

Resetting Tropospheric OH and CH₄ Lifetime with UV H₂O Absorption

Michael J. Prather¹ and Lei Zhu^{2,3}

1 Earth System Science Department, University of California, Irvine, CA 92697

2 Wadsworth Center, New York State Department of Health, Albany, NY 12237

3 Department of Environmental Health Sciences, University at Albany, Albany, NY 12237

Email: mprather@uci.edu

Abstract

The decay of methyl chloroform, a banned ozone-depleting substance, has provided a clear observational metric of mean tropospheric OH abundance. Almost all current global chemistry models calculate about 15% too much OH, and thus too rapid methane loss. Methane is a short-lived climate forcer, critical to achieving global warming targets, and this error impacts our model projections of climate change. New observations of water vapor absorption in the ultraviolet region (290-350 nm) imply reductions in sunlight with key photolysis rates decreasing by 8-12% in the near-surface tropical atmosphere. Incorporation of this new mechanism in a chemistry-transport model reduces OH and methane loss by only 4%, but combined with other proposed mechanisms, such as tropospheric halogen chemistry (7%), we may be able to resolve this conundrum.

Projecting the efficacy of climate change mitigation efforts involving short-lived climate forcers such as the greenhouse gas methane (CH_4) (1) requires accurate modeling of its atmospheric loss, which is a function of its lifetime, i.e., the total atmospheric burden divided by the loss rate. A long-standing problem with most current global chemistry models (2-3) is that the lifetime of methane (CH_4) with respect to loss by tropospheric OH, which constitutes about 82% of the total loss, is systematically lower than that scaled from the observed OH-driven decay of methyl chloroform (CH_3CCl_3) (4). Here, we identify a missing component in current chemistry models, viz. ultraviolet absorption by water vapor (H_2O) (5), and show that its inclusion in a photochemistry model will reduce OH levels, increasing the CH_4 lifetime, thus partly resolving the discrepancy found in most models (2).

A combination of recent laboratory studies, field measurements, and satellite observations presents a convincing case for significant absorption of radiation by water vapor at ultraviolet wavelengths (5-6). Previously, only negligibly small ultraviolet H₂O absorption was found (7-8). Both sides of that disagreement present plausible cases and the difference remains unresolved. Here, we take the recently measured H₂O cross sections, implement them in a photolysis code, and examine the first-order impacts on tropospheric chemistry.

Water vapor absorbs ultraviolet sunlight (290- to 350-nm) in the troposphere but does not photodissociate, and thus it reduces the overall photochemical activity. This tropospheric ultraviolet window coincides with that where photolysis of ozone (O_3) produces the metastable excited state of atomic oxygen, $O(^1D)$ (R1). Some of this $O(^1D)$ reacts with H_2O (R2) becoming the primary source of atmospheric hydroxyl radicals (OH). These OH radicals are responsible for the photochemical destruction of many pollutants, including CH_4 (R3).

45 Here we adopt the measured ultraviolet spectrum for H_2O absorption from (5) as shown by the
 46 thin black line in Figure 1a. This high-resolution (1-nm) absorption is mapped onto the broader
 47 wavelength bins used in the photolysis calculations of the Cloud-J module (9) and shown as blue
 48 bars. These average H_2O cross sections are weighted by the variations in solar flux across each
 49 bin. Even these 'large' H_2O cross sections are relatively small, only about eight times larger than
 50 the Rayleigh scattering cross section for air, shown as black bars. The cross section for R1,
 51 scaled down by 10^6 , is shown as red bars. R1 occurs only for wavelengths less than 340 nm, i.e.,
 52 the five leftmost bars in the figure, which have mid-point wavelengths of 295, 303, 310, 316, and
 53 333 nm.

54 **Photolysis Results**

55 The photolysis rate for R1, $\text{J}_{\text{O}1\text{D}}$ (s^{-1}), is calculated here using Cloud-J 7.6 (10) updated to version
 56 8.0 to include H_2O absorption in the ultraviolet region (Fig. 1a). Calculations in Fig. 1 are for
 57 overhead sun, clear sky, and a tropical atmosphere, see caption. The contribution to $\text{J}_{\text{O}1\text{D}}$ from
 58 the five ultraviolet wavelength bins are shown in Fig. 1b. The 295-nm bin has the largest cross
 59 section for R1, but 99.5 % of the photons in this bin are absorbed in the stratosphere and so it
 60 contributes little to $\text{J}_{\text{O}1\text{D}}$ (<5%). The 333-nm bin has very low cross sections for R1 and also
 61 contributes less than 5% to $\text{J}_{\text{O}1\text{D}}$. The dominant production of O^1D comes from the 303-, 310-,
 62 and 316-nm bins.

63 The total $\text{J}_{\text{O}1\text{D}}$ tropospheric profile is shown in Fig. 1c with H_2O absorption (blue line) and without
 64 (red line). The decrease in $\text{J}_{\text{O}1\text{D}}$ from previous models (without H_2O) is substantial, 11% near the
 65 surface falling to 5 % at 3 km altitude and 2 % by 10 km. Many other key tropospheric photolysis
 66 rates also decrease at the surface, see Table 1. For example, $\text{J}_{\text{H}_2\text{CO}}$ is driven by ultraviolet
 67 wavelengths, and the two channels decrease by 8-10 % (surface) to 4-5% (3 km) to 2% (10 km).
 68 In contrast, J_{NO_2} with dominant cross sections at blue wavelengths decreases by only 1 %
 69 throughout the troposphere. An obvious atmospheric test of UV H_2O absorption would be
 70 through profiles of measured and modeled actinic fluxes in the UV region as in (11), but absolute
 71 fluxes vary with nearby clouds and are difficult to model at the 10% level.

72 The ultraviolet-visible heating rates calculated in Cloud-J 7.6c consider only O_3 absorption and
 73 not H_2O absorption, and thus these rates are small, $< 0.02 \text{ K day}^{-1}$ throughout most of the
 74 troposphere, see Fig. 1d. With the H_2O ultraviolet absorption adopted here, these rates jump to
 75 0.05 K day^{-1} near the surface but this rate is inconsequential compared to solar heating by clouds
 76 (12, Fig. 3), infrared absorption by H_2O , or other sources of available potential energy (13). In
 77 terms of the overall radiative balance in this case, the atmospheric absorption increases by 1.5 W m^{-2}
 78 (0.1%), reducing surface ocean absorption by 1.25 W m^{-2} and reflected sunlight by 0.25 W m^{-2} .

80 The photolysis code and underlying cross sections for other chemical species are described in (9)
 81 for Cloud-J version 7.3c, in (10) for Cloud-J and Solar-J version 7.6. The new photolysis module
 82 including absorption by H_2O (Cloud-J version 8.0 including its code, figures and tables) is
 83 published in (14).

84 **Chemistry Results**

86 The updated Cloud-J (v8.0) was incorporated into the current UC Irvine chemistry-transport
 87 model (CTM). The UCI CTM, including Cloud-J, has been used for a variety global chemistry
 88 studies (11, 15-16), and in direct comparisons with many global models, the O_3 and OH chemistry
 89 results are consistent with the other top models (16-18). A five-year simulation was made using
 90 the integrated forecast system (OpenIFS, cycle 38r1) meteorological data for years 2000-2004
 91 but with annually repeating emissions for year 2000 from scenario RCP-6.0. The annual

92 chemical budgets averaged over the last four years for O₃, CO, and CH₄ are given in Table 2.
93 We did not activate the extra diagnostics for stratosphere-troposphere exchange of O₃ in these
94 CTM simulations, and so it is derived from mass balance.

95 The budgets in T-moles provide for some interesting comparisons. About 60% of the CO source
96 is from in situ chemical production (64 Tm y⁻¹), about half of which is from CH₄ oxidation (34 Tm y⁻¹)
97 and the rest from short-lived non-methane hydrocarbons. The primary OH production (101 Tm y⁻¹)
98 matches the OH oxidation of CO (99 Tm y⁻¹), and thus the extra OH to oxidize CH₄ and other
99 hydrocarbons must be part of OH amplification involving reactions of OH, HO₂, NO, NO₂, and
100 hydrocarbons.

101 A parallel perturbation simulation was run with the H₂O absorption cross sections zeroed out and
102 the % changes are given in Table 2. Because the H₂O absorption results in 8-12% boundary-
103 layer reductions in photolysis rates for so many species (e.g., H₂CO, HOOH, CH₃OOH,
104 acetaldehyde, acetone, see Table 1), we expect complex changes across the major tropospheric
105 species. The largest perturbation caused by the H₂O absorption is still what we expected from
106 the photolysis-only example above: primary OH production is reduced by 4.4% and the OH-
107 driven loss of CH₄ decreases by 4.1%. This decrease results in a reduced CH₄-source of CO, but
108 the CO sink is also reduced by 3.8%, so that overall CO increases by 2.1%. The OH reduction
109 has a larger impact on CH₄ compared with CO (4.1% vs. 3.8%) because the CH₄ loss is highly
110 temperature dependent, occurring more rapidly in the lowermost tropical troposphere where the
111 H₂O absorption has the largest reduction in $J_{O_1 D}$ (Fig. 1).

112 Tropospheric O₃ increases by 2.0%, and it is hard to explain simply with the budget terms we
113 have available. The obvious explanation is that O₃ loss was reduced by 2-4% because the major
114 terms are O(¹D)+H₂O, O₃+OH, and O₃+HO₂. The first two terms dropped 4% and HO₂ dropped
115 only 1%. Production of O₃ is assigned to the rates of HO₂+NO and other peroxy radicals with
116 NO. The HO₂ mass dropped only 1% while NO and NO₂ were unchanged. Thus, the photolysis
117 changes reduced O₃ loss more than production and the abundance increased.

118 The lower tropical troposphere dominates both the CH₄ budget and the impact of H₂O absorption.
119 The tropospheric loss of CH₄ to reaction with OH is weighted toward the lower troposphere with
120 40% of the total occurring in the 800-1000 hPa range, 84% in the 500-1000 hPa range, and about
121 8% at pressures < 400 hPa. The relative reduction in CH₄ loss from H₂O absorption is about
122 2.5% at pressures < 500 hPa, increasing linearly in pressure to 6.5% at 1000 hPa. Half (50%) of
123 CH₄ loss occurs in the core tropics ($\pm 20^\circ$ latitude), where the impact of H₂O absorption is largest
124 (>5%); and most loss (90%) occurs within $\pm 45^\circ$ latitude, where the H₂O impact drops to about
125 3%. The longitudinal impact of H₂O varies about 4.3% with a standard deviation of 0.6%. Thus,
126 the largest relative impact of UV absorption by H₂O occurs where the absolute loss of CH₄ is
127 greatest.

128 **Discussion**

129 This process – UV absorption by H₂O – can only partially resolve one of the more enduring
130 conundrums in modeling CH₄: use of the OH calculated in current models produces a much more
131 rapid decay of atmospheric CH₃CCl₃ than is observed, 0.18 y⁻¹ ($\pm 1\%$) over 1998-2008 (15, 19).
132 From Table 1 of (2), the mean modeled CH₄ lifetime across 16 global chemistry models is biased
133 15% low (i.e., biased high in OH). Work by (3) examined 10 next-generation models and found
134 their CH₄ lifetime for the 2000 period ranged from 6.6 to 8.5 y, with most having lifetimes below 8
135 y, which also falls well below an observationally based range of 9.1 \pm 0.9 yr (14-15). Reference (3)
136 also identified the tropospheric O₃ abundances and $J_{O_1 D}$ as the primary factors controlling model
137 differences. Unfortunately, we can get only 4% of the 15% OH reduction by including H₂O
138 absorption, and thus must continue to look elsewhere.

139 A number of chemistry models have added tropospheric halogen chemistry (20-23) and found
140 that the ensuing chemical changes caused, typically, an 8% reduction in the OH+CH₄ rate, which
141 was attributed to a 20% reduction in present day tropospheric O₃, e.g., from 30 to 24 DU.
142 Calculations using the NASA Atmospheric Tomography mission (ATom) parcel data (24) show
143 that O₃ controls CH₄ loss with a sensitivity factor of 0.46 over the Atlantic and Pacific Ocean
144 basins, and combining this with a 20% reduction in tropospheric O₃ gives a 9% reduction in
145 OH+CH₄. One challenge for the halogen model is that the major shift in tropospheric O₃ down to
146 24 DU may be incompatible with observations giving values closer to 30 DU (25, Table 1)

147

148 **References & Notes**

149

- 150 1. Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D., et al. (2021) Short-
151 Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution
152 of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on
153 Climate Change [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, P.C.,
154 Berger, S. et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and
155 New York, NY, USA, pp. 817–922, doi:10.1017/9781009157896.008
- 156 2. Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, J.-F., Lin, M., et al., (2013)
157 Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime
158 from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP),
159 *Atmos. Chem. Phys.*, 13, 5277–5298, doi: 10.5194/acp-13-5277-2013
- 160 3. Nicely, J. M., Duncan, B. N., Hanisco, T. F., Wolfe, G. M., Salawitch, R. J., Deushi, M., et al.
161 (2020) A machine learning examination of hydroxyl radical differences among model
162 simulations for CCMI-1, *Atmos. Chem. Phys.*, 20, 1341–1361, <https://doi.org/10.5194/acp-20-1341-2020>
- 164 4. Prather, M. J., Holmes, C. D., & Hsu, J. (2012), Reactive greenhouse gas scenarios:
165 Systematic exploration of uncertainties and the role of atmospheric chemistry. *Geophys.
166 Res. Lett.*, 39 (9), L09803, doi: 10.1029/2012GL051440.
- 167 5. Pei, L., Min, Q., Du, Y., Wang, Z., Yin, B., Yang, K., Disterhoff, P., Pongetti, T., & Zhu, L.
168 (2019), Water vapor near-UV absorption: Laboratory spectrum, field evidence, and
169 atmospheric impacts. *J. Geophys. Res – Atmos.*, 124, 14,310–14,324. doi:
170 10.1029/2019JD030724
- 171 6. Wang, Z.-C., Yin, B., Min, Q., & Zhu, L. (2022). Temperature-dependence of the near-UV
172 absorption of water vapor in the 290-350 nm range (2022), *J. Quant. Spectrosc. Radiat.
173 Transf.* 286, 108204, doi: 10.1016/j.jqsrt.2022.108204
- 174 7. Wilson, E. M., Wenger, J. C., and Venables, D. S. (2016). Upper limits for absorption by water
175 vapor in the near-UV, *Journal of Quantitative Spectroscopy and Radiative Transfer*, 170,
176 194–199, doi: 10.1016/j.jqsrt.2015.11.015
- 177 8. Conway, E. K., Gordon, I. E., Tennyson, J., Polyansky, O. L., Yurchenko, S. N., and Chance,
178 K. (2020), A semi-empirical potential energy surface and line list for H₂¹⁶O extending into
179 the near-ultraviolet, *Atmos. Chem. Phys.*, 20, 10015–10027, <https://doi.org/10.5194/acp-20-10015-2020>
- 181 9. Prather, M. J. (2015), Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c.
182 *Geosci. Model Dev.*, 8, 2587-2595, doi: 10.5194/gmd-8-2587-2015
- 183 10. Prather, M.J. and Hsu, J.C. (2019), A round Earth for climate models. *Proc Natl Acad Sci*, 116
184 (39) 19330-19335; doi: 10.1073/pnas.1908198116
- 185 11. Hall, S. R., K. Ullmann, M.J. Prather, C.M. Flynn, L.T. Murray, A. M. Fiore, et al. (2018) Cloud
186 impacts on photochemistry: a new climatology of photolysis rates from the Atmospheric

187 Tomography mission, *Atmos. Chem. Phys.*, 18, 16809–16828, doi: 10.5194/acp-18-16809-
188 2018.

189 12. Hsu, J.C. & Prather, M. J. (2021), Assessing uncertainties and approximations in solar
190 heating of the climate system. *Journal of Advances in Modeling Earth Systems*, 13,
191 e2020MS002131. <https://doi.org/10.1029/2020MS002131>

192 13. Kato, S., Rose, F. G., Ham, S. H., Rutan, D. A., Radkevich, A., Caldwell, T. E., Sun-Mack, S.,
193 Miller, W.F., & Chen, Y. (2019), Radiative heating rates computed with clouds derived from
194 satellite-based passive and active sensors and their effects on generation of available
195 potential energy. *J. Geophys. Res: Atmospheres*, 124, 1720–1740,
196 doi:10.1029/2018JD028878

197 14. Prather, Michael (2023). An updated cloud-overlap photolysis module for atmospheric
198 chemistry models, UCI Cloud-J v8.0, with near-UV H₂O absorption [Dataset]. Dryad.
199 <https://doi.org/10.7280/D1Q398>

200 15. Prather, M.J. and J. Hsu (2010), Coupling of nitrous oxide and methane by global
201 atmospheric chemistry, *Science*, 330: 952–954.

202 15. Holmes, C.D., M. J. Prather, A.O. Søvde, G. Myhre (2013) Future methane, hydroxyl, and
203 their uncertainties: key climate and emission parameters for future predictions, *Atmos.*
204 *Chem. Phys.*, 13, 285–302, doi:10.5194/acp-13-285-2013

205 16. Prather, M.J., Xin Zhu, Clare M. Flynn, Sarah A. Strode, Jose M. Rodriguez, Stephen D.
206 Steenrod, Junhua Liu, Jean-Francois Lamarque, Arlene M. Fiore, Larry W. Horowitz,
207 Jingqiu Mao, Lee T. Murray, Drew T. Shindell, and Steven C. Wofsy (2017) Global
208 Atmospheric Chemistry – Which Air Matters, *Atmos. Chem. Phys.*, 17(14), 9081–9102, doi:
209 10.5194/acp-17-9081-2017.

210 17. Prather, M.J., Clare M. Flynn, Xin Zhu, Stephen D. Steenrod, Sarah A. Strode, Arlene M.
211 Fiore, Gustavo Correa, Lee T. Murray, and Jean-Francois Lamarque (2018) How well can
212 global chemistry models calculate the reactivity of short-lived greenhouse gases in the
213 remote troposphere, knowing the chemical composition, *Atmos. Meas. Tech.*, 11, 2653–
214 2668, 2018, doi: 10.5194/amt-11-2653-2018.

215 18. Sand, Maria, R. B. Skeie, M. Sandstad, S. Krishnan, G. Myhre, H. Bryant, R. Derwent, D.
216 Hauglustaine, F. Paulot, M. Prather & D. Stevenson (2023) A multi-model assessment of
217 the Global Warming Potential of hydrogen, *Nature Communications: Earth & Environment*,
218 4:203, doi: 10.1038/s43247-023-00857-8.

219 19. Montzka, S. A., Krol, M., Dlugokencky, E., Hall, B., Joeckel, P., and Lelieveld, J. (2011) Small
220 Interannual Variability of Global Atmospheric Hydroxyl, *Science*, 331, 67–69,
221 doi:10.1126/science.1197640

222 20. Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D.,
223 Jacob, D. J., Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A.,
224 Prados-Roman, C., Mahajan, A. S., and Ordóñez, C. (2016) Global impacts of tropospheric
225 halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem, *Atmos. Chem. Phys.*, 16,
226 12239–12271, <https://doi.org/10.5194/acp-16-12239-2016>

227 21. Li, Q., Fernandez, R.P., Hossaini, R. Iglesias-Suarez, F., Cuevas, C.A., Apel, E.C., et al.,
228 (2022) Reactive halogens increase the global methane lifetime and radiative forcing in the
229 21st century, *Nat. Comm.*, 13:2768, pp. 1-11, doi: 10.1038/s41467-022-30456-8

230 22. Saiz-Lopez, A., Fernandez, R.P., Li, Q., Cuevas, C.A., Fu, X., Kinnison, D.E., Tilmes, S.,
231 Mahajan, A.S., Gómez Martín, J.C., Iglesias-Suarez, F., Hossaini, R., Plane, J.M.C.,
232 Myhre, G., & Lamarque, J.-F. (2023) Natural short-lived halogens exert an indirect cooling
233 effect on climate. *Nature* 618, 967–973 (2023). doi: 10.1038/s41586-023-06119-z

234 23. Caram, C., Szopa, S., Cozic, A., Bekki, S., Cuevas, C. A., and Saiz-Lopez, A. (2023)
 235 Sensitivity of tropospheric ozone to halogen chemistry in the chemistry–climate model
 236 LMDZ-INCA vNMHC, *Geosci. Model Dev.*, 16, 4041–4062, <https://doi.org/10.5194/gmd-16-4041-2023>.

238 24. Prather, M. J., Guo, Hao and Zhu, Xin (2023) Deconstruction of tropospheric chemical
 239 reactivity using aircraft measurements: the ATom data, *Earth Syst. Sci. Data*, 15, 3299–
 240 3349, doi: 10.5194/essd-15-3299-2023

241 25. Ziemke, J. R., Chandra, S., Duncan, B. N., Froidevaux, L., Bhartia, P. K., Levelt, P. F., &
 242 Waters, J. W. (2006). Tropospheric ozone determined from Aura OMI and MLS: Evaluation
 243 of measurements and comparison with the global modeling initiative's chemical transport
 244 model. *Journal of Geophysical Research*, 111(D19), D19303, doi: 10.1029/2006JD007089

245 26. Maurellis, A. N., Lang, R., van der Zande, W. J., Aben, I., & Ubachs, W. (2000), Precipitable
 246 water Column Retrieval from GOME Data. *Geophys. Res. Lett.*, 27(6), 903–906, doi:
 247 10.1029/1999GL010897

248
 249 **Acknowledgments**
 250

251 **Funding:** This research was supported by grants NSF AGS-1608551(LZ) and AGS-2135749
 252 (MJP); NASA 80NSSC21K1454 (MJP), and NOAA NA22OAR4310476 (MJP).

253
 254 **Author Contributions:** MJP & LZ designed the work, MJP drafted the manuscript, and both co-
 255 edited it. MJP rewrote the photolysis code and performed the calculations presented here.

256
 257 **Competing interests:** The authors declare they have no competing interests.
 258
 259

Table 1. Reduction in key tropospheric photolysis rates (J-values) at the surface when UV absorption by H₂O (5) is included.

J-value	reduction @ surface	notes
O3(1D)	11%	O ₃ photolysis yielding O('D)
H ₂ COa	10%	H ₂ CO channel-a yields H + HCO;
H ₂ COb	8%	channel-b yields H ₂ + CO.
H ₂ O ₂	9%	
CH ₃ OOH	8%	
N ₂ O ₅	8%	
HNO ₃	11%	
OCS	9%	
PAN	10%	
CH ₃ NO ₃	11%	
ActAld	12%	Acetaldehyde
MeVK	8%	Methylvinyl ketone
MeAcr	5%	Methacrolein
GlyAld	11%	Glycol aldehyde
MEKeto	11%	Methylethyl ketone
PrAld	11%	Propionaldehyde, C ₂ H ₅ CHO-> C ₂ H ₅ +HCO
Glyxlb	9%	Glyoxal, (CHO) ₂ , channels-b and -c are equally affected;
Glyxlc	9%	channel-a (HCO+HCO, 61% of total) is much less affected (3%).

Acet-a	11%	Acetone, both channel-a ($\text{CH}_3\text{CO}+\text{CH}_3$) and channel-b
Acet-b	12%	($\text{CH}_3+\text{CH}_3+\text{CO}$) are affected almost equally.
Table notes: Calculated for tropical atmosphere, overhead sun; lower sun angles increase the % reduction. For all J-values, reduction % drops by $\frac{1}{2}$ at ~ 3 km altitude, and by $\frac{1}{4}$ at ~ 7 km. Long-lived (stratospheric) trace gases not affected. Halogen species are not included. Other J-values are reduced by <5%.		

260

Table 2. Reference case tropospheric chemical budgets (T-mole, T-mole y^{-1} , y) and change (%)				
	tropospheric $\text{O}_3 + \text{O}$	global CO	global CH_4	OH via $\text{O}(\text{^1D})+\text{H}_2\text{O}$
mass (Tm)	7.2	11.9	306.4	
emission (Tm y^{-1})	none	+45.54	l.b.c.	
chemical production (Tm y^{-1})	+507.34	+64.05	none	100.6
chemical loss (Tm y^{-1})	-501.64	-99.42	-33.73	
surface deposition (Tm y^{-1})	-13.24	-4.77	-1.88	
stratosphere-troposphere flux (Tm y^{-1})	+7.54	-5.38	-1.99	
net sum (Tm y^{-1})	0.00	0.02	37.60	
lifetime vs. OH (y)		0.120	9.08	
Relative change (%) in magnitude caused by UV H_2O absorption.				
mass	+2.05%	+2.09%	+0.02%	
chemical production	+0.90%	-2.48%	none	-4.42%
chemical loss	+0.85%	-1.77%	-4.09%	
Chemical production and loss refer to tropospheric chemistry only; stratospheric chemistry is counted as stratosphere-troposphere flux (units = T-moles per year). Results are the average of the last 4 years (2001-2004) of a UCI CTM simulation using constant year 2000 emissions from RCP6.0 scenario. The terms are taken from the budget tendencies except for the O_3 s-t flux, which is derived from mass balance. The O_3 production and loss terms assume that ground state atomic oxygen $\text{O}(\text{^3P})$ and O_3 are equivalent and thus rates like $\text{O}+\text{O}_2+\text{M} \rightarrow \text{O}_3$ are not included, but the rate $\text{NO}_2+\text{hv} \rightarrow \text{NO}+\text{O}$ counts as the dominant O_3+O production (>99%) in these budgets. The rates $\text{O}(\text{^1D})+\text{H}_2\text{O}$ (50 Tm y^{-1}) and $\text{O}(\text{^1D})+\text{CH}_4$ (0.02 Tm y^{-1}) count as O_3+O loss, while O_2+hv counts as production of two O_3+O (0.6 Tm y^{-1}). CH_4 and CO chemical loss in these simulations is 99.9% due to tropospheric OH. Changes in radicals other than OH were smaller: NO and NO_2 tropospheric mass changed by <0.1%; HO_2 decreased by 0.9%. The lifetime versus OH is a simple burden:loss ratio, no chemical feedbacks are included.				

261

Figure 1. Ultraviolet (UV) absorption by H_2O and its impact on photolysis and heating rates. (a) UV cross sections for H_2O absorption from laboratory measurements (5) (thin black line), H_2O absorption as used by the wavelength bins in the Cloud-J (thick blue bars), Rayleigh scattering by air (thick black bars), and O_3 absorption times quantum yield producing of $\text{O}(\text{^1D})$ (scaled by 10^{-6} , red bars). (b) Altitude profiles of J_{01D} (s^{-1}) from each of the 5 UV wavelength bins in Cloud-J, centered on 295, 303, 310, 316, and 333 nm. Calculations are made with a tropical, cloud-free, overhead-sun, oceanic atmosphere, and total ozone column of 274 DU. Plotted are tropospheric values from surface (0 km, 1013 hPa, 299.5 K) to tropopause (16 km 110 hPa, 191 K). The H_2O profile has a scale height of about 2.2 km and a column density of 14×10^{22} molecules cm^{-2} , falling within the range of tropical atmospheres, $10-18 \times 10^{22}$ molecules cm^{-2} (26). (c) Altitude profiles of total J_{01D} (s^{-1}) calculated with (blue) and without (red) H_2O UV

273 absorption. **(d)** Altitude profiles of heating rates (K d^{-1}) calculated using only UV plus visible O_3
274 absorption (red) and then including UV H_2O absorption (blue).
275