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Schizophrenia is a severe brain disorder with serious symptoms including delusions,
disorganized speech, and hallucinations that can have a long-term detrimental impact
on different aspects of a patient’s life. It is still unclear what the main cause of
schizophrenia is, but a combination of altered brain connectivity and structure may
play a role. Neuroimaging data has been useful in characterizing schizophrenia,
but there has been very little work focused on voxel-wise changes in multiple
brain networks over time, despite evidence that functional networks exhibit complex
spatiotemporal changes over time within individual subjects. Recent studies have
primarily focused on static (average) features of functional data or on temporal
variations between fixed networks; however, such approaches are not able to capture
multiple overlapping networks which change at the voxel level. In this work, we
employ a deep residual convolutional neural network (CNN) model to extract 53
different spatiotemporal networks each of which captures dynamism within various
domains including subcortical, cerebellar, visual, sensori-motor, auditory, cognitive
control, and default mode. We apply this approach to study spatiotemporal brain
dynamism at the voxel level within multiple functional networks extracted from
a large functional magnetic resonance imaging (fMRI) dataset of individuals with
schizophrenia (N = 708) and controls (N = 510). Our analysis reveals widespread group
level differences across multiple networks and spatiotemporal features including
voxel-wise variability, magnitude, and temporal functional network connectivity in
widespread regions expected to be impacted by the disorder. We compare with
typical average spatial amplitude and show highly structured and neuroanatomically
relevant results are missed if one does not consider the voxel-wise spatial dynamics.
Importantly, our approach can summarize static, temporal dynamic, spatial dynamic,
and spatiotemporal dynamics features, thus proving a powerful approach to unify
and compare these various perspectives. In sum, we show the proposed approach
highlights the importance of accounting for both temporal and spatial dynamism
in whole brain neuroimaging data generally, shows a high-level of sensitivity to
schizophrenia highlighting global but spatially unique dynamics showing group
differences, and may be especially important in studies focused on the development
of brain-based biomarkers.

deep residual model, convolutional neural network, brain parcellation, spatiotemporal
dynamics, schizophrenia
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1. Introduction

Brain disorders affect many people worldwide every year.
Schizophrenia is a chronic neuropsychiatric disorder, affecting over
20 million people worldwide. Schizophrenia often leads to cognitive
and functional impairments and symptoms which typically emerge
in late adolescence to early adulthood. Moreover, it shows a relapsing
disease course in roughly 70% of the cases, so an early and rigorous
diagnostic is critical to have a better treatment and get a reasonable
clinical outcome (Keepers et al., 2020; Gutman et al., 2022). We still
do not have understanding of the cause of schizophrenia, nor do
we fully understand its impact on the brain and as a brain disorder.
There is great interest in studying the underlying neural mechanism
of psychosis. There have been numerous neuroimaging studies of
schizophrenia (Sakoglu et al., 2010; Pettersson-Yeo et al., 2011; Naim-
Feil et al.,, 2018; Kottaram et al., 2019) in which the identified
variations are highly complicated and distributed across many brain
regions. However, existing, neuroimaging models of functional brain
networks typically make strong assumptions about the associated
variations in brain function. For example, most studies still do not
allow for the possibility of time-varying changes in brain networks
at the voxel level, i.e., spatial dynamics. Consequently, there are also
almost no studies on the role of spatiotemporal brain dynamism
effects in brain disorder as most are focused on static summaries
or time-resolved variation in coupling among fixed nodes (Miller
et al., 2016). Generally, spatial brain dynamics refers to any changes
in size, shape, or translation of active region over time, temporal
dynamics refers to transient changes in coupling fixed brain regions
over time, and spatiotemporal dynamics refers to transient changes in
both the node/region and in its coupling to other nodes/regions (Iraji
et al., 2020). Prior work focused on temporal dynamics has shown
hypoconnectivity or dysconnectivity in transient coupling between
functionally correlated sources for individuals with schizophrenia
including transient changes in thalamic hyperconnectivity as well
as hypoconnectivity between sensory networks and the putamen
(Damaraju et al., 2014). It has been shown that models that capture
dynamics can improve sensitivity. For example, Rashid et al. (2016)
showed incorporation of temporal dynamics improved classification
accuracy for a three-way prediction of controls vs. schizophrenia
vs. bipolar disorder. Other studies of temporal brain dynamism
yielded promising results including 3 different brain networks
exhibiting antagonism with severity of the illness. Despite the fact
that schizophrenia is thought to involve complex morphological
and functional dysconnectivity, there has been little work exploring
potential spatiotemporal biomarkers that can distinguish patients
from controls. One approach by Kottaram et al. (2018) addressed
the issue by utilizing a relatively constrained spatiotemporal model
that achieved higher accuracy in comparison with classical methods.
In this work, support vector machine classifiers were trained on
functional connectivity dynamics and predicted patients vs. controls
with an accuracy of more than 90%. They also showed that
constraining the model to ignore spatial or temporal dynamics
yielded lower performance, with static functional connectivity
having the lowest performing. Extensive research on voxel-wise
spatiotemporal brain dynamism in schizophrenia is important to
more fully characterize the underlying brain changes linked to
schizophrenia. There are to date only a few studies that have
begun to explore this. For example, prior work has evaluated the
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relevance of interactions between spatially distributed patterns or
temporally synchronized brain networks described as spatiotemporal
brain dynamics (Ma et al., 2014; Iraji et al., 2022). Another study
by Miller and Pearlson (2019) on saturated transient supra-network
sources called polarization, showed remarkable differences in special
patterns in time-resolved network connectivity such that high
polarized sources are highly correlated with connection stability
between auditory, sensory, motor, and visual networks. Other studies
have begun to explore the relationship of spatial dynamics within
a hierarchy of time-varying network components with different
granularity levels where higher levels show more dynamism vs. lower
levels that illustrate more homogeneity (Iraji et al., 2019a). Moreover,
a study by Iraji et al. (2019b), characterized the spatial chronnectome
and highlighted cases where inter-network integration was changing
over time, providing an important motivation to continue to extend
such approaches for biomarker detection.

It is especially important to develop flexible approaches based
on spatiotemporal brain dynamism to move toward a reliable
biomarker for schizophrenia, but working on spatiotemporal
dynamics is computationally intensive especially while utilizing deep
learning models either in training or inference phase, but recent
enhancements in computational infrastructures and algorithms like
GPUs/TPUs and distributed systems (Li et al., 2020) have made it
possible to use deep learning techniques on fMRI data and study
spatiotemporal brain dynamics. In this work we address issue by
studying group differences using a novel framework with deep
residual convolutional neural network models to estimate spatially
flexible networks in 5D including space, time, and network. We apply
this approach to a large study of schizophrenia patients and controls
in order to evaluate the degree to which the 5D networks captured
complex group differences.

2. Methods and materials

We conducted our study by incorporating a framework called
neuromark which leverages a fully automated spatially constrained
ICA approach to estimate subject specific spatial maps and
timecourses. In this work we used the neuromark fMRI 1.0
template, consisting of 53 replicable brain networks to initialize a
deep learning model which encodes spatiotemporal brain dynamism
within an fMRI dataset to generate 4D voxel-wise dynamic brain
networks each of the 53 networks, which are grouped into 7
domains including sensorimotor (SM), default mode (DM), auditory
(AU), cognitive control (CC), visual (VI), subcortical (SC), and
cerebellar (CB) as is shown in Figure 1. This produces a 5D dataset
including 53 4D brain networks, for each subject. Following this, we
utilized different statistical metrics to summarize the network and
to analyze group differences which are thoroughly discussed in the
following sections.

2.1. Demographic and image acquisition

We investigated potential differences between schizophrenia vs.
control groups by using 1,218 resting-state functional magnetic

resonance (fMRI) images from different existing datasets
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53 brain maps

FIGURE 1

The diagram shows data flow in our framework by feeding an fMRI
input into 53 different models each of which belongs to a specific
brain domain like visual, cerebellar, auditory, sensory motor, default
mode, cognitive control, subcortical leads to generating
spatiotemporal maps (4D maps) for each of brain networks

including 510 control and 708 schizophrenic subjects collected
from two studies.

The first study utilized data collected at the MPRC (Maryland
Psychiatric Research Center) project which was gathered by
University of Maryland across three sites using 3-Tesla Siemens
Allegra scanners with voxel size of 3.44 x 3.44 x 4 mm, field of view
220 x 220 mm, TR = 2,000 ms, TE = 27 ms, and also 150 volumes; 3-
Tesla Siemens Tim Trio scanner with voxel spacing size of 1.72 x 1.72
X 4 mm, field of view 220 x 220 mm, TR = 2,000 ms, TE = 30 ms,
and 444 volumes; and a 3-Tesla Siemens Trio scanner with voxel
spacing size of 3.44 x 3.44 x 4 mm, field of view 220 x 220 mm, TR
= 2,210 ms, TE = 30 ms, and also 140 volumes. Also, similar subject
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TABLE 1 Demographic information of data.

Age (years)

Project Diagnosis‘ Sex ‘Sample#

Study 1 CNT M 100 38.841 £ 12.0-77.0
14.21
F 154 41.0 + 10.0-79.0
16.31
SCZ M 111 35.09 £ 13.0-63.0
12.93
F 52 43.05 + 13.0-63.0
13.64
Study 2 CNT M 133 28.85 & 18.16—
7.82 45.75
F 123 28.40 £ 17.66—
7.82 45.33
SCZ M 297 28.03 & 16.33-
7.54 46.75
F 248 30.28 & 16.83—-
7.66 54.0

inclusion criteria such as head motion <3° and spatial normalization,
were applied to all participants (Du et al., 2020; Iraji et al., 2022). The
second study was conducted on data collected on a multi-site study
using 3T MRI scanners. During the resting fMRI acquisition, subjects
were asked to relax and stay awake during the scan. Images were
subjected to a harmonized preprocessing pipeline after excluding
subjects with head motion >3 mm in %, y, and z or 3° in pitch,
roll, or yaw. All participants signed an informed consent form based
upon guidelines of the Internal Review Boards of corresponding
institutions and expert psychiatrists diagnosed the schizophrenia
patients. The demographic information of the collected data is shown
in Table 1.

2.2. Data preprocessing

Data preprocessing plays a crucial role in neuroimaging analysis
and can significantly impact the interpretation of result. In this
work, standard preprocessing steps were applied to all resting
state fMRI data utilizing statistical parametric mapping toolbox
(Penny et al., 2011) including removal of the first 5 timepoints for
magnetization equilibrium, head motion correction, and slice timing
correction. Moreover, data were spatially normalized to the Montreal
Neurological Institute (MNI) Echo-planar imaging (EPI) template,
resampled to 3 x 3 x 3mm, and smoothed by a 6 mm Gaussian
kernel (FWHM = 6 mm).

2.3. Model structure

Spatiotemporal brain dynamism forms the backbone of our
group comparison study, characterized by a 5D set of brain networks
extracted from fMRI data. We incorporated a brain parcellation
framework (Kazemivash, 2020, 2022) including 53 pre-trained
models each of which produces a score map (probabilistic map) for
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FIGURE 2

Schematic diagram of residual parcellation model with U-Net style structure including encoding and decoding blocks that contain combination of layers
such as 3D convolution, max pooling, batch normalization, drop out, and convolution transposed. Black arrows show skip connections and data flow in

and outside of each block.
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- Drop out

a specific brain network, varying over space, time and across subjects
and consequently is able to encode spatiotemporal brain dynamics.
Each of the models is a residual U-Net style regressor containing
36 layers such as 3D convolution, transposed 3D convolution, max
pooling, batch normalization, and dropout layers grouped into
encoding and decoding blocks and was trained and evaluated using
1,470 samples (volumes) from a subset of 3 preprocessed fMRI images
in the UK Biobank dataset as the input and relevant extracted ICA
maps as priors due to supervised training approach. Furthermore,
mean squared error (MSE) as the loss function, Adam optimizer
with adaptive learning rate of 0.00001 and step size of 5 were
utilized to train models in 200 epochs along with a volume-based
data feeding policy and all volumes were normalized using min-
max normalization method to get a faster convergence in training
process. An early stopping method is also applied to have a better
generalization and prevent the overfitting issue. We also fine-tuned
the pre-trained model using 49,000 samples (volumes) from a subset
of 100 preprocessed fMRI data in same dataset, and results were
similar to that from the initial model.

The structure of the model was configured based on two main
residual encoding and decoding blocks, wrapping different layers.
In the proposed configuration, all encoding blocks have identical
structure inside the block but different out-channel sizes between
blocks. First encoding block has 3 volumetric convolution layers
with same out-channel size between layers followed by a batch
normalization layer after each of them. There is also a 3D max
pooling layer with stride of 1 and kernel size of 3 after each encoding
block and eventually a drop out layer with ratio of 0.5 as the last
component of encoder segment. Besides, there are 3 decoding blocks
in decoder segments and each of them contains a couple of 3D
convolution transposed layer followed by a batch normalization layer.
Schematic diagram of the model structure and layer details are given
in Figure 2, Table 2.

Frontiers in Neuroimaging

TABLE 2 Model architecture.

Layer (type) Output shape Param #  Tr.Param#
Conv3d-1 [5,64,51,61,50] 1,792 1,792
Sigmoid-2 [5, 64, 51, 61, 50] 0 0
ResEncBlocks-3 [5,32,47, 57, 46] 110,880 110,880
ResEncBlocks-4 [5, 16, 43, 53, 42] 27,792 27,792
ResEncBlocks-5 [5, 8,39, 49, 38] 6,984 6,984
Dropout3d-6 [5, 8, 39, 49, 38] 0 0
ResDecBlocks-7 [5, 16, 43, 53, 42] 10,464 10,464
ResDecBlocks-8 [5,32,47,57, 46] 41,664 41,664
Dropout3d-9 [5,32,47,57, 46] 0 0
ResDecBlocks-10 [5, 64,51, 61, 50] 166,272 166,272
ConvTranspose3d-11 [5,1, 53, 63, 52] 1,729 1,729
Sigmoid-12 [5,1,53,63,52] 0 0

Total params: 367,577

Trainable params: 367,577

Non-trainable params: 0

2.4. Statistics and evaluation metrics

In this work we evaluate group differences between patient
and control data considering multiple fully fluid 4D networks.
Consequently, it is crucial to have solid and reliable metrics for
interpreting brain dynamism differences between groups of subjects
in both spatial and temporal aspects. More specifically, we study
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differences in spatial maps between control vs. schizophrenia subjects
by generating 4D maps for each of networks.

Furthermore, we analyze spatial variability over time by
computing spatial deviation over time for each of control and
schizophrenia groups on multiple summary measures. To do
this, we calculate summation of absolute consecutive timepoints
differences, and then averaging over subjects as is given in the
following equations:

i YteT Wt o YieN J)L (1)
K=o N
i -, TieN @}
~ k
O =ZteT—1 lopp1—0t], O =—— (2)

N

Here, a),i is the output of the model for brain network k and subject
i with same shape as the input fMRI data (4D tensor), T denotes
number of timepoints in w. Also, @ shows voxel-wise average over
time and, @ denotes sum (Zf absoluge differences between consecutive
timepoints. Eventually, @ and @' refer to averaged values over
subjects and both functions result in a 3D tensor for each one due
to voxel-wise operations. Moreover, we use a voxel-wise T-test for
comparing our maps to identify regions showing group differences
between controls vs. patients using the following equation:

- =
()

t'— (3)
)
,c2 sz
C S
n; n;

Where ~ shows average value, t; refers to ¢-Test value of a specific
—
voxel, vj is a vector containing different values of a specific voxel

in w}( or w;'(, and also o'jcz is the variance of relevant vector for
all controls. Also, nj? denotes number of control subjects. We have

same definition for ;]5?, (7]»52 and 7] in patients with schizophrenia and
obtain a 3D tensor after computing ¢ for all voxels.

We can also compute measures that capture temporal brain
dynamism by evaluating the temporal coupling among networks
using static functional network connectivity (sFNC) or dynamic
version of that (dFNC) between each pair of spatiotemporal maps,
ordered to show functional interactions across different brain
networks. To do this, we compute the Pearson correlation between
each pair of spatiotemporal maps using the whole length scan to
get static functional network connectivity (sFNC) which eventually
forms a matrix with size of k x k (number of all maps) for each subject
by calculating sFNC for all pairs (Allen et al., 2014).

cov (a7 . %)

Pra=—"T= = P4<S (4)
o (@p) o (q)

Here, S is a set of all extracted brain networks, a_); and a_)z are

generated 4D maps for network p and g which are flattened into

vectors and contain all brain voxels at all timepoints.

Recent studies emphasize on dynamic nature of functional
connectivity in BOLD fMRI data in both animals and humans
(Chang, 2010; Sakoglu et al., 2010; Hutchison et al., 2013). In line
with this, we can compute dynamic functional network connectivity
(dENC) which highlights FNC variation over time, by applying same
procedure as sFNC on a subset of timepoints with a constant window
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size that has overlap with the previous subset with ratio of o to
estimate multiple FNC matrices for an individual. We can then
use clustering to identify transient recurring patterns of functional
connectivity, called functional states, and summarize these in various
ways including the occupancy ratio (OR) which provides the time
percentage of each state occurring during a scan (Iraji et al., 2021).

3. Experimental results

We incorporated our BPARC framework with 53 pre-trained
models to extract individual 4D spatiotemporal brain maps each of
which belonging to one of sensory motor (SM), default mode (DMN),
auditory (AU), cognitive control (CC), visual (VI), subcortical (SC),
and cerebellar (CB) domains for all 1,218 subjects. Then, we studied
group level differences between control and schizophrenia subjects
regarding to averaged spatial maps, averaged spatial dynamics,
and eventually static and dynamic functional network connectivity
(FNCQ). Figure 3 shows generated representations for a sensori-motor
network (SM3) for 4 random subjects.

3.1. Group differences in spatial maps

In the proposed study, we inspect group level dissimilarities
in spatial maps between healthy-control and patients with
schizophrenia by averaging maps over time and subjects, then
computing 2-sample ¢-tests to capture group differences as shown
in Figure 3 for a sample subset of networks. The resulting maps
depict plausible representation as we can see homogeneous parcels—
connectivity in relevant brain regions for all averaged spatial maps as
shown in Figure 4.

Moreover, we can see most networks show significant differences
between the patients and controls, indicating widespread differences
in brain connectivity between the two groups. For example, we
see higher amplitude in voxels within sensori-motor-3 and visual-
2 networks in schizophrenia patients. We also see other networks
which show higher amplitude for the control group, for example
in default mode network-3. Two-sample t values computed by
applying 2 sample T-test highlight group differences across the
various networks. In order to have a deeper insight into spatial maps
in both groups, we carried out a statistical analysis on distribution
of peak voxel within region of interest (ROI). Hence, we located 2
peak voxels in positive and negative segments of difference map and
gathered values of those voxels in all subjects and drew a violin plot
to see how distribution of those coefficients vary regarding median,
min, max, and interquartile range (IQR) as shown in Figure 5.

Furthermore, we inspected spatial dynamics for both control and
schizophrenia groups. One summary measure for evaluating spatial
dynamics is group level spatial deviation over time. Precisely, it can
be defined as summation of absolute differences between consecutive
timepoints, averaged over subjects and shows voxel-level activity
patterns over time. Results show interesting information and patterns
that is not captured by the overall mean activity (not visible in
averaged maps) as is shown in Figure 6 for a subset of brain networks.
Interestingly, our observation illustrates functional connectivity near
the boundaries of the active region in the cerebellar-2 network which
is not visible in averaged maps or sensori-motor3 network in which
we can see a transient linking to the cerebellum.
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FIGURE 3

Generated maps for a sensori-motor (SM3) network for a random subset of subjects including control (2 left) and schizophrenia (2 right) that vary over

FIGURE 4

auditory (AU2), and subcortical (SC5) networks. Furthermore, all brain maps are masked to focus on region of interest (ROI).
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A subset of group level spatial maps averaged over time and subject for each control and schizophrenia patient along with subtracted maps and 2 sample
T-tests to illustrate group level dissimilarities in sensori-motor (SM3), cerebellar (CB2), visual (VI2), cognitive control (CC1), default mode network (DMN3),

FIGURE 5

cognitive control (CC1) networks.

Violin plot shows distribution of peak voxels in positive and negative segments for all subjects in default mode network (DMN3), cerebellar (CB2),

Frontiers in Neuroimaging 06

frontiersin.org


https://doi.org/10.3389/fnimg.2023.1097523
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org

Kazemivash et al.

10.3389/fnimg.2023.1097523

FIGURE 6

highlight functional changes which are not visible in the averaged maps.
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visual (VI2), cognitive control (CC1), default mode network (DMN3), auditory (AU2), and subcortical (SC5) networks. All brain maps are thresholded to

N e

3.2. Group differences in FNC

We also summarized the functional behavior of the 4D brain
networks for both groups of healthy-control and schizophrenia via
static functional network connectivity (static-FNC) which is Pearson
correlation between all voxels in all timepoints for all 53 networks.
We also show 2-sample t-test on the FNCs (thresholded at p<0.05
corrected for multiple comparisons via the false discovery rate) to
highlight group level differences as is shown in Figure 7.

In addition to static-FNC, we characterized the group level
temporal coupling and dynamics by comparing the occupancy ratio
in dynamic functional network connectivity between schizophrenia
and healthy-control groups. To do this, we generated dynamic-FNCs
by using windows size of 30 and overlapping ratio of 10 to generate
various number of windows for each of subjects. Next, we applied
k-means algorithm to cluster all generated windows into a set of
separate clusters such that distance of each window within a cluster
to the cluster centroid is minimized and the optimal number of
clusters was estimated by elbow criterion. This procedure resulted in
recognizing 4 initial states which are verified by centroids and used
to predict label of all dynamic FNC windows for each of subjects.
Finally, we computed the OR by counting frequency of states for each
of subjects as is shown in Figure 8 with all initial states.

Frontiersin Neuroimaging

Our exploration of temporal brain dynamics illustrates high
correlation between networks belonging to same domain while
showing anti-correlation/weak correlation to others for both groups.
We also see differences in the OR and behaviors of the dFNC maps.
For example, we see different patterns in the centroids (4 heat maps)
computed by k-means algorithm and control subjects spend more
time in state-2 whereas schizophrenia patients spend more time in
the other states.

3.3. Time complexity

In the proposed approach, we studied characterization of
5D spatiotemporal brain dynamism in schizophrenia by utilizing
representations of input fMRI data, generated by a framework with
53 models. In neuroimaging studies, the time and computational
complexity of brain parcellation methods are often crucial especially
when working with multiple models. Therefore, we evaluated time
complexity of the whole framework for generating 5D maps for each
of the subjects along with comparison of each model runtime. In our
experiment, we ran the framework on 4 Nvidia Tesla V100 GPUs
with 32 GB of dedicated memory, but we just utilized and reported
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thresholded 2 sample T-test for HC-SZ (bottom).

Each of FNCs illustrates correlation between all 53 components grouped into 7 sub-domains including default mode network (DMN), visual (V1), auditory
(AU), cognitive control (CC), subcortical (SC), sensori-motor (SM), and cerebellar (CB) for controls (top left), schizophrenia patients (top right), and
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one of GPUs for complexity analysis to have fair comparison and
track runtime of the whole framework for each of subjects and also
7 models each of which belonging to a domain that are shown in
Table 3. Clearly, runtime of the whole framework is a bit higher than
summation of each model runtime which is overhead of loading and
switching between 53 pretrained models.

3.4. Ablation study of models

In this section, an ablation analysis of model structure was
conducted to better understand how different configurations affect
model performance. Despite the hyperparameter optimization step
which was applied during the training phase, we changed the model
architecture using 4 different scenarios by substituting instance norm
for batch norm and omitting or adding a random convolution layer
(Subsequently deconvolution layer). Moreover, we used same test set
and preprocessing steps for all configuration and mean squared error
as original loss function in training procedure is reported for sensori-
motor (SM3) model in Table 4 and highlights better performance of
the original configuration in comparison with other scenarios.
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4. Discussion

In this study, we conducted a group level analysis for
characterizing 5D spatiotemporal networks in schizophrenia.
We utilized the BPARC framework including 53 residual
models to generate 4D (probabilistic maps)
for all subjects each of which is a representation of the

score  maps

relevant brain network. Our analysis demonstrates significant
differences  between network
representations in terms of space, time, and spatiotemporal

brain dynamics.

control  vs.  schizophrenia

4.1. Space, connectivity, and Spatiotemporal
dynamism in schizophrenia

The proposed study, sought to extend findings supporting the
validation of promising 4D representations generated by brain
parcellation framework. We addressed the aforementioned goal by
inspecting generated representation for schizophrenic patients in
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State 1

FIGURE 8

State 2

Each of states (Heatmaps) shows centroids, computed by k-means algorithm applied on all dFNC windows and the bar chart highlights temporal
variation using occupancy ratio in health control vs. schizophrenia subjects in 4 different states.

Occupancy Ratio

TABLE 3 Time complexity of the framework.

SM3
Mean =+ sd

Framework

Mean =+ sd

CB2 VI2
Mean +sd Mean =+ sd

CC1
Mean =+ sd

DMN3 AU2
Mean +sd Mean =+ sd

SC5
Mean =+ sd

Runtime (s) 1283.66+4.83 14.24£0.3 14.134£0.47

14.23£0.41

13.93£0.68 14.2440.17 14.19£0.98 14.2240.38

terms of spatial features, functional connectivity, and spatiotemporal
brain dynamism.

Our observation shows significant differences in averaged spatial
maps in which group level differences are lower in auditory and
subcortical networks while sensori-motor, cerebellum, and default
mode domains show the most differences with overall higher values
in the patients. Moreover, it is also clear in Figure 5 that we have
higher median for peak voxels in positive segments the control group
vs. schizophrenia. Conversely, we find a higher median in negative
segments for the schizophrenia group, suggesting overall higher
activity in the controls. The PDF (probability density function) of the
coefficients for both groups shows positive kurtosis in the negative
segment of the controls for the cognitive control-1 network. Our
results are in line with previous studies in schizophrenia reporting
higher amplitude for default mode network in controls (Mingoia
et al., 2012) or significant voxel-wise differences (higher t-value)
for schizophrenic patients in subcortical and default mode network
(Salman et al., 2019). Moreover, we observed different patterns
of spatial brain dynamism between controls vs. schizophrenia
subjects. Our result illustrates a lower level of voxel-wise variation
over time for thalamus, hypothalamus, cerebellum, precuneus,
anterior cingulate cortex, paracentral lobule, and frontal gyrus in
schizophrenic patients. In another word, we can detect a partially
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semi-stationary status of spatial dynamics in cerebellum, default
mode, subcortical, and cognitive control domains for schizophrenic
patients in comparison with control subjects.

On the other side, plenty of research have reported an
aberrant pattern in functional connectivity being associated
with 2011;
et al,, 2014). According to our functional network connectivity

schizophrenia (Pettersson-Yeo et al, Damaraju
measurements, we can see hyperconnectivity of different brain
domains in schizophrenic patients which are consistent with
recent findings like visual domain and subcortical domain (Iraji
et al, 2022), default mode with sensori-motor and subcortical
domains (Camchong et al., 2011). Previous studies also reported
hypoconnectivity of thalamus with frontal lobe (Anticevic
et al., 2014; Damaraju et al, 2014). Thus, we detected thalamic
hypoconnectivity with inferior frontal gyrus, superior frontal
gyrus, and hippocampus which are similarly reported in previous
studies as well. Another group of studies recognized transient
reduction in temporal brain dynamism (Iraji et al, 2019a;
Mennigen and Rashid, 2019) which is compatible with our
results regarding dynamic FNC and dwell time of different states.
Our observation supports the hypothesis of altered connectivity
patterns in schizophrenia and possibility of these patterns with
psychological interventions.
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TABLE 4 Ablation analysis of SM3 model.

10.3389/fnimg.2023.1097523

Batch norm layer Instance norm Omitting 1 Adding 1 Mean squared
layer convolution convolution error (MSE)
layer + layer +
deconvolution deconvolution
layer layer
Original architecture v S S X 30.27
Scenario 1 X v X X 34.71
Scenario 2 X v v X 40.33
Scenario 3 X v X v 35.84
A B

FIGURE 9

subjects for the same network/group.

This figure highlights spatial dynamics over time in a sensori-motor network (SM3) by showing a transient state from sensori-motor to cerebellar network.
Part (A) shows the averaged map over time and subjects for the control group and section (B) shows spatial deviation over time which is averaged over

4.2. Advantages of the 4D maps

The proposed approach generates full 4D representations from
input fMRI data and enables us to directly study spatiotemporal brain
dynamism. A good feature of the proposed method is generating
individual maps for each subject which makes it a better choice
rather than a group of schizophrenia studies in which atlas-based
parcellation plays a key role. Atlas-based analysis are widely used for
studying potential biomarkers in schizophrenia by using a fixed size
template for all subjects and then conducting statistical analysis on
different segments (He et al., 2021; Zhang et al., 2021; Takahashi et al.,
2022), but obviously they ignore natural differences between brains in
shape, size, and folding, which are considered in 4D approach.

Frontiers in Neuroimaging

A major advantage of the 4D network approach is we can capture
changes which are only visible in the voxel level spatial dynamics. One
dramatic example which highlights this feature is our observation
of functional activity in the sensori-motor3 network that shows
transient linking to the cerebellum as is shown in Figure 9.

This feature can open up a wide range of possibilities in
studying brain disease and makes the 4D approach different from
popular ICA-based analysis. In ICA-based methods, we can compute
individual spatial components and time-courses for each subject,
then applying statistical analysis on them (Sendi et al., 2021; Duda
and Iraji, 2022; Iraji et al., 2022), but variation of voxels in shape, size,
and translation over time—spatial dynamics is a missing piece of the
puzzle. Moreover, the proposed 4D approach has less computational
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complexity in inference phase comparing with ICA-based studies
which can also consider a minor advantage as well.

4.3. Limitations

We can numerate several limitations and assumptions in the
proposed schizophrenia study which might be considered in future
research. However, we are able to relatively replicate plausible
representation (score map) patterns for all subjects, it is not still
clear whether observed patterns are generated by neuronal and
cognitive sources originally or just that of artifacts which is a common
challenge in recent research (Damaraju et al., 2014; Sendi et al., 2021).
It is not also feasible to evaluate impact of short and long-term
pharmacologic treatment on changing neuronal activity patterns
which are represented by the models for schizophrenia patients
(Joo et al,, 2020; Penades et al., 2020). Moreover, schizophrenia is
a complex brain disease where different internal or environmental
factors interact with each other to affect brain and eventually appears
into clinical symptoms which not investigated in our study including
gender, age, genetics, IQ, etc., (Henry et al., 2013; Chen et al., 2021).

5. Conclusion

In this work, we have studied group level differences in
spatiotemporal brain dynamics between healthy-control and
schizophrenia subjects by incorporating BPARC framework
including 53 different pre-trained models. Our testing and
evaluations show group level differences across multiple networks
and spatiotemporal features which need further study as a potential
brain-based biomarker for schizophrenia. In future, we will utilize
generated representations for classifying control and schizophrenia
subjects and studying impact and contribution of different brain
networks in schizophrenia. Also, we will incorporate other factors
like gender, age, and ethnicity in our analysis including during
the model training process, to more fully address potentially

confounding factors.
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