones had lower consensus. This suggests low-consensus choices shouldn’t be 
dismissed in further explorations. Additionally, volunteers were better at filtering out 
uninteresting anomalies, such as image artifacts, which the machine struggled with. 
We also found that a higher ML-generated anomaly score that indicates images’ low-
level feature anomalousness was a better predictor of the volunteers’ consensus choice. 
Combining a locus of high volunteer-consensus images within the ML learnt feature space 
and anomaly score, we demonstrated a decision boundary that can effectively isolate 
images with unusual and potentially scientifically interesting characteristics. Using this 
case study, we lay important guidelines for future research studies looking to adapt and 
operationalize human-machine collaborative frameworks for efficient anomaly detection 
in big data.
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MOTIVATION

The classification of several million galaxies with the 
Galaxy Zoo (GZ) project has been one of the cornerstones 
of citizen science in astronomy over the past 15 years. A 
key success of the GZ project is the unexpected discovery of 
previously-unknown objects such as the Green Pea galaxies 
(Cardamone et al. 2009) and phenomena like Hanny’s 
Voorwerp (Lintott et al. 2009), where volunteer discussions 
on project forum boards about “odd things” they found 
played a critical role in the discovery process (see Straub 
2016). Although such efforts worked when the largest data 
products were about a million images (e.g., Sloan Digital 
Sky Survey; York et al. 2000), it becomes nearly impossible 
to have eyes on each image in the upcoming big-data 
era anticipated to produce many millions of images total 
per night.

While machine learning (ML) algorithms can now 
quickly sift the data for rare objects (Margalef-Bentabol et 
al. 2020), these objects are not necessarily scientifically 
interesting (e.g., image artifacts, see Storey-Fisher et al. 
2021). Human-in-the-loop (HITL) strategies (e.g., Lai et 
al. 2020) enabled by citizen science offer a synergistic 
middle ground where the relative strengths of humans 
and machines can be combined to identify scientifically 
interesting unknown-unknowns (e.g., Lochner and Bassett 
2021; Sharifi et al. 2022; Walmsley et al. 2022). However, 
implementing HITL-based anomaly detection pipelines 
requires a thorough exploration of the overlap between 
anomalies found by ML versus human-driven frameworks. 
Specifically, on the same data set, we need to investigate 
correlations between which images a machine-trained 
anomaly detector determines are anomalous versus 
which images humans determine contain “scientifically 
interesting” anomalies. Note that data from other 
modalities such as spectroscopy (1D representation of 
collected light as a function of wavelength) have also been 
considered for the purpose of anomaly detection (e.g., 
Hoyle et al. 2015 and Liang et al. 2023) and citizen science 
efforts (Coffin et al. 2023). Nevertheless, with the very large 
data sets involved, research teams will not have capacity 
to make these “human” determinations. Therefore, to 
test at scale whether the combination of human and 
machine methods provides a list of scientifically interesting 
anomalies, we need to determine whether people with 
minimal domain knowledge (aka citizen scientists) can 
reliably supply information on which images contain 
unusually interesting features. Furthermore, we need to 
show that the information supplied by the citizen scientists 
complements the machine-driven anomaly finder such that 
the combination provides the optimal set of scientifically 
interesting anomalies. A research team could then develop 
well-informed selection criteria for the data set to reduce 

to a tractable number the images that need to be vetted 
by the research team.

To carry out the investigations detailed above as a case 
study and provide insights into how research teams could 
apply this novel approach of a combined human-machine 
anomaly detection pipeline, we designed a deep learning 
anomaly detection framework and ran a citizen science 
project on the Zooniverse (www.zooniverse.org) platform 
called Galaxy Zoo: Weird and Wonderful (GZ:W&W; 
https://www.zooniverse.org/projects/zookeeper/galaxy-
zoo-weird-and-wonderful). In this work, we describe our 
methodology and provide insights into the correlation 
between machine- and GZ:W&W-based anomalies, and 
comment on promising next steps for applying our methods 
for much larger future datasets. This paper is structured 
as follows: First, we describe the imaging-based data 
used in this work, followed by a brief overview of our deep 
learning–based anomaly detection model and methods, 
we describe our citizen science project, GZ:W&W. Next, we 
comprehensively show various quantitative results from 
the GZ:W&W project alongside the anomaly detection–
based metrics and assess the correlation between these 
quantities. Based on the insights from our results, we then 
briefly discuss our recommendations for future research 
teams towards applying our approach to new datasets and 
potentially fine-tuning it for specific purposes. Finally, we 
provide our concluding statements in Section 6.

IMAGING DATA USED IN THIS WORK

In this work, we use the data taken from the Subaru 
Hyper-Suprime Cam (HSC) survey’s public data release 2 
(PDR2), which imaged a large portion of the sky in multiple 
optical wavelengths with the Subaru Telescope and serves 
as one of the notable modern-era resources for images 
containing nearby-to-distant galaxies. Specifically, we 
chose approximately 1.5 million images, among which 
we used a random selection of 250,000 images for our 
deep learning model training and a subsequent randomly 
chosen collection of 200,000 images for visual inspection. 
The selection process of the images used in this work is 
explained in more detail in Supplemental File 1: Appendix A.

DEEP LEARNING–BASED ANOMALY 
DETECTION MODEL

Our anomaly detection framework is based on a generative, 
convolutional neural network deep learning model. 
Specifically, our model is based on a framework described 
in Storey-Fisher et al. (2021) involving astronomical images 
and the training strategy employed by the fast-AnoGAN 

https://www.zooniverse.org
https://www.zooniverse.org/projects/zookeeper/galaxy-zoo-weird-and-wonderful
https://www.zooniverse.org/projects/zookeeper/galaxy-zoo-weird-and-wonderful
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model (Schlegl et al. 2019), a generative adversarial 
network (GAN) (Goodfellow et al. 2014) framework applied 
to medical imaging. This model comprises two separate 
design and training steps: 1) a Wasserstein GAN with 
gradient penalty (wGAN-GP); and 2) an encoder. Next, we 
briefly describe our model architecture, training methods, 
and the corresponding model outputs. We reserve our 
detailed model descriptions and its involved training 
hyper-parameters to our discussion in Supplemental File 1: 
Appendix B. We show a schematic of our framework and 
associated model outputs in Figure 1 in Supplemental File 
1: Appendix B.

ARCHITECTURE OVERVIEW
Our wGAN-GP model contains two learnable modules: 1) a 
convolutional generator (G) that takes in an N-dimensional 
“latent space” vector (often represented by z) as input 
and learns to generate realistic images with respect to 
the input dataset; and 2) a convolutional discriminator 
(D; sometimes called a “critic” network) that learns to 
predict the realism of the generated images. Conceptually, 
the z-vector serves as a compressed, lower-dimensional 
encoding of the image-level information (e.g., whiskers for 
an image containing a cat versus striped pattern of a tiger) 
and can serve as a landscape in which images with specific 
(or different) features populate deterministic and distinct 
locations within the z space. It is also important to note 
that a wGAN-GP model is a variant of the traditional GANs, 
which optimizes the Wasserstein distance (Rubner et al. 
2000) metric and is known for its stability during training.

Although the wGAN-GP framework is set up to learn 
the realistic generalization of the input dataset such that 
it can randomly generate representative image samples, 
it is not equipped to provide the exact feature space 
representation corresponding to an input image. To do so 
requires an additional model/module that learns to behave 
as an inverse of the trained generator. Drawing inspiration 
from the setup of the fast-AnoGAN framework, we thus 
define an encoder (E) model, which outputs a feature 
representation vector (z) for an input image that has the 
same dimensions as the input vector used as input by the 
generator network. In our work, we use D = 128 dimensions 
for our feature representation vector z. This framework is 
illustrated in Figure 1 in Supplemental File 1: Appendix B.

TRAINING STRATEGY
As mentioned previously, there are two steps in our 
training strategy. First, we train our wGAN-GP model on the 
previously described 250,000-image dataset with a batch 
size of 1,024 and an Adam optimizer with 10–4 learning 
rate for a total of 500 epochs. This model is optimized by 
jointly minimizing specific loss parameterizations (see Loss 
parameterizations during training section in Supplemental 

File 1: Appendix B) of the generator (G) and discriminator 
(D). Next, while holding the G and D models fixed, we train 
our encoder (E) on the same set of 250,000 images with a 
batch size of 256 and an Adam optimizer with 10–4 learning 
rate for 500 epochs. The encoder model is optimized by 
minimizing the following two-component loss function 
(Equation 1):

  0.8  0.2  enc image featureLoss Loss Loss= × + ×

Here, the image loss (Lossimg) corresponds to the pixel-
level difference between the true and generated images 
and serves as a quantitative metric of how unusual that 
image is in a spatial context (i.e., high-level features). On 
the other hand, the feature loss (Lossfeature) is a difference 
between the low-level features extracted from the true 
and generated images, and as such quantifies how 
unusual are two images in terms of low-level features. The 
joint optimization of the Lossimg and Lossfeature conceptually 
ensures that the encoder learns good image-to-z mapping. 
This in turn yields a generated image (by G) that is similar 
to the input real image, while simultaneously ensuring that 
the set of discriminator features of the real and generated 
images are also similar.

We followed common practices used in the literature 
to gauge the convergence of our wGAN-GP and encoder 
models by reserving 10% of our entire dataset for 
validation purposes during the training phase. We assessed 
the training and validation loss profiles and found that they 
both reached stagnation around 500 epochs (i.e., no further 
improvement in loss) while yielding similar loss values.

ANOMALY SCORES AND LATENT SPACE FEATURE 
REPRESENTATION VECTORS
After our training procedure is complete, we are left with 
three trained modules G, D, and E. Conceptually, for each 
input image, the G model provides a Lossimage value that 
encompasses how unusual that image is from a spatial 
(high-level feature) context, the D model provides Lossfeature 
value that captures how unusual the input image is from a 
low-level feature standpoint. Hereafter, we treat and refer 
to the Lossimage and Lossfeature as the Image Score (Simage) 
and Feature Score (Sfeature), respectively, the weighted 
sum of which make up the “anomaly score” (Sanom; see 
Equation 1). Simultaneously, the E model enables us to 
compute a feature representation for each input image. By 
inferring our trained G, D, and E models on a sample of 1.5 
million images, we compute their corresponding anomaly 
scores and the latent space feature representations (z). 
Conceptually, a poor generalization by the Generator and 
Discriminator directly translates to a poor representation 
of that particular type of image in the dataset. As such, a 
high anomaly score would be expected for an image that 
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is rarely occurring in the dataset as it would yield a poorly-
matched G output and resultant D features (i.e., high image 
and feature losses). For context on the general distribution 
of Simage and Sfeature, see Figure 3 in Supplemental File 1: 
Appendix B.

THE GALAXY ZOO WEIRD & WONDERFUL 
PROJECT: SAMPLE CONSTRUCTION AND 
STATISTICS

With the main aim to understand the relationship between 
machine-based and human-driven anomaly detection, 
we designed and launched the citizen science project 
GZ:W&W, in which volunteers were given a tailored set of 
images inter-mixed with our ML-based anomalous images 
for inspection. In this section, we describe the construction 
of the sample used in the GZ:W&W project and briefly 
outline the project completion statistics.

We start with the anomaly scores computed on the 
1.5 million images and choose the top 1% from their 
distribution to compile ~15,000 images that have the 
highest anomaly scores within the entire dataset. Next, 
we randomly select from the remaining sample of 
images (i.e., <99% of the anomaly scores) to pool a set of 
~185,000 images. Together, these amount to ~200,000 
images with ~1:12 ratio of highly anomalous versus the 
remaining images, which we use for our GZ:W&W project. 
For visual illustration, we show an example collage of non-
anomalous and anomalous images in Supplemental Figure 
12 in Supplemental File 1: Appendix G.

We designed and launched our GZ:W&W project on the 
Zooniverse platform (www.zooniverse.org), where each 
volunteer was shown a random pool of images from the 
200,000 on a 4 × 4 grid and were simply asked to “Click 
on any galaxies which are particularly interesting to you.” 
Additionally, volunteers could further discuss any images 
within the discussion boards (called “Talk pages” on 
Zooniverse) by posting comment threads and providing 
hash (#) tags. Overall, the project took approximately 2 
months to finish with ~2,000 participating volunteers. Each 
image was taken out of circulation (i.e., “retired”) when 
it had been seen by at least 10 volunteers. Among the 
200,000 images, approximately 3,000 were discussed in 
Talk, for which #tags were indicated.

ANALYSIS AND RESULTS

In this section, we derive simple statistical metrics from the 
GZ:W&W project and assess their correlations with various 
anomaly detection model metrics such as the anomaly 
score and feature space representation.

VOLUNTEER CHOSEN FRACTION AND 
EXPERIENCE WEIGHTING
For each image used in our GZ:W&W sample, we quantified 
the “volunteer chosen fraction” as the ratio of the number 
of times volunteers selected that particular subject to the 
total number of volunteers who have seen it. To provide 
them with some context to what might be considered 
“usual” galaxy images, we encourage volunteers to 
classify on the standard Galaxy Zoo (GZ) project before 
participating on GZ:W&W; however, no stringent gating 
was employed. As such, 305 volunteers who participated 
in GZ:W&W have also participated in the GZ project with 
at least 100 classifications each (Supplemental Figure 4 
in Supplemental File 1: Appendix C). Hereafter, these 305 
volunteers are referred to as GZ-participated, and the 
classifications from them amount to ~40% of the total 
GZ:W&W classifications. To take into account the prior 
domain experience of volunteers who participated in the 
GZ project, we also compute a “weighted volunteer chosen 
fraction” which increases the weight of votes from previous 
GZ participants by a factor of two compared with novice 
volunteers. See Supplemental File 1: Appendix C for more 
details on the weighting scheme.

This weighting scheme has the highest impact on 
images that have low agreement between volunteers. 
Since volunteers have only a binary choice (i.e., a source is 
interesting or not), this results in chosen fractions of ~0.5 
varying the most between the two weighting schemes. This 
is because a strong agreement (i.e., a value that falls close 
to a maximal value of 0 or 1) won’t have a strong effect 
when taking volunteer experience into account because 
the vote values do not vary significantly. A comparison 
between weighted and unweighted chosen fraction 
measurements along with relative differences are shown in 
Supplemental Figure 5 in Supplemental File 1: Appendix D.

In Supplemental Figure 7 in Supplemental File 1: 
Appendix G, we visually illustrate the impact of upweighting 
the contribution from experienced volunteers, where the 
top row (bottom row) shows images that had the most 
decrease (increase) in the chosen fraction. By upweighting 
the chosen fraction based on the experienced volunteer 
participation, the number of galaxies with interesting, 
but less unique features are reduced. Likewise, sources 
with distinct and rarer features are ranked higher with 
the introduction of domain experience weighting. For 
example, the bottom row of Supplemental Figure 7 in 
Supplemental File 1: Appendix G shows images with 
increased percentages, notably those hosting gravitational 
lenses – a rarer and scientifically interesting phenomenon. 
This demonstrates that introducing a classification weight 
based on volunteer experience can highlight rarer and 
more anomalous features than those identified by the 
general volunteer population.

https://www.zooniverse.org
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VOLUNTEER CHOSEN FRACTION DISTRIBUTIONS 
FOR TALK DISCUSSED IMAGES
For the subset of images that were discussed in the 
GZ:W&W project Talk discussion boards, we compile 
information on their corresponding #tags and number 
of comments made. We process the #tags to be more 
uniform by taking into account any typographical errors 
and singular or plural mentions. We then manually group 
the #tags into broader categories if a particular tag has 
been used at least 10 times. Some example images along 
with their corresponding #tags are shown in Figure 1, which 
also highlights the diversity of characteristics identified by 
the volunteers.

To further explore potential relationships between 
the volunteer chosen fraction and the variety of images 
discussed in Talk, we analyzed the distribution of the 
weighted volunteer chosen fraction(s) for a subset of 
subjects that are discussed in the GZ:W&W Talk boards 
and were marked with different tags (For example, see 
Supplemental Figure 11 in Supplemental File: Appendix 
G). The weighted volunteer chosen fraction distribution 
(as shown in Figure 1) among the entire Talk-discussed 
sample is a bimodal structure with peaks at ~0.25 and 
~0.6. When assessing this distribution, separated into 
different tag-based subsets, we found that the distribution 
of chosen fractions for each category showed distinct 
behavior. Notably, we found that subjects tagged with 
more abundant or “easily noticeable” characteristics (e.g., 
#merger or #ring) tend to have higher median chosen 
fractions, whereas the images containing more subtle 
categories (e.g., #gravitational lens or #arc) have a lower 
median chosen fraction. This insight highlights that the 
observed range of chosen fractions encodes the diversity 
of different categories of interesting characteristics as 
well as the “knowledge model” of the volunteer pool who 
participated in the project. This emphasizes the fact that 
we should not discount low chosen fraction images if we 

want to determine which images are of scientific interest; 
all it takes is one person who knows what a gravitational 
lens looks like (or thinks it just looks interesting).

Additionally, we assessed the frequency of Talk 
comments for images tagged with different #tags (right 
panel of Supplemental Figure 11 in Supplemental File: 1, 
Appendix G). We found that images containing more subtle 
features or phenomena (e.g., #gravitational lens) tend to 
be discussed more extensively with higher numbers of Talk 
comments compared with #mergers that are relatively 
“easier” to comprehend and have a high median chosen 
fraction. This is evident especially from the transition 
between the N = 3–4 comments bins.

VOLUNTEER CHOSEN FRACTION VERSUS 
MACHINE ANOMALY SCORES
In Figure 2, we assess the correlation between the volunteer 
chosen fraction and the anomaly detection model scores 
– anomaly score (Sanom), and its two components: image 
score (Simage) and feature score (Sfeature).

Generally speaking, we note that there is no appreciable 
correlation between the Sanom and the weighted volunteer 
chosen fraction; this is true even if we assessed the 
subsample of subjects discussed in Talk (see Figure 2a). We 
also notice a “ridge” in the Sanom space (Figure 2a) where it 
seems to follow a bimodal distribution. Upon investigation, 
we find that this is an artificial effect as a consequence of 
the relative weighting values of 0.8 and 0.2 used to combine 
the Simage and Sfeature components (see the aforementioned 
equation). Motivated by these observations and taking 
inspiration from the exploration by Storey-Fisher et al. 
(2021), we assessed the correlation between the chosen 
fraction individually for Simage and Sfeature.

It is worth noting that the Simage encodes information 
about the generalizability on a spatial-level that can be 
dominated by features such as galaxy morphology or other 
image-level signatures, whereas the Sfeature is indicative 

Figure 1 An example collage of images from the Galaxy Zoo: Weird & Wonderful (GZ:W&W) project that have been discussed in the Talk 
boards and their corresponding volunteer-provided tags.
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of generalizability across both high-level and low-level 
features that a particular image bears. When comparing 
the image score versus the feature score in the context of 
the volunteer chosen fraction (Figure 2b), an interesting 
trend emerges. We find that weighted (also unweighted) 
volunteer chosen fraction values qualitatively have 
higher correlation with Sfeature rather than the Simage. For 
example, at a fixed Simage, images with higher Sfeature have 
preferentially higher chosen fraction values. Especially, a 
majority of the images with chosen fractions >0.5 range 
between Simage ~100–300 and Sfeature ~1000–2000 (i.e., top 
left region of Figure 2b). This indicates that volunteers 
mimic the conceptual task of a discriminator module of the 
anomaly detection model towards finding interesting/rare 
subjects within the dataset. One should note that, despite 
this interesting relationship, there is still no quantitative 
correlation between Sfeature (or Simage for that matter) and 
volunteer chosen fraction itself. That is, a higher value 
of chosen fraction doesn’t necessarily correlate with the 
quantitative value of Sfeature or Simage. Nonetheless, our insights 
motivate the use of a different weighting factor for the 
feature and image losses (than 0.8 and 0.2) while training 
the machine model. This is to preferentially prioritize the 
feature score while considering the information from Simage 

with a smaller weightage.
Additionally, we also note that there is an anti-correlation 

between Simage and chosen fractions, especially at high Simage 

values. Upon visual inspection of these images, they tend 
to be dominated by various image artefacts and were not 
selected by the volunteers. We also explore this aspect 
further while assessing the feature space learnt by our 
anomaly detection model. We also show the image versus 
feature score with both weighted and unweighted chosen 
fraction in Supplemental Figure 8 in Supplemental File 1: 
Appendix G.

Furthermore, in Figure 3, we show the distributions 
of Sanom, Simage, and Sfeature for weighted volunteer chosen 
fraction >0.5 images in comparison with our entire sample. 
We find that Sfeature is more predictive in terms of determining 
if an image has a high volunteer chosen fraction versus 
the Simage. This reinforces our previous comments on 
the observed correlations between volunteer chosen 
consensus and Sfeature. More explicitly, this observation 
addresses our motivation question on which machine-
derived metrics hold optimal potential to be combined with 
human consensus for finding rare and interesting objects.

CORRELATIONS BETWEEN CHOSEN FRACTIONS 
WITHIN THE FEATURE SPACE
As described in a previous section, our anomaly detection 
model (specifically the encoder E) yields a latent space 
feature vector z (dimensionality D = 128) for each input 
image. Conceptually, this vector encodes the important 
feature-level information that describes the overall 
semantic meaning carried by each image. As such, this can 
provide important insights into the landscape of images 
containing different physical properties. In this section, we 
discuss our assessment of the GZ:W&W chosen fraction 
metric alongside z and the Simage and Sfeature scores.

Although we encode the feature vector with D = 128, not 
all individual components of the feature vector contribute 
equal importance towards the semantic information 
captured within the images. A common practice in 
computer vision literature is to reduce the feature space’s 
dimensionality so that individual features are sorted in 
decreasing order of importance and use them for any 
downstream quantitative and qualitative assessment. 
Following this approach, we first process the raw D = 128 
feature vectors for all our 200,000 images used in the 
GZ:W&W project to reduce their dimensionality to D = 3 

Figure 2 Left panel: The anomaly score versus the fraction of times a volunteer identified a subject as interesting in the Galaxy Zoo: Weird 
& Wonderful (GZ:W&W) (volunteer chosen fraction), with an upweighting of selections by experienced volunteers who have substantial 
participation in GZ:W&W, with the subset of those subjects discussed in Talk boards (red points). Right panel: The feature score versus 
image score for our entire ~200,000 GZ:W&W sample color-coded by the GZ experienced volunteer response weighted chosen fractions, 
respectively.
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using the Uniform Manifold Approximation and Projection 
(UMAP) technique (McInnes et al. 2018). In Figure 4a,b,c, 
we show our images’ feature space in three UMAP axes, 
color-coded with different metrics: Sanom, Simage and Sfeature. 
We notice that the subjects with relatively high anomaly 
scores preferentially populate the lower portion of the 
UMAP space. However, it is quite interesting to note that 
subjects with high Simage and Sfeature populate different parts 
of the UMAP space. It is also worth noting that while the 
majority of the high Simage subjects span the lower portion 
of the UMAP space, a substantial number of them also span 
a broad range across the UMAP 3 dimension. However, this 
is not the case for the images with high Sfeature, where they 

predominantly span only a localized region in the lower 
portion of the UMAP space.

In Supplemental Figure 13 of Supplemental File 1: 
Appendix G, we further illustrate the distribution of 
volunteer chosen fractions within the feature space as a 
function of the overall Sanom scores. First, we note that the 
images with higher weighted volunteer chosen fractions 
localize within a specific portion of the UMAP (see top left 
panel), with some overlap between the regions represented 
by high Simage and Sfeature scores. When assessing the UMAP 
locality by subsetting our images into those having high 
(>99%), intermediate (>68% and <99%), and low Sanom 
values (<68%), we find that a large portion of the chosen 

Figure 3 The probability distribution of the feature scores (left) and image score (right) for our entire sample (black bars, 99 percentile 
value in black dashed line) along with the subset that have weighted chosen fraction >0.5 (green bars).

Figure 4 A visualization of the GZ:W&W: Galaxy Zoo: Weird & Wonderful subjects in the three prominent UMAP: Uniform Manifold 
Approximation and Projection dimensions, color coded by different quantitative metrics: anomaly score (panel a), image score (panel b), 
feature score (panel c). We also show those subjects that were #tagged in the “Talk” discussion boards (see legend; panel d; WC: #white_
dwarf, SN: #supernova_candidates).
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fraction ~0 subjects do correspond to low Sanom images 
populated in the upper portions of the UMAP. This suggests 
that a machine-based approach can be well-suited to filter 
out images that are likely to be unusual, but is less adept 
at clearly delineating which ones are interesting versus 
uninteresting. As will be discussed later, this suggestion 
comes with the caveat that the ability of the machine 
filtering is also dependent on the categories of interesting 
images. Of special note is a region in the lower part of the 
UMAP where the volunteer chosen fraction is low (e.g., 6 
< UMAP3 < 7), but has images with high image or feature 
scores (as seen in Figure 4). We randomly sampled groups 
of 50 images that span this UMAP region and visually 
inspected by at least 3 domain experts. We find that a 
preponderance (>95%) of these images are predominantly 
image artifacts (colored streaks, large patches of noise, 
or saturated images) that the volunteers didn’t select as 
being unusual or interesting. We show some examples of 
these in the Supplemental Figure 9 of Supplemental File 
1: Appendix G. This observation particularly underscores 
the value that humans bring towards filtering out unusual 
but uninteresting objects within the data and highlights 
the potential for combining human and machine learning 
approaches.

Taking the above for context, we also assess the 
distribution of images in the UMAP space with a weighted 
volunteer chosen fraction >0.5 (shown in Supplemental 
Figure 14 in Supplemental File 1: Appendix G). This again 
highlights the specific region of localization of high 
volunteer-consensus images in the feature space. It also 
shows that when color-coding each data point with the 
Simage, and Sfeature, a more apparent correlation with Sfeature 
can be seen where the majority of the images have higher 
Sfeature scores as indicated by the red color. On the other 
hand, no correlation is seen with Simage, where most of the 
images have low Simage scores. For more context on the 
overall ranges of the feature and image scores, see the 
Supplementary Figure 3 in Supplementary File 1: Appendix 
B, Figure 5 containing the distribution of Simage and Sfeature.

FEATURE SPACE CORRELATIONS WITH TALK-
BASED CHARACTERIZATIONS
Extending our previous exploration of the feature space 
correlations with the volunteer chosen fraction and 
anomaly scores, we analyze the feature space distribution 
of the subset of images (N = 3043) that were discussed 
in the Talk boards with their corresponding #tags. In 
Figure 4d, we show the images associated with a select 
subset of #tags in the UMAP space. Broadly speaking, it 
becomes evident that certain categories such as #mergers 
and #barred are highly grouped towards the lower portion 
of the UMAP space. While this is also generally true for the 
#gravitational_lens, #asteroid category and #supernova_

candidates, a substantial portion of images with these 
tags (esp. #gravitational_lens and #asteroids) also are 
dispersed diffusely away from the general locus of points 
(see example images in Supplemental Figures 10 and 12 
in Supplemental File 1: Appendix G). However, it is worth 
noting that images tagged with #white_dwarf or #white_
dwarf_candidate (tags provided by a single volunteer to 
six images) solely resides away from the general locus of 
other categories. We show some examples of the images 
tagged with #gravitational_lens in Supplemental Figure 10 
of Supplemental File 1: Appendix G.

While a thorough follow-up of various images containing 
interesting characteristics with expert verification is 
beyond the scope of this work, we note some preliminary 
advanced explorations done by engaged volunteers. For 
example, images tagged by #white_dwarf_candidate 
have been searched across existing astronomical 
catalogs and one of them was identified (by a volunteer) 
as known white dwarf (e.g., https://www.zooniverse.org/
projects/zookeeper/galaxy-zoo-weird-and-wonderful/
talk/subjects/87936472). Simultaneously, lists of images 
tagged as #gravitational lens have also been explored 
by volunteers and lists of objects identified (https://
www.zooniverse.org/projects/zookeeper/galaxy-zoo-
weird-and-wonderful/talk/4513/2899132) not identified 
(https://www.zooniverse.org/projects/zookeeper/galaxy-
zoo-weird-and-wonderful/talk/4513/2912339) as being 
part of any published papers have been assembled. Our 
future work will focus on expert verification of these 
images and deriving important scientific outcomes. An 
example collage of images tagged by #gravitational lens 
are shown in Supplemental Figure 10 of Supplemental 
File 1: Appendix G and they indeed show gravitational 
lensing arcs.

It is worth refreshing that one of our main motivations is 
to enable research teams to make a well-informed selection 
that would reduce a large dataset down to a tractable 
number of scientifically interesting samples for further 
investigation/vetting. With this motivation in context, our 
above exploration highlights the caveat that if one were to 
focus only on selecting images within the general locus (see 
Figure 4d), it would cover a wide range of images containing 
a variety of characteristics; however, some rarer categories 
might be excluded. This also highlights the need to have 
additional modalities such as tagging (or potentially even 
semantic descriptions) as a way to help further interpret 
the feature space and volunteer consensus.

CLASSIFICATION BOUNDARY BASED ON 
LOGISTIC REGRESSION
With the aim of defining an efficient method for 
preselection of images from an unseen dataset, we 
leverage various correlations and insights discussed so far 

https://www.zooniverse.org/projects/zookeeper/galaxy-zoo-weird-and-wonderful/talk/subjects/87936472
https://www.zooniverse.org/projects/zookeeper/galaxy-zoo-weird-and-wonderful/talk/subjects/87936472
https://www.zooniverse.org/projects/zookeeper/galaxy-zoo-weird-and-wonderful/talk/subjects/87936472
https://www.zooniverse.org/projects/zookeeper/galaxy-zoo-weird-and-wonderful/talk/4513/2899132
https://www.zooniverse.org/projects/zookeeper/galaxy-zoo-weird-and-wonderful/talk/4513/2899132
https://www.zooniverse.org/projects/zookeeper/galaxy-zoo-weird-and-wonderful/talk/4513/2899132
https://www.zooniverse.org/projects/zookeeper/galaxy-zoo-weird-and-wonderful/talk/4513/2912339
https://www.zooniverse.org/projects/zookeeper/galaxy-zoo-weird-and-wonderful/talk/4513/2912339
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between the GZ:W&W consensus and anomaly detection 
model metrics to define a classification boundary within 
the latent space that can maximize the retrieval of 
volunteer-selected, interesting subjects. For this, we 
follow standard practice of applying Principal Component 
Analysis to extract the prominent features from D = 128 
feature space vectors for all our images in the dataset. We 
find that a D = 25  account for a substantial (75%) of the 
total explained variance in the feature vectors, and as such 
we use these features for our next steps. Then, we split 
our 200,000 ΣCF are given a class label = 1 (i.e., selected by 
volunteers) and vice-versa.

As a demonstrative example exercise, in Figure 5, we 
showcase the logistic regression decision boundary for 
a case of ΣCF = 0.5. Generally speaking, when applied to 
our validation sample, the logistic regression selected 
images align with the general locus of images with a high 
volunteer chosen fraction. These selected images amount 
to ~20% of the total validation sample. We also assess the 
precision (fraction of correct positive predictions), recall 
(fraction of positive predictions that are correct) and the 
F1 score (measures the prediction accuracy by taking both 
precision and recall into account; F1 = precision x recall/
precision+recall) of the decision boundary (see Figure 5c). 

Owing to the correlation between the feature score and 
the chosen fraction in the UMAP space, we are motivated 
to explore the precision, recall, and the F1 scores as a 
function of Sfeature score by iteratively limiting the sample 
to higher Sfeature values. We found that the F1 score (and 
as such the precision and recall) started around 0.2 and 
improved as we limited to images with higher Sfeature. This 
behavior is reflected in the relative differences in the Sfeature 
distributions between the overall sample and the logistic 
regression selected images (see Figure 3).

While a threshold value of ΣCF = 0.5 yields a sample 
of images that have a high chance of being chosen by 
volunteers, it can be seen that the UMAP feature space 
distribution of these images is quite restrictive. As discussed 
in the previous section, some specific images containing 
certain kinds of characteristics (e.g., #white_dwarf_
candidates) populate in the part of the feature space that 
is not captured by the ΣCF = 0.5 threshold. As such, the 
definition and derivation of a decision boundary becomes 
an optimization problem between effectively isolating the 
interesting images while minimizing the contaminants, 
all while ensuring that a maximal number of unwanted 
samples are taken out of consideration. This translates to 
understanding “what is the ideal value to choose for ΣCF?”. 

Figure 5 UMAP: Uniform Manifold Approximation and Projection distribution of a subset of images validated with our logistic regression 
decision boundary (panel a) and those images that were chosen as satisfying the decision criteria (black points; panel b), respectively. 
Panel c shows the P: precision, R: recall, and the F1 score (2PR/P+R) as a function of an applied lower-limit on the feature score: 
Sfeature. Panel d shows the precision vs recall of various logistic regression decision boundaries where each of the three parameters are 
incrementally thresholded: weighted chosen fraction (red points), feature score (blue crosses), and a product of feature score and 
weighted chosen fraction (green triangles).
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A liberal value of ΣCF (e.g., 0.1) would aim at selecting a 
more complete sampling of a variety of characteristics in 
the data as opposed to, for example, ΣCF = 0.5, which could 
miss certain image characteristics but maintain a higher 
purity with those that were selected.

Motivated by the previously discussed correlation 
between images’ weighted chosen fraction, feature score, 
and the locality in the feature representation space (see 
Figure 4 and Supplemental Figure 10 in Supplemental File 
1: Appendix G), we investigated whether a combination of 
the weighted chosen fraction and the feature score could 
better localize the interesting samples within the data than 
either quantity alone. As such, we iteratively ran the logistic 
regression decision boundary calculation by changing 
the threshold at which a quantity used is binarized. In 
Figure 5d, we show precision versus recall curve for the 
decision boundaries calculated by changing the threshold 
between 0.1 < ΣCF < 1. In the same figure, we also show the 
precision vs recall curves for two other scenarios where we 
used the Sfeature and varied it (as informed by their histograms) 
across a range of 300 < Σfeature < 3000, and a “combined” 
score that is a product of weighted chosen fraction and the 
Sfeature and varied it across a range Σfeature < 600.

We notice that the combined product of weighted 
chosen fraction and the Sfeature-based decision boundaries 
are generally more separable than the weighted chosen 
fraction, as evidenced by the systematically higher precision 
and recall values of the former when compared with 
the latter. While it is tempting to say that a simple Sfeature 
based approach yields better distinguishing boundaries, 
it should be noted that such an approach would select 
specific localities within the feature space that only 
sometimes overlap with the volunteer chosen consensus 
(see Figure 4 and Figure 5a for more context), but does not 
prioritize the selection of preferential selection of images 
with scientific interest.

In addition to the varying precision and recall values 
as a function of Σ values discussed above, we also 
showcase the fractional amount of sample selected by 
the decision boundary from an overall validation set in 
the context of the precision and recall values (black data 
points in Figure 6). We show this information for two 
scenarios: 1) binarization of weighted chosen fractions 
and 2) binarization of the product of the feature score and 
weighted chosen fractions. We interpret these results as 
the following: Assuming that we have a new dataset of 
images that haven’t been inspected by volunteers and have 
been processed through our anomaly detection model, 
if we were to apply a decision boundary classifier within 
the feature space derived using a value of ΣCF = 0.1 (see 
Figure 6a), then we would have a ~50% reduction in the 
image sample size with ~75% precision and ~58% recall in 
terms of containing images which would have a weighted 
chosen fraction >0.1. Applying decision boundaries derived 
using higher ΣCF values (e.g., 0.5) will yield an ~80% 
reduction in the image sample size, along with > 80% 
precision and ~20% recall. However, as evidenced by the 
feature space distribution of weighted chosen fraction in 
Figure 4, employing a higher ΣCF value comes with the risk 
of omitting certain images containing relatively unique 
(and plausibly rarer) characteristics.

Ongoing and upcoming astronomical surveys will both 
benefit from these methods and serve to vastly improve 
them. For example, the Vera Rubin Observatory will obtain 
20 billion galaxy images over the time span of a decade. 
An 80% reduction in this data would still yield 400 million 
galaxy images that require inspection. However, continued 
implementation of HITL methods on incoming images will 
strengthen these methods in terms of reducing the number 
of images that require follow up, while also expanding the 
known feature space of typical galaxy images to allow for 
better characterization of potentially anomalous features.

Figure 6 The precision and recall of the logistic regression decision boundary derived by varying the binarizing threshold: Σf for two 
different scores: weighted chosen fraction (left panel; ΣCF) and the product of feature score and weighted chosen fraction (right panel; 
ΣCF × Feature). In each panel, we also show the overall fraction of a new sample of images that requires visual inspection as a function of Σ.
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In addition to the above, comparing the trends shown 
in panels a and b in Figure 6, for example, we find that at 
threshold value ΣCF × feature ∼ 200 for the combined score 
(product chosen fraction and the feature score) yields a 
decision boundary with ~85% precision and ~40% recall 
with ~20% effective remaining sample size of images (i.e., 
~80% reduction in samples to be inspected). To achieve a 
similar recall of ~40% with the chosen fraction only case 
(panel a), it would mean that the effective sample size 
remaining would be at ~40%. Similarly, choosing a ΣCF 
value (e.g., ~0.7) to achieve a similar precision of ~85% will 
yield an effective sample size of ~20%, but comes with a 
cost of low recall of <5%. Our insights from Figures 5 and 6 
indicate that a combination of the chosen fraction and the 
machine-based feature score yields better discernibility in 
the feature space for pre-selecting potentially interesting 
images from a larger dataset.

CONCLUSIONS

Combining citizen science with machine learning 
methodologies to efficiently parse large astronomical 
data for finding anomalous and scientifically interesting 
objects is one of the critical challenges in the era of big-
data astronomy. In this work, we explore some of the 
key questions emerging from the task of operationalizing 
a human-machine combined anomaly detection 
framework. We developed and applied a deep learning–
based anomaly detection framework on a large dataset 
of 1.5 million astronomy images, which yields their learnt 
feature-level representations and an anomaly score metric 
that indicates how unusual a given image is. Using a 
subset of these images (~200,000) which also contained 
interspersed highly anomaly-scored ones (~15,000), we 
successfully ran a citizen science project (GZ:W&W), in 
which volunteers were asked to select images that they 
thought were interesting. By correlating the metrics from 
the GZ:W&W project (chosen fraction; the fraction of 
volunteers selecting an image to be interesting) with the 
anomaly detection based metrics (anomaly score which 
quantifies the unusuality of an image compared to a 
general population), in this case study, we present some 
insights into the relationship(s) between citizen science 
versus machine learning driven anomaly detection, and 
offer general recommendations on road-mapping our 
approach to other (potentially much larger) data domains. 
Below, we outline some of the main points from our work, 
split into high-level insights and summary of quantitative 
findings.

HIGH-LEVEL INSIGHTS FROM OUR CITIZEN 
SCIENCE PROJECT
1.	 When the volunteer choices based on their prior 

participation and experience in working with images 
containing galaxies were given more weight, we 
found that the resultant high-consensus images 
contained more rarer and anomalous features than 
those identified by the general volunteer population. 
Simultaneously, images containing more general 
signatures were preferentially downweighed. As such, 
volunteer experience weighting can enhance the 
finding of rarer and more interesting samples within 
the data.

2.	 Volunteers selected images containing a wide variety 
of characteristics. Images containing relatively more 
common but interesting features (e.g., colliding/
merging galaxies) usually had a higher consensus 
(chosen fractions) compared with those low chosen 
fraction images containing more subtle, rarer, or 
challenging characteristics (e.g., gravitational arcs, 
galaxies with rings). This suggests that the chosen 
fraction consensus jointly traces a spectrum of 
volunteer knowledge/experience and the rarity and 
complexity of information that is being perceived.

3.	 While it is natural to consider discarding samples with 
low consensus for any downstream purposes, in the 
context of finding rare and scientifically interesting 
objects, one should not discount low consensus 
images as all it takes is one person to identify a specific 
characteristic within an image.

4.	 Deep learning–based anomaly detection methods can 
help swiftly identify images that are least likely to be 
unusual. Humans are particularly efficient at filtering 
out unusual and uninteresting objects, a task that 
machine learning is particularly less adept at.

SUMMARY OF MACHINE LEARNING 
CORRELATION FINDINGS
1.	 The experience-weighted chosen fraction has 

a stronger correlation with the feature score, a 
component of the overall anomaly score that is specific 
to the unusualness of low-level features within a 
particular image, than the image score. However, this 
correlation is still quite weak quantitatively.

2.	 Assessing the feature space representations of the 
images, those that have high feature scores occupy a 
notably different distribution (and are more spatially 
localized) when compared to those that have a high 
image score (another component of the anomaly 
score).
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3.	 Images corresponding to higher weighted chosen 
fraction values formed a notable locus in the feature 
space with some correlation with the locality of 
those with high feature scores. Based on a subset of 
images that were tagged by volunteers in the Talk 
boards, images with certain relatively-high incidence 
characteristics (e.g., #merger and #ring) tend to be 
tightly grouped compared with some rarer categories 
(e.g., supernova candidates, gravitational arcs) that 
tend to have subtle characteristics.

4.	 We used logistic regression to define decision boundary 
conditions based on the feature representation of 
images to classify if it would be considered interesting. 
We explored using the weighted chosen fraction and 
feature scores as metrics to define if an image is to be 
treated as interesting or not. We find that the product 
of the feature score and the chosen fraction serves as 
a better metric to distinguish images in the feature 
space, while also ensuring that the selected number of 
images by the decision boundary is small (~20% of a 
total sample).

OPEN QUESTIONS AND MOTIVATIONS 
FOR FUTURE WORK

Herein, we explore the combination of machine learning 
and citizen science-based anomaly detection within 
astronomical imaging data. Throughout, we have made 
several choices, both from a machine learning standpoint 
and for our citizen science project (GZ:W&W). These choices 
naturally open various opportunities for further exploration 
in future works, which we discuss in this section along with 
potential next steps for consideration for the research 
community.

Firstly, for our anomaly detection model, we used one 
specific class of deep learning model (GAN). As elaborated 
in Supplemental File 1: Appendix B, there are several 
anomaly detection methods, including more recent (and 
potentially more robust) architectures, for example, stable 
diffusion (Rombach et al. 2022) transformer-GANs (Zhang 
et al. 2022). Exploring the anomalous samples returned 
by these different approaches is an open avenue for 
exploration and will illuminate if specific methods are more 
adept at identifying specific kinds of anomalies within data.

Even within the purview of our wGAN framework, we 
have made several architectural and hyperparameter 
assumptions. In fact, our Generator and Discriminator 
architectures consist of simplistic convolutional layers. A 
particularly interesting avenue of exploration could involve 
introducing “ResNet” like layers or the novel attention 

mechanisms within the architecture and quantifying 
the enhancements or differences in the feature level 
representations learned by the wGAN. Additionally, we 
made an important choice for the relative weightage 
between the feature and image scores (0.8 and 0.2, 
respectively) when optimizing the wGAN and encoder 
frameworks. Understanding the variation in our models’ 
learning by smoothly varying the feature versus image 
score weighting parameter is an open question.

Another potentially interesting avenue for future 
exploration is to perform an iterative anomaly detection on 
a set of identified anomalies. Such a model would learn to 
re-generalize itself to a focused set of anomalies and will be 
better at embedding their characteristics into a potentially 
more separable feature space. This would yield a clustering 
of anomalies as per their similar characteristics in which 
deviations from individual clusters can be considered 
candidates of interest, and truly anomalous objects would 
stand out as outliers amongst all the clusters. Such an 
approach might prove valuable if one is trying to identify 
“rarest of the rare” objects within datasets.

In our citizen science project, GZ:W&W, we have also 
made a couple of assumptions and analysis choices. 
For example, we retired an image from further visual 
inspection if it had been seen by 10 volunteers. While this 
choice was motivated by various other citizen science 
projects, it is nevertheless interesting to test the outcomes 
and consequences of using a larger retirement limit and to 
gauge whether such a choice provides benefits in detecting 
certain anomalies (at the cost of longer completion 
time). Additionally, while quantifying the consensus 
chosen fraction of the selected images, we applied a 
simplistic weighting scheme that enhanced the choices 
of participants who had substantial participation (>100 
classification) in the GZ project. More sophisticated weights 
can be assigned, for example, a continuous weighting 
scheme that is related to the number of GZ classifications.

Talk tags have played a key role in helping our 
interpretation of the volunteer-identified interesting 
images as well as correlating different categories of 
anomalies within the anomaly detection model learned 
feature space. It is worth noting that only a small fraction 
of the overall volunteer identified images have been 
discussed on Talk and tagged. Future works should aim to 
include a simultaneous free-form tagging task in addition 
to selecting the interesting images to procure a more 
complete set of characteristics. Such a dataset would be 
instrumental towards applying the latest ML methods 
such as large language foundation models (e.g., LLaMA, 
or vision-LLaMA) to unlock new exploration avenues for 
human-machine combined anomaly detection.
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DATA ACCESSIBILITY STATEMENT

Machine learning model development and training were 
performed using Python’s Tensorflow package (Abadi et 
al. 2015). All the figures were generated using Matplotlib 
(Hunter 2007). Tabular data analysis was made using 
Astropy (Robitaille et al. 2013). Computational analysis 
including machine model training and inference was 
done using Minnesota Super Computing Institute (MSI). 
In our work, we analyzed aggregated consensus of 
overall classification export from the Galaxy Zoo: Weird & 
Wonderful project across all participants (per image) and 
their classification/task answers, and any Zooniverse Talk 
participation information. We used the usernames of the 
participants to crossmatch between the Galaxy Zoo project 
and Galaxy Zoo: Weird & Wonderful project. Processed data 
tables including anomaly scores, volunteer unweighted and 
weighted chosen fractions along with talk tags (wherever 
applicable) is available on GitHub along with scripts that are 
able to parse the data produce key figures from this paper 
at https://github.com/AgentM-GEG/galaxy-zoo-weird-and-
wonderful.

SUPPLEMENTAL FILE

The supplemental file for this article can be found as 
follows:

•	 Supplementary File 1. Appendix A – Details of 
imaging data used in this work; Appendix B – Choice of 
anomaly detection framework architecture; Appendix 
C – Selection of experienced Galaxy Zoo (GZ) project 
participants; Appendix D – Calculation of the experience 
weighted chosen fraction; Appendix E – Expert 
verification of volunteer-selected images; Appendix 
F – General roadmap for our methodological steps; and 
Appendix G – Additional Supplemental Visualizations. 
DOI: https://doi.org/10.5334/cstp.740.s1
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