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Abstract—Recently, methods that represent data as a graph,
such as graph neural networks (GNNs) have been successfully
used to learn data representations and structures to solve
classification and link prediction problems. The applications of
such methods are vast and diverse, but most of the current work
relies on the assumption of a static graph. This assumption does
not hold for many highly dynamic systems, where the underlying
connectivity structure is non-stationary and is mostly unobserved.
Using a static model in these situations may result in sub-
optimal performance. In contrast, modeling changes in graph
structure with time can provide information about the system
whose applications go beyond classification. Most work of this
type does not learn effective connectivity and focuses on cross-
correlation between nodes to generate undirected graphs. An
undirected graph is unable to capture direction of an interaction
which is vital in many fields, including neuroscience. To bridge
this gap, we developed dynamic effective connectivity estimation
via neural network training (DECENNT), a novel model to
learn an interpretable directed and dynamic graph induced by
the downstream classification/prediction task. DECENNT outper-
forms state-of-the-art (SOTA) methods on five different tasks and
infers interpretable task-specific dynamic graphs. The dynamic
graphs inferred from functional neuroimaging data align well
with the existing literature and provide additional information.
Additionally, the temporal attention module of DECENNT iden-
tifies time-intervals crucial for predictive downstream task from
multivariate time series data.

Index Terms—dynamic ENC, fMRI, FNC, time series

I. INTRODUCTION

Many classification/prediction problems can be solved by
learning the underlying structure/pattern of the data and how
different components are co-related with each other. Datasets
from different fields are often represented as a graph. Graph
networks [1], [2] are proposed to work on such datasets.
Recently, methods such as, graph neural networks (GNNs)
have been extensively used to learn representations on graph-
structured data [3]–[6]. GNNs take nodes from data and
update representations of nodes with the help of different
aggregating functions. The aggregate functions work using
a message-passing system, where a node receives messages
from its neighbors, which are defined by edges. The rep-
resentations can then be used for node classification, graph
classification, or predicting edges between nodes by using an
existing true graph structure or learning the graph [5], [7]–
[14]. For any of the mentioned tasks, most of the existing
work (classification, link prediction) has been done on static
graphs, e.g., Parisot et al. [6], creates a static graph based on

representation and phenotype information of subjects, Mah-
mood et al. [15] learns a static graph between brain regions,
Kipf et al. [13] learns a static graph in an interacting system.
In reality, many fields (social networks, brain connectivity,
traffic data, speech) are dynamically changing and cannot
be completely represented using a static graph. We propose
that learning a dynamic graph for such systems can increase
our understanding of these highly dynamic systems and may
also yield higher classification performance based on the task.
For example, learning the dynamic connectivity of the brain’s
networks can help researchers to understand brain dynamics
and the causes of brain disorders by learning how connectivity
changes while performing tasks, or with age. Dynamic graphs
for social network data can help to understand users’ patterns,
peak traffic times, retention time, and many other vital aspects
of the network.

Even though graph networks have excelled in many areas,
we see a couple of shortcomings in the current work regarding
graph-structured data. 1) Most of the work done, whether for
graph classification (node or graph) or graph learning (link
prediction), work on un-directed graphs and assume that the
graph structure of the data is available or easily created and
thus work directly on the graph-structured data [5], [16]. This
assumption is improbable in many different datasets across
many fields. 2) The semi or unsupervised methods developed
to learn the graph structure (link-prediction) create embed-
dings/representations based on the learned graph structure,
and use these embeddings to either predict future embeddings
or perform classification tasks where loss is the error in
prediction or classification [13], [15], [17]. The problem with
this approach is that the embeddings are used for predic-
tion/classification. The learned structure is not tested directly,
especially where the true graph structure is never available
(e.g., brain functional network connectivity (FNC)) and thus
is unreliable. The unreliability increases in systems with
relatively easy tasks and noiseless data (real or simulated).
Kipf et al. [13] shows that using a full graph leads to almost
the same or better performance (in terms of loss) as the learned
static graph, thus questioning the correctness/importance of the
learned graph structure. 3) The graph structure is assumed to
be static, which is highly unlikely in many datasets such as
a) social network, where a node can join/leave at any time or
create/drop an edge. b) Brain functional connectivity, where
the connectivity between brain regions is always dynamic.
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Xu et al. [18] shows that using a static graph learning method
for a dynamic system/graph can lead to lower classification
performance, Kipf et al. [13] shows improved results by
just dynamically re-evaluating the static learned graph during
testing. The improved performance for the relevant task is
understandable as the dynamic connectivity provides essential
information about the system.

Classification gains by using a dynamic graph depend on the
downstream task; e.g., a social network’s dynamic graph may
not be too helpful to predict a user’s gender but can provide
additional information, which itself is extremely important
for understanding the dynamic system and its working. For
example, studies like [19]–[21] show that dynamic functional
connectivity (FC) show re-occurring patterns which cannot be
captured in static FC. Thus, we want to learn dynamic and
directed graph structure representing the time series data and
use that for interpretation, understanding and prediction tasks.

We present a novel method called - dynamic effective
connectivity estimation via neural network training - (DE-
CENNT). DECENNT is a semi-supervised method (unknown
graph structure, known graph labels) which we use to 1) learn
dynamic directed graph structure using embeddings for better
understanding of the underlying system and 2) perform graph
classification based on the learned graph structure/connectivity
alone. We propose that high classification results based on
the learned graph structure alone and not the representations
greatly reduce the uncertainty regarding the usefulness of the
learned structure and produce more useful and reliable graphs,
which is the key objective of our study. These graphs can
then be used for understanding the underlying system and
interpreting the cause(s) of classification/prediction.

Recently, graph structure has been used to represent the
brain. Brain connectivity is highly dynamic and changes with
functionality being performed. Understanding the dynamic
functionality would help to understand the functionality and
connectivity of the brain. Thus, we apply our model to learn
the brain’s dynamic effective connectivity (EC) using the
functional magnetic resonance imaging (fMRI) data. fMRI is
an imaging method used to capture blood-oxygenation level
dependent (BOLD) signals in the brain, which measures neural
activity between brain regions.

In this study, we learn dynamic EC of the brain and
use that to 1) predict the presence of a disease or predict
the gender of the subject and 2) learn dynamics of brain
networks’ connectivity related to the downstream task. Many
recent studies have been proposed to learn or compute FC of
the brain [22]–[26] and use it to predict the gender or dis-
ease/disorder [22], [23], [25]–[29] using GNNs or other such
methods but have limitations as discussed above. Methods
that incorporate dynamic FC (either learned or computed) are
mostly window-based [30]–[33], which partition the data into
multiple windows, each consisting of data from multiple time-
points. As the structure/connectivity can change at any time,
we create an instantaneous dynamic structure. Existing studies
most commonly use symmetric estimates of relationship, e.g.,
Pearson correlation coefficients (PCC) matrix, to represent FC.

The symmetric correlation matrix does not capture effective
connectivity, and does not reveal the direction of flow of infor-
mation. To incorporate direction, some studies [34], [35] use
methods like transfer entropy [36] or Granger causality [37].
The former is notoriously difficult to estimate reliably, while
the latter has problems with latent confounders. Moreover,
these approaches do not directly fit the requirements for an
interpretable differential layer.

We also incorporate temporal attention in our model to
provide better interpretable results and further understand the
working of brain functionality. We apply our model to both
resting state-fMRI (rs-fMRI), where the essential time-points
(putative biomarkers) are not known and to speech data. In the
latter, we predict the presence of a specific target word in the
speech and use the attention module to mark the time-points
of the occurrence.

Contributions: Our study has the following contributions.
1) Without the availability brain’s true E/FC structure,

by using fMRI data, we learn a directed connectivity
structure of the brain that provides additional details
than existing literature. Thus, it removes the need to
use a separate method to compute connectivity before
applying classification.

2) Based on the learned dynamic EC, our model outper-
forms other SOTA methods in classification tasks (dis-
orders, gender, and keyword detection) across multiple
datasets and pre-processing.

3) Our temporal attention module finds the essential time-
points for the downstream task with very high accu-
racy and is stable/consistent across multiple trials. It
improves classification performance and finds important
bio-markers related to the downstream task. This in turn
can lead to reducing the temporal dimensions and dis-
carding time-points that are unrelated to the downstream
task.

II. DECENNT

We use the proposed DECENNT model to learn a dynamic
directed graph structure/pattern for any multivariate time series
data. The dynamic directed graph is essential to learning and
understanding the system and can be used in different ways
to perform classification on the downstream task. We learn a
distinct dynamic graph G for the complete time series where
G is a set of T graphs with T being the total time-points of
the time series. We define G as:
G = {g1, ....gt, ....gT |T = time-points} and gt = (Vt, Et),

where, Vt and Et represent the vertices and edges present at
time-point t. After computing the set G we use our temporal
attention module to focus on the important time-points and
generate a single final graph Gf representing the complete
time series. Gf is used for downstream classification. To create
the embedding hi,t for the ith component at time t we use a
bidirectional long short-term memory (biLSTM) [38] which
takes the time series for the component i and produces ht for
each component. To create the connectivity matrix (adjacency
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matrix/graph) between the components (nodes) at each time-
point t we use a self-attention module [39]. We explain both
parts separately in the following sections. Fig. 1 shows the
complete architecture of the model.

A. biLSTM

biLSTMs have been used very successfully for time series
data. LSTMs take one input (e.g., word) from a sequence
(e.g., sentence) and provide embeddings for data at each point
in the sequence. The effectiveness of LSTMs comes from
the memory and forget gates, which help the model to learn
relationships between input at different time-points. In time
series data, e.g., a sentence, each input is not independent of
previous or future values. Thus it makes very crucial to find
these effective relationships between the data. As the effect of
input at a time, t onto other inputs, is unknown and can vary
across different time series and components of the same time
series, it is crucial to learn these relationships based on the
downstream task. The working of the LSTMs can be explained
by the following equations. σ represents sigmoid activation, b
are the biases, and � is the Hadamard product [40].

it = σ(Wiixt + bii + Whiht−1 + bhi)
ft = σ(Wifxt + bif + Whfht−1 + bhf )
gt = tanh(Wigxt + big + Whght−1 + bhg)
ot = σ(Wioxt + bio + Whoht−1 + bho)
ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(1)

Here ht represent the embedding for the input at t. We use
a biLSTM to create embeddings ht for each component i.
Thus hf

t = LSTM(xt,ht−1), hb
t = LSTM(xt,ht+1) and

ht = concatenate(hf
t ,h

b
t). Here hf

t and hb
t are representation

for forward and backward pass. We use LSTM for each
component individually, sharing weights of LSTM among the
components. We give xit as input to the LSTM along with
hidden vector and receive hi

t for the component i. This allows
us to later compute connectivity matrix (links/edges) between
the components/nodes.

III. SELF-ATTENTION

Self-attention creates new embeddings for each xi depend-
ing on n other embeddings in the sequence. Self-attention tries
to find the relationship of each input with all other inputs
denoted by weights and updates xi accordingly. Self-attention
can be considered a special case of a typical GNN with 1
layer/hop where a node receives input from the neighbors
that are one hop away. Because of the ability of the self-
attention module to create weights by learning the relationship
between different embeddings, we create a connectivity matrix
between components at each time-point t by giving {hi

t, .....h
n
t

}, n = total components, as input to the self-attention module
and creating new embeddings {h̃

i

t, .....h̃
n

t } and the weight
matrix Wt, where each Wt ∈ Rn∗n. The self-attention
module creates three embeddings, namely, key (k), value (v),
and query (q) and creates new embeddings for each input
using these embeddings. The set of equations in (2) can
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Fig. 1. DECENNT architecture using biLSTM, self-attention and temporal
attention.

sum up the whole process. For simplicity, we omit the t
from these equations. ᵀ represents transpose and ⊕ represents
concatenation.

ki = hiᵀW(k), vi = hiᵀW(v), qi = hiᵀW(q)

K = ⊕n
i=1k

iᵀ, wi = softmax(qiK)

h̃
i

=
∑n

j (wi
jv

j),W = ⊕n
i=1w

i

(2)

Here W ∈ Rn∗n is the connectivity matrix between n
components/nodes in the graph. We use W for downstream
classification and not the embeddings. As the true graph is
never available in many applications to directly compare with,
we propose that a connectivity matrix leading to state-of-
the-art classification performance makes it more reliable than
using the embeddings (h̃) for classification.

IV. TEMPORAL ATTENTION

Since we get a set of the matrices W, one for each time-
point, an easy and standard way is to average the T matrices,
however, not all time-points can be equally crucial for the
downstream task. Therefore, we introduce a new temporal
attention mechanism to focus on important time-points. The
temporal attention module is essential for the downstream
classification and for finding important timepoints/biomarkers
in the data, thus making it crucial to our model. We name
our attention model - global temporal attention (GTA) - that
attends to crucial time-points and is stable and consistent
across randomly seeded trials.

Authorized licensed use limited to: Georgia State University. Downloaded on February 01,2025 at 22:19:00 UTC from IEEE Xplore.  Restrictions apply. 



A. GTA

To give the attention module a global view of the graph,
we present GTA. The global view allows the model to learn
how each connectivity matrix contributes to the global graph
or structure of the data in the downstream task. We create a
sum of all the T connectivity matrices and call it Wglobal

representing the global view. We then compare the similarity
of each local Wt with the global view and use them to create
the temporal attention vector α.

Wglobal =
∑T

t=1(Wt),W̃t = Wt �Wglobal

α = (⊕T
t=1(((flat(W̃t))W

MLPl1)WMLPl2)

Wf =
∑T

t=1(Wtαt)

(3)

Here � is the Hadamard product [40] between matrices, ⊕
represents concatenation, and Wf is the final weight matrix.
Equation (3) shows the equations for GTA.

V. EXPERIMENTS

This section reports the training process of our model,
details about hyper-parameters, and datasets used.

A. Training

We ran our experiments using RTX 2080 using PyTorch.
The hidden dimensions for the LSTM, self-attention including
key, query, and value modules, were all set to 64. Both LSTM
and self-attention modules had only one layer. We tried to
incorporate multiple layers, but it did not help in terms of
classification performance nor interpretation. The dimensions
of MLP layer for calculating temporal attention vector were
γ ∗ len(flat(Wt)) and 1 with γ = 0.25. We used batch
normalization after the first MLP layer. ReLU activation was
used in our model between the MLP layers. A final two-
layer MLP was used to get logits for binary classification
problem with Wf as input with dimensions 64 and 2. We
used cross-entropy loss with Adam optimizer. Let θ represent
al the parameters of the architecture, ŷ being the prediction
and y is the true labels, the loss is calculated as:

loss = CrossEntropy(ŷ,y) + λ‖θ‖1 (4)
θ∗ = arg min

θ
(loss) (5)

λ (regularization weight) was set to 1e−6 and learning rate
(η) was 1e−4. We reduced the learning rate by a factor of
0.5 when validation loss reached plateau. Early stopping was
used to stop training the model based on validation loss and
patience of 15. For each dataset, to have a fair result, we
perform n-fold cross validation, depending on the size of the
data with 10 randomly seeded trials for each fold. We report
the mean area under curve - receiver operating characteristic
(AUC-ROC) and many other metrics to show classification
performance. For region based experiments, γ was reduced to
0.005, η was set to 5e − 3 for HCP dataset and 3e − 4 for
others. Batch size was set to 32.

B. Datasets

To test our model for a) classification b) learned connec-
tivity matrix and c) learned temporal attention we use five
different datasets across two fields; neuroimaging, and natural
language processing (NLP). Refer to Tab. I for details of the
neuroimaging datasets. Validation and test size was kept same.

1) NeuroImaging: The neuroimaging datasets can be fur-
ther divided into two sub-tasks; brain disorder and gender
prediction.

a) Disorder Prediction: Three datasets used in this study
include FBIRN (Function Biomedical Informatics Research
Network1) [41] project, release 1.0 of ABIDE (Autism Brain
Imaging Data Exchange2) [42] and release 3.0 of OASIS
(Open Access Series of Imaging Studies3) [43] to predict
schizophrenia, autism and dementia respectively.

b) Gender Prediction: Healthy controls from the
HCP [44] are used for gender prediction.

c) Preprocessing: We use different brain parcellation
techniques which can be divided into two sub-categories; ICA
and region based. The preprocessing method applied depends
on the parcellation technique used and the methods used in
SOTA studies for the particular dataset.

ICA parcellation: All experiments used a fully au-
tomated independent component analysis (ICA) as a
brain parcellation technique. We first preprocess the
fMRI data using statistical parametric mapping (SPM12,
http://www.fil.ion.ucl.ac.uk/spm/) within MATLAB 2020.
Subjects were included in the analysis if the subjects have
head motion ≤ 3◦ and ≤ 3 mm, and with functional data
providing near full brain successful normalization [45]. For
each subject, 100 ICA components are estimated using the
Neuromark template and used in experiments following the
same procedure described in [45]. We use ICA timecourses as
input to the model. For ABIDE1, we conduct two ICA based
experiments using all subjects and subjects with TR = 2.

Region parcellation: SOTA methods use different prepro-
cessing pipelines for HCP and ABIDE dataset. For comparison
with these SOTA methods on HCP and ABIDE dataset, we
preprocess these datasets following existing studies. HCP [44]
was first minimally pre-processed following [46], and then
FIX-ICA based denoising was applied to reduce noise in the
data [47], [48]. After denoising, 152 subjects were discarded
based on head motion following [23] which results into 942
subjects. ABIDE1 [42] was pre-processed using cpac [49], out
of 1112 subjects 871 were selected following [6], [50], [51]. To
divide the data into regions, we use Shaefer [52] and Harvard
Oxford (HO) [53] atlas depending on the experiment. Refer
to Tab. I for details about the datasets.

2) NLP: To show the broad implications of our method,
we apply our method for keyword detection in audio files. We
choose this problem because it has many practical applications
(e.g., virtual assistants in smartphones and robots). We use

1We are using fBIRN phase III.
2http://fcon 1000.projects.nitrc.org/indi/abide/
3https://www.oasis-brains.org/
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TABLE I
DETAILS OF THE NEUROIMAGING DATASETS USED. WE TRIED DIFFERENT CV FOLDS IN OUR EXPERIMENTS BUT THAT DID NOT HAVE A SIGNIFICANT

EFFECT ON RESULTS. WE REPORT THE RESULTS WITH CV FOLDS THAT MATCH COMPARING STUDIES.

Name Category Preprocessing Parcellation Subjects 0 Class 1 Class CV Folds TP

FBIRN Schizophrenia SPM12 ICA 311 151 160 4, 6, 18 157
OASIS Dementia SPM12 ICA 912 651 261 4, 10 157
ABIDE Autism SPM12 ICA 569 (TR=2) 255 314 5, 10 140
ABIDE Autism SPM12 ICA 869 398 471 5, 10 140
HCP Gender SPM12 ICA 833 390 443 5, 15 980

FBIRN Schizophrenia SPM12 Shaefer 200 311 151 160 18 157
HCP Gender Glassier Shaeffer 200 942 411 531 10 1200
ABIDE Autism C-PAC Shaeffer 200 871 403 468 10 83-316

Speech Commands Dataset [54] for predicting the occurrence
of a keyword in speech. The audio files are combined with a
background noise of a coffee shop [55] to make prediction
harder. We use this dataset to test the temporal attention
weights we get from our model because important time-points
(location of word cat in the noise) is known. We match this
experiment with classifying brain disorder. The keyword ”cat”
can be thought as the presence of a disease and the background
noise can be considered as the noise and other data present in
the fMRI time-courses.

a) Preprocessing: For prediction, we collect samples
of audios for the keyword ”cat” from speech command
dataset [54] which has 1515 audio files for the keyword.
To create ”cat” class examples, we superimpose each of the
keyword audios with the length of one second onto a two
seconds long background noise at a random location, resulting
in a two seconds long audio consisting of background noise
and keyword cat. To make it a difficult problem, we do the
following things; a) the audio of cat is mixed with the noise
when creating the final audio, which means the timepoints
where the word cat is added has noise as well and b) before
mixing the two audio files, we match the amplitudes of the
two audios by normalizing both audios (background and cat)
to same scale and finally c) we normalize the 1-second long
sum of both files so that the sum does not have higher values
than the rest of the audio file which only has noise. As a
result of the points (a-c) metioned above, the model cannot
perform classification based on amplitude. Furthermore, the
model receives the mel-spectogram of the audio files as input
rather than actual audio files. Fig. 2 shows the mel-spectogram
of the three audio files. To create ”no-cat” class examples, we
use another 1515 two seconds long audio files containing only
the background noise. Thus, we use 3030 audio files for the
downstream task (”cat”/”no-cat” classification). For all of the
3030 audio files, we compute mel-spectrogram to convert each
of them into a matrix of size components × time courses. To
test our model on multiple keywords, we create another dataset
with keyword ’nine’ following the same method.

VI. RESULTS

We show three different results, one for each of the pa-
per contributions. We compare our results with SOTA DL
methods [6], [15], [22], [23], [26], [32], [51], [56]–[59]
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4096

H
z
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0 0.5 0.9
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Fig. 2. Mel-spectogram of ’background noise’, ’cat audio’ and ’superimposed
audio’. The model receives background and superimposed files as input.

depending on the task, and ML methods such as support
vector machine (SVM) and logistic regression (LR). To be
fair to the other papers, we report directly from the results
mentioned in the papers. Not all methods were applicable to
each of the dataset/task, or the code/results of other methods
were not available. All figures are generated using multiple
test subjects across at least 10 randomly seeded trials. Our
experiments show that our model beats SOTA methods on
classification/prediction tasks but more importantly our learned
EC structures are a) similar to existing studies, b) provides
knowledge not present in existing methods; FC, c) captures
direction of connectivity and d) finds important temporal bio-
markers relevant to the downstream task.

A. Classification

Our method turns out to be the best performing model
against SOTA methods, giving the highest AUC score for all
the datasets used for classification (disorder, gender, speech)
with ICA data. Even with region-based data our model
performs better than existing methods on HCP and FBIRN
dataset. As our model does not use phenotypic information
about subjects, our model lacks behind GCN [6] and Deep-
GCN [51] on ABIDE.

Parisot et al. [6] reports a decrease of ∼ 2.5 AUC by using
a different phenotypic information which clearly shows the
dependence on phenotypic data. [26] reports much lower AUC
score by using only fMRI data. Fig. 3 shows the classification
results on ICA data. The machine learning methods fail due
to high data dimensions (m), and relatively smaller number of
subjects(n), m >> n. Tab. II and Tab. III show region based
classification results. We would like to point that GIN [23]
and ST-GCN [32] use test data for hyper-parameter tuning

Authorized licensed use limited to: Georgia State University. Downloaded on February 01,2025 at 22:19:00 UTC from IEEE Xplore.  Restrictions apply. 



DE
CE
NN
T

MILC
STDIM LR

SVM
DE
CE
NN
T

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
U

C
Schizophrenia

AllDECENNT
MILC

STDIM LR
SVM

Autism

DE
CE
NN
T

MILC
STDIM LR

SVM

Dementia

DE
CE
NN
T

Gender

DE
CE
NN
T

STDIM

Keyword Detection
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courses (Ref to section V-B1c). Our method significantly outperforms SOTA methods. We performed Autism experiments with 869 subjects (DECENNT ALL
- all TRs) as well. As we do not have a pre-training step we compare with not-pre-trained (NPT) version of MILC and STDIM. Input to ML models was
same ICA time courses.

TABLE II
CLASSIFICATION PERFORMANCE COMPARISON OF DECENNT WITH OTHER DL METHODS ON REGION BASED DATA OF HCP AND FBIRN DATASETS
(REF TO SECTION V-B1C). OUR DECENNT MODEL OUTPERFORMS ALL OTHER METHODS IN ALMOST EVERY METRIC. THE BEST TWO SCORES ARE

SHOWN AS BOLD AND ITALIC RESPECTIVELY. NOTE: AS WE USE ALL THE REGIONS IN THE ATLAS WE REPORT THE MEAN ACCURACY FOR
SVM-RBF [59]. THE RESULTS FOR GCN [22] ON HCP DATA ARE REPORTED IN GIN PAPER [23].

HCP FBIRN
DECENNT GIN SVM-RBF GCN ST-GCN PLS DECENNT BrainGNN

AUC 93.6 NA NA NA NA 88.125 82.5 78.8
ACC 86.0 84.6 68.7 83.98 83.7 79.9 NA NA
Precision 87.2 86.19 NA 84.59 NA NA NA NA
Recall 88.6 86.81 NA 87.78 NA NA NA NA

Parcellation Shaefer
200

Shaefer
400

Shaefer 400
+ Fan 39

Shaefer
400

Multi-moda
22

Dosenbach
160

Shaefer
200

AAL
116

Validation 10 10 10 10 5 10 18 18
Subjects 942 942 434 942 1091 820 311 311
Study Our [23] [59] [22] [32] [58] Our [15]

TABLE III
COMPARISON OF AUC SCORE ON ABIDE1 REGION BASED DATASET (REF
TO SECTION V-B1C). EXISTING METHODS USE HARVARD OXFORD (HO)

PARCELLATION WITH 111 BRAIN REGIONS. UNLIKE GCN [6] AND
DEEPGCN [51] WE USE ONLY FMRI DATA.

Method Parcellation Input AUC

DECENNT Shaefer fMRI data 0.70
DECENNT HO fMRI data 0.69

GCN [6] HO fMRI +
phenotypic data 0.75

DeepGCN [51] HO fMRI +
phenotypic data 0.75

Metric Learning [26] HO fMRI data 0.58

and early stopping, whereas we use validation data for both
and test data is used only to test the model. Kim et al. [60]
reports lower results for GIN (81.34 ACC and 89.55 AUC)
and ST-GCN when not using test data as validation data.

B. Connectivity Matrix

We first present the learned connectivity for the relatively
easier task of NLP. We show the difference in the learned
EC for the two keywords (’cat’ and ’nine’) in Fig. 4. Fig. 4a
show high connectivity between higher channels, whereas Fig.
4b show high connectivity for relatively lower channels which
follows the high frequency sounds in ’cat’ and relatively lower
frequency sounds in ’nine’.

Next we compare the connectivity matrix learned by our
model on neuroimaging dataset with FNC computed PCC,
which is probably the most popular method for computing
connectivity matrix. Fig. 5 shows that the two matrices are
comparable, but our effective network connectivity (ENC)
Fig. 5a is directed and provides additional details. We also
see that our ENC Fig. 5a has more inter-network connectivity
which is missing in Fig. 5b. The effect of visual (VI) network
onto other networks is seen only in Fig. 5a. We group the
ICA components according to [61] into seven domains based
on anatomical and functional properties. 53 components out
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Fig. 4. EC learned by our model for keywords ’cat’ and ’nine’ superimposed
with noise. We used a test fold of 16 subjects and computed mean EC with
10 trials per subject. Our model accurately gives high attention values to
medium-to-high channels for ’cat’ and low-to-medium channels for ’nine’
samples. Average values: Inside green box: 0.89 for Fig. 4a and 0.78 for
Fig. 4b, outisde box: 0.69 for Fig. 4a and 0.63 for Fig. 4b. X and y axis
denote the frequency channels in hertz (HZ).
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Fig. 5. Fig. 5a is the connectivity matrix generated by our model for FBIRN
dataset. We used a test fold of 16 subjects (10 trials each) and computed mean
ENC for all subjects. Fig. 5b is the mean FNC of the same subjects generated
by PCC. Both figures are strikingly similar, which verifies the correctness of
the connectivity matrix learned by our model. To match the positive weights
of our model, we normalize the FNC from 0 to 1 instead of -1 to 1.

of 100 fall into the seven domains and the rest are marked as
noise. The connectivity matrix clearly shows that the compo-
nents have high intra-domain connectivity, which matches the
existing literature [61].

Furthermore, as our model learns ENC, we use Fig. 6 to
show the importance of direction. Fig. 6 (left) shows edges
from a to b, where a > b For example, the edge (8,21) means
the edge is from 21 to 8. It is observable that the components
in visual (VI) heavily affect components in sensorimotor
(SM). The direction is reversed in Fig. 6 (right) and SM
does not affect VI. Similar direction can be seen between
cognitive control (CC) and SM. The presence of direction is
of paramount importance and is missing from FNC. It can
potentially help to make and answer interventions in data.

C. Temporal Attention

As in rs-fMRI the subjects are not performing any specific
task at any time-point, there is no available true knowledge
of important time-points. Because of this reason, we show
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Fig. 6. Top 10% directed edges of FBIRN ENC 5a. The numbers represent the
53 crucial components. The figure shows the direction of connectivity. Visual
(VI) affects other domains, cognitive control affects sensorimotor. Edges: VI
→ other: 79, other → VI: 25. CC → SM: 9, SM → CC: 3.

keyword detection experiments where the precise location
of the keyword is available. Fig. 7 shows attention weights
for 8 test subjects. The attended time-points match with the
time-points of the keyword. This is extremely significant
and proves the model can accurately find important time-
points, as the location of the keyword was never given to the
model. We compute the statistical values such as (precision,
recall) of the temporal attention, mentioned in the caption of
Fig. 7. We assign label ’1’ to time-points where ’cat’ audio
is superimposed and label ’0’ to all other time-points which
gives us the true labels. For predicted labels, we assign label
’1’ to time-points with attention value greater than 0 and label
’1’ to all other time-points. The stats shows that the model a)
assigns high attention values to ’cat’ time-points, b) does not
attend to ’non-cat’ time-points and c) does not attend to all
’cat’ time-points. Although, we would have liked the model
to attend to all cat time-points, we think the model does not
do that because of two reasons; 1) The 1-sec long ’cat’ audio
files on average have the ’cat’ sound for only 0.5 seconds or
less whereas, when creating Fig. 7 and the stats, we used the
complete 1-sec time-points. 2) The model maybe looking for
a part of the keyword ’cat’ which is distinct from the noise.

To further check the correctness of the time-points selected
by our model and the affects on classification performance,
we perform an experiment where after training the model,
we compute Wf using only top 5% attended time-points
for training data to train an LR model and then use the top
5% time-points for the test data to test the model. Similarly
we perform experiments for bottom 5% values as well. Tab.
IV shows the comparison using three brain datasets. The
results show that the LR model provides high AUC score
by just using top 5% of the time-points attended by the
model. Thus, it proves that a) not all time-points are important
for classification of the downstream task and b) our model
accurately finds the important time-points. We use an LR
model for this experiment to show that the learned top/bottom
5% time-points are not limited to our model but is generalized
such that an independent LR module gives high classification
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(a) All trials (b) Averaged

Fig. 7. Fig. 7a is the normalized temporal attention weights for keyword
detection task for 8 subjects, with 10 trials for each. To keep the lines
separate, we added the trial number to the weights. Fig. 7b is the mean
weights for the 10 trials of the same subjects. The top red line marks the actual
time-points for the keyword. Statistics: True Positive=56, False Positive=18,
True Negative=331, False Negative=291, Precision=0.76, Sensitivity=0.16,
Specificity=0.95.

results using the top 5% attended time-points and does not
learn on the low 5% data. In our experiments, we also note
upto 5% drop in AUC when not using temporal-attention.

TABLE IV
AUC SCORE COMPARISON ON BRAIN DATASETS WITH ICA COMPONENTS

BY USING ALL, TOP 5 % AND BOTTOM 5% TIME-POINTS ONLY.

Method FBIRN OASIS ABIDE

100 % DECENNT 0.844 0.72 0.65
Top 5 % LR 0.835 0.713 0.642
Bottom 5 % LR 0.566 0.548 0.532

VII. CONCLUSION

Our model demonstrates the importance of learning dy-
namic temporal graphs for any multivariate time series, which
is currently missing from the existing literature. Using dy-
namic graphs, our model outperforms SOTA methods across
five different tasks, proving that the model is applicable
across different fields and tasks. By learning the correct graph
structure/connectivity matrix for the data, our model eliminates
the need for existing external methods such as PCC, K-means.
Our model learns a directed graph structure that provides more
detail than a symmetric correlation matrix which does not
capture effective connectivity. As seen in results, our learned
EC matrices give the direction of connectivity between brain
regions. The temporal attention module proves to be highly
effective in terms of classification. As shown in the paper, it

provides stable attention weights and accurately finds the crit-
ical time-points depending on the downstream task. Both self
and temporal attention modules result into stable, consistent
attention values and increase the classification performance
across tasks. These attributes address the questions regarding
explainability of attention mentioned in [62], [63]. Many tasks
across many fields are ever dynamic and have missing graph
structure, e.g. (Brain functional networks, social networks,
self-driving cars etc.) which increases the need of methods
like DECENNT. Temporal attention used in brain connectivity
can help us find important bio-markers relative to the disor-
der/disease which in turn help us understand the disorder and
its causes. For future work, we plan to extensively interpret
the learned connectivity structures, and see the differences in
them across controls and patients and across multiple brain
disorders. We plan to compare our model with other methods
of capturing brain’s network connectivity such as transfer
entropy and Granger causality. We also want to incorporate a
form of spatial attention, which like temporal attention, could
help identify essential nodes/components that are sometimes
unavailable in many fields. We also for each class of subject
want to examine how ENC changes overtime and if/how the
direction of flow of information changes through time.
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